1
|
Pragasam AK, Maurya S, Jain K, Pal S, Raja C, Yadav R, Kumar S, Purohit A, Pradhan D, Kajal K, Talukdar D, Singh AN, Verma J, Jana P, Rawat S, Kshetrapal P, Krishna A, Kumar S, Bansal VK, Das B, Srikanth CV, Garg PK. Invasive Salmonella Typhimurium colonizes gallbladder and contributes to gallbladder carcinogenesis through activation of host epigenetic modulator KDM6B. Cancer Lett 2025; 618:217621. [PMID: 40074067 DOI: 10.1016/j.canlet.2025.217621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Gallbladder stones alone do not explain the risk of gallbladder cancer (GBC) as the sole etiological factor. Chronic microbial infection, particularly Salmonella, has been implicated in GB carcinogenesis, but its causative role and the underlying mechanisms are largely unknown. We studied gut and gallbladder tissue microbiome through targeted metagenomics to identify pathogenic bacteria in GBC. Virulence and pathogenicity of identified Salmonella Typhimurium from GBC tissue were studied after culture by whole genome sequencing, phylogenetic analysis, mutational profiling, and pangenome analysis. Mechanistic studies for GBC carcinogenesis were carried out in a mouse model of gallstones and chronic Salmonella infection, a cellular model using GBC (NOZ) cell lines, and a xenograft tumor model. We found an increased abundance of Salmonella in the gut microbiome of patients with GBC and culturable S. Typhimurium from the gallbladder cancer tissue. Comparative genomics of S. Typhimurium isolated from the GBC tissue showed a high invasive index. S. Typhimurium isolates harbored horizontally acquired virulence functions in their accessory genome. Chronic S. Typhimurium infection caused chronic inflammation, pre-malignant changes, and tumor-promoting mechanisms in the mouse model with gallbladder stones with activation of the epigenetic modulator KDM6B both in the mouse model and human GBC. Inhibition of KDM6B reduced engrafted tumor size in SCID mice. Of the differentially regulated genes in human GBC tissue, ADAMTSL5, CX3CR1, and SPSB4 were also significantly dysregulated in NOZ cells infected with Salmonella. Chronic Salmonella infection contributes to gallbladder carcinogenesis through a host epigenetic mechanism involving KDM6B.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sonalika Maurya
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Kajal Jain
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujoy Pal
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Christu Raja
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shakti Kumar
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Ayushi Purohit
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Dibyabhaba Pradhan
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kirti Kajal
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Daizee Talukdar
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Anand Narayan Singh
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jyoti Verma
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Pradipta Jana
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Shefali Rawat
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pallavi Kshetrapal
- Pediatric Biology Center, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Asuri Krishna
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subodh Kumar
- Department of Surgery, JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Virinder Kumar Bansal
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Centre for Microbial Research, BRIC-Translational Health Science and Technology Institute, Faridabad, 121001, India.
| | - Chittur V Srikanth
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
3
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Wu J, Zhang J, Jin L, Wei X, Liu Y. Analysis of garlic intake on atrophic gastritis risk in different infectious states of Helicobacter pylori in a case-control study. Sci Rep 2025; 15:8481. [PMID: 40074793 PMCID: PMC11904234 DOI: 10.1038/s41598-025-92376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
In this case-control study, the main risk factors for atrophic gastritis (AG) were comprehensively analyzed in a real-world environment to identify potential risk factors associated with garlic intake and its effects on AG. Design Upper gastrointestinal endoscopy and pathological examination were performed as part of a gastric cancer screening and health check-up program. The detailed characteristics of both the case group and healthy control group were recorded and analyzed. All participants were fasted for at least 4 h and a urea breath test13C-UBT) was performed in all participants at rest. Both univariate and multivariate logistic regression analyses were performed and presented as the odds ratio (OR) and 95% confidential interval (CI), with additional subgroup analysis stratified by infectious state based on the presence, eradication or absence of H. pylori. Setting Gansu Province in China. Participants 10,035 people from Gansu Province in China were included. Among 7,058 participants, 4,712 (66.8%) had AG. Garlic intake was a significant risk factor for AG in participants currently (infected state) or previously (eradicated state) infected with H. pylori (OR = 1.39, 95% CI: 1.06-1.83; OR = 1.16, 95% CI = 1.01-1.32). Garlic intake was not significantly associated with AG in participants without H. pylori' s infection (OR = 1.14, 95% CI: 0.88-1.46). The association between garlic intake and AG differed by H. pylori infectious state. People in the infected or eradicated states are at a higher risk for AG associated with garlic intake. Diet may regulate the pathogenic role of H. pylori and intestinal flora.
Collapse
Affiliation(s)
- Jianjun Wu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Leve, Lanzhou, 730000, Gansu Province, China
- Institute of Preventive Medicine of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China
| | - Jia Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Leve, Lanzhou, 730000, Gansu Province, China
- Institute of Preventive Medicine of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China
| | - Lan Jin
- School of Medicine, Yale University, New Haven, CT, USA
| | - Xingmin Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Leve, Lanzhou, 730000, Gansu Province, China
- Institute of Preventive Medicine of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China
| | - Yuqin Liu
- Cancer Epidemiology Laboratory of Gansu Cancer Hospital, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
5
|
Zhang P, Feng S, Liu F, Han S, Fan T, Chen H, Dong X, Wang X, Qin Y, Chen Y, Jiang Y. Cascaded Strand Displacement Amplification and CRISPR/Cas12a Aptasensor Utilizing MoS 2 Nanoflowers for Colorectal Cancer Biomarker Porphyromonas gingivalis Detection. Anal Chem 2025; 97:4932-4944. [PMID: 40016920 DOI: 10.1021/acs.analchem.4c05014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, both in terms of diagnoses and cancer-related mortality. Increasing evidence suggests that an imbalance in intestinal flora can contribute to the progression of CRC, and fecal microbiota may serve as potential biomarkers for its screening and diagnosis. Notably, Porphyromonas gingivalis has been identified in the malignant tissues and feces of CRC patients, establishing it as a significant biomarker for early screening, diagnosis, and prognostic assessment of CRC. Current methods for detecting P. gingivalis face numerous challenges, including high costs, complex procedures, and lengthy implementation times. Therefore, developing rapid, highly specific, and sensitive detection methods for P. gingivalis is of great importance. In this study, we utilized the whole-bacterium systematic evolution of ligands by exponential enrichment method to identify highly specific and high-affinity aptamers targeting P. gingivalis through 15 selection cycles. Subsequently, we developed an aptasensor driven by MoS2 nanoflowers, which integrates strand displacement amplification and CRISPR/Cas12a double amplification for sensitive detection of P. gingivalis, achieving a limit of detection of 10 CFU/mL. Using this aptasensor, we evaluated the abundance of P. gingivalis in clinical fecal samples and observed significantly higher levels in the feces of CRC patients compared to healthy individuals, corroborating the results obtained from quantitative polymerase chain reaction. In summary, we developed a highly specific and sensitive aptasensor for the first time, representing a promising new approach for the identification of P. gingivalis, with significant potential for CRC screening and diagnosis.
Collapse
Affiliation(s)
- Peiyi Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Shanshan Feng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Sanyang Han
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, P. R. China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Xiangyan Dong
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Xiaopeng Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen 518035, P. R. China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
6
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
7
|
Yang C, Qin LH, Li L, Wei QY, Long L, Liao JY. The causal relationship between the gut microbiota and endometrial cancer: a mendelian randomization study. BMC Cancer 2025; 25:248. [PMID: 39939905 PMCID: PMC11823214 DOI: 10.1186/s12885-025-13656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Gut microbiota is associated with endometrial cancer (EC); however, the causal relationship remains unexplored. This study attempted to explore the relationship between gut microbiota and EC using Mendelian randomization (MR) methods. METHODS In this two-sample MR analysis, we used MiBioGen's gut microbiota data as the exposure and three datasets from European populations with EC as the outcome. The EC datasets included general EC, endometrioid histology, and non-endometrioid histology. Single nucleotide polymorphism (SNP) was used as the instrumental variable. Inverse variance weighted (IVW), multiplicative random effects IVW (MRE-IVW), Maximum likelihood (ML), MR Egger, MR-PRESSO, and the weighted median were used to perform MR analysis. Sensitivity analysis was conducted to assess the reliability of the results. RESULTS In this MR analysis of three EC datasets, specific gut microbiota were identified as potentially associated with different pathological types of EC. For general EC (ID: ebi-a-GCST006464), Family.Acidaminococcaceae (OR = 1.23, 95%CI: 1.02-1.48) and genus.Butyrivibrio (OR = 1.08, 95%CI: 1.01-1.16) were identified as risk factors, while genus.Ruminococcaceae UCG014 (OR = 0.82, 95%CI: 0.69-0.98) and genus.Turicibacter (OR = 0.84, 95%CI: 0.73-0.97) appeared to have protective effects. For endometrioid histology EC (ID: ebi-a-GCST006465), Family.Acidaminococcaceae (OR = 1.27, 95%CI: 1.01-1.59) and genus.Butyrivibrio (OR = 1.10, 95%CI: 1.01-1.19) were identified as risk factors, while several microbiota, including Family.Lactobacillaceae, genus.Coprococcus3, genus.Dorea, genus.Flavonifractor, genus.Lactobacillus, genus.Paraprevotella, and genus.Turicibacter, were identified as protective factors. For non-endometrioid histology EC (ID: ebi-a-GCST006466), Family.Rhodospirillaceae (OR = 1.41, 95%CI: 1.01-1.96) and genus.Peptococcus (OR = 1.43, 95%CI: 1.07-1.91) were identified as risk factors, while no significant protective factors were identified. CONCLUSIONS This two-sample MR study has identified gut microbiota with potential causal relationships with EC, varying by pathological type. These findings provide new insights into the pathogenesis of EC and suggest directions for future research on diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Chongze Yang
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lan-Hui Qin
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liwei Li
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Ying Wei
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liling Long
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Jin-Yuan Liao
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
8
|
AlHilli MM, Sangwan N, Myers A, Tewari S, Lindner DJ, Cresci GAM, Reizes O. The effects of dietary fat on gut microbial composition and function in ovarian cancer. RESEARCH SQUARE 2025:rs.3.rs-5904007. [PMID: 39975892 PMCID: PMC11838760 DOI: 10.21203/rs.3.rs-5904007/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objectives The gut microbiome (GM) is pivotal in regulating inflammation, immune responses, and cancer progression. This study investigates the effects of a ketogenic diet (KD) and a high-fat/low-carbohydrate (HF/LC) diet on GM alterations and tumor growth in a syngeneic mouse model of high-grade serous ovarian cancer (EOC). Methods Thirty female C57BL/6J mice injected with KPCA cells were randomized into KD, HF/LC, and low-fat/high-carbohydrate (LF/HC) diet groups. Tumor growth was monitored with live, in vivo imaging. Stool samples were collected at the time of euthanasia and analyzed by 16SrRNA sequencing and shotgun metagenomic sequencing was performed to identify differential microbial taxonomic composition and metabolic function. Results Our findings revealed that KD and HF/LC diets significantly accelerated EOC tumor growth compared to the LF/HC diet in a xenograft model. GM diversity was markedly reduced in KD and HF/LC-fed mice, correlating with increased tumor growth, whereas LF/HC-fed mice showed higher GM diversity. Metagenomic analyses identified distinct alterations in microbial taxa including Bacteroides, Lachnospiracae bacterium, Bacterium_D16_50, and Enterococcus faecalis predominantly abundant in HF/LC-fed mice, Dubsiella_newyorkensis predominantly abundant in LF/HC-fed, and KD fed mice showing a higher abundance of Akkermansiaand Bacteroides. Functional pathways across diet groups indicated polyamine biosynthesis and fatty acid oxidation pathways were enriched in HF/LC-fed mice. Conclusions These results highlight the intricate relationship between diet, the gut microbiome, and tumor metabolism. The potential role of dietary interventions in cancer prevention and treatment warrants further investigation.
Collapse
|
9
|
Butkovich LV, Vining OB, O'Malley MA. New approaches to secondary metabolite discovery from anaerobic gut microbes. Appl Microbiol Biotechnol 2025; 109:12. [PMID: 39831966 PMCID: PMC11747023 DOI: 10.1007/s00253-024-13393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize in silico tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. KEY POINTS: • Gut microbial secondary metabolites have therapeutic and biotechnological potential • Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery • Anaerobic biofoundries enable high-throughput workflows for metabolite discovery.
Collapse
Affiliation(s)
- Lazarina V Butkovich
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Oliver B Vining
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Xu K, Motiwala Z, Corona-Avila I, Makhanasa D, Alkahalifeh L, Khan MW. The Gut Microbiome and Its Multifaceted Role in Cancer Metabolism, Initiation, and Progression: Insights and Therapeutic Implications. Technol Cancer Res Treat 2025; 24:15330338251331960. [PMID: 40208053 DOI: 10.1177/15330338251331960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
This review summarizes the intricate relationship between the microbiome and cancer initiation and development. Microbiome alterations impact metabolic pathways, immune responses, and gene expression, which can accelerate or mitigate cancer progression. We examine how dysbiosis affects tumor growth, metastasis, and treatment resistance. Additionally, we discuss the potential of microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, to modulate cancer metabolism. These interventions offer the possibility of reversing or controlling cancer progression, enhancing the efficacy of traditional treatments like chemotherapy and immunotherapy. Despite promising developments, challenges remain in identifying key microbial species and pathways and validating microbiome-targeted therapies through large-scale clinical trials. Nonetheless, the intersection of microbiome research and cancer initiation and development presents an exciting frontier for innovative therapies. This review offers a fresh perspective on cancer initiation and development by integrating microbiome insights, highlighting the potential for interdisciplinary research to enhance our understanding of cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Zainab Motiwala
- Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Makhanasa
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Md Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
D’Antonio DL, Zenoniani A, Umme S, Piattelli A, Curia MC. Intratumoral Fusobacterium nucleatum in Pancreatic Cancer: Current and Future Perspectives. Pathogens 2024; 14:2. [PMID: 39860963 PMCID: PMC11768203 DOI: 10.3390/pathogens14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The intratumoral microbiome plays a significant role in many cancers, such as lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal malignancies and is often diagnosed at advanced stages. Fusobacterium nucleatum (Fn), an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in several extra-oral human diseases and, lately, in pancreatic cancer progression and prognosis. It is now recognized as oncobacterium. Fn engages in pancreatic tumorigenesis and metastasis through multifaceted mechanisms, including immune response modulation, virulence factors, control of cell proliferation, intestinal metabolite interactions, DNA damage, and epithelial-mesenchymal transition. Additionally, compelling research suggests that Fn may exert detrimental effects on cancer treatment outcomes. This paper extends the perspective to pancreatic cancer associated with Fn. The central focus is to unravel the oncogenomic changes driven by Fn in colonization, initiation, and promotion of pancreatic cancer development. The presence of Fusobacterium species can be considered a prognostic marker of PC, and it is also correlated to chemoresistance. Furthermore, this review underscores the clinical research significance of Fn as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment. It is thought that given the role of Fn in tumor formation and metastasis processes via its FadA, FapA, Fap2, and RadD, new therapies for tumor treatment targeting Fn will be developed.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
| | - Anna Zenoniani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
| |
Collapse
|
12
|
Rong J, Chen X, Li Z, Li B, Sun Y, Miao Y. Dysregulation of saliva and fecal microbiota as novel biomarkers of colorectal cancer. Front Oncol 2024; 14:1498328. [PMID: 39743994 PMCID: PMC11688226 DOI: 10.3389/fonc.2024.1498328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The aim of this study was to investigate the biomarkers of salivary and fecal microbiota in Colorectal cancer (CRC). Initially, the study scrutinized the microbial community composition disparities among groups. Utilizing Lasso analysis, it sifted through operational taxonomic units (OTUs) to pinpoint distinctive features. Subsequently, by intersecting feature OTUs across groups, it curated a set of core-shared OTUs and devised a corresponding network. Concluding with functional enrichment analysis, the research delved into the divergent biological functions of these microbial communities within the studied groups. Analysis revealed higher bacterial diversity in saliva compared to feces, with distinct differences at both phylum and genus levels. Feces primarily contained Firmicutes, while saliva was dominated by Bacteroidetes and Proteobacteria. Notably, Escherichia-Shigella and Fusobacterium in feces and Streptococcus in saliva showed increasing abundance from average to adenoma to colorectal cancer. Specific dominant flora was identified within and between groups, including CRC and adenomas across different stages. Seventeen core shared OTUs were identified, and networks of shared OTUs were constructed for each group. Functional enrichment analysis highlighted distinct microbial community functions among the groups. This study's findings on characteristic OTUs in saliva and fecal samples offer valuable insights for distinguishing between healthy individuals, adenoma patients, and those with colorectal cancer. This study identified distinctive OTUs in saliva and feces to distinguish between healthy individuals, adenoma patients, and those with CRC, offering a valuable diagnostic reference.
Collapse
Affiliation(s)
- Jiamei Rong
- Yan’an Hospital Affiliated To Kunming Medical University, Kunming, Yunnan, China
| | - Xiaocui Chen
- Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zhangqin Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bona Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Sun
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Oh VKS, Li RW. Wise Roles and Future Visionary Endeavors of Current Emperor: Advancing Dynamic Methods for Longitudinal Microbiome Meta-Omics Data in Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400458. [PMID: 39535493 DOI: 10.1002/advs.202400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Understanding the etiological complexity of diseases requires identifying biomarkers longitudinally associated with specific phenotypes. Advanced sequencing tools generate dynamic microbiome data, providing insights into microbial community functions and their impact on health. This review aims to explore the current roles and future visionary endeavors of dynamic methods for integrating longitudinal microbiome multi-omics data in personalized and precision medicine. This work seeks to synthesize existing research, propose best practices, and highlight innovative techniques. The development and application of advanced dynamic methods, including the unified analytical frameworks and deep learning tools in artificial intelligence, are critically examined. Aggregating data on microbes, metabolites, genes, and other entities offers profound insights into the interactions among microorganisms, host physiology, and external stimuli. Despite progress, the absence of gold standards for validating analytical protocols and data resources of various longitudinal multi-omics studies remains a significant challenge. The interdependence of workflow steps critically affects overall outcomes. This work provides a comprehensive roadmap for best practices, addressing current challenges with advanced dynamic methods. The review underscores the biological effects of clinical, experimental, and analytical protocol settings on outcomes. Establishing consensus on dynamic microbiome inter-studies and advancing reliable analytical protocols are pivotal for the future of personalized and precision medicine.
Collapse
Affiliation(s)
- Vera-Khlara S Oh
- Big Biomedical Data Integration and Statistical Analysis (DIANA) Research Center, Department of Data Science, College of Natural Sciences, Jeju National University, Jeju City, Jeju Do, 63243, South Korea
| | - Robert W Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA
| |
Collapse
|
14
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
16
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
18
|
Duan T, Li Z, Han X, Hong Q, Yang Y, Yan J, Xing C. Changes functional prediction of ear canal flora in chronic bacterial otitis externa. Front Cell Infect Microbiol 2024; 14:1434754. [PMID: 39507947 PMCID: PMC11538054 DOI: 10.3389/fcimb.2024.1434754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Objective To investigate ear canal microflora's structure, composition and function in patients with chronic bacterial otitis externa. Methods A case-control study design method was used to collect the ear canal secretions from 14 patients with chronic bacterial external otitis (CB group) and 14 healthy controls (H group) treated in the Department of Otolaryngology and Head and Neck Surgery in the First Affiliated Hospital of Hainan Medical University. 16S rRNA high-throughput sequencing technology was used to sequence the ear canal microflora's V3 ~ V4 region gene amplification products in the participating population. The α diversity of ear canal microflora in 2 groups was analyzed. Based on the weighted Unifrac distance, principal coordinate analysis was performed to compare the β diversity of ear tract microflora between the two groups. The differences in ear microflora at phylum and genus levels were analyzed. PICRUSt2 function prediction and BugBase phenotype prediction were also performed. Results α diversity analysis showed that the diversity and richness of auricular microflora in the CB group were significantly lower than those in the H group. β diversity analysis showed that there were some differences between the two groups. At the phylum level, the relative abundance of Bdellovibrionota, Campylobacterota, and WPS-2 in the microbiota of patients in the CB group was significantly lower than that in the H group, and the differences were statistically significant. At the genus level, the relative abundance of Pseudomonas, Acinetobacter, Pelomonas, Sphingomonas, Bradyrhizobium, Brevundimonas, Enhydrobacter, Actinomyces, Paracoccus and Chryseobacterium in the ear canal of Group H is significantly higher than that of Group CB. Functional prediction of PICRUSt2 suggests that amino acid biosynthesis and bacterial microbiota may be related. In BugBase phenotypic prediction, the contribution of aerobic phenotype in group CB was significantly lower than that in group H. Conclusion The diversity and abundance of the ear canal flora of patients with chronic bacterial otitis externa were significantly lower than those of the healthy population, and their bacterial colony structure was significantly altered. Dysbiosis of the ear canal flora may be an important cause of chronic bacterial otitis externa.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Zhiqun Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaoyong Han
- Department of Otolaryngology, Linping District Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Qichao Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yunan Yang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jinren Yan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Chengliang Xing
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
19
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
20
|
Guo C, An Q, Zhang L, Wei X, Xu J, Yu J, Wu G, Ma J. Intratumoral microbiota as cancer therapeutic target. Aging Med (Milton) 2024; 7:636-644. [PMID: 39507228 PMCID: PMC11535161 DOI: 10.1002/agm2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Intratumoral microbiota, which affects the physiological and pathological processes of the host, has attracted increasing attention from researchers. Microbials have been found in normal as well as tumor tissues that were originally thought to be sterile. Intratumoral microbiota is considered to play a significant role in the development of tumors and the reduction of clinical benefits. In addition, intratumoral microbiota are heterogeneous, which have different distribution in various types of tumors, and can influence tumor development through different mechanisms, including genome mutations, inflammatory responses, activated cancer pathways, and immunosuppressive microenvironments. Therefore, eliminating the intratumoral microbiota is considered one of the most promising ways to slow down the tumor progression and improve therapeutic outcomes. In this review, we systematically categorized the intratumoral microbiota and elucidated its role in the pathogenesis and therapeutic response of cancer. We have also described the novel strategies to mitigate the impact of tumor progression. We hope this review will provide new insights for the anti-tumor treatment, particularly for the elderly population, where such insights could significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Qi An
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Lu‐yao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Xun‐dong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jiang‐yong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Guo‐ju Wu
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
21
|
Wang M, Ma Y, Yu G, Zeng B, Yang W, Huang C, Dong Y, Tang B, Wu Z. Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer. Biomed Pharmacother 2024; 179:117292. [PMID: 39151314 DOI: 10.1016/j.biopha.2024.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.
Collapse
Affiliation(s)
- Mengxia Wang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China; Academician Workstation,NingBo College of Health Sciences, NingBo, China
| | - Yan Ma
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Guodong Yu
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Bao Zeng
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Wenhao Yang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Cuihong Huang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Yujuan Dong
- GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China.
| | - Benqin Tang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China.
| | - Zhengzhi Wu
- Academician Workstation,NingBo College of Health Sciences, NingBo, China; The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; Shenzhen Institute of Geriatrics, Shenzhen, China.
| |
Collapse
|
22
|
Du Y, Wang Q, Zheng Z, Zhou H, Han Y, Qi A, Jiao L, Gong Y. Gut microbiota influence on lung cancer risk through blood metabolite mediation: from a comprehensive Mendelian randomization analysis and genetic analysis. Front Nutr 2024; 11:1425802. [PMID: 39323566 PMCID: PMC11423778 DOI: 10.3389/fnut.2024.1425802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Gut microbiota (GM) and metabolic alterations play pivotal roles in lung cancer (LC) development and host genetic variations are known to contribute to LC susceptibility by modulating the GM. However, the causal links among GM, metabolite, host genes, and LC remain to be fully delineated. Method Through bidirectional MR analyses, we examined the causal links between GM and LC, and utilized two-step mediation analysis to identify potential mediating blood metabolite. We employed diverse MR methods, including inverse-variance-weighted (IVW), weighted median, MR-Egger, weighted mode, and simple mode, to ensure a robust examination of the data. MR-Egger intercept test, Radial MR, MR-PRESSO, Cochran Q test and Leave-one-out (LOO) analysis were used for sensitivity analyses. Analyses were adjusted for smoking, alcohol intake frequency and air pollution. Linkage disequilibrium score regression and Steiger test were used to probe genetic causality. The study also explored the association between specific host genes and the abundance of gut microbes in LC patients. Results The presence of Bacteroides clarus was associated with an increased risk of LC (odds ratio [OR] = 1.07, 95% confidence interval [CI]: 1.03-1.11, p = 0.012), whereas the Eubacteriaceae showed a protective effect (OR = 0.82, 95% CI: 0.75-0.89, p = 0.001). These findings remained robust after False Discovery Rate (FDR) correction. Our mediator screening identified 13 blood metabolites that significantly influence LC risk after FDR correction, underscoring cystine and propionylcarnitine in reducing LC risk, while linking specific lipids and hydroxy acids to an increased risk. Our two-step mediation analysis demonstrated that the association between the bacterial pathway of synthesis of guanosine ribonucleotides and LC was mediated by Fructosyllysine, with mediated proportions of 11.38% (p = 0.037). LDSC analysis confirmed the robustness of these associations. Our study unveiled significant host genes ROBO2 may influence the abundance of pathogenic gut microbes in LC patients. Metabolic pathway analysis revealed glutathione metabolism and glutamate metabolism are the pathways most enriched with significant metabolites related to LC. Conclusion These findings underscore the importance of GM in the development of LC, with metabolites partly mediating this effect, and provide dietary and lifestyle recommendations for high-risk lung cancer populations.
Collapse
Affiliation(s)
- Yizhao Du
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongmei Zheng
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Han
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
24
|
Li L, Xiao S, Dai X, Tang Z, Wang Y, Ali M, Ataya FS, Sahar I, Iqbal M, Wu Y, Li K. Multi-omics analysis and the remedial effects of Swertiamarin on hepatic injuries caused by CCl 4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116734. [PMID: 39024951 DOI: 10.1016/j.ecoenv.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hepatic diseases pose a significant threat to community health, impacting the quality of life and longevity of millions worldwide. Despite revolutionary advancements in treatment, liver diseases remain a pressing issue, necessitating the development of more effective therapeutic approaches. Here, we conducted a comprehensive multi-omics analysis to investigate the underlying mechanism of Swertiamarin in alleviating hepatic injuries induced by CCl4 in mice. We divided 100 Kunming mice into five groups: RC (control), RM (CCl4), RD (15 mg/Kg Swertiamarin), RZ (30 mg/Kg Swertiamarin), and RG (60 mg/Kg Swertiamarin). Animals in groups RD, RZ, and RG received daily Swertiamarin via gavage, while those in groups RM, RD, RZ, and RG were treated with CCl4 solution intraperitoneally every four days, nine times in total. Our findings revealed that mice in the RM group exhibited slightly lower average weights compared to other groups, along with significantly higher liver weight (p<0.0001) and liver index (p<0.0001). Pathological analysis indicated liver damage characterized by cell degeneration, inflammatory cell infiltration, and hepatic fibrosis in the CCl4-induced group. In contrast, Swertiamarin supplementation mitigated these effects, reducing denatured cells, inflammatory cells, and collagenous fibers in the liver. Serum analysis showed elevated levels of TNF-α (p<0.001), IL-6 (p<0.05), ALT (p<0.001), AST (p<0.0001), MDA (p<0.001), and Hyp (p<0.001) in CCl4-induced animals, along with lower levels of T-AOC (p<0.001), GSH-px (p<0.0001), SOD (p<0.001), and CAT (p<0.01). Microbiome analysis revealed significant differences among groups, with pathogenic taxa such as Arthrinium and Aureobasidium, and probiotic Saccharomyces showing notable variations. Metabolomics analysis identified numerous differentially abundant metabolites, with Swertiamarin-treated animals exhibiting distinct profiles. Our findings highlight the potential of Swertiamarin ameliorating CCl4-induced liver toxicity through modulation of antioxidant capacity, inflammatory response, gut microbiota, and metabolites. These insights may inform the development of novel therapies for liver injury.
Collapse
Affiliation(s)
- Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Shengjia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Xiangjie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zhiyi Tang
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yutong Wang
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Irna Sahar
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; College of Veterinary Medicine, Yunnan Agricultural University, No. 452, Feng Yuan Road, Panlong District, Kunming, Yunnan Province 650201, China.
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
25
|
Li X, Shang S, Wu M, Song Q, Chen D. Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett 2024; 598:217096. [PMID: 38969161 DOI: 10.1016/j.canlet.2024.217096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Metabolic derivatives of numerous microorganisms inhabiting the human gut can participate in regulating physiological activities and immune status of the lungs through the gut-lung axis. The current well-established microbial metabolites include short-chain fatty acids (SCFAs), tryptophan and its derivatives, polyamines (PAs), secondary bile acids (SBAs), etc. As the study continues to deepen, the critical function of microbial metabolites in the occurrence and treatment of lung cancer has gradually been revealed. Microbial derivates can enter the circulation system to modulate the immune microenvironment of lung cancer. Mechanistically, oncometabolites damage host DNA and promote the occurrence of lung cancer, while tumor-suppresive metabolites directly affect the immune system to combat the malignant properties of cancer cells and even show considerable application potential in improving the efficacy of lung cancer immunotherapy. Considering the crosstalk along the gut-lung axis, in-depth exploration of microbial metabolites in patients' feces or serum will provide novel guidance for lung cancer diagnosis and treatment selection strategies. In addition, targeted therapeutics on microbial metabolites are expected to overcome the bottleneck of lung cancer immunotherapy and alleviate adverse reactions, including fecal microbiota transplantation, microecological preparations, metabolite synthesis and drugs targeting metabolic pathways. In summary, this review provides novel insights and explanations on the intricate interplay between gut microbial metabolites and lung cancer development, and immunotherapy through the lens of the gut-lung axis, which further confirms the possible translational potential of the microbiome metabolome in lung cancer treatment.
Collapse
Affiliation(s)
- Xinpei Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijie Shang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
26
|
Herrera-Quintana L, Vázquez-Lorente H, Lopez-Garzon M, Cortés-Martín A, Plaza-Diaz J. Cancer and the Microbiome of the Human Body. Nutrients 2024; 16:2790. [PMID: 39203926 PMCID: PMC11357655 DOI: 10.3390/nu16162790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer remains a public health concern worldwide, with its incidence increasing worldwide and expected to continue growing during the next decades. The microbiome has emerged as a central factor in human health and disease, demonstrating an intricate relationship between the microbiome and cancer. Although some microbiomes present within local tissues have been shown to restrict cancer development, mainly by interacting with cancer cells or the host immune system, some microorganisms are harmful to human health and risk factors for cancer development. This review summarizes the recent evidence concerning the microbiome and some of the most common cancer types (i.e., lung, head and neck, breast, gastric, colorectal, prostate, and cervix cancers), providing a general overview of future clinical approaches and perspectives.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physical Therapy, Health Sciences Faculty, University of Granada, 18171 Granada, Spain;
| | - Adrián Cortés-Martín
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18016 Granada, Spain;
- APC Microbiome Ireland, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
27
|
Baas FS, Brusselaers N, Nagtegaal ID, Engstrand L, Boleij A. Navigating beyond associations: Opportunities to establish causal relationships between the gut microbiome and colorectal carcinogenesis. Cell Host Microbe 2024; 32:1235-1247. [PMID: 39146796 DOI: 10.1016/j.chom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
The gut microbiota has been recognized as an important determinant in the initiation and progression of colorectal cancer (CRC), with recent studies shining light on the molecular mechanisms that may contribute to the interactions between microbes and the CRC microenvironment. Despite the increasing wealth of associations being established in the field, proving causality remains challenging. Obstacles include the high variability of the microbiome and its context, both across individuals and across time. Additionally, there is a lack of large and representative cohort studies with long-term follow-up and/or appropriate sampling methods for studying the mucosal microbiome. Finally, most studies focus on CRC, whereas interactions between host and bacteria in early events in carcinogenesis remain elusive, reinforced by the heterogeneity of CRC development. Here, we discuss these current most prominent obstacles, the recent developments, and research needs.
Collapse
Affiliation(s)
- Floor S Baas
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden; Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
29
|
Cheng W, Li F, Yang R. The Roles of Gut Microbiota Metabolites in the Occurrence and Development of Colorectal Cancer: Multiple Insights for Potential Clinical Applications. GASTRO HEP ADVANCES 2024; 3:855-870. [PMID: 39280926 PMCID: PMC11401567 DOI: 10.1016/j.gastha.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The occurrence and development of CRC are related to multiple risk factors such as gut microbiota. Indeed, gut microbiota plays an important role in the different phases of colorectal cancers (CRCs) from oncogenesis to metastasis. Some specific bacteria such as Fusobacterium nucleatum (F. nucleatum) associated with CRCs have been found. However, recently identified bile acid and tryptophan metabolites as well as short chain fatty acids (SCFAs), which are derived from gut microbiota, can also exert effects on the CRCs such as that SCFAs directly inhibit CRC growth. Importantly these metabolites also modulate immune responses to affect CRCs. They not only act as tumor inhibiting factor(s) but also promotor(s) in the occurrence, development, and metastasis of CRCs. While gut microbiota metabolites (GMMs) inhibit immunity against CRCs, some of them also improve immune responses to CRCs. Notably, GMMs also potentially affect the shaping of immune-privileged metastatic niches through direct roles or immune cells such as macrophages and myeloid-derived suppressive cells. These findings offer new insights for clinical application of gut microbiota in precise and personalized treatments of CRCs. Here, we will mainly discuss direct and indirect (via immune cells) effects of GMMs, especially SCFAs, bile acid and tryptophan metabolites on the occurrence, development and metastasis of CRCs.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
30
|
Li B, Han Y, Fu Z, Chai Y, Guo X, Du S, Li C, Wang D. The causal relationship between gut microbiota and lymphoma: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1397485. [PMID: 38774867 PMCID: PMC11106390 DOI: 10.3389/fimmu.2024.1397485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background Previous studies have indicated a potential link between the gut microbiota and lymphoma. However, the exact causal interplay between the two remains an area of ambiguity. Methods We performed a two-sample Mendelian randomization (MR) analysis to elucidate the causal relationship between gut microbiota and five types of lymphoma. The research drew upon microbiome data from a research project of 14,306 participants and lymphoma data encompassing 324,650 cases. Single-nucleotide polymorphisms were meticulously chosen as instrumental variables according to multiple stringent criteria. Five MR methodologies, including the inverse variance weighted approach, were utilized to assess the direct causal impact between the microbial exposures and lymphoma outcomes. Moreover, sensitivity analyses were carried out to robustly scrutinize and validate the potential presence of heterogeneity and pleiotropy, thereby ensuring the reliability and accuracy. Results We discerned 38 potential causal associations linking genetic predispositions within the gut microbiome to the development of lymphoma. A few of the more significant results are as follows: Genus Coprobacter (OR = 0.619, 95% CI 0.438-0.873, P = 0.006) demonstrated a potentially protective effect against Hodgkin's lymphoma (HL). Genus Alistipes (OR = 0.473, 95% CI 0.278-0.807, P = 0.006) was a protective factor for diffuse large B-cell lymphoma. Genus Ruminococcaceae (OR = 0.541, 95% CI 0.341-0.857, P = 0.009) exhibited suggestive protective effects against follicular lymphoma. Genus LachnospiraceaeUCG001 (OR = 0.354, 95% CI 0.198-0.631, P = 0.0004) showed protective properties against T/NK cell lymphoma. The Q test indicated an absence of heterogeneity, and the MR-Egger test did not show significant horizontal polytropy. Furthermore, the leave-one-out analysis failed to identify any SNP that exerted a substantial influence on the overall results. Conclusion Our study elucidates a definitive causal link between gut microbiota and lymphoma development, pinpointing specific microbial taxa with potential causative roles in lymphomagenesis, as well as identifying probiotic candidates that may impact disease progression, which provide new ideas for possible therapeutic approaches to lymphoma and clues to the pathogenesis of lymphoma.
Collapse
Affiliation(s)
- Biyun Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yahui Han
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyu Fu
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujie Chai
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xifeng Guo
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shurui Du
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dao Wang
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
32
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
33
|
Capozzi VA, Incognito GG, Scarpelli E, Palumbo M, Randazzo CL, Pino A, La Verde M, Ronsini C, Riemma G, Gaiano M, Romeo P, Palmara V, Berretta R, Cianci S. Exploring the Relationship between Ovarian Cancer and Genital Microbiota: A Systematic Review and Meta-Analysis. J Pers Med 2024; 14:351. [PMID: 38672978 PMCID: PMC11051512 DOI: 10.3390/jpm14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer (OC) remains a significant health challenge globally, with high mortality rates despite advancements in treatment. Emerging research suggests a potential link between OC development and genital dysbiosis, implicating alterations in the microbiome composition as a contributing factor. To investigate this correlation, a meta-analysis was conducted following PRISMA and MOOSE guidelines, involving eight studies encompassing 3504 patients. Studies investigating the role of upper and inferior genital tract dysbiosis were included, with particular reference to HPV infection and/or history of pelvic inflammatory disease. The analysis revealed no significant difference in genital dysbiosis prevalence between OC patients and healthy controls. Although previous literature suggests associations between dysbiosis and gynecologic cancers, such as cervical and endometrial cancers, the findings regarding OC are inconclusive. Methodological variations and environmental factors may contribute to these discrepancies, underscoring the need for standardized methodologies and larger-scale studies. Despite the limitations, understanding the microbiome's role in OC development holds promise for informing preventive and therapeutic strategies. A holistic approach to patient care, incorporating microbiome monitoring and personalized interventions, may offer insights into mitigating OC risk and improving treatment outcomes. Further research with robust methodologies is warranted to elucidate the complex interplay between dysbiosis and OC, potentially paving the way for novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Vito Andrea Capozzi
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Elisa Scarpelli
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Marco Palumbo
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Marco La Verde
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gaetano Riemma
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michela Gaiano
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Paola Romeo
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Vittorio Palmara
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Roberto Berretta
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Stefano Cianci
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| |
Collapse
|
34
|
Zhang PF, Xie D. Targeting the gut microbiota to enhance the antitumor efficacy and attenuate the toxicity of CAR-T cell therapy: a new hope? Front Immunol 2024; 15:1362133. [PMID: 38558812 PMCID: PMC10978602 DOI: 10.3389/fimmu.2024.1362133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
35
|
Jastrząb R, Tomecki R, Jurkiewicz A, Graczyk D, Szczepankowska AK, Mytych J, Wolman D, Siedlecki P. The strain-dependent cytostatic activity of Lactococcus lactis on CRC cell lines is mediated through the release of arginine deiminase. Microb Cell Fact 2024; 23:82. [PMID: 38481270 PMCID: PMC10938756 DOI: 10.1186/s12934-024-02345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.
Collapse
Affiliation(s)
- Rafał Jastrząb
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-089, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Agnieszka K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | | | - Damian Wolman
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Pawel Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland.
| |
Collapse
|
36
|
Istvan P, Birkeland E, Avershina E, Kværner AS, Bemanian V, Pardini B, Tarallo S, de Vos WM, Rognes T, Berstad P, Rounge TB. Exploring the gut DNA virome in fecal immunochemical test stool samples reveals associations with lifestyle in a large population-based study. Nat Commun 2024; 15:1791. [PMID: 38424056 PMCID: PMC10904388 DOI: 10.1038/s41467-024-46033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.
Collapse
Affiliation(s)
- Paula Istvan
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Einar Birkeland
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ekaterina Avershina
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ane S Kværner
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Vahid Bemanian
- Pathology Department, Akershus University Hospital, Lørenskog, Norway
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Sonia Tarallo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Paula Berstad
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Trine B Rounge
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
37
|
Chalif J, Wang H, Spakowicz D, Quick A, Arthur EK, O'Malley D, Chambers LM. The microbiome and gynecologic cancer: cellular mechanisms and clinical applications. Int J Gynecol Cancer 2024; 34:317-327. [PMID: 38088183 DOI: 10.1136/ijgc-2023-004894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 08/22/2024] Open
Abstract
The microbiome plays a vital function in maintaining human health and homeostasis. Each microbiota has unique characteristics, including those of the gastrointestinal and female reproductive tract. Dysbiosis, or alterations to the composition of the microbial communities, impacts the microbiota-host relationship and is linked to diseases, including cancer. In addition, studies have demonstrated that the microbiota can contribute to a pro-carcinogenic state through altered host immunologic response, modulation of cell proliferation, signaling, gene expression, and dysregulated metabolism of nutrients and hormones.In recent years, the microbiota of the gut and female reproductive tracts have been linked to many diseases, including gynecologic cancers. Numerous pre-clinical and clinical studies have demonstrated that specific bacteria or microbial communities may contribute to the development of gynecologic cancers. Further, the microbiota may also impact the toxicity and efficacy of cancer therapies, including chemotherapy, immunotherapy, and radiation therapy in women with gynecologic malignancies. The microbiota is highly dynamic and may be altered through various mechanisms, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature detailing the relationship between gynecologic cancers and the microbiota of the female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and strategies for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiota and gynecologic cancer will provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
Affiliation(s)
- Julia Chalif
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Heather Wang
- Ohio University College of Osteopathic Medicine, Athens, Ohio, USA
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Centre, Columbus, Ohio, USA
| | - Allison Quick
- Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Elizabeth K Arthur
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - David O'Malley
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Laura M Chambers
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| |
Collapse
|
38
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
39
|
Tang Q, Huang H, Xu H, Xia H, Zhang C, Ye D, Bi F. Endogenous Coriobacteriaceae enriched by a high-fat diet promotes colorectal tumorigenesis through the CPT1A-ERK axis. NPJ Biofilms Microbiomes 2024; 10:5. [PMID: 38245554 PMCID: PMC10799938 DOI: 10.1038/s41522-023-00472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
A high-fat diet (HFD) may be linked to an increased colorectal cancer (CRC) risk. Stem cell proliferation and adipokine release under inflammatory and obese conditions are the main factors regulating CRC progression. Furthermore, alterations in intestinal flora have been linked to tumorigenesis and tumour progression. However, whether a HFD can promote CRC occurrence by altering intestinal flora remains unclear. The objective of this study was to identify bacterial strains enriched by a HFD and investigate the association and mechanism by which a HFD and bacterial enrichment promote CRC occurrence and development. In this study, the intestinal microbiota of mice was assessed using 16S rRNA and metagenomic sequencing. Serum metabolites of HFD-fed mice were assessed using tandem liquid chromatography-mass spectrometry. CRC cell lines and organoids were co-cultured with Coriobacteriaceae to evaluate the effect of these bacteria on the CPT1A-ERK signalling pathway. We found that Coriobacteriaceae were enriched in the colons of HFD-fed mice. An endogenous Coriobacteriaceae strain, designated as Cori.ST1911, was successfully isolated and cultured from the stools of HFD-fed mice, and the tumorigenic potential of Cori.ST1911 in CRC was validated in several CRC mouse models. Furthermore, Cori.ST1911 increased acylcarnitine levels by activating CPT1A, demonstrating the involvement of the CPT1A-ERK axis. We also found that the endogenous Lactobacillus strain La.mu730 can interfere with Cori.ST1911 colonisation and restore gut barrier function. In conclusion, we identified a novel endogenous intestinal Coriobacteriaceae, Cori.ST1911, which might lead to a new gut microbiota intervention strategy for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Di Ye
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
40
|
Mignini I, Piccirilli G, Galasso L, Termite F, Esposto G, Ainora ME, Gasbarrini A, Zocco MA. From the Colon to the Liver: How Gut Microbiota May Influence Colorectal Cancer Metastatic Potential. J Clin Med 2024; 13:420. [PMID: 38256554 PMCID: PMC10815973 DOI: 10.3390/jcm13020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota's influence on human tumorigenesis is a burning topic in medical research. With the new ontological perspective, which considers the human body and its pathophysiological processes as the result of the interaction between its own eukaryotic cells and prokaryotic microorganisms living in different body niches, great interest has arisen in the role of the gut microbiota on carcinogenesis. Indeed, dysbiosis is currently recognized as a cancer-promoting condition, and multiple molecular mechanisms have been described by which the gut microbiota may drive tumor development, especially colorectal cancer (CRC). Metastatic power is undoubtedly one of the most fearsome features of neoplastic tissues. Therefore, understanding the underlying mechanisms is of utmost importance to improve patients' prognosis. The liver is the most frequent target of CRC metastasis, and new evidence reveals that the gut microbiota may yield an effect on CRC diffusion to the liver, thus defining an intriguing new facet of the so-called "gut-liver axis". In this review, we aim to summarize the most recent data about the microbiota's role in promoting or preventing hepatic metastasis from CRC, highlighting some potential future therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (G.P.); (L.G.); (F.T.); (G.E.); (M.E.A.); (A.G.)
| |
Collapse
|
41
|
Agrawal A, Anjankar A. Alterations of Gastrointestinal Microbe Composition in Various Human Diseases and Its Significance in the Early Diagnosis of Diseases. Cureus 2024; 16:e52435. [PMID: 38371166 PMCID: PMC10870805 DOI: 10.7759/cureus.52435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
A 100 trillion bacteria, viruses, fungi, and archaea make up the human gut microbe. It has co-evolved with its human host and carries out essential tasks that improve general health. The relationship between gastrointestinal microbes and human health has been a growing field of interest and research in recent times. The gastrointestinal microbes are connected by complex networks and connections, and the host has given birth to the gut-microbe-brain axis, which shows the crucial effect that this circumstance could have on the health and diseases of the brain and spinal cord (or the central nervous system [CNS]). The microbe and the CNS interact bi-directionally via autonomic, neuroendocrine, gastrointestinal, and immune system pathways. The gut microbe has been connected to a range of gastrointestinal and extra-gastrointestinal diseases. The recent investigation supports the suspicion that the gut-microbe-brain axis could play a role in neuropsychiatric disorders including depression, dementia, post-traumatic stress disorder, anxiousness, bipolar disorder, schizophrenia, and obsessive-compulsive disorder, alongside chronic host illnesses such as obesity, diabetes, and inflammation. Studies point to gut microorganisms as possible biomarkers for a wide range of mental health issues. Changes in the gut microbe may be a crucial factor in the onset and advancement of non-alcoholic fatty liver damage. Gut microbes have been seen to influence microglia's response to the CNS's regional signals and thus to pain and inflammation. Data suggest that altering the gut microbe in those with chronic pain may be a successful method for reducing pain. Numerous investigations have documented alterations in the gut microbes made in Alzheimer patients and schizophrenic patients. The risk of breast cancer can be reduced by restoring gut microbe homeostasis and reducing systemic estrogen levels.
Collapse
Affiliation(s)
- Aman Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
42
|
Marano G, Traversi G, Gaetani E, Gasbarrini A, Mazza M. Gut microbiota in women: The secret of psychological and physical well-being. World J Gastroenterol 2023; 29:5945-5952. [PMID: 38131001 PMCID: PMC10731147 DOI: 10.3748/wjg.v29.i45.5945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
The gut microbiota works in unison with the host, promoting its health. In particular, it has been shown to exert protective, metabolic and structural functions. Recent evidence has revealed the influence of the gut microbiota on other organs such as the central nervous system, cardiovascular and the endocrine-metabolic systems and the digestive system. The study of the gut microbiota is outlining new and broader frontiers every day and holds enormous innovation potential for the medical and pharmaceutical fields. Prevention and treatment of specific women's diseases involves the need to deepen the function of the gut as a junction organ where certain positive bacteria can be very beneficial to health. The gut microbiota is unique and dynamic at the same time, subject to external factors that can change it, and is capable of modulating itself at different stages of a woman's life, playing an important role that arises from the intertwining of biological mechanisms between the microbiota and the female genital system. The gut microbiota could play a key role in personalized medicine.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Unit of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome 00186, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| | - Marianna Mazza
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Unit of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
43
|
Yang Y, Han Z, Gao Z, Chen J, Song C, Xu J, Wang H, Huang A, Shi J, Gu J. Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus. Chin Med J (Engl) 2023; 136:2847-2856. [PMID: 36959686 PMCID: PMC10686596 DOI: 10.1097/cm9.0000000000002421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an independent risk factor for colorectal cancer (CRC), and the patients with CRC and T2DM have worse survival. The human gut microbiota (GM) is linked to the development of CRC and T2DM, respectively. However, the GM characteristics in patients with CRC and T2DM remain unclear. METHODS We performed fecal metagenomic and targeted metabolomics studies on 36 samples from CRC patients with T2DM (DCRC group, n = 12), CRC patients without diabetes (CRC group, n = 12), and healthy controls (Health group, n = 12). We analyzed the fecal microbiomes, characterized the composition and function based on the metagenomics of DCRC patients, and detected the short-chain fatty acids (SCFAs) and bile acids (BAs) levels in all fecal samples. Finally, we performed a correlation analysis of the differential bacteria and metabolites between different groups. RESULTS Compared with the CRC group, LefSe analysis showed that there is a specific GM community in DCRC group, including an increased abundance of Eggerthella , Hungatella , Peptostreptococcus , and Parvimonas , and decreased Butyricicoccus , Lactobacillus , and Paraprevotella . The metabolomics analysis results revealed that the butyric acid level was lower but the deoxycholic acid and 12-keto-lithocholic acid levels were higher in the DCRC group than other groups ( P < 0.05). The correlation analysis showed that the dominant bacterial abundance in the DCRC group ( Parvimonas , Desulfurispora , Sebaldella , and Veillonellales , among others) was negatively correlated with butyric acid, hyodeoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid, cholic acid and glycocholate. However, the abundance of mostly inferior bacteria was positively correlated with these metabolic acid levels, including Faecalibacterium , Thermococci , and Cellulophaga . CONCLUSIONS Unique fecal microbiome signatures exist in CRC patients with T2DM compared to those with non-diabetic CRC. Alterations in GM composition and SCFAs and secondary BAs levels may promote CRC development.
Collapse
Affiliation(s)
- Yong Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Zihan Han
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Jiajia Chen
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Can Song
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
| | - Jingxuan Xu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hanyang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - An Huang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jingyi Shi
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
| |
Collapse
|
44
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
45
|
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther 2023; 8:386. [PMID: 37806986 PMCID: PMC10560686 DOI: 10.1038/s41392-023-01619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China.
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, PR China.
- Central Laboratory of Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410013, PR China.
| |
Collapse
|
46
|
Berk M, Köhler-Forsberg O, Turner M, Penninx BWJH, Wrobel A, Firth J, Loughman A, Reavley NJ, McGrath JJ, Momen NC, Plana-Ripoll O, O'Neil A, Siskind D, Williams LJ, Carvalho AF, Schmaal L, Walker AJ, Dean O, Walder K, Berk L, Dodd S, Yung AR, Marx W. Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023; 22:366-387. [PMID: 37713568 PMCID: PMC10503929 DOI: 10.1002/wps.21110] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Populations with common physical diseases - such as cardiovascular diseases, cancer and neurodegenerative disorders - experience substantially higher rates of major depressive disorder (MDD) than the general population. On the other hand, people living with MDD have a greater risk for many physical diseases. This high level of comorbidity is associated with worse outcomes, reduced adherence to treatment, increased mortality, and greater health care utilization and costs. Comorbidity can also result in a range of clinical challenges, such as a more complicated therapeutic alliance, issues pertaining to adaptive health behaviors, drug-drug interactions and adverse events induced by medications used for physical and mental disorders. Potential explanations for the high prevalence of the above comorbidity involve shared genetic and biological pathways. These latter include inflammation, the gut microbiome, mitochondrial function and energy metabolism, hypothalamic-pituitary-adrenal axis dysregulation, and brain structure and function. Furthermore, MDD and physical diseases have in common several antecedents related to social factors (e.g., socioeconomic status), lifestyle variables (e.g., physical activity, diet, sleep), and stressful live events (e.g., childhood trauma). Pharmacotherapies and psychotherapies are effective treatments for comorbid MDD, and the introduction of lifestyle interventions as well as collaborative care models and digital technologies provide promising strategies for improving management. This paper aims to provide a detailed overview of the epidemiology of the comorbidity of MDD and specific physical diseases, including prevalence and bidirectional risk; of shared biological pathways potentially implicated in the pathogenesis of MDD and common physical diseases; of socio-environmental factors that serve as both shared risk and protective factors; and of management of MDD and physical diseases, including prevention and treatment. We conclude with future directions and emerging research related to optimal care of people with comorbid MDD and physical diseases.
Collapse
Affiliation(s)
- Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Megan Turner
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Wrobel
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Amy Loughman
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola J Reavley
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Natalie C Momen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Adrienne O'Neil
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lana J Williams
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Adam J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lesley Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Seetal Dodd
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alison R Yung
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
47
|
Fu T, Huan T, Rahman G, Zhi H, Xu Z, Oh TG, Guo J, Coulter S, Tripathi A, Martino C, McCarville JL, Zhu Q, Cayabyab F, Low B, He M, Xing S, Vargas F, Yu RT, Atkins A, Liddle C, Ayres J, Raffatellu M, Dorrestein PC, Downes M, Knight R, Evans RM. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression. Cell Rep 2023; 42:112997. [PMID: 37611587 PMCID: PMC10903535 DOI: 10.1016/j.celrep.2023.112997] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/08/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetically controlled cohorts of mice, we identify diet as the major driver of microbial and metabolomic differences, with reductions in α diversity and widespread changes in cecal metabolites seen in high-fat diet (HFD)-fed mice. In addition, non-classic amino acid conjugation of the bile acid cholic acid (AA-CA) increased with HFD. We show that AA-CAs impact intestinal stem cell growth and demonstrate that Ileibacterium valens and Ruminococcus gnavus are able to synthesize these AA-CAs. This multi-omics dataset implicates diet-induced shifts in the microbiome and the metabolome in disease progression and has potential utility in future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Ting Fu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tao Huan
- Department of Chemistry, UBC Faculty of Science, Vancouver Campus, Vancouver, BC V6T 1Z4, Canada
| | - Gibraan Rahman
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hui Zhi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhenjiang Xu
- UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jian Guo
- Department of Chemistry, UBC Faculty of Science, Vancouver Campus, Vancouver, BC V6T 1Z4, Canada
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Anupriya Tripathi
- UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron Martino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin L McCarville
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Qiyun Zhu
- UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fritz Cayabyab
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brian Low
- Department of Chemistry, UBC Faculty of Science, Vancouver Campus, Vancouver, BC V6T 1Z4, Canada
| | - Mingxiao He
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shipei Xing
- Department of Chemistry, UBC Faculty of Science, Vancouver Campus, Vancouver, BC V6T 1Z4, Canada
| | - Fernando Vargas
- UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Annette Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Janelle Ayres
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Manuela Raffatellu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Chiba University-UC San Diego Center for Mucosal Immunity, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
| | - Pieter C Dorrestein
- UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Gweon TG. [Gut Microbiome and Colorectal Cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:56-62. [PMID: 37621240 DOI: 10.4166/kjg.2023.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Korea. A majority of CRCs are caused by progressive genomic alterations referred to as the adenoma-carcinoma sequence. The factors that may increase the risk of CRC include obesity and consumption of a high-fat diet, red meat, processed meat, and alcohol. Recently, the role of gut microbiota in the formation, progression and treatment of CRCs has been investigated in depth. An altered gut microbiota can drive carcinogenesis and cause the development of CRC. Studies have also shown the role of gut microbiota in the prevention of CRC and the impact of therapies involving gut microbiota on CRC. Herein, we summarize the current understanding of the role of the gut microbiota in the development of CRC and its therapeutic potential, including the prevention of CRC and in enhancing efficacy of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Tae-Geun Gweon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
49
|
Liu Z, Hong L, Ling Z. Potential role of intratumor bacteria outside the gastrointestinal tract: More than passengers. Cancer Med 2023; 12:16756-16773. [PMID: 37377377 PMCID: PMC10501248 DOI: 10.1002/cam4.6298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Tumor-associated bacteria and gut microbiota have gained significant attention in recent years due to their potential role in cancer development and therapeutic response. This review aims to discuss the contributions of intratumor bacteria outside the gastrointestinal tract, in addition to exploring the mechanisms, functions, and implications of these bacteria in cancer therapy. METHODS We reviewed current literature on intratumor bacteria and their impact on tumorigenesis, progression, metastasis, drug resistance, and anti-tumor immune modulation. Additionally, we examined techniques used to detect intratumor bacteria, precautions necessary when handling low microbial biomass tumor samples, and the recent progress in bacterial manipulation for tumor treatment. RESULTS Research indicates that each type of cancer uniquely interacts with its microbiome, and bacteria can be detected even in non-gastrointestinal tumors with low bacterial abundance. Intracellular bacteria have the potential to regulate tumor cells' biological behavior and contribute to critical aspects of tumor development. Furthermore, bacterial-based anti-tumor therapies have shown promising results in cancer treatment. CONCLUSIONS Understanding the complex interactions between intratumor bacteria and tumor cells could lead to the development of more precise cancer treatment strategies. Further research into non-gastrointestinal tumor-associated bacteria is needed to identify new therapeutic approaches and expand our knowledge of the microbiota's role in cancer biology.
Collapse
Affiliation(s)
- Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Lian‐Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Zhi‐Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
50
|
Mignini I, Ainora ME, Di Francesco S, Galasso L, Gasbarrini A, Zocco MA. Tumorigenesis in Inflammatory Bowel Disease: Microbiota-Environment Interconnections. Cancers (Basel) 2023; 15:3200. [PMID: 37370812 PMCID: PMC10295963 DOI: 10.3390/cancers15123200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colo-rectal cancer (CRC) is undoubtedly one of the most severe complications of inflammatory bowel diseases (IBD). While sporadic CRC develops from a typical adenoma-carcinoma sequence, IBD-related CRC follows different and less understood pathways and its pathophysiological mechanisms were not completely elucidated. In contrast to chronic inflammation, which is nowadays a well-recognised drive towards neoplastic transformation in IBD, only recently was gut microbiota demonstrated to interfere with both inflammation processes and immune-mediated anticancer surveillance. Moreover, the role of microbiota appears particularly complex and intriguing when also considering its multifaceted interactions with multiple environmental stimuli, notably chronic pathologies such as diabetes and obesity, lifestyle (diet, smoking) and vitamin intake. In this review, we presented a comprehensive overview on current evidence of the influence of gut microbiota on IBD-related CRC, in particular its mutual interconnections with the environment.
Collapse
Affiliation(s)
| | - Maria Elena Ainora
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy; (I.M.); (S.D.F.); (L.G.); (A.G.); (M.A.Z.)
| | | | | | | | | |
Collapse
|