1
|
Loyau J, Monney T, Montefiori M, Bokhovchuk F, Streuli J, Blackburn M, Goepfert A, Caro LN, Chakraborti S, De Angelis S, Grandclément C, Blein S, Mbow ML, Srivastava A, Perro M, Sammicheli S, Zhukovsky EA, Dyson M, Dreyfus C. Biparatopic binding of ISB 1442 to CD38 in trans enables increased cell antibody density and increased avidity. MAbs 2025; 17:2457471. [PMID: 39882744 PMCID: PMC11784651 DOI: 10.1080/19420862.2025.2457471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies. Here, we describe the discovery, optimization and characterization of the ISB 1442 antigen binding fragment (Fab) arms, their assembly to 2 + 1 format, and present the high-resolution co-crystal structures of the two anti-CD38 Fabs, in complex with CD38. This, with biophysical and functional assays, elucidated the underlying mechanism of action of ISB 1442. In solution phase, ISB 1442 forms a 2:2 complex with CD38 as determined by size-exclusion chromatography with multi-angle light scattering and electron microscopy. The predicted antibody-antigen stoichiometries at different CD38 surface densities were experimentally validated by surface plasmon resonance and cell binding assays. The specific design and structural features of ISB 1442 enable: 1) enhanced trans binding to adjacent CD38 molecules to increase Fc density at the cancer cell surface; 2) prevention of avid cis binding to monomeric CD38 to minimize blockade by soluble shed CD38; and 3) greater binding avidity, with a slower off-rate at high CD38 density, for increased specificity. The superior CD38 targeting of ISB 1442, at both high and low receptor densities, by its biparatopic design, will enhance proximal CD47 blockade and thus counteract a major tumor escape mechanism in multiple myeloma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mario Perro
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | | | | | | |
Collapse
|
2
|
QIAO CHENXIAO, XU YIPENG, HE YEDIE, CAI ZHIJIAN, WANG HUA. Oncolytic adenovirus H101 enhances the anti-tumor effects of PD-1 blockade via CD47 downregulation in tumor cells. Oncol Res 2025; 33:1161-1172. [PMID: 40296909 PMCID: PMC12034015 DOI: 10.32604/or.2024.055746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/25/2024] [Indexed: 04/30/2025] Open
Abstract
Objective To investigate the anti-tumor effects of an E1B55KD-deleted oncolytic adenovirus, H101, in combination with a humanized anti-PD-1 (Programmed cell death protein 1) monoclonal antibody, Camrelizumab. Methods Anti-tumor efficacy of intratumoral injection of H101 or/and intraperitoneal injection of Camrelizumab were evaluated in an immune system humanized NOD Prkdc scid Il2rg -/- mice subcutaneous (S.C.) tumor model, established with human glioblastoma of unknown origin cell line U87-MG, and human bladder cancer cell line T24 and YTS-1. The mechanism by which H101 induced anti-tumor immunity were also investigated. Results Combining H101 with Camrelizumab demonstrated more potent anti-tumor effects than monotherapy in mouse S.C. tumor model. Increased tumor-infiltrating T cells were observed in the combined treatment group. H101 infection decreased the expression of CD47 in cancer cells, thereby promoting macrophages to phagocytose cancer cells. Following the H101-mediated activation of macrophages, increased levels of cytokines, including TNF, IL-12 and IFN-γ were observed. Moreover, when induced THP-1 cells were co-cultured with H101-treated cancer cells, expression of IFN-γ was increased in T cells. Elimination of IL-12 using an anti-IL-12 antibody abolished IFN-γ production from T cells. In addition, infection with H101 increased PD-L1 expression in YTS-1 cells. These results suggested that H101 may act synergistically to enhance the therapeutic efficacy of PD-1 blockade in cancer via suppressing CD47 signaling, which may promote macrophages to phagocytose tumor cells and activate CD8+ T cells. Conclusion The combination of H101 with PD-1 blockade exhibits potential as a novel strategy for the treatment of cancer.
Collapse
Affiliation(s)
- CHENXIAO QIAO
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - YIPENG XU
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - YEDIE HE
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - ZHIJIAN CAI
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - HUA WANG
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| |
Collapse
|
3
|
Levengood MR, Carosino CM, Zhang X, Lucas S, Ortiz DJ, Westendorf L, Chin AP, Martin AD, Wong A, Hengel SM, Sun H, Zeng W, Yumul R, Dominguez MM, Chen Y, Zheng JH, Karlsson CA, Trang VH, Senter PD, Gardai SJ. Preclinical Development of SGN-CD47M: Protease-Activated Antibody Technology Enables Selective Tumor Targeting of the Innate Immune Checkpoint Receptor CD47. Mol Cancer Ther 2025; 24:471-484. [PMID: 39463068 PMCID: PMC11962404 DOI: 10.1158/1535-7163.mct-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
CD47 is a cell-surface glycoprotein that is expressed on normal human tissues and plays a key role as a marker of self. Tumor cells have co-opted CD47 overexpression to evade immune surveillance, and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Furthermore, pro-phagocytic signals are not uniformly expressed in tumors, and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to not only serve as an additional pro-phagocytic signal but also exacerbate toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 mAb linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment (TME). Masking technology has the potential to increase the amount of drug that reaches the TME while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared with the unmasked antibody. SGN-CD47M also displays preferential activation in the TME that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-signal regulatory protein α interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hao Sun
- Pfizer, Inc., Bothell, Washington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ahvati H, Roudi R, Sobhani N, Safari F. CD47 as a potent target in cancer immunotherapy: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189294. [PMID: 40057140 DOI: 10.1016/j.bbcan.2025.189294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Cancer is the second-highest cause of death worldwide. Accordingly, finding new cancer treatments is of great interest to researchers. The current platforms to fight cancer such as chemotherapy, radiotherapy, and surgery are limited in efficacy, especially in the metastatic setting. In this war against cancer, the immune system is a powerful ally, but tumor cells often outsmart it through alternative pathways. Cluster of differentiation 47 (CD47), a protein that normally prevents healthy cells from being attacked by immune cells, is often overexpressed on cancer cells. This makes CD47 a prime target for immunotherapy. Blocking of CD47 has the potential to unleash the immune system's cell populations-such as myeloid cells, macrophages, and T cells-to allow the immune system to discover and destroy cancer cells more successfully. In this review, we aimed to provide the latest information and findings about the roles of CD47 in the regulation of various cellular pathways and, thus, the importance of CD47 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
5
|
Cen Y, Li XX, Wang M, Chen Y, Ou XC, Yu BX, Chen XY, Wang YQ, Guo N, Li SY. Chimeric Peptide Functionalized Immunostimulant to Orchestrate Photodynamic Immunotherapeutic Effect by PD-L1 Deglycosylation and CD47 Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7539-7552. [PMID: 39853093 DOI: 10.1021/acsami.4c22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG8 linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG8-GFTATPPAPDSPQEP. This chimeric peptide could self-assemble into nanomicelles capable of encapsulating the CD47 inhibitor RRx-001, generating the multifunctional photodynamic immunostimulant aGlyR. In vitro and in vivo results indicate that the photodynamic therapy (PDT) of aGlyR could disrupt breast cancer cells and trigger immunogenic cell death (ICD), leading to the release of tumor-associated antigens (TAAs) and the activation of immunological cascades. Additionally, the chimeric peptide component of aGlyR results in the deglycosylation and degradation of PD-L1, which restores T cell-mediated immune activity. Concurrently, the release of RRx-001 blocks the CD47 pathway, disrupting the antiphagocytic signaling of breast cancer cells and activating innate immune responses. This synergistic immunomodulatory approach effectively reverses the complex immunosuppressive factors, significantly enhancing the immunotherapeutic effects of conventional treatments.
Collapse
Affiliation(s)
- Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xin-Xuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Min Wang
- Scientific Research Center of Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiao-Cheng Ou
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Bai-Xue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xia-Yun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yu-Qing Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ning Guo
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
6
|
Bess SN, Igoe MJ, Muldoon TJ. The Physiological and Therapeutic Role of CD47 in Macrophage Function and Cancer. Immunol Invest 2025; 54:112-146. [PMID: 39415597 PMCID: PMC11774679 DOI: 10.1080/08820139.2024.2415409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Immunotherapy is an emerging strategy in cancer therapeutics aimed at modulating the immune system to inhibit pro-tumor pathways and increase a tumor's sensitivity to chemotherapy. Several clinically approved immunotherapy treatments, such as monoclonal antibody treatments, have been successful in solid tumors such as breast, colorectal, and pancreatic. However, an outstanding challenge of these strategies is tumor cell resistance. One target of interest for immune cell modulation is targeting macrophages that enter the tumor microenvironment. More specifically, an immune checkpoint of interest is CD47. CD47 is a transmembrane protein that inhibits phagocytic activity by acting as a "don't eat me" signal. In both mice and humans, healthy cells can express CD47, while solid malignancies like colorectal and breast cancer express it most strongly. METHODS Analysis of literature data on the physiological and functional roles of tissue-resident macrophages, along with the structure and mechanisms of action of the CD47 pathway was explored. We also explored how CD47 can influence different aspects of the tumor microenvironment (i.e. cellular metabolism and hypoxia) in addition to current clinical strategies and challenges associated with targeting CD47. RESULTS Overall, it was discovered that CD47 is overexpressed in a variety of cancer types in addition to normal tissue, making it a promising treatment regimen to enhance the capability of macrophages to phagocytose tumor cells. However, treatment efficacy is varied in pre-clinical and clinical models due to various challenges such as off-target effects. CONCLUSION This review emphasizes the diverse functionality of macrophages in normal and cancerous tissue, while also emphasizing the importance of macrophage targeting and their clinical significance.
Collapse
Affiliation(s)
- Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Matthew J. Igoe
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
7
|
Chen C, Lu F, Huang H, Pan Y. Translating CD47-targeted therapy in gastrointestinal cancers: Insights from preclinical to clinical studies. iScience 2024; 27:111478. [PMID: 39720535 PMCID: PMC11667074 DOI: 10.1016/j.isci.2024.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
This review presents a thorough investigation of the role of CD47 in gastrointestinal cancers. We performed a comprehensive, in-depth review of over 100 preclinical and clinical studies focused on inhibiting CD47. The research highlights the potential of targeted CD47 to enhance existing treatments by boosting the immune response to cancer cells. Considering the essential need to balance the toxicity and efficacy of CD47 inhibition, our review emphasizes the need to optimize CD47 inhibitors. We also demonstrate the necessity of combining CD47 antibodies with conventional chemotherapy, radiotherapy, or other targeted therapies to enhance treatment effectiveness. Finally, we propose the integration of CD47-targeted therapies into treatment plans as a promising approach to reshape the therapeutic landscape of gastrointestinal cancers. Continued research in this field holds great potential for improving the outcomes of gastrointestinal cancer patients and overcoming the challenges associated with this formidable spectrum of diseases.
Collapse
Affiliation(s)
- Changgan Chen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
8
|
Wang B, Cao X, Garcia-Mansfield K, Zhou J, Manousopoulou A, Pirrotte P, Wang Y, Wang LD, Feng M. Phosphoproteomic Profiling Reveals mTOR Signaling in Sustaining Macrophage Phagocytosis of Cancer Cells. Cancers (Basel) 2024; 16:4238. [PMID: 39766137 PMCID: PMC11674635 DOI: 10.3390/cancers16244238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Macrophage-mediated cancer cell phagocytosis has demonstrated considerable therapeutic potential. While the initiation of phagocytosis, facilitated by interactions between cancer cell surface signals and macrophage receptors, has been characterized, the mechanisms underlying its sustentation and attenuation post-initiation remain poorly understood. Methods: Through comprehensive phosphoproteomic profiling, we interrogated the temporal evolution of the phosphorylation profiles within macrophages during cancer cell phagocytosis. Results: Our findings reveal that activation of the mTOR pathway occurs following the initiation of phagocytosis and is crucial in sustaining phagocytosis of cancer cells. mTOR inhibition impaired the phagocytic capacity, but not affinity, of the macrophages toward the cancer cells by delaying phagosome maturation and impeding the transition between non-phagocytic and phagocytic states of macrophages. Conclusions: Our findings delineate the intricate landscape of macrophage phagocytosis and highlight the pivotal role of the mTOR pathway in mediating this process, offering valuable mechanistic insights for therapeutic interventions.
Collapse
Affiliation(s)
- Bixin Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology Division, Translational Genomics Institute, Phoenix, AZ 85004, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jingkai Zhou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Antigoni Manousopoulou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick Pirrotte
- Cancer and Cell Biology Division, Translational Genomics Institute, Phoenix, AZ 85004, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Leo D. Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Christo SN, McDonald KM, Burn TN, Kurd N, Stanfield J, Kaneda MM, Seelige R, Dillon CP, Fisher TS, Baaten B, Mackay LK. Dual CD47 and PD-L1 blockade elicits anti-tumor immunity by intratumoral CD8 + T cells. Clin Transl Immunology 2024; 13:e70014. [PMID: 39584189 PMCID: PMC11583082 DOI: 10.1002/cti2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Objectives Bispecific antibodies targeting CD47 and PD-L1 (CD47 × PD-L1 BisAb) demonstrate efficacy against a range of solid cancers. While dual blockade negates anti-CD47-mediated toxicity, the effect of combined innate and adaptive immune activation on protective tumor-resident CD8+ T cells has yet to be fully elucidated. Methods CD8+ T cell populations were tracked upon CD47 × PD-L1 BisAb treatment in an orthotopic model of murine breast cancer where anti-tumor immunity is mediated by CD8+ T cells. Immune responses were also compared with anti-PD-L1 monotherapy to assess the advantage of dual checkpoint targeting. Results We found that CD47 × PD-L1 BisAb treatment augmented CD8+ T cell responses in tumors, which resulted in enhanced tumor control. Compared with anti-PD-L1 treatment, dual CD47 and PD-L1 blockade promoted greater numbers of antigen-specific tumor-resident CD8+ T cells that exhibited increased cytokine production. Conclusions Engagement of innate and adaptive immune checkpoint molecules via CD47 × PD-L1 BisAb treatment resulted in robust CD8+ T cell responses, including the induction of tumor-resident CD8+ T cells that exhibited functionally superior anti-tumor immunity. These results demonstrate that innate immune activation potentiates anti-tumor adaptive responses, highlighting the use of dual checkpoint blockade as an optimal strategy for promoting CD8+ T cell-mediated protection.
Collapse
Affiliation(s)
- Susan N Christo
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Keely M McDonald
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Thomas N Burn
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Nadia Kurd
- Oncology Research UnitPfizer Inc.San DiegoCAUSA
| | | | | | | | | | | | - Bas Baaten
- Oncology Research UnitPfizer Inc.San DiegoCAUSA
| | - Laura K Mackay
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
10
|
Choi SM, Lee JH, Ko S, Hong SS, Jin HE. Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies. Biomol Ther (Seoul) 2024; 32:708-722. [PMID: 39448393 PMCID: PMC11535297 DOI: 10.4062/biomolther.2024.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges. Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology; however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
Collapse
Affiliation(s)
- Seong Min Choi
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Soyeon Ko
- Department of Biomedical Sciences, College of Medicine & Program in Biomedicals Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine & Program in Biomedicals Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Hyo-Eon Jin
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
11
|
Yoon C, Lee E, Kim D, Joung S, Kim Y, Jung H, Kim Y, Lee GM. SiMPl-GS: Advancing Cell Line Development via Synthetic Selection Marker for Next-Generation Biopharmaceutical Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405593. [PMID: 39105414 PMCID: PMC11481413 DOI: 10.1002/advs.202405593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Rapid and efficient cell line development (CLD) process is essential to expedite therapeutic protein development. However, the performance of widely used glutamine-based selection systems is limited by low selection efficiency, stringency, and the inability to select multiple genes. Therefore, an AND-gate synthetic selection system is rationally designed using split intein-mediated protein ligation of glutamine synthetase (GS) (SiMPl-GS). Split sites of the GS are selected using a computational approach and validated with GS-knockout Chinese hamster ovary cells for their potential to enable cell survival in a glutamine-free medium. In CLD, SiMPl-GS outperforms the wild-type GS by selectively enriching high producers. Unlike wild-type GS, SiMPl-GS results in cell pools in which most cells produce high levels of therapeutic proteins. Harnessing orthogonal split intein pairs further enables the selection of four plasmids with a single selection, streamlining multispecific antibody-producing CLD. Taken together, SiMPl-GS is a simple yet effective means to expedite CLD for therapeutic protein production.
Collapse
Affiliation(s)
- Chansik Yoon
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Eun‐ji Lee
- Biotherapeutics Translational Research CenterKRIBBDaejeon34113Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
| | - Dongil Kim
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Siyun Joung
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Yujin Kim
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Heungchae Jung
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
- BIO CenterDaejeon TechnoparkDaejeon34054Republic of Korea
| | - Yeon‐Gu Kim
- Biotherapeutics Translational Research CenterKRIBBDaejeon34113Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| |
Collapse
|
12
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Wang C, Chen L, Fu D, Liu W, Puri A, Kellis M, Yang J. Antigen presenting cells in cancer immunity and mediation of immune checkpoint blockade. Clin Exp Metastasis 2024; 41:333-349. [PMID: 38261139 PMCID: PMC11374820 DOI: 10.1007/s10585-023-10257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Antigen-presenting cells (APCs) are pivotal mediators of immune responses. Their role has increasingly been spotlighted in the realm of cancer immunology, particularly as our understanding of immunotherapy continues to evolve and improve. There is growing evidence that these cells play a non-trivial role in cancer immunity and have roles dependent on surface markers, growth factors, transcription factors, and their surrounding environment. The main dendritic cell (DC) subsets found in cancer are conventional DCs (cDC1 and cDC2), monocyte-derived DCs (moDC), plasmacytoid DCs (pDC), and mature and regulatory DCs (mregDC). The notable subsets of monocytes and macrophages include classical and non-classical monocytes, macrophages, which demonstrate a continuum from a pro-inflammatory (M1) phenotype to an anti-inflammatory (M2) phenotype, and tumor-associated macrophages (TAMs). Despite their classification in the same cell type, each subset may take on an immune-activating or immunosuppressive phenotype, shaped by factors in the tumor microenvironment (TME). In this review, we introduce the role of DCs, monocytes, and macrophages and recent studies investigating them in the cancer immunity context. Additionally, we review how certain characteristics such as abundance, surface markers, and indirect or direct signaling pathways of DCs and macrophages may influence tumor response to immune checkpoint blockade (ICB) therapy. We also highlight existing knowledge gaps regarding the precise contributions of different myeloid cell subsets in influencing the response to ICB therapy. These findings provide a summary of our current understanding of myeloid cells in mediating cancer immunity and ICB and offer insight into alternative or combination therapies that may enhance the success of ICB in cancers.
Collapse
Affiliation(s)
- Cassia Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Chen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doris Fu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendi Liu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Anusha Puri
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Kong C, Sun J, Hu X, Li G, Wu S. A tumor targeted nano micelle carrying astragaloside IV for combination treatment of bladder cancer. Sci Rep 2024; 14:17704. [PMID: 39085255 PMCID: PMC11291986 DOI: 10.1038/s41598-024-66010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective agents for tumor immunotherapy. However, their clinical effectiveness is unsatisfactory due to off-target effects and a suppressive immune microenvironment. This study developed a nanodrug delivery system for bladder cancer (BCa) using PCL-MPEG and PCL-PEG-CHO to synthesize internal hydrophobic and external hydrophilic micelles (PP) that encapsulated water-insoluble astragaloside IV (PPA). The aldehyde group on the surface of PPA reacted with the amino group of aPD-L1, allowing the decoration of this antibody on the surface of the micelles. The resultingPPA@aPD-L1effectively piggybacked astragaloside IV and aPD-L1 antibody. These findings suggest that PPA@aPD-L1 is relatively stable in circulation and efficiently binds to BCa cells with the aid of aPD-L1. Additionally, this strategy prolongs the drug's retention time in tumors. Compared to PBS, PP, and PPA with PPA + aPD-L1 groups, PPA@aPD-L1significantly prolonged the survival of mice with BCa and reduced tumor volume. Mechanistic studies showed that PPA inhibited the NF-κB and STAT3 signaling pathways in tumor cells. Additionally, PPA@aPD-L1increased IFN-γ and decreased IL-10 expression in bladder tumors, affecting the number and type of intratumorally infiltrating T cells. Our study presents a simple and effective drug delivery system that combines herbal monomers with ICIs. It has demonstrated a potent ability to suppress tumor growth and holds potential for future applications.
Collapse
Affiliation(s)
- Chenfan Kong
- Institute of Urology, The affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Science and Education Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- Department of Oncology, Shenzhen Baoan People's Hospital, Shenzhen, 518101, China
| | - Jianrong Sun
- Department of Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xinzi Hu
- Department of Oncology, Shenzhen Baoan People's Hospital, Shenzhen, 518101, China
| | - Guangzhi Li
- Institute of Urology, The affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China.
| | - Song Wu
- Department of Urology, The Affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518009, China.
| |
Collapse
|
15
|
Gracia-Hernandez M, Suresh M, Villagra A. The advances in targeting CD47/SIRPα "do not eat me" axis and their ongoing challenges as an anticancer therapy. Oncotarget 2024; 15:462-465. [PMID: 38985136 PMCID: PMC11235132 DOI: 10.18632/oncotarget.28607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
|
16
|
Ramsey HE, Gorska AE, Smith BN, Monteith AJ, Fuller L, Arrate MP, Savona MR. TLR3 agonism augments CD47 inhibition in acute myeloid leukemia. Haematologica 2024; 109:2111-2121. [PMID: 38152031 PMCID: PMC11215363 DOI: 10.3324/haematol.2023.283850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023] Open
Abstract
CD47-SIRPa is a myeloid check point pathway that promotes phagocytosis of cells lacking markers for self-recognition. Tumor cells can overexpress CD47 and bind to SIRPa on macrophages, preventing phagocytosis. CD47 expression is enhanced and correlated with a negative prognosis in acute myeloid leukemia (AML), with its blockade leading to cell clearance. ALX90 is an engineered fusion protein with high affinity for CD47. Composed of the N-terminal D1 domain of SIRPα genetically linked to an inactive Fc domain from human immunoglobulin (Ig) G, ALX90 is designed to avoid potential toxicity of CD47-expressing red blood cells. Venetoclax (VEN) is a specific B-cell lymphoma-2 (BCL-2) inhibitor that can restore apoptosis in malignant cells. In AML, VEN is combined with azanucleosides to induce superior remission rates, however treatment for refractory/relapse is an unmet need. We questioned whether the anti-tumor activity of a VENbased regimen can be augmented through CD47 inhibition (CD47i) in AML and how this triplet may be enhanced. Human AML cell lines were sensitive to ALX90 and its addition increased efficacy of a VEN plus azacitidin (VEN+AZA) regimen in vivo. However, CD47i failed to clear bone marrow tumor burden in PDX models. We hypothesized that the loss of resident macrophages in the bone marrow in AML reduced efficiency of CD47i. Therefore, we attempted to enhance this medullary macrophage population with agonism of TLR3 via polyinosinic:polycytidylic acid (poly(I:C)), which led to expansion and activation of medullary macrophages in in vivo AML PDX models and potentiated CD47i. In summary, the addition of poly(I:C) can enhance medullary macrophage populations to potentiate the phagocytosis merited by therapeutic inhibition of CD47.
Collapse
MESH Headings
- CD47 Antigen/metabolism
- CD47 Antigen/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Mice
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Macrophages/metabolism
- Macrophages/drug effects
- Sulfonamides/pharmacology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Antigens, Differentiation/metabolism
- Phagocytosis/drug effects
- Poly I-C/pharmacology
Collapse
Affiliation(s)
- Haley E Ramsey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN; Program in Cancer Biology
| | - Agnieszka E Gorska
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Andrew J Monteith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Londa Fuller
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Maria P Arrate
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN; Center for Immunobiology; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
17
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Yokose T, Szuter ES, Rosales I, Guinn MT, Liss AS, Baba T, Ruddy DA, Piquet M, Azzi J, Cosimi AB, Russell PS, Madsen JC, Colvin RB, Alessandrini A. Dysfunction of infiltrating cytotoxic CD8+ T cells within the graft promotes murine kidney allotransplant tolerance. J Clin Invest 2024; 134:e179709. [PMID: 38888968 PMCID: PMC11324304 DOI: 10.1172/jci179709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Tolerance of mouse kidney allografts arises in grafts that develop regulatory tertiary lymphoid organs (rTLOs). Single-cell RNA-seq (scRNA-seq) data and adoptive transfer of alloreactive T cells after transplantation showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required because adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite the presence of intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8-KO recipients resulted in acceptance and not rejection. Analysis of scRNA-seq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.
Collapse
Affiliation(s)
- Takahiro Yokose
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edward S. Szuter
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Center for Transplantation Sciences, Department of Surgery and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael T. Guinn
- Center for Transplantation Sciences, Department of Surgery and
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Ruddy
- Novartis Biomedical Research, Oncology, Cambridge, Massachusetts, USA
| | - Michelle Piquet
- Novartis Biomedical Research, Oncology, Cambridge, Massachusetts, USA
| | - Jamil Azzi
- Transplantation Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - A. Benedict Cosimi
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S. Russell
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B. Colvin
- Center for Transplantation Sciences, Department of Surgery and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Wu F, Pang H, Li F, Hua M, Song C, Tang J. Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 2024; 27:256. [PMID: 38646501 PMCID: PMC11027102 DOI: 10.3892/ol.2024.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein that is widely and moderately expressed on the surface of various cells and can have an essential role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis and other related responses by binding to its ligands, integrins, thrombospondin-1 and signal regulatory protein α. The poor prognosis of cancer patients is closely associated with high expression of CD47 in glioblastoma, ovarian cancer, breast cancer, bladder cancer, colon cancer and hepatocellular carcinoma. Upregulation of CD47 expression facilitates the growth of numerous types of tumor cells, while downregulation of its expression promotes phagocytosis of tumor cells by macrophages, thereby limiting tumor growth. In addition, blocking CD47 activates the cyclic GMP-AMP (cGAMP) synthase/cGAMP/interferon gene stimulating factor signaling pathway and initiates an adaptive immune response that kills tumor cells. The present review describes the structure, function and interactions of CD47 with its ligands, as well as its regulation of phagocytosis and tumor cell fate. It summarizes the therapeutics, mechanisms of action, research advances and challenges of targeting CD47. In addition, this paper provides an overview of the latest therapeutic options for targeting CD47, such as chimeric antigen receptor (CAR) T-cells, CAR macrophages and nanotechnology-based delivery systems, which are essential for future clinical research on targeting CD47.
Collapse
Affiliation(s)
- Fan Wu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hongyuan Pang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fan Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mengqing Hua
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Tang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
20
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Liang H, Zheng Y, Huang Z, Dai J, Yao L, Xie D, Chen D, Qiu H, Wang H, Li H, Leng J, Tang Z, Zhang D, Zhou H. Pan-cancer analysis for the prognostic and immunological role of CD47: interact with TNFRSF9 inducing CD8 + T cell exhaustion. Discov Oncol 2024; 15:149. [PMID: 38720108 PMCID: PMC11078914 DOI: 10.1007/s12672-024-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE The research endeavors to explore the implications of CD47 in cancer immunotherapy effectiveness. Specifically, there is a gap in comprehending the influence of CD47 on the tumor immune microenvironment, particularly in relation to CD8 + T cells. Our study aims to elucidate the prognostic and immunological relevance of CD47 to enhance insights into its prospective utilities in immunotherapeutic interventions. METHODS Differential gene expression analysis, prognosis assessment, immunological infiltration evaluation, pathway enrichment analysis, and correlation investigation were performed utilizing a combination of R packages, computational algorithms, diverse datasets, and patient cohorts. Validation of the concept was achieved through the utilization of single-cell sequencing technology. RESULTS CD47 demonstrated ubiquitous expression across various cancer types and was notably associated with unfavorable prognostic outcomes in pan-cancer assessments. Immunological investigations unveiled a robust correlation between CD47 expression and T-cell infiltration rather than T-cell exclusion across multiple cancer types. Specifically, the CD47-high group exhibited a poorer prognosis for the cytotoxic CD8 + T cell Top group compared to the CD47-low group, suggesting a potential impairment of CD8 + T cell functionality by CD47. The exploration of mechanism identified enrichment of CD47-associated differentially expressed genes in the CD8 + T cell exhausted pathway in multiple cancer contexts. Further analyses focusing on the CD8 TCR Downstream Pathway and gene correlation patterns underscored the significant involvement of TNFRSF9 in mediating these effects. CONCLUSION A robust association exists between CD47 and the exhaustion of CD8 + T cells, potentially enabling immune evasion by cancer cells and thereby contributing to adverse prognostic outcomes. Consequently, genes such as CD47 and those linked to T-cell exhaustion, notably TNFRSF9, present as promising dual antigenic targets, providing critical insights into the field of immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liang
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Yong Zheng
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zekai Huang
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinchi Dai
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lintong Yao
- Southern Medical University, Guangzhou, 510515, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Huili Wang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hao Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinhang Leng
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ziming Tang
- Southern Medical University, Guangzhou, 510515, China
| | - Dongkun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Haiyu Zhou
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China.
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
23
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
24
|
Kitsukawa Y, Fukumoto C, Hyodo T, Komiyama Y, Shiraishi R, Koike A, Yagisawa S, Kunitomi Y, Hasegawa T, Kotani W, Ishida K, Wakui T, Kawamata H. Difference between Keratinized- and Non-Keratinized-Originating Epithelium in the Process of Immune Escape of Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:3821. [PMID: 38612630 PMCID: PMC11011939 DOI: 10.3390/ijms25073821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death 1 ligand 1 (PD-L1) antibodies, are significantly changing treatment strategies for human malignant diseases, including oral cancer. Cancer cells usually escape from the immune system and acquire proliferative capacity and invasive/metastatic potential. We have focused on the two immune checkpoints, PD-1/PD-L1 and CD47/SIRPα, in the tumor microenvironment of oral squamous cell carcinoma (OSCC), performed a retrospective analysis of the expression of seven immune-related factors (PD-L1, PD-1, CD4, CD8, CD47, CD56 and CD11c), and examined their correlation with clinicopathological status. As a result, there were no significant findings relating to seven immune-related factors and several clinicopathological statuses. However, the immune checkpoint-related factors (PD-1, PD-L1, CD47) were highly expressed in non-keratinized epithelium-originated tumors when compared to those in keratinized epithelium-originated tumors. It is of interest that immunoediting via immune checkpoint-related factors was facilitated in non-keratinized sites. Several researchers reported that the keratinization of oral mucosal epithelia affected the immune response, but our present finding is the first study to show a difference in tumor immunity in the originating epithelium of OSCC, keratinized or non-keratinized. Tumor immunity, an immune escape status of OSCC, might be different in the originating epithelium, keratinized or non-keratinized.
Collapse
Affiliation(s)
- Yoshiaki Kitsukawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Utsunomiya General Service Corps, Japan Ground Self-Defense Forces, Utsunomiya 321-0145, Tochigi, Japan
| | - Chonji Fukumoto
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Toshiki Hyodo
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Section of Dentistry, Oral and Maxillofacial Surgery, Sano Kosei General Hospital, Sano 327-8511, Tochigi, Japan
| | - Yuske Komiyama
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Ryo Shiraishi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Aya Koike
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Shuma Yagisawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Yosuke Kunitomi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Tomonori Hasegawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Section of Dentistry, Oral and Maxillofacial Surgery, Kamitsuga General Hospital, Kanuma 322-8550, Tochigi, Japan
| | - Wataru Kotani
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Concier Medical Lounge, Chiyoda, Tokyo 102-0074, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan;
| | - Takahiro Wakui
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Hitoshi Kawamata
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| |
Collapse
|
25
|
Zhang K, Xu Y, Chang X, Xu C, Xue W, Ding D, Nie M, Cai H, Xu J, Zhan L, Han J, Cai T, Ju D, Feng L, Zhang X, Yin K. Co-targeting CD47 and VEGF elicited potent anti-tumor effects in gastric cancer. Cancer Immunol Immunother 2024; 73:75. [PMID: 38532108 PMCID: PMC10965671 DOI: 10.1007/s00262-024-03667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND CD47, serving as an intrinsic immune checkpoint, has demonstrated efficacy as an anti-tumor target in hematologic malignancies. Nevertheless, the clinical relevance of CD47 in gastric cancer and its potential as a therapeutic target remains unclear. METHODS The expression of CD47 in clinical gastric cancer tissues was assessed using immunohistochemistry and Western blot. Patient-derived cells were obtained from gastric cancer tissues and co-cultured with macrophages derived from human peripheral blood mononuclear cells. Flow cytometry analyses were employed to evaluate the rate of phagocytosis. Humanized patient-derived xenografts (Hu-PDXs) models were established to assess the efficacy of anti-CD47 immunotherapy or the combination of anti-CD47 and anti-VEGF therapy in treating gastric cancer. The infiltrated immune cells in the xenograft were analyzed by immunohistochemistry. RESULTS In this study, we have substantiated the high expression of CD47 in gastric cancer tissues, establishing a strong association with unfavorable prognosis. Through the utilization of SIRPα-Fc to target CD47, we have effectively enhanced macrophage phagocytosis of PDCs in vitro and impeded the growth of Hu-PDXs. It is noteworthy that anti-CD47 immunotherapy has been observed to sustain tumor angiogenic vasculature, with a positive correlation between the expression of VEGF and CD47 in gastric cancer. Furthermore, the successful implementation of anti-angiogenic treatment has further augmented the anti-tumor efficacy of anti-CD47 therapy. In addition, the potent suppression of tumor growth, prevention of cancer recurrence after surgery, and significant prolongation of overall survival in Hu-PDX models can be achieved through the simultaneous targeting of CD47 and VEGF using the bispecific fusion protein SIRPα-VEGFR1 or by combining the two single-targeted agents. CONCLUSIONS Our preclinical studies collectively offer substantiation that CD47 holds promise as a prospective target for gastric cancer, while also highlighting the potential of anti-angiogenic therapy to enhance tumor responsiveness to anti-CD47 immunotherapy.
Collapse
Affiliation(s)
- Kaiqi Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xusheng Chang
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dan Ding
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hui Cai
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lu Zhan
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiangbo Han
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tiancai Cai
- Department of Sanatorium and Nursing Section, Xiamen Special Service Health Center, Xiamen, 361005, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Li Feng
- Department of Endoscopy Center, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
27
|
Grandclément C, Estoppey C, Dheilly E, Panagopoulou M, Monney T, Dreyfus C, Loyau J, Labanca V, Drake A, De Angelis S, Rubod A, Frei J, Caro LN, Blein S, Martini E, Chimen M, Matthes T, Kaya Z, Edwards CM, Edwards JR, Menoret E, Kervoelen C, Pellat-Deceunynck C, Moreau P, Mbow ML, Srivastava A, Dyson MR, Zhukovsky EA, Perro M, Sammicheli S. Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma. Nat Commun 2024; 15:2054. [PMID: 38448430 PMCID: PMC10917784 DOI: 10.1038/s41467-024-46310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma.
Collapse
Affiliation(s)
| | - C Estoppey
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Dheilly
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | | | - T Monney
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - C Dreyfus
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Loyau
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - V Labanca
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Drake
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S De Angelis
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Rubod
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Frei
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - L N Caro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S Blein
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Martini
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Chimen
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - T Matthes
- Haematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, 1211, Geneva, Switzerland
| | - Z Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - C M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - J R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - E Menoret
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Kervoelen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Pellat-Deceunynck
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | - P Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - M L Mbow
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Srivastava
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M R Dyson
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E A Zhukovsky
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Perro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| | - S Sammicheli
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| |
Collapse
|
28
|
Kiem D, Ocker M, Greil R, Neureiter D, Melchardt T. Enhancing anti-CD274 (PD-L1) targeting through combinatorial immunotherapy with bispecific antibodies and fusion proteins: from preclinical to phase II clinical trials. Expert Opin Investig Drugs 2024; 33:229-242. [PMID: 38354028 DOI: 10.1080/13543784.2024.2319317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors have achieved great success in the treatment of many different types of cancer. Programmed cell death protein ligand 1 (PD-L1, CD274) is a major immunosuppressive immune checkpoint and a target for several already approved monoclonal antibodies. Despite this, novel strategies are under development, as the overall response remains low. AREAS COVERED In this review, an overview of the current biomarkers for response to PD-L1 inhibitor treatment is given, followed by a discussion of potential novel biomarkers, including tumor mutational burden and circulating tumor DNA. Combinatorial immunotherapy is a potential novel strategy to increase the response to PD-L1 inhibitor treatment and currently, several interesting bispecific antibodies as well as bispecific fusion proteins are undergoing early clinical investigation. We focus on substances targeting PD-L1 and a secondary target, and a secondary immunomodulatory target like CTLA-4, TIGIT, or CD47. EXPERT OPINION Overall, the presented studies show anti-tumor activity of these combinatorial immunotherapeutic approaches. However, still relatively low response rates suggest a need for better biomarkers.
Collapse
Affiliation(s)
- Dominik Kiem
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus, Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Richard Greil
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Paracelsus Medical University, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Thomas Melchardt
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
29
|
Deng D, Li G, Xia X, Xu S, Gao L, Zhang L, Yao W, Tian H, Gao X. Nitrated T cell epitope linked vaccine targeting CD47 elicits antitumor immune responses and acts synergistically with vaccine targeting PDL1. Int Immunopharmacol 2024; 128:111374. [PMID: 38181672 DOI: 10.1016/j.intimp.2023.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Despite the clinical breakthrough made by immune checkpoint blockades (ICB) in cancer immunotherapy, immunosuppressed tumor microenvironment (TME) remains a major impediment in the efficacy of ICB immunotherapy. In this study, we constructed a Nitrated T cell epitope (NitraTh) linked vaccine targeting CD47, namely CD47-NitraTh. CD47-NitraTh could repress the progression of tumor by inducing tumor-specific immune response. Furthermore, combination vaccination with CD47-NitraTh and PDL1-NitraTh could reconstruct tumor associated macrophage, enhance macrophage-mediated phagocytosis for tumor cells, and promote the activation of tumor infiltrating T cells. Notably, by activating chemokine signaling pathway, NitraTh based vaccines reversed immunosuppressed TME, resulting in improved therapeutic outcome for tumor. With the advantage of reversing immunosuppressed TME, NitraTh based vaccine seems an optimal immunotherapy strategy for patients who are not sensitive to antibody based ICB.
Collapse
Affiliation(s)
- Danni Deng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, 213003, PR China
| | - Guozhi Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Xuefei Xia
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Shuyang Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Le Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Li Zhang
- Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 830054, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
30
|
Li Y, Jiang M, Aye L, Luo L, Zhang Y, Xu F, Wei Y, Peng D, He X, Gu J, Yu X, Li G, Ge D, Lu C. UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment. Nat Commun 2024; 15:1200. [PMID: 38331898 PMCID: PMC10853547 DOI: 10.1038/s41467-024-45340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The complexity of the tumor microenvironment (TME) is a crucial factor in lung adenocarcinoma (LUAD) progression. To gain deeper insights into molecular mechanisms of LUAD, we perform an integrative single-cell RNA sequencing (scRNA-seq) data analysis of 377,574 cells from 117 LUAD patient samples. By linking scRNA-seq data with bulk gene expression data, we identify a cluster of prognostic-related UPP1high tumor cells. These cells, primarily situated at the invasive front of tumors, display a stronger association with the immunosuppressive components in the TME. Our cytokine array analysis reveals that the upregulation of UPP1 in tumor cells leads to the increased release of various immunosuppressive cytokines, with TGF-β1 being particularly prominent. Furthermore, this UPP1 upregulation also elevates the expression of PD-L1 through the PI3K/AKT/mTOR pathway, which contributes to the suppression of CD8 + T cells. Cytometry by time-of-flight (CyTOF) analysis provides additional evidence of the role of UPP1 in shaping the immunosuppressive nature of the TME. Using patient-derived organoids (PDOs), we discover that UPP1high tumors exhibit relatively increased sensitivity to Bosutinib and Dasatinib. Collectively, our study highlights the immunosuppressive role of UPP1 in LUAD, and these findings may provide insights into the molecular features of LUAD and facilitate the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Ling Aye
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Luo
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongqi Wei
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan Peng
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Luo X, Mo J, Zhang M, Huang W, Bao Y, Zou R, Yao L, Yuan L. CD47-a novel prognostic predicator in epithelial ovarian cancer and correlations with clinicopathological and gene mutation features. World J Surg Oncol 2024; 22:44. [PMID: 38317230 PMCID: PMC10845810 DOI: 10.1186/s12957-024-03308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is insensitive to immunotherapy due to its poor immunogenicity; thus, suitable biomarkers need to be identified for better prognostic stratification and individualized treatment. CD47 is a novel immunotherapy target; however, its impact on EOC prognosis is controversial and correlation with genetic features is unclear. The aim of this study was to investigate the prognostic significance of CD47 and its correlations with biological behaviors and genetic features of EOC. METHODS Immunohistochemistry (IHC) and next-generation sequencing (NGS) were performed to examine expressions of CD47, PD-L1, and genomic mutations in the tissue samples of 75 EOC patients. Various clinicopathologic and genomic features were then evaluated to determine their correlation with CD47 expression. Kaplan-Meier analysis and Cox regression analysis were used to identify independent prognostic factors. Risk score modeling was then established, and the predictive capacity of this model was further confirmed by nomogram analysis. RESULTS CD47 was mainly expressed in the tumor cell membrane and cytoplasm, and the rate of high CD47 expression was 63.7%. CD47 expression was associated with various clinicopathological factors, including FIGO stage, CA125 and HE4 value, presence of multidisciplinary surgeries, presence and volume of ascites, lymph-node metastasis, Ki-67 index and platinum-resistant, as well as genetic characteristics like BRCA mutation, HRD status, and TP53 mutation in EOC. Patients with high CD47 expression showed worse prognosis than the low-expression group. Cox regression analysis demonstrated that CA125, CD47, and BRCA mutation were independent factors for EOC prognosis. Patients were then categorized into high-risk and low-risk subgroups based on the risk score of the aforementioned independent factors, and the prognosis of the high-risk group was worse than those of the low-risk group. The nomogram showed adequate discrimination with a concordance index of 0.777 (95% CI, 0.732-0.822). The calibration curve showed good consistency. CONCLUSION CD47 correlated with various malignant biology and genetic characteristics of EOC and may play pivotal and multifaceted roles in the tumor microenvironment of EOC Finally, we constructed a reliable prediction model centered on CD47 and integrated CA125 and BRCA to better guide high-risk population management.
Collapse
Affiliation(s)
- Xukai Luo
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Min Zhang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Wu Huang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yiting Bao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ruoyao Zou
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Liangqing Yao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Yuan
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
32
|
von Ofen AJ, Thiel U, Eck J, Gassmann H, Thiede M, Hauer J, Holm PS, Schober SJ. YB-1-based oncolytic virotherapy in combination with CD47 blockade enhances phagocytosis of pediatric sarcoma cells. Front Oncol 2024; 14:1304374. [PMID: 38357194 PMCID: PMC10865101 DOI: 10.3389/fonc.2024.1304374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Oncolytic viruses (OVs) selectively replicate in tumor cells resulting in lysis, spreading of new infectious units and induction of antitumor immune responses through abrogating an immunosuppressive tumor microenvironment (TME). Due to their mode of action, OVs are ideal combination partners with targeted immunotherapies. One highly attractive combination is the inhibition of the 'don't-eat-me'-signal CD47, which is known to increase the phagocytic potential of tumor-associated macrophages. In this work, we analyzed the combination approach consisting of the YB-1-based oncolytic adenovirus XVir-N-31 (XVir) and the CD47 inhibitor (CD47i) B6.H12.2 concerning its phagocytic potential. We investigate phagocytosis of XVir-, adenovirus wildtype (AdWT)-, and non-infected established pediatric sarcoma cell lines by different monocytic cells. Phagocytes (immature dendritic cells and macrophages) were derived from THP-1 cells and healthy human donors. Phagocytosis of tumor cells was assessed via FACS analysis in the presence and absence of CD47i. Additional characterization of T cell-stimulatory surface receptors as well as chemo-/cytokine analyses were performed. Furthermore, tumor cells were infected and studied for the surface expression of the 'eat-me'-signal calreticulin (CALR) and the 'don't-eat-me'-signal CD47. We herein demonstrate that (1) XVir-infected tumor cells upregulate both CALR and CD47. XVir induces higher upregulation of CD47 than AdWT. (2) XVir-infection enhances phagocytosis in general and (3) the combination of XVir and CD47i compared to controls showed by far superior enhancement of phagocytosis, tumor cell killing and innate immune activation. In conclusion, the combination of CD47i and XVir causes a significant increase in phagocytosis exceeding the monotherapies considerably accompanied by upregulation of T cell-stimulatory receptor expression and inflammatory chemo/-cytokine secretion.
Collapse
Affiliation(s)
- Anna Josefine von Ofen
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jennifer Eck
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
33
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Pophali P, Varela JC, Rosenblatt J. Immune checkpoint blockade in hematological malignancies: current state and future potential. Front Oncol 2024; 14:1323914. [PMID: 38322418 PMCID: PMC10844552 DOI: 10.3389/fonc.2024.1323914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Malignant cells are known to evade immune surveillance by engaging immune checkpoints which are negative regulators of the immune system. By restoring the T-lymphocyte mediated anti-tumor effect, immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid tumors but have met rather modest success in hematological malignancies. Currently, the only FDA approved indications for ICI therapy are in classic hodgkin lymphoma and primary mediastinal B cell lymphoma. Multiple clinical trials have assessed ICI therapy alone and in combination with standard of care treatments in other lymphomas, plasma cell neoplasms and myeloid neoplasms but were noted to have limited efficacy. These trials mostly focused on PD-1/PDL-1 and CTLA-4 inhibitors. Recently, there has been an effort to target other T-lymphocyte checkpoints like LAG-3, TIM-3, TIGIT along with improving strategies of PD-1/PDL-1 and CTLA-4 inhibition. Drugs targeting the macrophage checkpoint, CD47, are also being tested. Long term safety and efficacy data from these ongoing studies are eagerly awaited. In this comprehensive review, we discuss the mechanism of immune checkpoint inhibitors, the key takeaways from the reported results of completed and ongoing studies of these therapies in the context of hematological malignancies.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Hematological Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Juan Carlos Varela
- Division of Hematology and Oncology, Orlando Health Regional Medical Center, Orlando, FL, United States
| | - Jacalyn Rosenblatt
- Division of Hematology and Hematological Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Shen W, Yuan L, Cheng F, Wu Z, Li X. SRSF7 is a promising prognostic biomarker in hepatocellular carcinoma and is associated with immune infiltration. Genes Genomics 2024; 46:49-64. [PMID: 37985547 DOI: 10.1007/s13258-023-01463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Previous studies indicate that the splicing process, regulated by the cellular machinery of tumors (spliceosome), undergoes alterations, leading to oncogenic splicing events associated with the progression of tumors towards aggressiveness. However, the role of serine/arginine-rich splicing factor 7 (SRSF7) in hepatocellular carcinoma (HCC) and the tumor microenvironment (TME) remains unclear. METHODS This study was aimed to explore the role and clinical significance of SRSF7 in HCC. By conducting functional analysis and gene set enrichment analysis, it was discovered that SRSF7 contributes to multiple pathways associated with immune response and tumor advancement. Further experiments verified that silencing of SRSF7 obviously inhibits progression of HCC. RESULTS Aberrant expression of SRSF7, which were referred as an independent prognostic risk factor, effectively predicts the prognosis of patients with HCC. Functional and gene enrichment analyses revealed that SRSF7 is linked with multiple immune and tumor progression-related pathways, including the B cell receptor signaling pathway, positive regulation of leukocyte and immunoglobulin receptor binding cell activation, nuclear division, membrane invagination, cell cycle, as well as mTOR signaling pathway. Furthermore, increased SRSF7 expression was associated with tumor-infiltrating inflammatory cells (CD4+, monocytes/macrophages, CD8 + and endothelial). Additionally, multiple immune checkpoint genes were markedly positively related to SRSF7. The efficiency of SRSF7 in predicting immunomodulator and chemokine responses were also assessed in microenvironment. Moreover, in vitro analyses demonstrated that knockdown of SRSF7 suppressed the malignant evolution of HCC possibly by deactivating the PI3K/AKT/mTOR signaling. CONCLUSION The role of SRSF7 in the tumor microenvironment has been successfully assessed. It may be a valid bio-index for predicting the HCC prognosis, thereby guiding individualized immunotherapy for cancer.
Collapse
Affiliation(s)
- Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Lebin Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fei Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
36
|
Grevtsev AS, Azarian AD, Misorin AK, Chernyshova DO, Iakovlev PA, Karbyshev MS. Towards the Application of a Label-Free Approach for Anti-CD47/PD-L1 Bispecific Antibody Discovery. BIOSENSORS 2023; 13:1022. [PMID: 38131782 PMCID: PMC10742149 DOI: 10.3390/bios13121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The engineering of bispecific antibodies that exhibit optimal affinity and functional activity presents a significant scientific challenge. To tackle this, investigators employ an assortment of protein assay techniques, such as label-free interaction methodologies, which offer rapidity and convenience for the evaluation of extensive sample sets. These assays yield intricate data pertaining to the affinity towards target antigens and Fc-receptors, instrumental in predicting cellular test outcomes. Nevertheless, the fine-tuning of affinity is of paramount importance to mitigate potential adverse effects while maintaining efficient obstruction of ligand-receptor interactions. In this research, biolayer interferometry (BLI) was utilized to probe the functional characteristics of bispecific antibodies targeting cluster of differentiation 47 (CD47) and programmed death-ligand 1 (PD-L1) antigens, encompassing affinity, concurrent binding to two disparate antigens, and the inhibition of ligand-receptor interactions. The findings derived from BLI were juxtaposed with data from in vitro signal regulatory protein-α (SIRP-α)/CD47 blockade reporter bioassays for two leading bispecific antibody candidates, each demonstrating distinct affinity to CD47.
Collapse
|
37
|
Olejarz W, Basak G. Emerging Therapeutic Targets and Drug Resistance Mechanisms in Immunotherapy of Hematological Malignancies. Cancers (Basel) 2023; 15:5765. [PMID: 38136311 PMCID: PMC10741639 DOI: 10.3390/cancers15245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
CAR-T cell therapy has revolutionized the treatment of hematological malignancies with high remission rates in the case of ALL and NHL. This therapy has some limitations such as long manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination regimens increase the risk of immune-related adverse events, so the identification new therapeutic targets is important to minimize the risk of toxicities and to guide more effective approaches. Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to immunotherapy; therefore, a very important therapeutic approach is to focus on the development of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules, checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenvironment (TME) has significantly improved anticancer responses. Novel strategies regarding combination immunotherapies with CAR-T cells are the most promising approach to cure cancer.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
38
|
CHEN QIUQIANG, GUO XUEJUN, MA WENXUE. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res 2023; 32:49-60. [PMID: 38188674 PMCID: PMC10767231 DOI: 10.32604/or.2023.042383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer, with the tumor microenvironment (TME) playing a pivotal role in modulating the immune response. CD47, a cell surface protein, has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy. However, the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood. This comprehensive review aims to provide an overview of CD47's multifaced role in TME regulation and immune evasion, elucidating its impact on various types of immunotherapy outcomes, including checkpoint inhibitors and CAR T-cell therapy. Notably, CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes, especially when combined with other immunotherapeutic approaches. The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47. Despite the demonstrated effectiveness of CD47-targeted therapies, there are potential problems, including unintended effects on healthy cells, hematological toxicities, and the development if resistance. Consequently, further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches, ultimately improving cancer treatment outcomes. Overall, this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.
Collapse
Affiliation(s)
- QIUQIANG CHEN
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, 313000, China
| | - XUEJUN GUO
- Department of Hematology, Puyang Youtian General Hospital, Puyang, 457001, China
| | - WENXUE MA
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, San Diego, 92093, USA
| |
Collapse
|
39
|
Zhang L, Zhao X, Niu Y, Ma X, Yuan W, Ma J. Engineering high-affinity dual targeting cellular nanovesicles for optimised cancer immunotherapy. J Extracell Vesicles 2023; 12:e12379. [PMID: 37974395 PMCID: PMC10654473 DOI: 10.1002/jev2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Dual targeting to immune checkpoints has achieved a better therapeutic efficacy than single targeting due to synergistic extrication of tumour immunity. However, most dual targeting strategies are usually antibody dependent which facing drawbacks of antibodies, such as poor solid tumour penetration and unsatisfied affinity. To meet the challenges, we engineered a cell membrane displaying a fusion protein composed of SIRPα and PD-1 variants, the high-affinity consensus (HAC) of wild-type molecules, and with which prepared nanovesicles (NVs). Through disabling both SIRPα/CD47 and PD-1/PD-L1 signalling, HAC NVs significantly preserved the phagocytosis and antitumour effect of macrophages and T cells, respectively. In vivo study revealed that HAC NVs had better tumour penetration than monoclonal antibodies and higher binding affinity to CD47 and PD-L1 on tumour cells compared with the NVs expressing wild-type fusion protein. Exhilaratingly, dual-blockade of CD47 and PD-L1 with HAC NVs exhibited excellent therapeutic efficacy and biosafety. This study provided a novel biomaterial against tumoural immune escape and more importantly an attractive biomimetic technology of protein delivery for multi-targeting therapies.
Collapse
Affiliation(s)
- Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| | - Xu Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanan Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoya Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
40
|
Li J, Liu F, Bi X, Ye J. Imaging immune checkpoint networks in cancer tissues with supermultiplexed SERS nanoprobes. Biomaterials 2023; 302:122327. [PMID: 37716283 DOI: 10.1016/j.biomaterials.2023.122327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Combined immune checkpoint (ICP) inhibitors maximize immune response rates of patients compared to the single-drug treatment strategy in cancer immunotherapy, and prediction of such optimal combinations requires high-throughput imaging techniques and suitable data analysis. In this work, we report a rational strategy for predicting combined drugs of ICP inhibitors based on supermultiplexed surface-enhanced Raman scattering (SERS) imaging and correlation network analysis. To this end, we first built an ultrasensitive and supermultiplexed volume-active SERS (VASERS) nanoprobe platform, where Raman molecules are randomly arranged in 3D volumetric electromagnetic hotspots. By examining various bio-orthogonal Raman molecules with different electronic properties, we developed frequency modulation guidelines and achieved 32 resolvable colors in the Raman-silent region, the largest number of resolvable SERS colors demonstrated to date. We then demonstrated one-shot ten-color imaging of ICPs with high spectral resolution in clinical biopsies of breast cancer tissues, suggesting highly heterogeneous expression patterns of ICPs across tumor subtypes. Through correlation network analysis of these high-throughput Raman data, we investigated co-expression relationships among these ten-panel ICPs in cancer tissues and finally identified a variety of possible ICP combinations for synergistic immunotherapy of breast cancers, which may lead to novel therapeutical insights.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
41
|
Wei X, Pan S, Wang Z, Chen J, Lu L, Cao Q, Song S, Zhang H, Liu X, Qu X, Lin X, Xu H. LAIR1 drives glioma progression by nuclear focal adhesion kinase dependent expressions of cyclin D1 and immunosuppressive chemokines/cytokines. Cell Death Dis 2023; 14:684. [PMID: 37845206 PMCID: PMC10579300 DOI: 10.1038/s41419-023-06199-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR1), an immune receptor containing immunoreceptor tyrosine-based inhibiory motifs (ITIMs), has emerged as an attractive target for cancer therapy. However, the intrinsic function of LAIR1 in gliomas remains unclear. In this study, the poor prognosis of glioma patients and the malignant proliferation of glioma cells in vitro and in vivo were found to be closely correlated with LAIR1. LAIR1 facilitates focal adhesion kinase (FAK) nuclear localization, resulting in increased transcription of cyclin D1 and chemokines/cytokines (CCL5, TGFβ2, and IL33). LAIR1 specifically supports in the immunosuppressive glioma microenvironment via CCL5-mediated microglia/macrophage polarization. SHP2Q510E (PTP domain mutant) or FAKNLM (non-nuclear localizing mutant) significantly reversed the LAIR1-induced growth enhancement in glioma cells. In addition, LAIR1Y251/281F (ITIMs mutant) and SHP2Q510E mutants significantly reduced FAK nuclear localization, as well as CCL5 and cyclin D1 expression. Further experiments revealed that the ITIMs of LAIR1 recruited SH2-containing phosphatase 2 (SHP2), which then interacted with FAK and induced FAK nuclear localization. This study uncovered a critical role for intrinsic LAIR1 in facilitating glioma malignant progression and demonstrated a requirement for LAIR1 and SHP2 to enhance FAK nuclear localization.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Shushan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Zirui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jieru Chen
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Li Lu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Shuling Song
- School of Gerontology, Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Huachang Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, Guangxi, P.R. China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
42
|
Hu Z, Li W, Chen S, Chen D, Xu R, Zheng D, Yang X, Li S, Zhou X, Niu X, Xiao Y, He Z, Li H, Liu J, Sui X, Gao Y. Design of a novel chimeric peptide via dual blockade of CD47/SIRPα and PD-1/PD-L1 for cancer immunotherapy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2310-2328. [PMID: 37115491 DOI: 10.1007/s11427-022-2285-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 04/29/2023]
Abstract
Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types, only a small subset of patients can benefit from PD-1/PD-L1 blockade. CD47 expressed on tumor cells protects them from phagocytosis through interaction with SIRPα on macrophages, while PD-L1 dampens T cell-mediated tumor killing. Therefore, dual targeting PD-L1 and CD47 may improve the efficacy of cancer immunotherapy. A chimeric peptide Pal-DMPOP was designed by conjugating the double mutation of CD47/SIRPα blocking peptide (DMP) with the truncation of PD-1/PD-L1 blocking peptide OPBP-1(8-12) and was modified by a palmitic acid tail. Pal-DMPOP can significantly enhance macrophage-mediated phagocytosis of tumor cells and activate primary T cells to secret IFN-γ in vitro. Due to its superior hydrolysis-resistant activity as well as tumor tissue and lymph node targeting properties, Pal-DMPOP elicited stronger anti-tumor potency than Pal-DMP or OPBP-1(8-12) in immune-competent MC38 tumor-bearing mice. The in vivo anti-tumor activity was further validated in the colorectal CT26 tumor model. Furthermore, Pal-DMPOP mobilized macrophage and T-cell anti-tumor responses with minimal toxicity. Overall, the first bispecific CD47/SIRPα and PD-1/PD-L1 dual-blockade chimeric peptide was designed and exhibited synergistic anti-tumor efficacy via CD8+ T cell activation and macrophage-mediated immune response. The strategy could pave the way for designing effective therapeutic agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Danhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ran Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Danlu Zheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Huihao Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
43
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
44
|
Luong M, Wang Y, Donnelly BB, Lepsy C. Addressing Domain Specificity in the Development of a Cell-Based Binding Assay for the Detection of Neutralizing Antibodies Against a CD47xPD-L1 Bispecific Antibody. AAPS J 2023; 25:91. [PMID: 37740131 DOI: 10.1208/s12248-023-00856-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023] Open
Abstract
PF-07257876 is a bispecific antibody being developed for the treatment of certain advanced or metastatic solid tumors. To support clinical development of PF-07257876, neutralizing antibody (NAb) assays were developed as part of a tiered immunogenicity testing approach. Because PF-07257876 targets both CD47 and PD-L1, determination of domain specificity of a NAb response may provide additional insight relating to PK, efficacy, and safety. Due to limitations of functional cell systems, two cell-based binding assays were developed using electrochemiluminescence to detect domain-specific NAb. While both NAb assays utilized a cell-based binding approach and shared certain requirements, such as sensitivity and tolerance to potentially interfering substances, the development of each assay faced unique challenges. Among the hurdles encountered, achieving drug tolerance while preserving domain specificity for CD47 proved particularly challenging. Consequently, a sample pretreatment procedure to isolate NAb from potentially interfering substances was necessary. The sample pretreatment procedure developed was based on a bead-extraction and acid dissociation (BEAD) approach. However, the use of the standard BEAD approach with whole drug to capture NAb resulted in loss of NAb detection under certain circumstances. Specifically, mock samples containing a mixture of NAb positive controls against both binding domains of the bispecific antibody produced false-negative results in the cell-based binding assay. An adaptation made to the standard BEAD approach restored domain-specific NAb detection, while also contributing to an assay sensitivity of 1 µg/mL in the presence of a clinically relevant drug tolerance level of up to 400 µg/mL.
Collapse
Affiliation(s)
- Michael Luong
- BioMedicine Design, Pfizer, Inc., 1 Burtt Road, Andover, Massachusetts, 01810, USA.
| | - Ying Wang
- BioMedicine Design, Pfizer, Inc., 1 Burtt Road, Andover, Massachusetts, 01810, USA
| | - Brianna B Donnelly
- Janssen R&D, Lower Gwynedd Township, Montgomery County, Pennsylvania, USA
| | - Christopher Lepsy
- BioMedicine Design, Pfizer, Inc., 1 Burtt Road, Andover, Massachusetts, 01810, USA
| |
Collapse
|
45
|
Silva-Pilipich N, Covo-Vergara Á, Vanrell L, Smerdou C. Checkpoint blockade meets gene therapy: Opportunities to improve response and reduce toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:43-86. [PMID: 37541727 DOI: 10.1016/bs.ircmb.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) based on monoclonal antibodies represent a breakthrough for the treatment of cancer. However, their efficacy varies among tumor types and patients, and they can lead to adverse effects due to on-target/off-tumor activity, since they are administered systemically at high doses. An alternative and attractive approach for the delivery of ICIs is the use of gene therapy vectors able to express them in vivo. This review focuses on the most recent studies using viral vectors able to express ICIs locally or systemically in preclinical models of cancer. These vectors include non-replicating viruses, oncolytic viruses able to propagate specifically in tumor cells and destroy them, and self-amplifying RNA vectors, armed with different formats of antibodies against immune checkpoints. Non-replicating vectors usually lead to long-term ICI expression, potentially eliminating the need for repeated administration. Vectors with replication capacity, although they have a shorter window of expression, can induce inflammation which enhances the antitumor effect. Finally, these engineered vectors can be used in combination with other immunostimulatory molecules or with CAR-T cells, further boosting the antitumor immune responses.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| | - Ángela Covo-Vergara
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay; Nanogrow Biotech, Montevideo, Uruguay
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| |
Collapse
|
46
|
Ji K, Zhang Y, Jiang S, Sun L, Zhang B, Hu D, Wang J, Zhao L, Wang P, Tao Z. SIRPα blockade improves the antitumor immunity of radiotherapy in colorectal cancer. Cell Death Discov 2023; 9:180. [PMID: 37291116 DOI: 10.1038/s41420-023-01472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
High-dose hypofractionated radiotherapy (HRT) is an important anticancer treatment modality that activates antitumor host immune responses. However, HRT for oligometastases of colorectal cancer (CRC) has shown frustrating results in the clinic. As part of immune evasion, myeloid cells express signal regulatory protein α (SIRPα) to inhibit phagocytosis by phagocytes in the tumor microenvironment (TME). We postulated that SIRPα blockade enhances HRT by alleviating the inhibitory action of SIRPα on phagocytes. We demonstrated that SIRPα on myeloid cells was upregulated in the TME after HRT. When SIRPα blockade was administered with HRT, we observed superior antitumor responses compared with anti-SIRPα or HRT alone. When anti-SIRPα was administered to local HRT, the TME could become a tumoricidal niche that was heavily infiltrated by activated CD8+ T cells, but with limited myeloid-derived suppressor cells and tumor-associated macrophages. While CD8+ T cells were required for the effectiveness of the anti-SIRPα + HRT combination. The triple therapy with anti-SIRPα + HRT + anti-PD-1 had superior antitumor responses compared with the combination of any two therapies and established a strong and long-lasting adaptive immunological memory. Collectively, SIRPα blockade provides a novel way to overcome HRT resistance in oligometastatic CRC patients. Our results herein provide a valuable cancer treatment strategy that has the potential to be translated into clinical practice.
Collapse
Affiliation(s)
- Kai Ji
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Baozhong Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Dongzhi Hu
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China.
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.
| |
Collapse
|
47
|
Wang Z, Hu N, Wang H, Wu Y, Quan G, Wu Y, Li X, Feng J, Luo L. High-affinity decoy protein, nFD164, with an inactive Fc region as a potential therapeutic drug targeting CD47. Biomed Pharmacother 2023; 162:114618. [PMID: 37011485 DOI: 10.1016/j.biopha.2023.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
CD47, as an innate immune checkpoint molecule, is an important target of cancer immunotherapy. We previously reported that a high-affinity SIRPα variant FD164 fused with IgG1 subtype Fc showed a better antitumor effect than wild-type SIRPα in an immunodeficient tumor-bearing model. However, CD47 is widely expressed in blood cells, and the drugs targeting CD47 may cause potential hematological toxicity. Herein, we modified the FD164 molecule by Fc mutation (N297A) to inactivate the Fc-related effector function and named it nFD164. Moreover, we further studied the potential of nFD164 as a candidate drug targeting CD47, including the stability, in vitro activity, antitumor activity of single or combined drugs in vivo, and hematological toxicity in humanized CD47/SIRPα transgenic mouse model. The results show that nFD164 maintains strong binding activity to CD47 on tumor cells, but has weak binding activity with red blood cells or white blood cells, and nFD164 has good drug stability under accelerated conditions (high temperature, bright light and freeze-thaw cycles). More importantly, in the immunodeficient or humanized CD47/SIRPα transgenic mice bearing tumor model, the combination of nFD164 and anti-CD20 antibody or anti-mPD-1 antibody had a synergistic antitumor effect. Especially in transgenic mouse models, nFD164 combined with anti-mPD-1 significantly enhanced tumor suppressive activity compared with anti-mPD-1 (P < 0.01) or nFD164 (P < 0.01) as a single drug and had fewer hematology-related side effects than FD164 or Hu5F9-G4. When these factors are taken together, nFD164 is a promising high-affinity CD47-targeting drug candidate with better stability, potential antitumor activity, and improved safety profile.
Collapse
|
48
|
Mortezaee K, Majidpoor J. Reinstating immunogenicity using bispecific anti-checkpoint/agent inhibitors. Biomed Pharmacother 2023; 162:114621. [PMID: 37004328 DOI: 10.1016/j.biopha.2023.114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) resistance demands for acquisition of novel strategies in order to broaden the therapeutic repertoire of advanced cancers. Bispecific antibodies can be utilized as an emerging therapeutic paradigm and a step forward in cancer immunotherapy. Synchronous inhibition of programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1) or cytotoxic T lymphocyte associated antigen-4 (CTLA-4), or with other agents can expand antibody selectivity and improve therapeutic window through tightening cell-to-cell bridge (a process called immunological synapse) within tumor immune microenvironment (TIME). There is evidence of higher potency of this co-targeting approach over combined single-agent monoclonal antibodies in reinvigorating anti-tumor immune responses, retarding tumor growth, and improving patient survival. In fact, immunological synapses formed by interactions of such bispecific agents with TIME cells directly mediate cytotoxicity against tumor cells, and durable anti-tumor immune responses are predictable after application of such agents. Besides, lower adverse events are reported for bispecific antibodies compared with individual checkpoint inhibitors. These are all indicative of the importance of exploiting novel bispecific approach as a replacement for conventional combo checkpoint inhibitor therapy particularly for tumors with immunosuppressive or cold immunity. Study in this area is still continued, and in the future more will be known about the importance of this bispecific approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
49
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
50
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|