1
|
Nasroen SL, Tammama T, Darwis RS, Adil A, Rahmutia S, Maskoen AM, Gani BA. The IRF6 rs2013162 and MTHFR A1298C rs1801131 Gene Polymorphisms Related to non-Syndromic Cleft lip and Palate among Deutero-Malay in Indonesia. Cleft Palate Craniofac J 2024; 61:2009-2016. [PMID: 37533311 DOI: 10.1177/10556656231191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVE This study aimed to identify risk factors for NSCLP by analyzing polymorphisms in IRF6 rs2013162 and MTHFR A1298C rs1801131 in the Deutero Malay Population in Indonesia. SETTING DNA isolation from venous blood samples was done followed by PCR and PCR-RFLPs method. PATIENTS/PARTICIPANTS 115 NSCLP subjects and 120 healthy control subjects. MAIN OUTCOME MEASURE(S) The odds ratio (OR) determined to evaluate the risk factors is the main outcome measure. MATERIAL AND METHODS The study is a case-control design using samples from the venous blood of 115 NSCLP subjects and 120 healthy control subjects. After DNA was extracted, the PCR-RFLPs method was performed using the DdeI restriction enzyme on 100 blood samples of the IRF6 rs2013162 group and Mboll restriction enzyme on 135 blood samples of the MTHFR A1298C rs1801131 group. The Chi-Square test was used with the Exact Fisher alternatives, depending on the expected count value. RESULTS The results showed that the T mutant allele (OR = 4.125, P < .05) and GT genotype (OR = 21.00, P < .05) of IRF6 rs2013162 and the C mutant allele (OR = 3.781, P < .05), AC genotype (OR = 5, P < .05) and CC genotype (OR = 9,681, P < .05) of the MTHFR A1298C is associated to a greater risk of NSCLP. CONCLUSIONS IRF6 rs2013162 and MTHFR A1298C rs1801131 gene polymorphisms are strongly associated with NSCLP among the Deutero Malay population in the Indonesian population.
Collapse
Affiliation(s)
- Saskia L Nasroen
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Universitas Jenderal Achmad Yani Cimahi, Bandung, Indonesia
| | - Tichvy Tammama
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Universitas Jenderal Achmad Yani Cimahi, Bandung, Indonesia
| | - Rudi S Darwis
- Orthodontic Department, Faculty of Dentistry, Universitas Jenderal Achmad Yani Cimahi, Bandung, Indonesia
| | - Almira Adil
- Student of Faculty of Dentistry, Universitas Jenderal Achmad Yani, Cimahi, Bandung, Indonesia
| | - Silvia Rahmutia
- Student of Faculty of Dentistry, Universitas Jenderal Achmad Yani, Cimahi, Bandung, Indonesia
| | - Ani Melani Maskoen
- Oral Biology Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
| | - Basri A Gani
- Oral Biologi Department, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
2
|
Tehlivets O, Almer G, Brunner MS, Lechleitner M, Sommer G, Kolb D, Leitinger G, Diwoky C, Wolinski H, Habisch H, Opriessnig P, Bogoni F, Pernitsch D, Kavertseva M, Bourgeois B, Kukilo J, Tehlivets YG, Schwarz AN, Züllig T, Bubalo V, Schauer S, Groselj-Strele A, Hoefler G, Rechberger GN, Herrmann M, Eller K, Rosenkranz AR, Madl T, Frank S, Holzapfel GA, Kratky D, Mangge H, Hörl G. Homocysteine contributes to atherogenic transformation of the aorta in rabbits in the absence of hypercholesterolemia. Biomed Pharmacother 2024; 178:117244. [PMID: 39116783 DOI: 10.1016/j.biopha.2024.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus S Brunner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Opriessnig
- Division of General Neurology, Department of Neurology, Medical University of Graz, Graz, Austria; Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Francesca Bogoni
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dominique Pernitsch
- Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Maria Kavertseva
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Jelena Kukilo
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Yuriy G Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vladimir Bubalo
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | | | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Cagan M, Donmez HG, Fadiloglu E, Beksac MS. Skin disorders in women with poor obstetric history: MTHFR polymorphisms and importance of preconceptional counseling. Curr Med Res Opin 2024; 40:905-909. [PMID: 38557333 DOI: 10.1080/03007995.2024.2337668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES This study focused on the link between skin disorders and Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. METHODS Study cases were taken from a pre-conceptional care program where patients with poor obstetric history were evaluated in terms of systemic disorders including skin diseases. This retrospective cohort (n = 472) consisted of 110 (23.3%) and 362 (76.7%) women with or without skin disorders, respectively. For ease of analysis, the history of skin diseases was classified into seven categories: (1) acne/rosacea/other acneiform disorders; (2) fungal disease; (3) pruritis/xerosis; (4) psoriasis vulgaris; (5) acrochordons and other benign skin growths; (6) urticaria/dermatitis; and (7) viral diseases. RESULTS In this retrospective cohort of 472 women, we explored the impact of MTHFR A1298C and C677T polymorphisms on skin disorders. Despite similar allelic frequencies, our findings revealed a statistically significant association between the presence of MTHFR polymorphisms and skin disorders (p = .027). Subgroup analysis indicated significantly higher rates of MTHFR polymorphisms in patients with psoriasis vulgaris (p = .033) and acrochordons (p = .030), highlighting their potential relevance in specific skin disorder subtypes. CONCLUSIONS The increased prevalence of psoriasis and acrochordons among women with MTHFR deficiency underscores the complex relationship between genetic factors and dermatological health. Our findings emphasized the critical role of MTHFR polymorphisms not only in poor obstetric history but also as significant contributors to skin disorders. This dual association highlights the importance of comprehensive preconception counseling, especially customized for women affected by skin disorders.
Collapse
Affiliation(s)
- Murat Cagan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Erdem Fadiloglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
- Department of Obstetrics and Gynecology, Istinye University, Liv Ankara Hospital, Ankara, Türkiye
| |
Collapse
|
4
|
Zhou Y, He H, Ding L, Wang T, Liu X, Zhang M, Zhang A, Fu J. Effects of gene polymorphisms on delayed MTX clearance, toxicity, and metabolomic changes after HD-MTX treatment in children with acute lymphoblastic leukemia. Eur J Pediatr 2024; 183:581-590. [PMID: 37851084 DOI: 10.1007/s00431-023-05267-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
This study aims to assess the role of methotrexate-related gene polymorphisms in children with acute lymphoblastic leukemia (ALL) during high-dose methotrexate (HD-MTX) therapy and to explore their effects on serum metabolites before and after HD-MTX treatment. The MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435C>T, and GSTP1 313A>G genotypes of 189 children with ALL who received chemotherapy with the CCCG-ALL-2020 regimen from January 2020 to April 2023 were analyzed, and toxic effects were reported according to the Common Terminology Criteria for Adverse Events (CTCAE, version 5.0). Fasting peripheral blood serum samples were collected from 27 children before and after HD-MTX treatment, and plasma metabolites were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS). The results of univariate and multivariate analyses showed that MTHFR 677C>T and ABCB1 3435 C>T gene polymorphisms were associated with the delayed MTX clearance (P < 0.05) and lower platelet count after treatment in children with MTHFR 677 mutation compared with wild-type ones (P < 0.05), and pure mutations in ABCB1 3435 were associated with higher serum creatinine levels (P < 0.05). No significant association was identified between MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435 C>T, and GSTP1 313A>G genes and hepatotoxicity or nephrotoxicity (P > 0.05). However, the serum metabolomic analysis indicated that the presence of the MTHFR 677C > T gene polymorphism could potentially contribute to delayed MTX clearance by influencing L-phenylalanine metabolism, leading to the occurrence of related toxic side effects. CONCLUSION MTHFR 677C>T and ABCB1 3435 C>T predicted the risk of delayed MTX clearance during HD-MTX treatment in children with ALL. Serum L-phenylalanine levels were significantly elevated after HD-MTX treatment in children with the MTHFR 677C>T mutation gene. TRIAL REGISTRATION This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR2000035264; registration: 2020/08/05; https://www.chictr.org.cn/ ). WHAT IS KNOWN • MTX-related genes play an important role in MTX pharmacokinetics and toxicity, but results from different studies are inconsistent and the mechanisms involved are not clear. WHAT IS NEW • Characteristics, prognosis, polymorphisms of MTX-related genes, and metabolite changes were comprehensively evaluated in children treated with HD-MTX chemotherapy. • Analysis revealed that both heterozygous and pure mutations in MTHFR 677C>T resulted in a significantly increased risk of delayed MTX clearance, and that L-phenylalanine has the potential to serve as a predictive marker for the metabolic effects of the MTHFR 677C>T polymorphism.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Haoping He
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Luping Ding
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Tianjiao Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Xiaomeng Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Minghao Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Shandong University, Jinan, 250100, Shandong Province, China.
| | - Jinqiu Fu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
5
|
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, Kordulewska N, Rozmus D, Cieślińska A, Grzybowski A. The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. Int J Mol Sci 2023; 24:15865. [PMID: 37958858 PMCID: PMC10650381 DOI: 10.3390/ijms242115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic retinopathy (DR) is renowned as a leading cause of visual loss in working-age populations with its etiopathology influenced by the disturbance of biochemical metabolic pathways and genetic factors, including gene polymorphism. Metabolic pathways considered to have an impact on the development of the disease, as well as genes and polymorphisms that can affect the gene expression, modify the quantity and quality of the encoded product (protein), and significantly alter the metabolic pathway and its control, and thus cause changes in the functioning of metabolic pathways. In this article, the screening of chromosomes and the most important genes involved in the etiology of diabetic retinopathy is presented. The common databases with manuscripts published from January 2000 to June 2023 have been taken into consideration and chosen. This article indicates the role of specific genes in the development of diabetic retinopathy, as well as polymorphic changes within the indicated genes that may have an impact on exacerbating the symptoms of the disease. The collected data will allow for a broader look at the disease and help to select candidate genes that can become markers of the disease.
Collapse
Affiliation(s)
- Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland;
| |
Collapse
|
6
|
Keuls RA, Finnell RH, Parchem RJ. Maternal metabolism influences neural tube closure. Trends Endocrinol Metab 2023; 34:539-553. [PMID: 37468429 PMCID: PMC10529122 DOI: 10.1016/j.tem.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.
Collapse
Affiliation(s)
- Rachel A Keuls
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H Finnell
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronald J Parchem
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Wang Y, Huo L, Yang C, He X. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer susceptibility: an updated meta-analysis. Biosci Rep 2023; 43:BSR20222553. [PMID: 36896928 PMCID: PMC10116338 DOI: 10.1042/bsr20222553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Widely regarded as one of the most prevalent malignancies worldwide, gastric cancer (GC) is a common clinical condition of the digestive system. Reviewing 14 meta-analyses that evaluated the association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and GC risk, we observed inconsistent results, and the credibility of the significant correlation between the statistical results was ignored. With the aim of further exploring the association between MTHFR C677T and A1298C and the risk of GC, we searched electronic databases, pooling 43 relevant studies and calculating odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for each of the five genetic models. Subgroup and regression analyses were performed to look for sources of heterogeneity and publication bias was assessed by funnel plots. To assess the plausibility of statistically significant associations, we used the FPRP test and the Venice criteria. Overall data analysis showed that MTHFR C677T polymorphism was significantly associated with GC risk, especially in Asians, while MTHFR A1298C polymorphism was not associated with GC risk. However, in subgroup analysis by hospital-based controls, we found that MTHFR A1298C might be a protective factor for GC. After credibility assessment, the statistical association between MTHFR C677T and GC susceptibility study was classified as 'less credible positive result', while the result of MTHFR A1298C was considered unreliable. In summary, the present study strongly suggests that MTHFR C677T and A1298C polymorphisms are not significantly associated with the GC risk.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Digestive internal medicine, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi 046000, China
| | - Lili Huo
- Department of Digestive internal medicine, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi 046000, China
| | - Changqing Yang
- Department of Digestive internal medicine, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi 046000, China
| | - Xiaofeng He
- Department of Epidemiology, School of Public Health, Southern Medical University, Guang-dong, Guangzhou 510515, China
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi 046000, China
| |
Collapse
|
8
|
Tekcan A, Cihangiroglu M, Capraz M, Capraz A, Yigit S, Nursal AF, Menekse E, Durmaz ZH, Dortok Demir H, Ozcelik B. Association of ACE ID, MTHFR C677T, and MIF-173GC variants with the clinical course of COVID-19 patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:782-796. [PMID: 36973934 DOI: 10.1080/15257770.2023.2194341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The course of coronavirus disease-2019 (COVID-19) differs from person to person. The relationship between the genetic variations of the host and the course of COVID-19 has been a matter of interest. In this study, we investigated whether Angiotensin-Converting Enzyme (ACE) ID, Methylenetetrahydrofolate Reductase (MTHFR) C677T, and Macrophage Migration Inhibitory Factor (MIF)-173GC variants are risk factors for the clinical course of COVID-19 disease in Turkish patients. One hundred COVID-19 patients were included in the study. The diagnosis of COVID-19 was made using Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Chest Computed Tomography (CT). The patients were evaluated in 3 groups: intensive care, service, and outpatient treatment. ACE ID, MTHFR C677T, and MIF-173GC variants were genotyped by PCR-Restriction Fragment Length Polymorphism (RFLP) methods. When the genotype distribution between the groups was examined, it was found that the frequency of the ACE DD genotype and the D allele was higher in the intensive care group compared to the hospitalized and outpatient groups. MTHFR C677T CT genotype T allele and MIF-173GC, CC genotype C allele were more prevalent in the intensive care group compared to other groups. Patients with PCR-positive results had a higher MTHFR C677T C/C genotype and C allele. In CT-positive patients, the MTHFR C677T CT genotype and the MIF-173GC, G allele were more common. It is predicted that genetic predisposition may contribute to COVID-19 morbidity and mortality. Our results show that ACE ID, MTHFR C677T, and MIF-173GC variants affect the course of COVID-19 disease in the Turkish population.
Collapse
Affiliation(s)
- Akın Tekcan
- Faculty of Medicine, Department of Medical Biology, Amasya University, Amasya, Turkey
| | - Mustafa Cihangiroglu
- Faculty of Medicine, Department of Infectious Diseases, Amasya University, Amasya, Turkey
| | - Mustafa Capraz
- Faculty of Medicine, Department of Internal Medicine, Amasya University, Amasya, Turkey
| | - Aylin Capraz
- Faculty of Medicine, Department of Chest Diseases, Amasya University, Amasya, Turkey
| | - Serbülent Yigit
- Faculty of Veterinary Medicine, Department of Veterinary Genetics, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayse Feyda Nursal
- Faculty of Medicine, Department of Medical Genetics, Hitit University, Corum, Turkey
| | - Elif Menekse
- Sabuncuoglu Serefeddin Education and Research Hospital, Biochemistry Clinic, Amasya, Turkey
| | - Zeynep Hülya Durmaz
- Sabuncuoglu Serefeddin Education and Research Hospital, Biochemistry Clinic, Amasya, Turkey
| | - Hatice Dortok Demir
- Faculty of Medicine, Department of Biochemistry, Amasya University, Amasya, Turkey
| | - Burak Ozcelik
- Sabuncuoglu Serefeddin Education and Research Hospital, Amasya, Turkey
| |
Collapse
|
9
|
Kraveishvili N, Kvaratskhelia E, Surmava S, Kvintradze M, Zarandia M, Gorgiladze T, Abzianidze E. DNA methylation status of interspersed repetitive sequences in patients with migraine. J Int Med Res 2023; 51:3000605231152109. [PMID: 36734246 PMCID: PMC9900668 DOI: 10.1177/03000605231152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To analyse the methylation status of the Long Interspersed Nuclear Element-1 (LINE-1) and Short Interspersed Nuclear Element Alu (Alu) of peripheral blood mononuclear cells (PBMCs) from patients with migraine compared with healthy control subjects. METHODS This case-control study recruited patients with migraine without aura and age-matched healthy control subjects. PBMCs were purified from peripheral blood samples. Methylation levels and patterns of LINE-1 and Alu sequences were evaluated using combined bisulfite restriction analysis-interspersed repetitive sequences polymerase chain reaction. RESULTS A total of 84 patients with migraine and 82 age-matched healthy controls were enrolled in the study. High levels of unmethylated cytosines in both the LINE-1 and Alu repetitive elements were observed in the migraine group compared with the control subjects. In addition, a significant difference was detected in the methylation level of LINE-1 between TT and CC genotype groups of the methylenetetrahydrofolate reductase gene. CONCLUSIONS These results suggest that analysis of epigenetic biomarkers in PBMCs may help to identify patients at a higher risk of migraine development.
Collapse
Affiliation(s)
- Nino Kraveishvili
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia,Department of Neurology, Tbilisi Institute of Medicine, Tbilisi,
Georgia
| | - Eka Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia,Eka Kvaratskhelia, Department of Molecular
and Medical Genetics, Tbilisi State Medical University, 5 Khvichia str., 0160
Tbilisi, Georgia.
| | - Sandro Surmava
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| | - Merab Kvintradze
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| | - Maia Zarandia
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| | - Tinatin Gorgiladze
- Department of Dentistry, Batumi Shota Rustaveli State
University, Batumi, Georgia
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| |
Collapse
|
10
|
Zhao L, Li T, Dang M, Li Y, Fan H, Hao Q, Song D, Lu J, Lu Z, Jian Y, Wang H, Wang X, Wu Y, Zhang G. Association of methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C>T) gene polymorphism with ischemic stroke risk in different populations: An updated meta-analysis. Front Genet 2023; 13:1021423. [PMID: 36685916 PMCID: PMC9845415 DOI: 10.3389/fgene.2022.1021423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Recently, increasing evidence has implicated methylenetetrahydrofolate reductase (MTHFR) gene mutation as a risk factor for ischemic stroke (IS) in the general population. However, studies have been inconclusive and lack evidence on specific populations. We aim to determine whether the rs1801133 (NC_000001.11 (MTHFR):g. 677C>T (p.Ala222Val) variant, we termed as MTHFR rs1801133 (677 C>T), is linked to an increased risk of IS in different age groups and ancestry groups. Methods: The literature relevant to our study was found by searching the PubMed, Cochrane Library, Web of Science, EMBASE, and CNKI databases. A random effect model analysis was used to calculate the pooled odds ratio (OR) and 95% confidence interval (CI) to evaluate any possible association. We conducted a subgroup analysis based on the age and ancestry groups of the included populations. Results: As of March 2022, 1,925 citations had been identified in electronic databases, of which 96 studies involving 34,814 subjects met our eligibility criteria. A strong link was found between IS and the MTHFR gene rs1801133 (677C>T) polymorphism in all genetic models [dominant genetic model (OR = 1.47; 95%CI = 1.33-1.61; p < 0.001), recessive genetic model (OR = 1.52; 95%CI = 1.36-1.71; p < 0.001), heterozygous model (OR = 1.36; 95%CI = 1.24-1.48; p < 0.001), homozygous model (OR = 1.82; 95%CI = 1.58-2.11; p < 0.001), and T allelic genetic model (OR = 1.37; 95%CI = 1.27-1.48; p < 0.001)]. Further subgroup analyses indicated that the MTHFR rs1801133 (677C>T) variant may increase the risk of IS in Asian, Hispanic, or Latin population, middle-aged, and elderly populations (p < 0.001). Conclusion: Our results implied that mutation of the T allele of MTHFR rs1801133 (677C>T) could be a risk factor for IS. A significant association was found among Asian, Hispanic, or Latin population, middle-aged, and elderly people.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meijuan Dang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ye Li
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jialiang Lu
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziwei Lu
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yating Jian
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heying Wang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoya Wang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yulun Wu
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guilian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Guilian Zhang,
| |
Collapse
|
11
|
Role of 19 SNPs in 10 genes with type 2 diabetes in the Pakistani population. Gene X 2023; 848:146899. [DOI: 10.1016/j.gene.2022.146899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
|
12
|
Park JY, Lengacher CA, Reich RR, Park HY, Whiting J, Nguyen AT, Rodríguez C, Meng H, Tinsley S, Chauca K, Gordillo-Casero L, Wittenberg T, Joshi A, Lin K, Ismail-Khan R, Kiluk JV, Kip KE. Translational Genomic Research: The Association between Genetic Profiles and Cognitive Functioning or Cardiac Function Among Breast Cancer Survivors Completing Chemotherapy. Biol Res Nurs 2022; 24:433-447. [PMID: 35499926 PMCID: PMC9630728 DOI: 10.1177/10998004221094386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Emerging evidence suggests that Chemotherapy (CT) treated breast cancer survivors (BCS) who have "risk variants" in genes may be more susceptible to cognitive impairment (CI) and/or poor cardiac phenotypes. The objective of this preliminary study was to examine whether there is a relationship between genetic variants and objective/subjective cognitive or cardiac phenotypes. Methods and Analysis: BCS were recruited from Moffitt Cancer Center, Morsani College of Medicine, AdventHealth Tampa and Sarasota Memorial Hospital. Genomic DNA were collected at baseline for genotyping analysis. A total of 16 single nucleotide polymorphisms (SNPs) from 14 genes involved in cognitive or cardiac function were evaluated. Three genetic models (additive, dominant, and recessive) were used to test correlation coefficients between genetic variants and objective/subjective measures of cognitive functioning and cardiac outcomes (heart rate, diastolic blood pressure, systolic blood pressure, respiration rate, and oxygen saturation). Results: BCS (207 participants) with a mean age of 56 enrolled in this study. The majority were non-Hispanic white (73.7%), married (63.1%), and received both CT and radiation treatment (77.3%). Three SNPs in genes related to cognitive functioning (rs429358 in APOE, rs1800497 in ANKK1, rs10119 in TOMM40) emerged with the most consistent significant relationship with cognitive outcomes. Among five candidate SNPs related to cardiac functioning, rs8055236 in CDH13 and rs1801133 in MTHER emerged with potential significant relationships with cardiac phenotype. Conclusions: These preliminary results provide initial targets to further examine whether BCS with specific genetic profiles may preferentially benefit from interventions designed to improve cognitive and cardiac functioning following CT.
Collapse
Affiliation(s)
- Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Richard R. Reich
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hyun Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Junmin Whiting
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anh Thy Nguyen
- Department of Epidemiology and
Biostatistics, USF College of Public Health, University of South
Florida, Tampa, FL, USA
| | | | - Hongdao Meng
- School of Aging Studies, College of
Behavioral and Community Sciences, University of South
Floridaa, Tampa, FL, USA
| | - Sara Tinsley
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | - Anisha Joshi
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Katherine Lin
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Roohi Ismail-Khan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - John V. Kiluk
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kevin E. Kip
- UPMC Health Services
Division, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Grasso C, Popovic M, Isaevska E, Lazzarato F, Fiano V, Zugna D, Pluta J, Weathers B, D’Andrea K, Almstrup K, Anson-Cartwright L, Bishop DT, Chanock SJ, Chen C, Cortessis VK, Dalgaard MD, Daneshmand S, Ferlin A, Foresta C, Frone MN, Gamulin M, Gietema JA, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Karlsson R, Kiemeney LA, Lessel D, Lista P, Lothe RA, Loveday C, Meijer C, Nead KT, Nsengimana J, Skotheim RI, Turnbull C, Vaughn DJ, Wiklund F, Zheng T, Zitella A, Schwartz SM, McGlynn KA, Kanetsky PA, Nathanson KL, Richiardi L. Association Study between Polymorphisms in DNA Methylation-Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiol Biomarkers Prev 2022; 31:1769-1779. [PMID: 35700037 PMCID: PMC9444936 DOI: 10.1158/1055-9965.epi-22-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Fulvio Lazzarato
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - D. Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Stephen J. Chanock
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K. Cortessis
- Department of Population and Public Health Sciences, and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Marlene D. Dalgaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Megan N. Frone
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A. Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark H. Greene
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J. Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B. Haugen
- Faculty of Health Sciences, OsloMet – Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrizia Lista
- Division of Medical Oncology1, AOU “Città della Salute e della Scienza di Torino”, Turin, Italy
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin T. Nead
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Hospital, London, United Kingdom
| | - David J. Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrea Zitella
- Division of Urology, Department of Surgical Science, AOU “Città della Salute e della Scienza di Torino”, University of Turin, Turin, Italy
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Katherine A. McGlynn
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | | |
Collapse
|
14
|
Hsieh MH, Nfor ON, Ho CC, Hsu SY, Lee CT, Jan CF, Hsieh PC, Liaw YP. Association Between MTHFR rs17367504 Polymorphism and Major Depressive Disorder in Taiwan: Evidence for Effect Modification by Exercise Habits. Front Psychiatry 2022; 13:821448. [PMID: 35800018 PMCID: PMC9253418 DOI: 10.3389/fpsyt.2022.821448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/AIM Recent studies reported that folate supplementation has beneficial effects on major depression. The Methylenetetrahydrofolate reductase (MTHFR) enzyme is crucial in folate metabolism. This population-based study examined the association between MTHFR rs17367504 polymorphism and major depressive disorder based on exercise habits. METHODS Taiwan Biobank (TWB) provided demographic and genotype data between 2008 and 2015. The biobank participants were Taiwanese aged 30 to 70. Data on major depressive disorder (MDD) were obtained from the National Health Insurance Research Database (NHIRD). RESULTS A total of 636 individuals were identified with MDD, whereas 17,298 individuals were considered controls. The associations of MTHFR rs17367504 and exercise with MDD risk were estimated using logistic regression models. The distribution of MTHFR rs17367504 genotype frequencies differed significantly between the MDD and control groups. We found that, compared with the AA genotype, the GG genotype was associated with a significantly increased risk of MDD [adjusted odds ratio (aOR), 1.76; 95% confidence interval (CI), 1.05-2.94; p = 0.033]. We found an interaction (p = 0.04) between rs17367504 and exercise, a well-known protective factor for MDD. A substantial increase in the risk of MDD was found among those with GG genotypes who did not exercise (aOR, 2.93; 95% CI, 1.66-5.17; p < 0.001). CONCLUSIONS Our findings indicate that MDD is related to MTHFR rs17367504 and exercise, though the mechanisms remain to be determined.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei, Taiwan
- Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chun-Te Lee
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Cheng-Feng Jan
- Office of Physical Education, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Pao-Chun Hsieh
- Department of Obstetrics and Gynecology, Chung-Kang Branch, Cheng Ching General Hospital, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Medical Imaging and Big Data Center, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
15
|
Song X, Li Q, Diao J, Li J, Li Y, Zhang S, Zhao L, Chen L, Wei J, Shu J, Liu Y, Sun M, Huang P, Wang T, Qin J. Association of MTHFD1 gene polymorphisms and maternal smoking with risk of congenital heart disease: a hospital-based case-control study. BMC Pregnancy Childbirth 2022; 22:88. [PMID: 35100977 PMCID: PMC8805321 DOI: 10.1186/s12884-022-04419-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background MTHFD1 gene may affect the embryonic development by elevated homocysteine levels, DNA synthesis and DNA methylation, but limited number of genetic variants of MTHFD1 gene was focused on the association with congenital heart disease (CHD). This study examined the role of MTHFD1 gene and maternal smoking on infant CHD risk, and investigated their interaction effects in Chinese populations. Methods A case-control study of 464 mothers of CHD infants and 504 mothers of health controls was performed. The exposures of interest were maternal tobacco exposure, single nucleotide polymorphisms (SNPs) of maternal MTHFD1 gene. The logistic regression model was used for accessing the strength of association. Results Mothers exposed to secondhand smoke during 3 months before pregnancy (adjusted odds ratio [aOR] = 1.56; 95% confidence interval [CI]: 1.13–2.15) and in the first trimester of pregnancy (aOR = 2.24; 95%CI: 1.57–3.20) were observed an increased risk of CHD. Our study also found that polymorphisms of maternal MTHFD1 gene at rs1950902 (AA vs. GG: aOR = 1.73, 95% CI: 1.01–2.97), rs2236222 (GG vs. AA: aOR = 2.38, 95% CI: 1.38–4.12), rs1256142 (GA vs.GG: aOR = 1.57, 95% CI: 1.01–2.45) and rs11849530 (GG vs. AA: aOR = 1.68, 95% CI: 1.02–2.77) were significantly associated with higher risk of CHD. However, we did not observe a significant association between maternal MTHFD1 rs2236225 and offspring CHD risk. Furthermore, we found the different degrees of interaction effects between polymorphisms of the MTHFD1 gene including rs1950902, rs2236222, rs1256142, rs11849530 and rs2236225, and maternal tobacco exposure. Conclusions Maternal polymorphisms of MTHFD1 gene, maternal tobacco exposure and their interactions are significantly associated with the risk of CHD in offspring in Han Chinese populations. However, more studies in different ethnic populations with a larger sample and prospective designs are required to confirm our findings. Trial registration Registration number: ChiCTR1800016635. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04419-2.
Collapse
Affiliation(s)
- Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Qiongxuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jingyi Diao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jinqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yihuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Lijuan Zhao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Letao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, Hunan, China
| | - Tingting Wang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha, 410028, Hunan, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China. .,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha, 410028, Hunan, China. .,Hunan Provincial Key Laboratory of clinical epidemiology, Changsha, Hunan, China.
| |
Collapse
|
16
|
Chen CH, Chen PY, Chen CYA, Chiu CC, Lu ML, Huang MC, Lin YK, Chen YH. Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111333. [PMID: 34769853 PMCID: PMC8583146 DOI: 10.3390/ijerph182111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The one-carbon metabolism pathway is a suitable candidate for studying the genetic and epigenetic factors contributing to metabolic abnormalities in patients with schizophrenia. We recruited 232 patients with schizophrenia and analyzed their serum folate, vitamin B12, and homocysteine levels and metabolic parameters to investigate the associations of genetic variants of methylenetetrahydrofolate reductase (MTHFR) and folate levels with metabolic parameters. MTHFR C677T and MTHFR A1298C were genotyped. Results showed that MTHFR 677T allele carriers had lower levels of total cholesterol and low-density lipoprotein cholesterol than those with the 677CC genotype. Metabolic parameters did not differ between MTHFR 1298C and 1298AA carriers. Patients with a low folate level had a lower high-density lipoprotein cholesterol level than those with a normal folate level, but the effect disappeared after adjustment for age, sex, and types of antipsychotics used. We found significant interactions between MTHFR A1298C and the folate level status (low vs. normal) in terms of body mass index and waist circumference. In conclusion, genetic variants in one-carbon metabolism might play a role in antipsychotic-induced metabolic abnormalities. Prospective studies on drug-naïve, first-episode patients with schizophrenia are warranted to identify key regions of DNA methylation changes accounting for antipsychotic-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Correspondence: (C.-H.C.); (Y.-H.C.); Tel.: +886-2-2930-7930 (ext. 53961) (C.-H.C.); Fax: +886-2-2933-5221 (C.-H.C.)
| | - Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei 110, Taiwan;
- Graduate Institute of Medical Science, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Chih-Chiang Chiu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei 110, Taiwan;
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Ming-Chyi Huang
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei 110, Taiwan;
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University, Taipei 110, Taiwan;
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.C.); Tel.: +886-2-2930-7930 (ext. 53961) (C.-H.C.); Fax: +886-2-2933-5221 (C.-H.C.)
| |
Collapse
|
17
|
Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med 2021; 10:jcm10214933. [PMID: 34768452 PMCID: PMC8584842 DOI: 10.3390/jcm10214933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity may aggravate the effects of sarcopenia on skeletal muscle structure and function in the elderly, but no study has attempted to identify the gene variants associated with sarcopenia in obese women. Therefore, the aims of the present study were to: (1) describe neuromuscular function in sarcopenic and non-sarcopenic women with or without obesity; (2) identify gene variants associated with sarcopenia in older obese women. In 307 Caucasian women (71 ± 6 years, 66.3 ± 11.3 kg), skeletal muscle mass was estimated using bioelectric impedance, and function was tested with a 30 s one-leg standing-balance test. Biceps brachii thickness and vastus lateralis cross-sectional area (VLACSA) were measured with B-mode ultrasonography. Handgrip strength, maximum voluntary contraction elbow flexion (MVCEF), and knee extension torque (MVCKE) were measured by dynamometry, and MVCKE/VLACSA was calculated. Genotyping was performed for 24 single-nucleotide polymorphisms (SNPs), selected based on their previous associations with muscle-related phenotypes. Based on sarcopenia and obesity thresholds, groups were classified as sarcopenic obese, non-sarcopenic obese, sarcopenic non-obese, or non-sarcopenic non-obese. A two-way analysis of covariance was used to assess the main effects of sarcopenia and obesity on muscle-related phenotypes and binary logistic regression was performed for each SNP to investigate associations with sarcopenia in obesity. There were no significant obesity * sarcopenic status interactions for any of the investigated muscle-related phenotypic parameters. Neither sarcopenia nor obesity had a significant effect on biceps brachii thickness, but sarcopenia was associated with lower VLACSA (p = 0.003). Obesity was associated with lower MVCEF (p = 0.032), MVCKE (p = 0.047), and MVCKE/VLACSA (p = 0.012) with no significant effect of sarcopenia. Adjusted for age and height, three SNPs (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) were associated with sarcopenia in obese participants. Sarcopenia was associated with a smaller muscle size, while obesity resulted in a lower muscle quality irrespective of sarcopenia. Three gene variants (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) suspected to affect muscle function, homocysteine metabolism, or DNA methylation, respectively, were associated with sarcopenia in obese elderly women. Understanding the skeletal muscle features affected by sarcopenia and obesity, and identification of genes related to sarcopenia in obese women, may facilitate early detection of individuals at particular risk of sarcopenic obesity.
Collapse
|
18
|
Xiang M, Wang Z, Zou P, Ling X, Zhang G, Zhou Z, Cao J, Ao L. Folate metabolism modifies chromosomal damage induced by 1,3-butadiene: results from a match-up study in China and in vitro experiments. Genes Environ 2021; 43:44. [PMID: 34627392 PMCID: PMC8501532 DOI: 10.1186/s41021-021-00217-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To explore the role of folate metabolism in 1,3-Butadiene (BD)'s genotoxicity, we conducted a match-up study in BD-exposed workers in China to analyze the associations between the polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and the chromosomal damage induced by BD exposure, and culture-based experiments in TK-6 cells to examine the global DNA methylation levels and chromosomal damage when exposed both to BD's genotoxic metabolite, 1,2:3,4-diepoxybutane (DEB), and MTHFR's direct catalytic product, 5-methyltetrahydrofolate (5-MTHF). METHODS Cytokinesis block micronucleus assay (CBMN) was used to examine the chromosomal damage induced by BD or DEB. Poisson regression models were produced to quantify the relationship of chromosomal damage and genetic polymorphisms in the BD-exposed workers. Global DNA methylation levels in TK6 cells were examined using DNA Methylation Quantification Kit. RESULTS We found that BD-exposed workers carrying MTHFR C677T CC (2.00 ± 2.00‰) (FR = 0.36, 95%CI: 0.20-0.67, P < 0.01) or MTHFR C677T CT (2.87 ± 1.98‰) (FR = 0.49, 95%CI: 0.32-0.77, P < 0.01) genotypes had significantly lower nuclear bud (NBUD) frequencies than those carrying genotype MTHFR 677 TT (5.33 ± 2.60‰), respectively. The results in TK6 cells showed that there was a significant increment in frequencies of micronucleus (MN), nucleoplasmic bridge (NPB) and nuclear bud (NBUD) with exposure to DEB at each 5-MTHF dose (ANOVA, P < 0.01). Additionally, there was a significant decrease in frequencies of MN, NPB and NBUD in DEB-exposed cultures with increasing concentration of 5-MTHF (ANOVA, P < 0.05). The levels of global DNA methylation were significantly decreased by DEB treatment in a dose-dependent manner within each 5-MTHF concentration in TK-6 cells (ANOVA, P < 0.01), and were significantly increased by 5-MTHF supplementation within each DEB concentration (ANOVA, P < 0.01). CONCLUSION We reported that folate metabolism could modify the association between BD exposure and chromosomal damage, and such effect may be partially mediated by DNA hypomethylation, and 5-MTHF supplementation could rescue it.
Collapse
Affiliation(s)
- Menglong Xiang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhi Wang
- Center for Disease Control and Prevention of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China, 400038
| | - Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China, 400038
| | - Guowei Zhang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Ziyuan Zhou
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China, 400038
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China, 400038.
| |
Collapse
|
19
|
Sarecka-Hujar B. Is There a Relation between 677C>T Polymorphism in the MTHFR Gene and the Susceptibility to Epilepsy in Young Patients? A Meta-Analysis. Brain Sci 2021; 11:brainsci11101327. [PMID: 34679392 PMCID: PMC8533948 DOI: 10.3390/brainsci11101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Numerous data show a role for genetic polymorphisms in the development of epilepsy. Previously, the TT genotype of the MTHFR 677C>T polymorphism was found to be associated with a decreased leucocyte DNA methylation status. Polymorphisms in the MTHFR gene could modify the pharmacodynamics of many drugs. This meta-analysis aimed to assess the relationship between MTHFR 677C>T polymorphism and susceptibility to epilepsy in young patients. Methods: Available databases (PubMed, Embase, Google Scholar, SciELO, and Medline) were searched using specific keywords. Eight studies, published between 1999 and 2019, with 1678 young patients with epilepsy and 1784 controls, met the inclusion criteria. Apart from the total groups, additional analyses in age subgroups (i.e., young adults and children) were conducted. Statistical analyses were conducted using the RevMan 5.4 and MedCalc software. The pooled odds ratio (OR) was estimated with a random- or fixed-effects model depending on the heterogeneity. Analyses were performed for five genetic models, i.e., dominant (CT + TT vs. CC), recessive (TT vs. CC + CT), additive (TT vs. CC), heterozygous (CT vs. CC), and allelic (T vs. C). The publication bias was assessed with the use of Egger's and Begg's tests. Results: Both the MTHFR TT genotype (in the additive model) and the T allele (in the allelic model) significantly increased the risk of epilepsy when the total groups were compared (OR = 1.44, p = 0.002, and OR = 1.183, p = 0.001, respectively). The sensitivity analysis for these models indicated the stability of the results. Similarly, significant results were obtained among young adults for all the genetic models (dominant model: OR = 1.28, p = 0.002; recessive model: OR = 1.48, p = 0.003; additive model: OR = 1.63, p < 0.001; heterozygous model: OR = 1.21, p = 0.028; and allelic model: OR = 1.256, p < 0.001). Those results were also stable and reliable. In the group of children, no relation between 677C>T polymorphism and epilepsy was observed; however, the analysis was based only on three studies, and one study also comprised young adults. No publication bias was demonstrated. Conclusions: The meta-analysis revealed that the carrier state for the T allele as well as the TT genotype of the MTHFR 677C>T polymorphism increases the risk of epilepsy in young adults but not in children.
Collapse
Affiliation(s)
- Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
20
|
Frikha R, Turki F, Frikha F, Elloumi M, Rebai T. Involvement of MTHFR rs1801133 in the Susceptibility of Acute Lymphoblastic Leukemia: A Preliminary Study. J Pediatr Hematol Oncol 2021; 43:e816-e818. [PMID: 33060392 DOI: 10.1097/mph.0000000000001970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL), a common blood cancer, is characterized by the interaction between genetic and environmental factors. Several variants of the Methylenetetrahydrofolate reductase (MTHFR), mainly the C677T (rs1801133), may affect susceptibility to ALL. AIM OF THE STUDY The authors conducted this case-control study to evaluate the relationship between this variant of the MTHFR gene and the risk of ALL. MATERIALS AND METHODS Forty-one patients with ALL and 35 non-ALL controls recruited in this study were genotyped utilizing polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS The MTHFR 677CT genotype was significantly more frequently found in patients with ALL having a 2-fold increase in risk (P <0.01). CONCLUSION Our results suggest that rs1801133 of MTHFR is a predictive risk marker to ALL in Tunisian ALL.
Collapse
Affiliation(s)
- Rim Frikha
- Laboratory of Histology, Faculty of Medicine of Sfax
- Department of Medical Genetics
| | - Fatma Turki
- Laboratory of Histology, Faculty of Medicine of Sfax
| | | | - Moez Elloumi
- Department of Haematology, Hedi Chaker University Teaching Hospital, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histology, Faculty of Medicine of Sfax
| |
Collapse
|
21
|
Thymidylate synthase and methylenetetrahydrofolate reductase polymorphisms and breast cancer susceptibility in a Brazilian population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Effect of polymorphisms of MTHFR in controlled ovarian stimulation: a systematic review and meta-analysis. J Assist Reprod Genet 2021; 38:2237-2249. [PMID: 34032987 DOI: 10.1007/s10815-021-02236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Although several studies have reported a potential impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on controlled ovarian stimulation (COS), the results remain controversial. The aim of the systematic review and meta-analysis was to evaluate the effect of MTHFR polymorphism on COS outcomes. METHODS PubMed, Web of Science, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 2, 2020. COS clinical outcomes based on gene polymorphisms were included. Two reviewers independently extracted the data. The primary outcome was the number of oocytes retrieved. The secondary outcomes were the number of metaphase II (MII) oocytes, stimulation duration, basal follicle-stimulating hormone (FSH) level, FSH dosage, positive pregnancy test, ongoing pregnancy rate, clinical pregnancy rate, miscarriage rate, and live birth rate. Meta-analysis was performed using a fixed-effect model or random-effect model with Review Man 5.3.5. Mean difference (MD) with 95% confidence intervals (95%CIs) was calculated for continuous outcomes. The quality assessment of included studies was evaluated by using the Newcastle-Ottawa Scale. RESULTS Eleven studies were included in the systematic review, and seven studies with 2015 participants were included in the meta-analysis. Basal FSH level was significantly lower in CC homozygotes than TT homozygotes (four studies, 867 participants, MD - 0.54, 95%CI - 0.85 to - 0.23, P = 0.0006; I2 = 0%) of MTHFR (rs1801133). FSH dose was significantly fewer in CC homozygotes compared with CT heterogeneous (three studies, 949 participants, MD - 75.78, 95%CI - 135.23 to - 16.33, P = 0.01; I2 = 32%) or CT/TT model (three studies, 1097 participants, MD - 80.18, 95%CI - 135.54 to - 24.81, P = 0.005; I2 = 42%). Differences in the oocytes retrieved and stimulation duration were insignificant. Gene variants on MTHFR (rs1801133) and MTHFR (rs1801131) were reported in ongoing pregnancy rate, clinical pregnancy rate, and live birth rate. CONCLUSION Studies to date indicate that polymorphisms of MTHFR could influence basal FSH level and FSH dose. The results could be useful to promote clinical practice on COS protocols. Further studies are needed to evaluate the clinical relevance of the multigene combination on COS.
Collapse
|
23
|
Yadav S, Longkumer I, Joshi S, Saraswathy KN. Methylenetetrahydrofolate reductase gene polymorphism, global DNA methylation and blood pressure: a population based study from North India. BMC Med Genomics 2021; 14:59. [PMID: 33639933 PMCID: PMC7912464 DOI: 10.1186/s12920-021-00895-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertension is a complex disorder affected by gene-environment interactions. Methylenetetrahydrofolate reductase (MTHFR) gene is one of the genes in One Carbon Metabolic (OCM) pathway that affects both blood pressure and epigenetic phenomenon. MTHFR C677T gene polymorphism leads to reduced methylation capacity via increased homocysteine concentrations. Global DNA methylation (5mC%) also gets affected in conditions such as hypertension. However, no study is found to understand hypertension in terms of both genetics and epigenetics. The present study aims to understand the relation between methylation, MTHFR C677T gene polymorphism and hypertension. It also tries to understand relation (if any) between methylation and anti-hypertensive drugs. METHODS This is a cross-sectional study where data were collected from a total of 1634 individuals of either sex in age group 35-65 years. Hypertensives (SBP ≥ 140 mm Hg and DBP ≥ 90 mm Hg) (on treatment/not on treatment) and absolute controls were 236 (cases) and 307 (controls), respectively. All the samples were subjected to MTHFR C677T gene polymorphism screening (PCR-RFLP) and global DNA methylation assay (ELISA based colorimetric assay). Results of both the analyses were obtained on 218 cases, 263 controls. RESULTS Median 5mC% was relatively lower among cases (p > 0.05) compared to controls, despite controlling for confounders (age, sex, smoking, alcohol, diet) (r2-0.92, p-0.08). Cases not on medication had significantly reduced 5mC% compared to controls (p < 0.05), despite adjusting for confounders (r2-0.857, p-0.01). Among cases (irrespective of treatment), there was a significant variation in 5mC% across the three genotypes i.e. CC, CT and TT, with no such variation among controls. Cases (not on medication) with TT genotype had significantly lower methylation levels compared to the TT genotype controls and cases (on medication) (p < 0.01). CONCLUSION Global DNA hypomethylation seems to be associated with hypertension and antihypertensive drugs seem to improve methylation. Hypertensive individuals with TT genotype but not on medication are more likely to be prone to global DNA hypomethylation. Important precursors in OCM pathway include micronutrients such as vitamin B-12, B-9 and B-6; their nutritional interventions (either dietary or supplement) may serve as strategies to prevent hypertension at population level. However, more epidemiological-longitudinal studies are needed for further validation.
Collapse
Affiliation(s)
- Suniti Yadav
- Indian Council of Medical Research, New Delhi, 110029 India
| | | | - Shipra Joshi
- Manbhum Ananda Ashram Nityananda Trust-MANT, Kolkata, West Bengal 700078 India
| | | |
Collapse
|
24
|
Zhang J, Ma X, Su Y, Wang L, Shang S, Yue W. Association Study of MTHFR C677T Polymorphism and Birth Body Mass With Risk of Autism in Chinese Han Population. Front Psychiatry 2021; 12:560948. [PMID: 33716803 PMCID: PMC7947295 DOI: 10.3389/fpsyt.2021.560948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with birth body mass and risk of autism in Chinese Han population. Methods: A total 1,505 Chinese Han autism patients were recruited, using the Diagnostic and Statistical Manual of Mental Disorders, 4th revised version (DSM-IV-R) diagnostic criteria for autism, and 1,308 sex-matched healthy controls were also enrolled for the study. All the participants' birth body masses were counted according to the medical records. The MTHFR C677T genotypes were detected using the polymerase chain reaction-restrict fragment length polymorphism (PCR-RFLP) method. The association between C677T polymorphism, birth body mass, and risk of autism were analyzed using the chi-square tests. Results: The present study found that the MTHFR 677T was significantly associated with risk of autism [P = 0.004, odds ratio (OR) = 1.18, 95% CI = 1.02-1.29). The autism children more frequently showed low birth body mass (<2.5 kg) than healthy control subjects (8.6 vs. 5.3%, P = 0.001, OR = 1.67, 95% CI = 1.24-2.26). The interactive effects between MTHFR 677T and low birth body mass (P = 0.0001, OR = 2.18, 95% CI = 1.44-3.32) were also significantly associated with risk of autism. Conclusions: The MTHFR C677T polymorphism and low birth body mass may be associated with risk of autism in Chinese Han population.
Collapse
Affiliation(s)
- Jishui Zhang
- Department of Mental Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Xueqian Ma
- School of Nursing & Sixth Hospital, Peking University, Beijing, China.,Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Su
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Shaomei Shang
- School of Nursing, Peking University, Beijing, China
| | - Weihua Yue
- School of Nursing & Sixth Hospital, Peking University, Beijing, China.,Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
25
|
Song X, Liu Y, Wang T, Zhang S, Sun M, Shu J, Wei J, Diao J, Li J, Li Y, Chen L, Zhu P, Qin J. Association of Maternal Dietary Habits and MTHFD1 Gene Polymorphisms With Ventricular Septal Defects in Offspring: A Case-Control Study. Front Pediatr 2021; 9:785440. [PMID: 35186819 PMCID: PMC8847777 DOI: 10.3389/fped.2021.785440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This study aimed at assessing the association between maternal methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene polymorphisms, maternal dietary habits, and their interactions with the risk of ventricular septal defects (VSD) in offspring. METHODS From November 2017 to March 2019, a case-control study comprising 360 mothers of VSD cases and 504 mothers of healthy infants was conducted in Han Chinese populations. The main exposures of interest were maternal dietary habits in early pregnancy and MTHFD1 gene polymorphisms. Logistic regression models were used to estimate the main effects and interaction effects. RESULTS It was observed that maternal excessive intake of pickled vegetables (aOR = 1.85, 95%CI: 1.45-2.37), smoked foods (aOR = 1.93, 95%CI: 1.48-2.51), barbecued foods (aOR = 1.74, 95%CI: 1.28-2.36), and fried foods (aOR = 1.68, 95%CI: 1.30-2.17) were associated with a higher risk of VSD in offspring, whereas maternal excessive intake of fresh meat (aOR = 0.61, 95%CI: 0.47-0.79), fish and shrimp (aOR = 0.29, 95%CI: 0.23-0.38), fresh eggs (aOR = 0.54, 95%CI: 0.42-0.70), fresh fruits or vegetables (aOR = 0.44, 95%CI: 0.33-0.60), soy foods (aOR = 0.65, 95%CI: 0.53-0.80), and milk products (aOR = 0.49, 95%CI: 0.40-0.59) could contribute significantly to a lower risk of VSD in offspring. Furthermore, the genetic polymorphisms of maternal MTHFD1 gene at rs1950902 (GA vs. GG: aOR = 0.67, 95%CI: 0.50-0.90) and rs2236222 (GG vs. AA: aOR = 2.75, 95%CI: 1.57-4.83) were significantly associated with the risk of VSD in offspring. In addition, there was a significant interaction effect between maternal dietary habits and MTHFD1 gene polymorphisms on the risk of VSD. CONCLUSIONS Maternal dietary factors, MTHFD1 genetic polymorphisms, and their interactions were all associated with the risk of VSD in offspring. However, further research in diverse ethnic populations and with a larger sample size is warranted to corroborate our findings. TRIAL REGISTRATION Registered in Chinese Clinical Trial Registry Center; registration number, ChiCTR1800016635; registration date, 06/14/2018 (Retrospectively registered); URL of trial registry record, https://www.chictr.org.cn/showproj.aspx?proj=28300.
Collapse
Affiliation(s)
- Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- National Health Committee Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingyi Diao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jinqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yihuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Letao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,National Health Committee Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|
26
|
Balani P, Lopez AR, Nobleza CMN, Siddiqui M, Shah PV, Khan S. Can Pioglitazone Safeguard Patients of Lichen Planus Against Homocysteine Induced Accelerated Cardiovascular Aging and Reduced Myocardial Performance: A Systematic Review. Cureus 2020; 12:e12372. [PMID: 33527053 PMCID: PMC7842239 DOI: 10.7759/cureus.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lichen planus (L.P.) is a long-standing mucocutaneous inflammatory condition. A less familiar but essential illness association is increased arterial stiffness, endothelial dysfunction, and advanced atherosclerosis. Enhanced cardiac reconditioning and reduced performance of the heart have been suggested. Thiazolidinediones were commenced to manage hyperglycemia in diabetes mellitus. Recently, the class attained popularity after its action on vascular physiology was discovered. With this review, we attempted to explore whether an antidiabetic drug, pioglitazone (PIO), a peroxisome proliferator‑activated receptor γ (PPAR gamma) agonist, can defend patients of lichen planus against increased arterial stiffness and cardiac changes. We methodically screened numerous databases using focused words and phrases for relevant articles. After a comprehensive exploration, we applied the inclusion and exclusion criteria and performed a quality appraisal. Items retained were exhaustively studied. High homocysteine (HHcy) levels in lichen planus play a significant role in modifying the arteries and leading to their dysfunction. Not only does homocysteine affect the precursor cells, but it also increases the free radical damage. Arterial damage and upraised resistance encountered by the heart reduce its performance. After an exhaustive analysis, in our opinion, pioglitazone works in various miscellaneous ways to mitigate the homocysteine mediated changes. Early inclusion of the drug in managing patients with lichen planus seems promising in minimizing the harmful effects of high homocysteine. Evaluating the risk-benefit ratio, we believe that a trial of pioglitazone could be given to patients without underlying cardiac conditions.
Collapse
Affiliation(s)
- Prachi Balani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Angel R Lopez
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chelsea Mae N Nobleza
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mariah Siddiqui
- Neurology, St. George's University, True Blue, GRD.,Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Parth V Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
27
|
Han AR, Han JW, Lee SK. Inherited thrombophilia and anticoagulant therapy for women with reproductive failure. Am J Reprod Immunol 2020; 85:e13378. [DOI: 10.1111/aji.13378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/09/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ae Ra Han
- Department of Obstetrics and Gynecology Myuonggok Medical Research Center Konyang University College of Medicine Daejeon Korea
| | - Jae Won Han
- Department of Obstetrics and Gynecology Myuonggok Medical Research Center Konyang University College of Medicine Daejeon Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology Myuonggok Medical Research Center Konyang University College of Medicine Daejeon Korea
| |
Collapse
|
28
|
Forster J, Duis J, Butler MG. Pharmacodynamic Gene Testing in Prader-Willi Syndrome. Front Genet 2020; 11:579609. [PMID: 33329716 PMCID: PMC7715001 DOI: 10.3389/fgene.2020.579609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder with a complex neurobehavioral phenotype associated with considerable psychiatric co-morbidity. This clinical case series, for the first time, describes the distribution and frequency of polymorphisms of pharmacodynamic genes (serotonin transporter, serotonin 2A and 2C receptors, catechol-o-methyltransferase, adrenergic receptor 2A, methylene tetrahydrofolate reductase, and human leucocytic antigens) across the two major molecular classes of PWS in a cohort of 33 referred patients who met medical criteria for testing. When results were pooled across PWS genetic subtypes, genotypic and allelic frequencies did not differ from normative population data. However, when the genetic subtype of PWS was examined, there were differences observed across all genes tested that may affect response to psychotropic medication. Due to small sample size, no statistical significance was found, but results suggest that pharmacodynamic gene testing should be considered before initiating pharmacotherapy in PWS. Larger scale studies are warranted.
Collapse
Affiliation(s)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Merlin G. Butler
- Division of Research and Genetics, Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Cáceres-Rojas G, Salamanca C, Krause BJ, Recabarren AS, Recabarren PA, Pantoja R, Leiva N, Pardo R, Santos JL, Suazo J. Nonsyndromic orofacial clefts in Chile: LINE-1 methylation and MTHFR variants. Epigenomics 2020; 12:1783-1791. [PMID: 33147056 DOI: 10.2217/epi-2020-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the risk of nonsyndromic orofacial clefts (NSOFCs) associated with LINE-1 methylation, as a marker of global DNA methylation, and the effect of MTHFR functional variants on this variable. Patients & methods: LINE-1 methylation was evaluated by bisulfite modification coupled to DNA pyrosequencing in 95 NSOFC cases and 95 controls. In these subjects, MTHFR genotypes for variants c.C677T (rs1801133) and c.A1298C (rs1801131) were obtained. Results: Middle levels (second tertile) of LINE-1 methylation increase the risk of NSOFCs. In addition, LINE-1 methylation depends on c.A1298C genotypes in controls but not in cases. Conclusion: A nonlinear association between global DNA methylation and NSOFCs was detected in this Chilean population, which appears to be influenced by MTHFR functional variants.
Collapse
Affiliation(s)
- Gabriela Cáceres-Rojas
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carlos Salamanca
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile.,Research Centre in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Chile.,Universidad Adventista de Chile, Chillán, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Andrea S Recabarren
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela A Recabarren
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Roberto Pantoja
- Maxillofacial Surgery Service, Cleft Lip & Palate Unit, Hospital Clínico San Borja-Arriaran. Santiago de Chile, Chile.,Department of Oral & Maxillofacial Surgery, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Noemi Leiva
- Unit of Maxillofacial Malformations, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rosa Pardo
- Section of Genetics, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Neonatology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Genetics, Hospital Dr Sótero del Río, Santiago, Chile
| | - José Luis Santos
- Department of Nutrition, Diabetes & Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Frikha R, Jemaa MB, Frikha F, Turki I, Elloumi M, Keskes L, Kamoun H, Rebai T. Involvement of C677T MTHFR variant but not A1298C in methotrexate-induced toxicity in acute lymphoblastic leukemia. J Oncol Pharm Pract 2020; 27:1382-1387. [PMID: 32865163 DOI: 10.1177/1078155220951898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Methotrexate (MTX) is a key drug in acute lymphoblastic leukemia (ALL) treatment; it inhibits DNA replication by blocking the conversion of 5, 10 Methylenetetrahydrofolate to 5-methylene tetrahydrofolate by methylenetetrahydrofolate reductase (MTHFR). Variants of the Methylenetetrahydrofolate reductase (MTHFR) and MTX related toxicities were largely investigated in several populations, nevertheless, the results are conflicting. OBJECTIVE This study aimed to assess the prevalence of MTHFR SNVs: C677>T and A1298>C in Tunisian patients with ALL and the relation to the frequency of drug-induced complications. METHODS 28 ALL patients were included in the study. They were treated according to EORTOC, in which a high dose of MTX (HDMTX) was prescribed. A toxicity score (ST) is calculated for each patient, summing the grades of toxicities. Genotyping of MTHFR variants was done with a PCR-based restriction fragment length polymorphism assay. RESULTS The toxicity's score (TS) was higher with C677T variant compared to wild genotype (C677C) (TS = 4; IC95% [-2.65-13.32] versus TS = 2.5; IC95% [1.65-4.55], respectively; p = 0.2); but lower with the A1298C mutation compared to those with the wild genotype (A1298A) (TS = 2.5; IC95% [0.48-4.77], versus TS =3; IC95% [1.9-5.69], p = 0.4). HDMTX-related toxicity is associated with the 677CT genotype in ALL patients (RR = 1.41, p = 0.2); not for the A1298C [OR = 0.46, [0.08-2.61], p = 0.18]. CONCLUSION Our preliminary findings highlight the impact of the C677T variant of MTHFR, but not the A1289C; in HD-MTX chemotherapy-related adverse effects in younger Tunisian ALL.
Collapse
Affiliation(s)
- Rim Frikha
- Laboratory of Histology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Medical Genetics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Maha Ben Jemaa
- Laboratory of Histology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Ines Turki
- Department of Haematology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Department of Haematology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Leila Keskes
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Hassen Kamoun
- Department of Medical Genetics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
31
|
Impact of the MTHFR C677T polymorphism on one-carbon metabolites: Evidence from a randomised trial of riboflavin supplementation. Biochimie 2020; 173:91-99. [PMID: 32330571 DOI: 10.1016/j.biochi.2020.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Homozygosity for the C677T polymorphism in MTHFR (TT genotype) is associated with a 24-87% increased risk of hypertension. Blood pressure (BP) lowering was previously reported in adults with the TT genotype, in response to supplementation with the MTHFR cofactor, riboflavin. Whether the BP phenotype associated with the polymorphism is related to perturbed one-carbon metabolism is unknown. This study investigated one-carbon metabolites and their responsiveness to riboflavin in adults with the TT genotype. Plasma samples from adults (n 115) screened for the MTHFR genotype, who previously participated in RCTs to lower BP, were analysed for methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), betaine, choline and cystathionine by liquid chromatography tandem mass spectrometry (LC-MS/MS). The one-carbon metabolite response to riboflavin (1.6 mg/d; n 24) or placebo (n 23) for 16 weeks in adults with the TT genotype was also investigated. Plasma SAM (74.7 ± 21.0 vs 85.2 ± 22.6 nmol/L, P = 0.013) and SAM:SAH ratio (1.66 ± 0.55 vs 1.85 ± 0.51, P = 0.043) were lower and plasma homocysteine was higher (P = 0.043) in TT, compared to CC individuals. In response to riboflavin, SAM (P = 0.008) and cystathionine (P = 0.045) concentrations increased, with no responses in other one-carbon metabolites observed. These findings confirm perturbed one-carbon metabolism in individuals with the MTHFR 677TT genotype, and for the first time demonstrate that SAM, and cystathionine, increase in response to riboflavin supplementation in this genotype group. The genotype-specific, one-carbon metabolite responses to riboflavin intervention observed could offer some insight into the role of this gene-nutrient interaction in blood pressure.
Collapse
|
32
|
Recber T, Orgul G, Aydın E, Tanacan A, Nemutlu E, Kır S, Beksac MS. Metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase polymorphisms: A metabolomic analysis. Biomed Chromatogr 2020; 34:e4842. [PMID: 32267539 DOI: 10.1002/bmc.4842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to demonstrate the altered metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase (MTHFR) polymorphisms at first trimester and during delivery. Eight singleton pregnant women with MTHFR polymorphisms were compared with 10 normal pregnant women. Maternal blood samples were obtained twice during their pregnancy period (between the 11th and 14th gestational weeks and during delivery). Metabolomic analysis was performed using GC-MS. The GC-MS based metabolomic profile helped identify 95 metabolites in the plasma samples. In the MTHFR group, the levels of 1-monohexadecanoylglycerol, pyrophosphate, benzoin, and linoleic acid significantly decreased (P ˂ 0.05 for all), whereas the levels of glyceric acid, l-tryptophan, l-alanine, l-proline, norvaline, l-threonine, and myo-inositol significantly increased (P ˂ 0.01 for the first two metabolites, P ˂ 0.05 for the others) at 11-14 gestational weeks. Conversely, the levels of benzoin, 1-monohexadecanoylglycerol, pyruvic acid, l-proline, phosphoric acid, epsilon-caprolactam, and pipecolic acid significantly decreased in the MTHFR group, whereas metabolites such as hexadecanoic acid and 2-hydroxybutyric acid increased significantly in the study group during delivery. An impaired energy metabolism pathway, vitamin B complex disorders, tendency for metabolic acidosis (oxidative stress), and the need for cell/tissue support seem prevalent in pregnancies with MTHFR polymorphisms.
Collapse
Affiliation(s)
- Tuba Recber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gokcen Orgul
- Division of Perinatology, Medical Faculty, Department of Obstetrics and Gynecology, Hacettepe University Hospital, Ankara, Turkey
| | - Emine Aydın
- Division of Perinatology, Medical Faculty, Department of Obstetrics and Gynecology, Hacettepe University Hospital, Ankara, Turkey
| | - Atakan Tanacan
- Division of Perinatology, Medical Faculty, Department of Obstetrics and Gynecology, Hacettepe University Hospital, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Division of Perinatology, Medical Faculty, Department of Obstetrics and Gynecology, Hacettepe University Hospital, Ankara, Turkey
| |
Collapse
|
33
|
One‑carbon metabolism factor MTHFR variant is associated with saccade latency in Spinocerebellar Ataxia type 2. J Neurol Sci 2020; 409:116586. [PMID: 31812845 DOI: 10.1016/j.jns.2019.116586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder due to a CAG-repeat expansion. This work is intended to identify modifiers of the clinical phenotype in SCA2, following up on recent genome-wide association analyses that demonstrated the prominent role of DNA-damage repair and methylation for the severity and progression of polyglutamine diseases. In particular, we assessed the impact of MTHFR as rate-limiting enzyme in DNA methylation pathways, which modulates cerebellar neurotransmission and motor neuron atrophy. METHODS A sample of 166 Cuban SCA2 patients and of 130 healthy subjects from the same geographical and ethnic background was selected. The ATXN2 CAG repeat length was determined by PCR followed by polyacrylamide gel electrophoresis. Two amino acid substitutions known to decrease the enzyme activity of MTHFR, encoded by C677T and A1298C polymorphisms, were assessed by PCR/RFLP. RESULTS No significant differences were observed for C677T or A1298C alleles or genotype frequencies between cases and controls, confirming that disease risk in SCA2 does not depend on MTHFR activity. However, MTHFR A1298C genotypes showed a significant association with saccade latency. CONCLUSIONS \MTHFR A1298C polymorphism is associated with saccade latency in SCA2 patients, but not with disease risk, age at onset or maximal saccade velocity. These results provide evidence that folate-mediated one‑carbon metabolism might be important in the physiopathology of SCA2.
Collapse
|
34
|
Serra R, Ssempijja L, Provenzano M, Andreucci M. Genetic biomarkers in chronic venous disease. Biomark Med 2020; 14:75-80. [PMID: 32053001 DOI: 10.2217/bmm-2019-0408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology at the Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy.,Department of Medical & Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| | - Lwanga Ssempijja
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology at the Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy.,Department of Medical & Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| | - Michele Provenzano
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| | - Michele Andreucci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| |
Collapse
|
35
|
Goel D, Un Nisa K, Reza MI, Rahman Z, Aamer S. Aberrant DNA Methylation Pattern may Enhance Susceptibility to Migraine: A Novel Perspective. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:504-515. [DOI: 10.2174/1871527318666190809162631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/04/2019] [Accepted: 07/27/2019] [Indexed: 12/17/2022]
Abstract
In today’s world, migraine is one of the most frequent disorders with an estimated world prevalence of 14.7% characterized by attacks of a severe headache making people enfeebled and imposing a big socioeconomic burden. The pathophysiology of a migraine is not completely understood however there are pieces of evidence that epigenetics performs a primary role in the pathophysiology of migraine. Here, in this review, we highlight current evidence for an epigenetic link with migraine in particular DNA methylation of numerous genes involved in migraine pathogenesis. Outcomes of various studies have explained the function of DNA methylation of a several migraine related genes such as RAMP1, CALCA, NOS1, ESR1, MTHFR and NR4A3 in migraine pathogenesis. Mentioned data suggested there exist a strong association of DNA methylation of migraine-related genes in migraine. Although we now have a general understanding of the role of epigenetic modifications of a numerous migraine associated genes in migraine pathogenesis, there are many areas of active research are of key relevance to medicine. Future studies into the complexities of epigenetic modifications will bring a new understanding of the mechanisms of migraine processes and open novel approaches towards therapeutic intervention.
Collapse
Affiliation(s)
- Divya Goel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, Guwahati, India
| | - Kaiser Un Nisa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Shaikh Aamer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| |
Collapse
|
36
|
Holton KF, Johnstone JM, Brandley ET, Nigg JT. Evaluation of dietary intake in children and college students with and without attention-deficit/hyperactivity disorder. Nutr Neurosci 2019; 22:664-677. [PMID: 29361884 PMCID: PMC6309508 DOI: 10.1080/1028415x.2018.1427661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: To evaluate dietary intake among individuals with and without attention-deficit hyperactivity disorder (ADHD), to evaluate the likelihood that those with ADHD have inadequate intakes. Methods: Children, 7-12 years old, with (n = 23) and without (n = 22) ADHD, and college students, 18-25 years old, with (n = 21) and without (n = 30) ADHD comprised the samples. Children's dietary intake was assessed by a registered dietitian using 24-hour recalls over 3 days. College students kept a detailed food record over three days. Dietary information for both groups was entered into the Nutrition Data Systems for Research database, and output was analyzed using SAS 9.4. Nutrient analyses included the Healthy Eating Index-2010, Micronutrient Index (as a measure of overall micronutrient intake), and individual amino acids necessary for neurotransmission. Logistic regression was used to model the association of nutrient intake with ADHD. Models were adjusted for age, sex, IQ (or GPA), and energy intake (or total protein intake) as appropriate. Significance was evaluated at P = 0.05, and using the Benjamini-Hochberg corrected P-value for multiple comparisons. Results: No evidence existed for reduced nutrient intake among those with ADHD compared to controls in either age group. Across both groups, inadequate intakes of vitamin D and potassium were reported in 95% of participants. Children largely met nutrient intake guidelines, while college students failed to meet these guidelines for nine nutrients. In regards to amino acid intake in children, an increased likelihood of having ADHD was associated with higher consumption of aspartate, OR = 12.61 (P = 0.01) and glycine OR = 11.60 (P = 0.05); and a reduced likelihood of ADHD with higher intakes of glutamate, OR = 0.34 (P = 0.03). Among young adults, none of the amino acids were significantly associated with ADHD, though glycine and tryptophan approached significance. Discussion: Results fail to support the hypothesis that ADHD is driven solely by dietary micronutrient inadequacy. However, amino acids associated with neurotransmission, specifically those affecting glutamatergic neurotransmission, differed by ADHD status in children. Amino acids did not reliably vary among college students. Future larger scale studies are needed to further examine whether or not dietary intake of amino acids may be a modulating factor in ADHD.
Collapse
Affiliation(s)
- Kathleen F. Holton
- Department of Health Studies, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Gray Hall 119, Washington, D.C. 20016; (202) 885-3797
| | - Jeanette M. Johnstone
- Departments of Neurology and Child and Adolescent Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, DC7P; (503) 494-7340,
| | - Elizabeth T. Brandley
- Department of Health Studies, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016; (603)313-9176;
| | - Joel T. Nigg
- Department of Child and Adolescent Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239; (503) 346-0640,
| |
Collapse
|
37
|
Castiglia P, Sanna V, Azara A, De Miglio MR, Murgia L, Pira G, Sanges F, Fancellu A, Carru C, Bisail M, Muroni MR. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in breast cancer: a Sardinian preliminary case-control study. Int J Med Sci 2019; 16:1089-1095. [PMID: 31523170 PMCID: PMC6743281 DOI: 10.7150/ijms.32162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/12/2019] [Indexed: 02/05/2023] Open
Abstract
Two common polymorphisms in the MTHFR gene, C677T and A1298C, are associated with reduced enzyme activity and may be associated with breast cancer susceptibility. We performed a case-control study to investigate the association between the two SNPs in the MTHFR gene and risk of breast cancer. In total, 58 breast cancer patients and 58 unaffected controls were enrolled in the study. Polymerase chain reaction/restriction fragment length polymorphism technique (PCR-RFLP) was conducted to determine the genotypes. No significant differences were found in the genotypes of the two polymorphisms of the MTHFR gene between cases and controls. The OR and 95% CI for the 677CC, 677CT and 677TT genotypes were 1.00, 0.95 (0.39-2.31) and 0.87 (0.27-2.80), respectively; those of the 1298AA, 1298AC and 1298CC genotypes were 1.00, 0.59 (0.26-1.36) and 0.78 (1.32-4.66) respectively. Furthermore, it has been shown in patients with breast cancer a risk of presenting with an aggressive biophenotype about twice or three times higher in the presence of the C677T and A1298C polymorphisms, respectively. Finally, the A1298Cpolymorphism is significantly associated with increased recurrence risk of lymph node-positive breast cancer. Our study has not shown a significant association between MTHFR gene polymorphisms and breast cancer risk. However, it highlighted the key-role played by the presence of mutant alleles for both polymorphisms in increasing the risk of developing more aggressive phenotypes; moreover, specifically in A1298C, it might also lead to a higher risk of developing lymph node metastasis.
Collapse
Affiliation(s)
- Paolo Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Valeria Sanna
- Division of Medical Oncology, AOU Sassari, Via E. De Nicola - 07100 Sassari, Italy; Sassari, Italy
| | - Antonio Azara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Maria R. De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Luciano Murgia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Giovanna Pira
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Francesca Sanges
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Alessandro Fancellu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43 - 07100 Sassari, Italy
| | - Marco Bisail
- LILT, Sassari, Via Amendola, 40/L - 07100 Sassari, Italy
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| |
Collapse
|
38
|
Sarecka-Hujar B, Szołtysek-Bołdys I, Kopyta I, Dolińska B, Sobczak A. Concentrations of the Selected Biomarkers of Endothelial Dysfunction in Response to Antiepileptic Drugs: A Literature Review. Clin Appl Thromb Hemost 2019; 25:1076029619859429. [PMID: 31238702 PMCID: PMC6714895 DOI: 10.1177/1076029619859429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Epilepsy is a disease arising from morphological and metabolic changes in the brain. Approximately 60% of patients with seizures can be controlled with 1 antiepileptic drug (AED), while in others, polytherapy is required. The AED treatment affects a number of biochemical processes in the body, including increasing the risk of cardiovascular diseases (CVDs). It is indicated that the duration of AED therapy with some AEDs significantly accelerates the process of atherosclerosis. Most of AEDs increase levels of homocysteine (HCys) as well as may affect concentrations of new, nonclassical risk factors for atherosclerosis, that is, asymmetric dimethylarginine (ADMA) and homoarginine (hArg). Because of the role of these parameters in the pathogenesis of CVD, knowledge of HCys, ADMA, and hArg concentrations in patients with epilepsia treated with AED, both pediatric and adult, appears to be of significant importance.
Collapse
Affiliation(s)
- Beata Sarecka-Hujar
- 1 Department of Pharmaceutical Technology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Izabela Szołtysek-Bołdys
- 2 Department of General and Inorganic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Ilona Kopyta
- 3 Department of Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Barbara Dolińska
- 1 Department of Pharmaceutical Technology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Andrzej Sobczak
- 2 Department of General and Inorganic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
39
|
Association of Folate and Vitamins Involved in the 1-Carbon Cycle with Polymorphisms in the Methylenetetrahydrofolate Reductase Gene (MTHFR) and Global DNA Methylation in Patients with Colorectal Cancer. Nutrients 2019; 11:nu11061368. [PMID: 31216671 PMCID: PMC6627304 DOI: 10.3390/nu11061368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Folate, vitamin B2, vitamin B6, vitamin B12, choline, and betaine are nutrients involved in the 1-carbon cycle that can alter the levels of DNA methylation and influence genesis and/or tumor progression. Thus, the objective of this study was to evaluate the association of folate and vitamins involved in the 1-carbon cycle and MTHFR polymorphisms in global DNA methylation in patients with colorectal cancer gene. The study included 189 patients with colorectal adenocarcinoma answering a clinical evaluation questionnaire and the Food Frequency Questionnaire (FFQ) validated for patients with colon and rectal cancer. Blood samples were collected for evaluation of MTHFR gene polymorphisms in global DNA methylation in blood and in tumor. The values for serum folate were positively correlated with the equivalent total dietary folate (total DFE) (rho = 0.51, p = 0.03) and global DNA methylation (rho = 0.20, p = 0.03). Individuals aged over 61 years (p = 0.01) in clinicopathological staging III and IV (p = 0.01) and with + heterozygous mutated homozygous genotypes for the MTHFR A1298C gene had higher levels of global DNA methylation (p = 0.04). The association between dietary intake of folate, serum folate, and tumor stage were predictive of global DNA methylation in patients’ blood. The levels of serum folate, the dietary folate and the status of DNA methylation can influence clinicopathological staging.
Collapse
|
40
|
Babić Božović I, Stanković A, Živković M, Vraneković J, Mahulja-Stamenković V, Brajenović-Milić B. Maternal LINE-1 DNA Methylation and Congenital Heart Defects in Down Syndrome. Front Genet 2019; 10:41. [PMID: 30787943 PMCID: PMC6372553 DOI: 10.3389/fgene.2019.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Down syndrome (DS) is one of the most common chromosomal abnormalities associated with congenital heart defects (CHD), with approximately 40 to 60% of cases showing cardiac defects. This study assessed (i) the association between maternal LINE-1 methylation and the occurrence of CHDs in children with DS and (ii) the impact of endogenous maternal factors (MTHFR C677T polymorphism and maternal age) and exogenous maternal factors (cigarette smoking, alcohol intake, medication use, body mass index and dietary habits such as folate intake) on maternal LINE-1 methylation and on the occurrence of CHD in children with DS. Patients and Methods: The study included 90 mothers of children with DS of maternal origin (49% DS-CHD+ mothers/51% DS-CHD− mothers). LINE-1 DNA methylation was analyzed in peripheral blood lymphocytes by quantification of LINE-1 methylation using the MethyLight method. MTHFR C677T polymorphism genotyping was performed using PCR-RFLP. Results: LINE-1 methylation was not significantly different between DS-CHD+ and DS-CHD− mothers (P = 0.997). Combination of MTHFR C677T genotype/diet and BMI were significant independent predictors of LINE-1 DNA methylation in DS-CHD+ mothers (β −0.40, P = 0.01 and β −0.32, P = 0.03, respectively). In the analyzed multivariate model (model P = 0.028), these two factors explained around 72% of the variance in LINE-1 DNA methylation in mothers of children with DS and CHD. The group with the highest BMI (≥30 kg/m2) had significantly lower LINE-1 methylation than the group with normal BMI (Bonferroni post hoc P = 0.03) and the overweight group (Bonferroni post hoc P = 0.04). The lowest LINE-1 DNA methylation values were found in DS-CHD+ mothers with the CT+TT genotype and a low-folate diet; the values were significantly lower than the values in mothers with the CC genotype and a folate-rich diet (Bonferroni post hoc P = 0.04). Conclusion: Association between maternal LINE-1 methylation and CHD in children with DS was not found. Study showed that the MTHFR genotype/diet combination and BMI were significantly associated with LINE-1 methylation in mothers of children with DS-CHD+. These results highlight the need for a multifactorial approach to assess the roles of endogenous and exogenous maternal factors in maternal LINE-1 DNA methylation and the consequent pathologies in children. More extensive studies in a larger sample may help elucidate these relationships.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aleksandra Stanković
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jadranka Vraneković
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vesna Mahulja-Stamenković
- Department of Gynaecology and Obstetrics, Clinical Hospital Centre Rijeka, University of Rijeka, Rijeka, Croatia
| | - Bojana Brajenović-Milić
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
41
|
Moretti R, Caruso P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. Int J Mol Sci 2019; 20:231. [PMID: 30626145 PMCID: PMC6337226 DOI: 10.3390/ijms20010231] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy can be caused by deficiency of either vitamin B12 or folate. Hyperhomocysteinemia (HHcy) can be responsible of different systemic and neurological disease. Actually, HHcy has been considered as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and HHcy has been reported in many neurologic disorders including cognitive impairment and stroke, independent of long-recognized factors such as hyperlipidemia, hypertension, diabetes mellitus, and smoking. HHcy is typically defined as levels >15 micromol/L. Treatment of hyperhomocysteinemia with folic acid and B vitamins seems to be effective in the prevention of the development of atherosclerosis, CVD, and strokes. However, data from literature show controversial results regarding the significance of homocysteine as a risk factor for CVD and stroke and whether patients should be routinely screened for homocysteine. HHcy-induced oxidative stress, endothelial dysfunction, inflammation, smooth muscle cell proliferation, and endoplasmic reticulum (ER) stress have been considered to play an important role in the pathogenesis of several diseases including atherosclerosis and stroke. The aim of our research is to review the possible role of HHcy in neurodegenerative disease and stroke and to understand its pathogenesis.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| | - Paola Caruso
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
42
|
Tolahunase MR, Sagar R, Dada R. 5-HTTLPR and MTHFR 677C>T polymorphisms and response to yoga-based lifestyle intervention in major depressive disorder: A randomized active-controlled trial. Indian J Psychiatry 2018; 60:410-426. [PMID: 30581206 PMCID: PMC6278208 DOI: 10.4103/psychiatry.indianjpsychiatry_398_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is growing evidence suggesting that both genetic and environmental factors modulate treatment outcome in, a highly heterogeneous, major depressive disorder (MDD). 5-HTTLPR variant of the serotonin transporter gene (SLC6A4) and MTHFR 677C>T polymorphisms have been linked to the pathogenesis of MDD, and antidepressant treatment response. The evidence is lacking on the clinical utility of yoga in patients with MDD who have 5-HTTLPR and MTHFR 677C>T polymorphisms and less likely to respond to medications (SSRIs). AIMS We aimed to examine the impact of YBLI in those who have susceptible 5-HTTLPR and MTHFR 677C>T polymorphisms and are less likely to drug therapy with SSRIs. SETTINGS AND DESIGN In a 12 week randomized active-controlled trial, MDD patients (n = 178) were randomized to receive YBLI or drug therapy. METHODS Genotyping was conducted using PCR-based methods. The clinical remission was defined as BDI-II score ≤ 9. STATISTICAL ANALYSIS USED An intent-to-treat analysis was performed, and the association of genotype with treatment remission consisted of the logistic regression model. A P value of <0.05 was considered statistically significant. RESULTS Multivariate logistic regression models for remission including either 5-HTTLPR or MTHFR 677C>T genotypes showed statistically significant odds of remission in YOGA arm vs. DRUG arm. Neither 5-HTTLPR nor MTHFR 677C>T genotype showed any influence on remission to YBLI (P = 0.73 and P = 0.64, respectively). Further analysis showed childhood adversity interact with 5-HTTLPR and MTHFR 677C>T polymorphisms to decrease treatment response in DRUG treatment arm, but not in YOGA arm. CONCLUSIONS YBLI provides MDD remission in those who have susceptible 5-HTTLPR and MTHFR 677C>T polymorphisms and are resistant to SSRIs treatment. YBLI may be therapeutic for MDD independent of heterogeneity in its etiopathogenesis.
Collapse
Affiliation(s)
- Madhuri R Tolahunase
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
43
|
Stevens AJ, Rucklidge JJ, Darling KA, Eggleston MJ, Pearson JF, Kennedy MA. Methylomic changes in response to micronutrient supplementation and MTHFR genotype. Epigenomics 2018; 10:1201-1214. [PMID: 30182732 DOI: 10.2217/epi-2018-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure times and dosage required for dietary components to modify DNA methylation patterns are largely unknown. AIM This exploratory research represents the first genome-wide analysis of DNA methylation changes during a randomized-controlled-trial (RCT) for dietary supplementation with broad spectrum vitamins, minerals and amino acids in humans. METHODS Genome-wide changes in methylation from paired, peripheral blood samples were assessed using the Infinium Methylation EPIC 850 K array. RESULTS Methylation increased at 84% of the most significant differentially methylated CpGs; however, none showed significance after adjustment for genome-wide testing. CONCLUSION Micronutrient supplementation is unlikely to have a substantial biological effect on DNA methylation over 10 weeks; however, the trend toward hypermethylation that we observed is likely to become more marked with longer exposure periods.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Julia J Rucklidge
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Kathryn A Darling
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Matthew Jf Eggleston
- Department of Psychological Medicine, University of Otago, Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch, New Zealand
| |
Collapse
|
44
|
Umay A, Bilgin R, Akgöllü E, Gürkan E, Kis C. Relationship between MTHFR gene polymorphisms (C677T and A1298C) and chronic lymphocytic leukemia in the Turkish population. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
45
|
Dagar V, Hutchison W, Muscat A, Krishnan A, Hoke D, Buckle A, Siswara P, Amor DJ, Mann J, Pinner J, Colley A, Wilson M, Sachdev R, McGillivray G, Edwards M, Kirk E, Collins F, Jones K, Taylor J, Hayes I, Thompson E, Barnett C, Haan E, Freckmann ML, Turner A, White S, Kamien B, Ma A, Mackenzie F, Baynam G, Kiraly-Borri C, Field M, Dudding-Byth T, Algar EM. Genetic variation affecting DNA methylation and the human imprinting disorder, Beckwith-Wiedemann syndrome. Clin Epigenetics 2018; 10:114. [PMID: 30165906 PMCID: PMC6117921 DOI: 10.1186/s13148-018-0546-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with a population frequency of approximately 1 in 10,000. The most common epigenetic defect in BWS is a loss of methylation (LOM) at the 11p15.5 imprinting centre, KCNQ1OT1 TSS-DMR, and affects 50% of cases. We hypothesised that genetic factors linked to folate metabolism may play a role in BWS predisposition via effects on methylation maintenance at KCNQ1OT1 TSS-DMR. Results Single nucleotide variants (SNVs) in the folate pathway affecting methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), 5-methyltetrahydrofolate-homocysteine S-methyltransferase (MTR), cystathionine beta-synthase (CBS) and methionine adenosyltransferase (MAT1A) were examined in 55 BWS patients with KCNQ1OT1 TSS-DMR LOM and in 100 unaffected cases. MTHFR rs1801133: C>T was more prevalent in BWS with KCNQ1OT1 TSS-DMR LOM (p < 0.017); however, the relationship was not significant when the Bonferroni correction for multiple testing was applied (significance, p = 0.0036). None of the remaining 13 SNVs were significantly different in the two populations tested. The DNMT1 locus was screened in 53 BWS cases, and three rare missense variants were identified in each of three patients: rs138841970: C>T, rs150331990: A>G and rs757460628: G>A encoding NP_001124295 p.Arg136Cys, p.His1118Arg and p.Arg1223His, respectively. These variants have population frequencies of less than 1 in 1000 and were absent from 100 control cases. Functional characterization using a hemimethylated DNA trapping assay revealed a reduced methyltransferase activity relative to wild-type DNMT1 for each variant ranging from 40 to 70% reduction in activity. Conclusions This study is the first to examine folate pathway genetics in BWS and to identify rare DNMT1 missense variants in affected individuals. Our data suggests that reduced DNMT1 activity could affect maintenance of methylation at KCNQ1OT1 TSS-DMR in some cases of BWS, possibly via a maternal effect in the early embryo. Larger cohort studies are warranted to further interrogate the relationship between impaired MTHFR enzymatic activity attributable to MTHFR rs1801133: C>T, dietary folate intake and BWS. Electronic supplementary material The online version of this article (10.1186/s13148-018-0546-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinod Dagar
- Department of Paediatrics, University of Melbourne, Parkville, 3052, Australia
| | | | - Andrea Muscat
- School of Medicine, Deakin University, Geelong, 3216, Australia
| | - Anita Krishnan
- Victorian Comprehensive Cancer Centre, Parkville, 3052, Australia
| | - David Hoke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | - Ashley Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | | | - David J Amor
- Department of Paediatrics, University of Melbourne, Parkville, 3052, Australia.,Murdoch Children's Research Institute, Parkville, 3052, Australia
| | - Jeffrey Mann
- Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, Australia
| | - Jason Pinner
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - Alison Colley
- Clinical Genetics, Liverpool Hospital, Liverpool, 2170, Australia
| | - Meredith Wilson
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, 2031, Australia
| | | | - Matthew Edwards
- School of Medicine, University of Western Sydney, Penrith, 2751, Australia
| | - Edwin Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, 2031, Australia
| | - Felicity Collins
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia
| | - Kristi Jones
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia.,School of Medicine, University of Sydney, Camperdown, 2006, Australia
| | - Juliet Taylor
- Auckland District Health Board, Auckland, 1023, New Zealand
| | - Ian Hayes
- Auckland District Health Board, Auckland, 1023, New Zealand
| | - Elizabeth Thompson
- South Australian (SA) Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, 5000, Australia
| | - Christopher Barnett
- South Australian (SA) Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, 5000, Australia
| | - Eric Haan
- South Australian (SA) Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, 5000, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, 2065, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, 2031, Australia.,School of Women's and Children's Health, University of NSW, Kensington, 2052, Australia
| | - Susan White
- Murdoch Children's Research Institute, Parkville, 3052, Australia
| | - Ben Kamien
- Hunter Genetics, Hunter New England Local Health District, New Lambton, 2305, Australia
| | - Alan Ma
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia
| | - Fiona Mackenzie
- Genetics Services of Western Australia, Crawley, 6009, Australia
| | - Gareth Baynam
- Genetics Services of Western Australia, Crawley, 6009, Australia
| | | | - Michael Field
- Hunter Genetics, Hunter New England Local Health District, New Lambton, 2305, Australia
| | - Tracey Dudding-Byth
- Hunter Genetics, Hunter New England Local Health District, New Lambton, 2305, Australia.,University of Newcastle GrowUpWell Priority Research Centre, Callaghan, 2308, Australia
| | - Elizabeth M Algar
- Department of Paediatrics, University of Melbourne, Parkville, 3052, Australia. .,Pathology, Monash Health, Clayton, 3168, Australia. .,Hudson Institute of Medical Research, Clayton, 3168, Australia. .,Department of Translational Medicine, Monash University, Clayton, 3168, Australia.
| |
Collapse
|
46
|
Nash AJ, Mandaviya PR, Dib MJ, Uitterlinden AG, van Meurs J, Heil SG, Andrew T, Ahmadi KR. Interaction between plasma homocysteine and the MTHFR c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. FASEB J 2018; 33:833-843. [PMID: 30080444 DOI: 10.1096/fj.201800400r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation β values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.
Collapse
Affiliation(s)
- Alexander J Nash
- Institute of Clinical Sciences and Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College, London, United Kingdom
| | - Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marie-Joe Dib
- Department of Genomics of Common Disease, Imperial College, London, United Kingdom; and
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Toby Andrew
- Department of Genomics of Common Disease, Imperial College, London, United Kingdom; and
| | - Kourosh R Ahmadi
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
47
|
Butler S, Young A, Akam EC, Sinha N, Agrawal S, Mastana S. Association of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms with coronary artery disease (CAD) in a North Indian population. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1478477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Stephen Butler
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Aaron Young
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Elizabeth C. Akam
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Nakul Sinha
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India
| | | | - Sarabjit Mastana
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| |
Collapse
|
48
|
García-González I, López-Díaz RI, Canché-Pech JR, Solís-Cárdenas ADJ, Flores-Ocampo JA, Mendoza-Alcocer R, Herrera-Sánchez LF, Jiménez-Rico MA, Ceballos-López AA, López-Novelo ME. Epistasis analysis of metabolic genes polymorphisms associated with ischemic heart disease in Yucatan. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2018; 30:102-111. [PMID: 29395491 DOI: 10.1016/j.arteri.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Epistasis is a type of genetic interaction that could explain much of the phenotypic variability of complex diseases. In this work, the effect of epistasis of metabolic genes and cardiovascular risk on the susceptibility to the development of ischemic heart disease in Yucatan was determined. METHODS Case-control study in 79 Yucatecan patients with ischemic heart disease and 101 healthy controls matched by age and origin with cases. The polymorphisms -108CT, Q192R, L55M (paraoxonase 1; PON1), C677T, A1298C (methylenetetrahydrofolate reductase; MTHFR), and the presence/absence of the glutathione S-transferase T1 (GSTT1) gene were genotyped. Epistasis analysis was performed using the multifactorial dimensional reduction method. The best risk prediction model was selected based on precision (%), statistical significance (P<0.05), and cross-validation consistency. RESULTS We found an independent association of the null genotype GSTT1*0/0 (OR=3.39, CI: 1.29-8.87, P=0.017) and the null allele (OR=1.86, CI: 1.19-2.91, P=0.007) with ischemic heart disease. The GSTT1*0 deletion and the 677TT genotype (MTHFR) were identified as being at a high cardiovascular risk, whereas the GSTT1*1 wild type genotype and the CC677 variant were at low risk. The gene-environment interaction identified the GSTT1 gene, C677T polymorphism (MTHFR), and hypertension as the factors that best explain ischemic heart disease in the study population. CONCLUSIONS The interaction of the MTHFR, GSTT1 and hypertension may constitute a predictive model of risk for early onset ischemic heart disease in the population of Yucatan.
Collapse
Affiliation(s)
- Igrid García-González
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México.
| | - Roger Iván López-Díaz
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México
| | - José Reyes Canché-Pech
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México
| | | | | | | | | | | | | | - María E López-Novelo
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México
| |
Collapse
|
49
|
Price EM, Robinson WP. Adjusting for Batch Effects in DNA Methylation Microarray Data, a Lesson Learned. Front Genet 2018; 9:83. [PMID: 29616078 PMCID: PMC5864890 DOI: 10.3389/fgene.2018.00083] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/27/2018] [Indexed: 11/15/2022] Open
Abstract
It is well-known, but frequently overlooked, that low- and high-throughput molecular data may contain batch effects, i.e., systematic technical variation. Confounding of experimental batches with the variable(s) of interest is especially concerning, as a batch effect may then be interpreted as a biologically significant finding. An integral step toward reducing false discovery in molecular data analysis includes inspection for batch effects and accounting for this signal if present. In a 30-sample pilot Illumina Infinium HumanMethylation450 (450k array) experiment, we identified two sources of batch effects: row and chip. Here, we demonstrate two approaches taken to process the 450k data in which an R function, ComBat, was applied to adjust for the non-biological signal. In the "initial analysis," the application of ComBat to an unbalanced study design resulted in 9,612 and 19,214 significant (FDR < 0.05) DNA methylation differences, despite none present prior to correction. Suspicious of this dramatic change, a "revised processing" included changes to our analysis as well as a greater number of samples, and successfully reduced batch effects without introducing false signal. Our work supports conclusions made by an article previously published in this journal: though the ultimate antidote to batch effects is thoughtful study design, every DNA methylation microarray analysis should inspect, assess and, if necessary, account for batch effects. The analysis experience presented here can serve as a reminder to the broader community to establish research questions a priori, ensure that they match with study design and encourage communication between technicians and analysts.
Collapse
Affiliation(s)
- E. M. Price
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Del Gobbo GF, Price EM, Hanna CW, Robinson WP. No evidence for association of MTHFR 677C>T and 1298A>C variants with placental DNA methylation. Clin Epigenetics 2018; 10:34. [PMID: 29564022 PMCID: PMC5851070 DOI: 10.1186/s13148-018-0468-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 01/30/2023] Open
Abstract
Background 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in one-carbon metabolism that ensures the availability of methyl groups for methylation reactions. Two single-nucleotide polymorphisms (SNPs) in the MTHFR gene, 677C>T and 1298A>C, result in a thermolabile enzyme with reduced function. These variants, in both the maternal and/or fetal genes, have been associated with pregnancy complications including miscarriage, neural tube defects (NTDs), and preeclampsia (PE), perhaps due to altered capacity for DNA methylation (DNAm). In this study, we assessed the association between MTHFR 677TT and 1298CC genotypes and risk of NTDs, PE, or normotensive intrauterine growth restriction (nIUGR). Additionally, we assessed whether these high-risk genotypes are associated with altered DNAm in the placenta. Results In 303 placentas screened for this study, we observed no significant association between the occurrence of NTDs (N = 55), PE (early-onset: N = 28, late-onset: N = 20), or nIUGR (N = 21) and placental (fetal) MTHFR 677TT or 1298CC genotypes compared to healthy pregnancies (N = 179), though a trend of increased 677TT genotype in PE/IUGR together was observed (OR 2.53, p = 0.048). DNAm was profiled in 10 high-risk 677 (677TT + 1298AA), 10 high-risk 1298 (677CC + 1298CC), and 10 reference (677CC + 1298AA) genotype placentas. Linear modeling identified no significantly differentially methylated sites between high-risk 677 or 1298 and reference placentas at a false discovery rate < 0.05 and Δβ ≥ 0.05 using the Illumina Infinium HumanMethylation450 BeadChip. Using a differentially methylated region analysis or separating cytosine-guanine dinucleotides (CpGs) by CpG density to reduce multiple comparisons also did not identify differential methylation. Additionally, there was no consistent evidence for altered methylation of repetitive DNA between high-risk and reference placentas. Conclusions We conclude that large-scale, genome-wide disruption in DNAm does not occur in placentas with the high-risk MTHFR 677TT or 1298CC genotypes. Furthermore, there was no evidence for an association of the 1298CC genotype and only a tendency to higher 677TT in pregnancy complications of PE/IUGR. This may be due to small sample sizes or folate repletion in our Canadian population attenuating effects of the high-risk MTHFR variants. However, given our results and the conflicting results in the literature, investigations into alternative mechanisms that may explain the link between MTHFR variants and pregnancy complications, or in populations at risk of folate deficiencies, are warranted. Electronic supplementary material The online version of this article (10.1186/s13148-018-0468-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- 1BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,2Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1 Canada
| | - E Magda Price
- 1BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,2Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1 Canada
| | - Courtney W Hanna
- 3Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,4Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
| | - Wendy P Robinson
- 1BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,2Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1 Canada.,5Child and Family Research Institute, Room 2082, 950 W 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| |
Collapse
|