1
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Söder L, Meyer D, Isken O, Tautz N, König M, Postel A, Becher P. Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV). Viruses 2025; 17:107. [PMID: 39861896 PMCID: PMC11768717 DOI: 10.3390/v17010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses. While Bungowannah pestivirus (BuPV), a unique porcine pestivirus closely related to PhoPeV, exhibits a broad cell tropism, PhoPeV only infects cells from pigs, cattle, sheep, and cats, as has been described for classical swine fever virus (CSFV). Viral titers correlate with the amount of intracellular PhoPeV-specific RNA detected in the tested cell lines. PhoPeV replicates most efficiently in the porcine kidney cell line SK6. Pestiviruses generally counteract the cellular innate immune response by degradation of interferon regulatory factor 3 (IRF3) mediated by the viral N-terminal protease (Npro). No degradation of IRF3 and an increased expression of the type 1 interferon-stimulated antiviral protein Mx1 was observed in porcine cells infected with PhoPeV whose genome lacks the Npro encoding region. Infection of a CD46-deficient porcine cell line suggested that CD46, which is implicated in the viral entry of several pestiviruses, is not a major factor for the viral entry of PhoPeV. Moreover, the results of this study confirmed that the cellular factor DNAJC14 plays a crucial role in viral RNA replication of non-cytopathic pestiviruses, including PhoPeV.
Collapse
Affiliation(s)
- Lars Söder
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| | - Olaf Isken
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany; (O.I.); (N.T.)
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany; (O.I.); (N.T.)
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| |
Collapse
|
3
|
Beilleau G, Stalder H, Almeida L, Oliveira Esteves BI, Alves MP, Schweizer M. The Pestivirus RNase E rns Tames the Interferon Response of the Respiratory Epithelium. Viruses 2024; 16:1908. [PMID: 39772215 PMCID: PMC11680131 DOI: 10.3390/v16121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus in the family Flaviviridae, is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections. Erns, an immunomodulatory viral protein, is present on the envelope of the virus and is released as a soluble protein. In this form, it is taken up by cells and, with its RNase activity, degrades single- and double-stranded (ds) RNA, thus preventing activation of the host's interferon system. Here, we show that Erns of the pestiviruses BVDV and Bungowannah virus effectively inhibit dsRNA-induced IFN synthesis in well-differentiated airway epithelial cells cultured at the air-liquid interface. This activity was observed independently of the side of entry, apical or basolateral, of the pseudostratified, polarized cell layer. Virus infection was successful from both surfaces but was inefficient, requiring several days of incubation. Virus release was almost exclusively restricted to the apical side. This confirms that primary, well-differentiated respiratory epithelial cells cultured at the air-liquid interface are an appropriate model to study viral infection and innate immunotolerance in the bovine respiratory tract. Furthermore, evidence is presented that Erns might contribute to the immunosuppressive effect observed after BVDV infections, especially in persistently infected animals.
Collapse
Affiliation(s)
- Guillaume Beilleau
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Marco P. Alves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
4
|
Ma Z, Li Z, Yang T, Zhao X, Zheng C, Li Y, Li Y, Guo X, Xu L, Zheng Z, Zheng H, Xiao S. A cell-penetrating NS5B-specific nanobody inhibits bovine viral diarrhea virus replication. Microb Pathog 2024; 197:107107. [PMID: 39510363 DOI: 10.1016/j.micpath.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Bovine viral diarrhea virus (BVDV) causes one of the significant devastating diseases for the cattle industry worldwide. The virus can cross the placenta and result in the persistent infection of the fetus, which has hampered the efficacy and the development of vaccines. Hence, efficient antiviral strategies are urgently needed. In our previous work, a specific nanobody Nb1 against nonstructural protein 5 (NS5B) was successfully isolated, and the replication of BVDV was significantly reduced in the MDBK cell line stably expressing Nb1. Nevertheless, the Nb1 protein itself cannot enter the cells autonomously, which has severely hampered the application of the Nb1. In this work, Nb1fuses with a trans-activating transduction (TAT) peptide to form the TAT-Nb1. The TAT-Nb1 was expressed in Escherichia coli, and then purified by Ni-nitrilotriacetic acid (Ni-NTA) resin. We showed that TAT successfully delivered Nb1 into the MDBK cells, and the TAT-Nb1 efficiently inhibited the replication of BVDV in a dose-and time-dependent manner. Furthermore, the recognition site of Nb1 to NS5B was identified as NS5Baa186-487 by the yeast two-hybrid assay. In summary, this study indicates that the TAT-Nb1 can potentially to be an antiviral drug against BVDV infection, and this research may accelerate the process of Nb1 for clinical use.
Collapse
Affiliation(s)
- Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Ting Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Xiaojing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Congsen Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Yongqi Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Xuyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Lele Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China.
| |
Collapse
|
5
|
Köster J, Schneider K, Höper D, Salditt A, Beer M, Miller T, Wernike K. Novel Pestiviruses Detected in Cattle Interfere with Bovine Viral Diarrhea Virus Diagnostics. Viruses 2024; 16:1301. [PMID: 39205275 PMCID: PMC11359563 DOI: 10.3390/v16081301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Since the start of the mandatory nationwide bovine viral diarrhea (BVD) eradication program in Germany in 2011, the number of persistently infected (PI) animals has decreased considerably, resulting in a continuous decrease in seroprevalence. The increasingly BVD-naive cattle population could facilitate spillover infections with non-BVDV ruminant pestiviruses. Here, we report two cases in which novel pestiviruses were isolated from cattle; in both cases, the whole genome sequence showed the highest level of identity to strain "Pestivirus reindeer-1". Both novel viruses gave positive results in BVDV diagnostic test systems, confirming that cross-reactivity is an important issue in pestivirus diagnostics. In the first case, the pestivirus was probably transmitted from sheep kept with the affected cattle, suggesting that the co-housing of small ruminants and cattle is a risk factor. The source of infection could not be determined in the second case. The occurrence of these two cases in independent cattle holdings within a relatively short time frame suggests that it would be useful to determine the presence of pestiviruses in small ruminants or even wild ruminants to better assess risk factors, especially for BVDV-free populations.
Collapse
Affiliation(s)
- Judith Köster
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Karla Schneider
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Andreas Salditt
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas Miller
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Liu X, Yan Q, Liu X, Wei W, Zou L, Zhao F, Zeng S, Yi L, Ding H, Zhao M, Chen J, Fan S. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation. J Virol 2024; 98:e0175123. [PMID: 38319105 PMCID: PMC10949426 DOI: 10.1128/jvi.01751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| |
Collapse
|
7
|
Cui Y, Yuan X, Zhao Z, Li C, Liu Y, Zhou Y, Zhu Z, Zhang Z. The activation of liver X receptors in Madin-Darby bovine kidney cells and mice restricts infection by bovine viral diarrhea virus. Vet Microbiol 2024; 288:109948. [PMID: 38113573 DOI: 10.1016/j.vetmic.2023.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is prevalent worldwide and is an important pathogen that represents a serious threat to the development of the cattle industry by causing significant economic losses. Liver X receptors (LXRs) are members of the nuclear receptor superfamily and have become attractive therapeutic targets for cardiovascular disease. In the present study, we found that LXRs in both Madin-Darby bovine kidney (MDBK) cells and mice were associated with BVDV infection. GW3965, an agonist for LXRs, significantly inhibited BVDV RNA and protein levels in MDBK cells. In vivo studies in a mouse model also confirmed the inhibitory role of GW3965 in BVDV replication and the ameliorating effect of GW3965 on pathological injury to the duodenum. In vitro investigations of the potential mechanisms involved showed that GW3965 significantly inhibited BVDV-induced increases in cholesterol levels and viral internalization. Furthermore, the antiviral activity of GW3965 was significantly reduced following cholesterol replenishment, thus demonstrating that cholesterol was involved in the resistance of GW3965 to BVDV replication. Further studies indicated the role of ATP-binding cassette transporter A1 (ABCA1) and cholesterol-25-hydroxylase (CH25H) in the antiviral activity of GW3965. We also demonstrated the significant antiviral effect of 25hydroxycholesterol (25HC), a product of the catalysis of cholesterol by CH25H. In addition, the anti-BVDV effects of demethoxycurcumin (DMC), cyanidin-3-O-glucoside (C3G), and saikosaponin-A (SSA), three natural agonizts of LXRs, were also confirmed in both MDBK cells and mice. However, the antiviral activities of these agents were weakened by SR9243, a synthetic inhibitor of LXRs. For the first time, our research demonstrated that the activation of LXRs can exert significant anti-BVDV effects in MDBK cells and mice.
Collapse
Affiliation(s)
- Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Xueying Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Zhicheng Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Chuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China; Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China; Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China; Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China.
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China; Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China.
| |
Collapse
|
8
|
Cobos À, Ruiz A, Pérez M, Llorens A, Huerta E, Correa-Fiz F, Lohse R, Balasch M, Segalés J, Sibila M. Experimental Inoculation of Porcine Circovirus 3 (PCV-3) in Pregnant Gilts Causes PCV-3-Associated Lesions in Newborn Piglets that Persist until Weaning. Transbound Emerg Dis 2023; 2023:5270254. [PMID: 40303807 PMCID: PMC12016758 DOI: 10.1155/2023/5270254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 05/02/2025]
Abstract
Porcine circovirus 3 (PCV-3) has been detected in cases of reproductive failure but the pathogenesis of such infection is poorly understood. So far, experimental PCV-3 inoculations have been performed only in piglets. Therefore, through the experimental inoculation of pregnant gilts at two different time points (second and last third of gestation), this study aimed to evaluate the outcome of PCV-3 infection in dams and their offspring until weaning age. Two weeks postinoculation, all gilts became viremic and the infection lasted until the end of study. Farrowing occurred naturally, without evidence of reproductive disorders, and piglets showed no significant clinical signs from farrowing to weaning (21 day-old). However, majority of the delivered piglets were viremic, mostly until weaning age. Both newborn and weaned pigs showed different degrees of systemic, lymphohistiocytic arteritis and periarteritis. Lesions were more severe in the piglets infected during the second third of gestation and worsened at weaning. Additionally, PCV-3 detection in nervous and cardiac tissue and development of histopathological lesions in these tissues were gestational dependent, as only occurred in piglets infected at second third of pregnancy. Piglets with lesions raised to weaning age had less body weight than those without them. This study represents the first description of a PCV-3 experimental infection in pregnant gilts, which resulted in transplacental infection, histological lesions in piglets mimicking those of natural occurring disease, and lesser body weight in piglets with vascular lesions at weaning age. Obtained results allowed proposing a potential pathogenesis model for PCV-3 infection in swine.
Collapse
Affiliation(s)
- Àlex Cobos
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Albert Ruiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n La Riba, 17813 Vall de Bianya, Girona, Spain
| | - Mónica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Anna Llorens
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Eva Huerta
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Robert Lohse
- Zoetis Inc., 333 Portage Street, Kalamazoo 49007, MI, USA
| | - Mònica Balasch
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n La Riba, 17813 Vall de Bianya, Girona, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| |
Collapse
|
9
|
Buckley AC, Mora-Díaz JC, Magtoto RL, Hulzen AV, Ferreyra FM, Falkenberg SM, Giménez-Lirola LG, Arruda BL. Dynamics of Infection of Atypical Porcine Pestivirus in Commercial Pigs from Birth to Market: A Longitudinal Study. Viruses 2023; 15:1767. [PMID: 37632109 PMCID: PMC10458225 DOI: 10.3390/v15081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Atypical porcine pestivirus (APPV) was found to be associated with pigs demonstrating congenital tremors (CT), and clinical signs in pigs have been reproduced after experimental challenge. Subsequently, APPV has been identified in both symptomatic and asymptomatic swine of all ages globally. The objective of this research was to perform a longitudinal study following two cohorts of pigs, those born in litters with pigs exhibiting CT and those born in litters without CT, to analyze the virus and antibody dynamics of APPV infection in serum from birth to market. There was a wide range in the percentage of affected pigs (8-75%) within CT-positive litters. After co-mingling with CT-positive litters at weaning, pigs from CT-negative litters developed viremia that was cleared after approximately 2 months, with the majority seroconverting by the end of the study. In contrast, a greater percentage of pigs exhibiting CT remained PCR positive throughout the growing phase, with less than one-third of these animals seroconverting. APPV RNA was present in multiple tissues from pigs in both groups at the time of marketing. This study improved our understanding of the infection dynamics of APPV in swine and the impact that the immune status and timing of infection have on the persistence of APPV in serum and tissues.
Collapse
Affiliation(s)
- Alexandra C. Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Juan-Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Ronaldo L. Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Amberly Van Hulzen
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Franco Matias Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Shollie M. Falkenberg
- Ruminant Disease and Immunology Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA 50010, USA;
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Bailey L. Arruda
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
10
|
Mee JF, Hayes C, Stefaniak T, Jawor P. Review: Bovine foetal mortality - risk factors, causes, immune responses and immuno-prophylaxis. Animal 2023; 17 Suppl 1:100774. [PMID: 37567672 DOI: 10.1016/j.animal.2023.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 08/13/2023] Open
Abstract
This review of bovine foetal mortality (>42 d gestation) concluded that while the majority of risk factors associated with sporadic loss operate at animal-level, e.g. foetal plurality, those that operate at herd-level, e.g. some foetopathogenic infections, are more likely to result in abortion outbreaks. While the causes of foetal mortality have traditionally been classified as infectious and non-infectious, in fact, the latter category is a diagnosis of exclusion, generally without determination of the non-infectious cause. This review has also established that the traditional dichotomisation of infectious agents into primary and secondary pathogens is based on a flawed premise and these terms should be discontinued. The delicate balance of the maternal gestational immune system between not rejecting the allograft (conceptus) but rejecting (attacking) foetopathogens is stage-of-pregnancy-dependent thus the timing of infection determines the clinical outcome which may result in persistent infection or foetal mortality. Utilisation of our knowledge of the materno-foetal immune responses to foetopathogenic infection has resulted in the development of numerous mono- and polyvalent vaccines for metaphylactic or prophylactic control of bovine foetal mortality. While some of these have been shown to significantly contribute to reducing the risk of both infection and foetal mortality, others have insufficient, or conflicting evidence, on efficacy. However, recent developments in vaccinology, in particular the development of subunit vaccines and those that stimulate local genital tract immunity, show greater promise.
Collapse
Affiliation(s)
- J F Mee
- Teagasc, Moorepark Research Centre, Animal and Bioscience Research Department, Fermoy P61P302, Ireland.
| | - C Hayes
- Department of Agriculture, Food and the Marine, Model Farm Road, Cork, Ireland
| | - T Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - P Jawor
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
11
|
Cui X, Fan K, Liang X, Gong W, Chen W, He B, Chen X, Wang H, Wang X, Zhang P, Lu X, Chen R, Lin K, Liu J, Zhai J, Liu DX, Shan F, Li Y, Chen RA, Meng H, Li X, Mi S, Jiang J, Zhou N, Chen Z, Zou JJ, Ge D, Yang Q, He K, Chen T, Wu YJ, Lu H, Irwin DM, Shen X, Hu Y, Lu X, Ding C, Guan Y, Tu C, Shen Y. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat Commun 2023; 14:2488. [PMID: 37120646 PMCID: PMC10148632 DOI: 10.1038/s41467-023-38202-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.
Collapse
Affiliation(s)
- Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kewei Fan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rujian Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yuqi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Huifang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Shijiang Mi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jianfeng Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Zujin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, 510000, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanjia Hu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoman Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 201106, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou, 515041, China.
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Bouzalas IG, Gelasakis AI, Chassalevris T, Apostolidi ED, Pappas F, Ekateriniadou L, Boukouvala E, Zdragas A. Circulation of Pestiviruses in Small Ruminants from Greece: First Molecular Identification of Border Disease Virus. Vaccines (Basel) 2023; 11:vaccines11050918. [PMID: 37243022 DOI: 10.3390/vaccines11050918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence of small ruminant pestivirus infections in Greece remains unknown as they have not been diagnosed in the country since 1974 when the most recent Border Disease Virus (BDV) outbreak was reported. The objective of our study was to explore the possible occurrence of pestiviral infections among sheep and goat farms in Greece and to further determine the variants of major concern. Thus, serum samples were collected from 470 randomly selected animals belonging to 28 different flocks/herds. ELISA on p80 antibody revealed the existence of seropositive animals in four out of the 24 studied sheep flocks, whereas all the goats in the four studied herds were seronegative. Viral RNA and antigens were detected in two sheep out of the four seropositive flocks by RT-PCR and ELISA, respectively. Sequencing and phylogenetic analysis showed that the newly identified Greek variants were closely related to the strains of the BDV-4 genotype. One of the BDV-positive sheep demonstrated the diagnostic profile of a persistently infected (PI) animal, providing additional information regarding the source of the infection. This is the first molecular identification of BDV isolates in Greece. Our findings indicate that BDV infections are likely to remain undiagnosed, highlighting the need for further epidemiological studies and active surveillance programs to determine the prevalence and impact of BDV infections on a countrywide level.
Collapse
Affiliation(s)
- Ilias G Bouzalas
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| | - Athanasios I Gelasakis
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Taxiarchis Chassalevris
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| | - Evangelia D Apostolidi
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| | - Fotis Pappas
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| | - Loukia Ekateriniadou
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| | - Evridiki Boukouvala
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| | - Antonios Zdragas
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
13
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by N pro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
14
|
Immunogenicity of a secreted, C-terminally truncated, form of bovine viral diarrhea virus E2 glycoprotein as a potential candidate in subunit vaccine development. Sci Rep 2023; 13:296. [PMID: 36609424 PMCID: PMC9818055 DOI: 10.1038/s41598-022-26766-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Both current live, attenuated, and killed virus vaccines for bovine viral diarrhea virus (BVDV) have their limitations. Here, we report the development of a BVDV subunit vaccine by (i) the expression of a secreted form of a recombinant E2 glycoprotein using BHK21 cells and (ii) determination of the immune responses in mice. The E2 glycoprotein was modified by deletion of the C-terminal transmembrane anchor domain and fusion to a V5 epitope tag. This allowed detection using anti-V5 monoclonal antibodies together with simple purification of the expressed, secreted, form of E2 from the cell media. Furthermore, we genetically fused green fluorescent protein (GFP) linked to E2 via a Thosea asigna virus 2A (T2A) ribosome skipping sequence thereby creating a self-processing polyprotein [GFP-T2A-BVDV-E2trunk-V5], producing discrete [GFP-T2A] and [E2trunk-V5] translation products: GFP fluorescence acts, therefore, as a surrogate marker of E2 expression, BALB/c mice were inoculated with [E2trunk-V5] purified from cell media and both humoral and cellular immune responses were observed. Our antigen expression system provides, therefore, both (i) a simple antigen purification protocol together with (ii) a feasible strategy for further, large-scale, production of vaccines.
Collapse
|
15
|
Hong T, Yang Y, Wang P, Zhu G, Zhu C. Pestiviruses infection: Interferon-virus mutual regulation. Front Cell Infect Microbiol 2023; 13:1146394. [PMID: 36936761 PMCID: PMC10018205 DOI: 10.3389/fcimb.2023.1146394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.
Collapse
Affiliation(s)
- Tianqi Hong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| | - Congrui Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| |
Collapse
|
16
|
Leveringhaus E, Cagatay GN, Hardt J, Becher P, Postel A. Different impact of bovine complement regulatory protein 46 (CD46 bov) as a cellular receptor for members of the species Pestivirus H and Pestivirus G. Emerg Microbes Infect 2022; 11:60-72. [PMID: 34839792 PMCID: PMC8741246 DOI: 10.1080/22221751.2021.2011620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
The genus Pestivirus within the family Flaviviridae comprises highly relevant animal pathogens such as bovine viral diarrhoea virus 1 and 2 (BVDV-1 and -2) classified into the two species Pestivirus A and Pestivirus B, respectively. First described in 2004, HoBi-like pestiviruses (HoBiPeV) represent emerging bovine pathogens that belong to a separate species (Pestivirus H), but share many similarities with BVDV-1 and -2. Additionally, two giraffe pestivirus (GPeV) strains both originating from Kenya represent another distinct species (Pestivirus G), whose members replicate very efficiently in bovine cells. In this study, we investigated the role of bovine complement regulatory protein 46 (CD46bov), the receptor of BVDV-1 and -2, in the entry of HoBiPeV and GPeV. For this purpose, bovine CD46-knockout and CD46-rescue cell lines were generated by CRISPR/Cas9 technology and subsequent trans-complementation, respectively. Our results provide strong evidence that the impact of CD46bov differs between viruses belonging to Pestivirus H and viruses representing Pestivirus G: CD46bov revealed to be a major cellular entry factor for HoBiPeV strain HaVi-20. In contrast, GPeV strain PG-2 presented as largely independent of CD46bov, suggesting a different entry mechanism involving other molecular determinants which remain to be identified. In addition, we demonstrated that, similar to BVDV-1 and -2, virus isolates of both Pestivirus H and Pestivirus G are able to adapt to cell culture conditions by using heparan sulfate to enter the host cell. In conclusion, our findings show that different bovine pestiviruses use diverse mechanisms of host cell entry.
Collapse
Affiliation(s)
- Elena Leveringhaus
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gökce Nur Cagatay
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Coriolis Pharma Research GmbH, Martinsried, Germany
| | - Juliane Hardt
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alexander Postel
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Bohórquez JA, Wang M, Díaz I, Alberch M, Pérez-Simó M, Rosell R, Gladue DP, Borca MV, Ganges L. The FlagT4G Vaccine Confers a Strong and Regulated Immunity and Early Virological Protection against Classical Swine Fever. Viruses 2022; 14:v14091954. [PMID: 36146761 PMCID: PMC9502879 DOI: 10.3390/v14091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The present study assessed the immune response elicited by FlagT4G and its capacity to protect pigs for a short time after vaccination. Five days after a single dose of FlagT4G vaccine, animals were challenged with a highly virulent CSFV strain. A strong, but regulated, interferon-α response was found after vaccination. Vaccinated animals showed clinical and virological protection against the challenge, in the absence of antibody response at 5 days post-vaccination. Upon challenge, a rapid rise in the titers of CSFV neutralizing antibodies and an increase in the IFN-γ producing cells were noticed in all vaccinated-challenged pigs. Meanwhile, unvaccinated pigs showed severe clinical signs and high viral replication, being euthanized before the end of the trial. These animals were unable to generate neutralizing antibodies and IFN-γ responses after the CSFV challenge. The results from the present study assert the fast and efficient protection by FlagT4G, a highly promising tool for CSFV control worldwide.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Miaomiao Wang
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Ivan Díaz
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Mònica Alberch
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Marta Pérez-Simó
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Rosa Rosell
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| |
Collapse
|
18
|
Wang H, Wang M, Feng X, Li Y, Zhang D, Cheng Y, Liu J, Wang X, Zhang L, La H, You X, Ma Z, Zhou J. Genetic features of bovine viral diarrhea virus subgenotype 1c in newborn calves at nucleotide and synonymous codon usages. Front Vet Sci 2022; 9:984962. [PMID: 36118339 PMCID: PMC9470862 DOI: 10.3389/fvets.2022.984962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), serving as an important pathogen for newborn calves, poses threat to reproductive and economic losses in the cattle industry. To survey the infection rate and genetic diversity of BVDV in newborn calves in northern China, a total of 676 sera samples of newborn calves were collected from four provinces between 2021 and 2022. All sera samples were individually detected for BVDV infection by RT-PCR and ELISA. Our results showed that the overall serological rate was 9.76% (66/676) and the average positive rate of BVDV RNA was 8.14% (55/676) in the newborn calves. Eight BVDV strains were successfully isolated from RT-PCR positive sera samples, and four isolates displayed the cytopathic effect (CPE). Based on phylogenetic tree at the genome level, the eight strains were classified into subgenotype 1c. Moreover, the BVDV isolates had a close genetic relationship with the GSTZ strain at either nucleotide or codon usage level. Interestingly, in comparison of synonymous codon usage patterns between the BVDV isolates with CPE and ones without CPE, there were four synonymous codons (UCG, CCC, GCA, and AAC) which displayed the significant differences (p < 0.05) at codon usage pattern, suggesting that synonymous codon usage bias might play a role in BVDV-1c biotypes. In addition, the usage of synonymous codons containing CpG dinucleotides was suppressed by the BVDV-1c isolates, reflecting one of strategies of immune evasion of BVDV to its host. Taken together, our study provided data for monitoring and vaccination strategies of BVDV for newborn calves in northern China.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Mengzhu Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yicong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Derong Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Junlin Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiezhong Wang
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Licheng Zhang
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Hua La
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Xiaoqian You
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jianhua Zhou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- *Correspondence: Jianhua Zhou
| |
Collapse
|
19
|
Balinandi S, Hayer J, Cholleti H, Wille M, Lutwama JJ, Malmberg M, Mugisha L. Identification and molecular characterization of highly divergent RNA viruses in cattle, Uganda. Virus Res 2022; 313:198739. [PMID: 35271887 DOI: 10.1016/j.virusres.2022.198739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
The risk for the emergence of novel viral zoonotic diseases in animals and humans in Uganda is high given its geographical location with high biodiversity. We aimed to identify and characterize viruses in 175 blood samples from cattle selected in Uganda using molecular approaches. We identified 8 viral species belonging to 4 families (Flaviviridae, Peribunyaviridae, Reoviridae and Rhabdoviridae) and 6 genera (Hepacivirus, Pestivirus, Orthobunyavirus, Coltivirus, Dinovernavirus and Ephemerovirus). Four viruses were highly divergent and tetantively named Zikole virus (Family: Flaviviridae), Zeboroti virus (Family: Reoviridae), Zebtine virus (Family: Rhabdoviridae) and Kokolu virus (Family: Rhabdoviridae). In addition, Bovine hepacivirus, Obodhiang virus, Aedes pseudoscutellaris reovirus and Schmallenberg virus were identified for the first time in Ugandan cattle. We report 8 viral species belonging to 4 viral families including divergent ones in the blood of cattle in Uganda. Hence, cattle may be reservoir hosts for likely emergence of novel viruses with pathogenic potential to cause zoonotic diseases in different species with serious public health implications.
Collapse
Affiliation(s)
- Stephen Balinandi
- Uganda Virus Research Institute; Entebbe, Uganda; College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harindranath Cholleti
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda; Ecohealth Research Group, Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda.
| |
Collapse
|
20
|
de Martin E, Schweizer M. Fifty Shades of Erns: Innate Immune Evasion by the Viral Endonucleases of All Pestivirus Species. Viruses 2022; 14:v14020265. [PMID: 35215858 PMCID: PMC8880635 DOI: 10.3390/v14020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four historically accepted species, i.e., bovine viral diarrhea virus (BVDV)-1 and -2, classical swine fever virus (CSFV), and border disease virus (BDV). A large number of new pestivirus species were identified in recent years. A common feature of most members is the presence of two unique proteins, Npro and Erns, that pestiviruses evolved to regulate the host’s innate immune response. In addition to its function as a structural envelope glycoprotein, Erns is also released in the extracellular space, where it is endocytosed by neighboring cells. As an endoribonuclease, Erns is able to cleave viral ss- and dsRNAs, thus preventing the stimulation of the host’s interferon (IFN) response. Here, we characterize the basic features of soluble Erns of a large variety of classified and unassigned pestiviruses that have not yet been described. Its ability to form homodimers, its RNase activity, and the ability to inhibit dsRNA-induced IFN synthesis were investigated. Overall, we found large differences between the various Erns proteins that cannot be predicted solely based on their primary amino acid sequences, and that might be the consequence of different virus-host co-evolution histories. This provides valuable information to delineate the structure-function relationship of pestiviral endoribonucleases.
Collapse
Affiliation(s)
- Elena de Martin
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
21
|
Huser AF, Schär JG, Bachofen C, de Martin E, Portmann J, Stalder H, Schweizer M. Benefit of Bovine Viral Diarrhoea (BVD) Eradication in Cattle on Pestivirus Seroprevalence in Sheep. Front Vet Sci 2021; 8:681559. [PMID: 34671657 PMCID: PMC8520948 DOI: 10.3389/fvets.2021.681559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and Border disease virus (BDV) are closely related pestiviruses of cattle and sheep, respectively. Both viruses may be transmitted between either species, but control programs are restricted to BVDV in cattle. In 2008, a program to eradicate bovine viral diarrhoea (BVD) in cattle was started in Switzerland. As vaccination is prohibited, the cattle population is now widely naïve to pestivirus infections. In a recent study, we determined that nearly 10% of cattle are positive for antibodies to BDV. Here, we show that despite this regular transmission of BDV from small ruminants to cattle, we could only identify 25 cattle that were persistently infected with BDV during the last 12 years of the eradication program. In addition, by determining the BVDV and BDV seroprevalence in sheep in Central Switzerland before and after the start of the eradication, we provide evidence that BVDV is transmitted from cattle to sheep, and that the BVDV seroprevalence in sheep significantly decreased after its eradication in cattle. While BDV remains endemic in sheep, the population thus profited at least partially from BVD eradication in cattle. Importantly, on a national level, BVD eradication does not appear to be generally derailed by the presence of pestiviruses in sheep. However, with every single virus-positive cow, it is necessary to consider small ruminants as a potential source of infection, resulting in costly but essential investigations in the final stages of the eradication program.
Collapse
Affiliation(s)
| | | | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elena de Martin
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
23
|
Jokar M, Rahmanian V, Farhoodi M, Abdous A, Shams F, Karami N. Seroprevalence of bovine viral diarrhea virus (BVDV) infection in cattle population in Iran: a systematic review and meta-analysis. Trop Anim Health Prod 2021; 53:449. [PMID: 34533637 DOI: 10.1007/s11250-021-02918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important pathogen correlated with reproductive, respiratory, and gastrointestinal disorders in cattle. Furthermore, it causes endemic infections and significant economic losses in cattle herds worldwide. This review was performed to determine the pooled seroprevalence of BVDV infection and related risk factors among cattle in Iran. Data were systematically gathered without time limitation until 1 December 2020 in the Islamic Republic of Iran from the following electronic databases: PubMed, Google Scholar, Science Direct, Scopus, Web of Science, Elmnet, Magiran, Irandoc, Scientific Information Database (SID), and Civilica. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and inclusion criteria, 28 eligible studies were obtained from various Iran areas. In total, the pooled seroprevalence of BVDV infection, using random-effect model, was estimated 52% (95% CI, 40.1-63.9) in cattle. According to serological detection methods, pooled seroprevalence was as follows: based on ELISA 53.9% and SVN 25.1%. The highest pooled seroprevalence of BVDV infection was in the southeast provinces of Iran (78.4%) and lowest pooled seroprevalence was in Southwest provinces of the country (28.5%). The pooled seroprevalence of BVDV infection in cattle ≤ 2 years was significantly lower than cattle > 2 years (OR = 0.606; 95% CI, 0.397-0.925), whereas the pooled seroprevalence had no significant difference according to other factors such as gender, herd size, and herd types. In conclusion, the pooled seroprevalence of BVDV infection among cattle in Iran is relatively high. The seroprevalence was different among geographical regions of the country. These results are desirable for managing the control programs of this infection in Iran.
Collapse
Affiliation(s)
- Mohammad Jokar
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Vahid Rahmanian
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Mehran Farhoodi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Arman Abdous
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farzane Shams
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Nima Karami
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
24
|
Jelsma T, Wijnker JJ, Smid B, Verheij E, van der Poel WHM, Wisselink HJ. Determination of Intestinal Viral Loads and Distribution of Bovine Viral Diarrhea Virus, Classical Swine Fever Virus, and Peste Des Petits Ruminants Virus: A Pilot Study. Pathogens 2021; 10:1188. [PMID: 34578220 PMCID: PMC8466767 DOI: 10.3390/pathogens10091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this pilot study was to determine viral loads and distribution over the total length, at short distances, and in the separate layers of the intestine of virus-infected animals for future inactivation studies. Two calves, two pigs, and two goats were infected with bovine viral diarrhoea virus (BVDV), classical swine fever virus (CSFV), and peste des petits ruminants virus (PPRV), respectively. Homogenously distributed maximum BVDV viral loads were detected in the ileum of both calves, with a mean titer of 6.0 log10 TCID50-eq/g. The viral loads in colon and caecum were not distributed homogenously. In one pig, evenly distributed CSFV mean viral loads of 4.5 and 4.2 log10 TCID50-eq/g were found in the small and large intestines, respectively. Mucosa, submucosa, and muscular layer/serosa showed mean viral loads of 5.3, 3.4, and 4.0 log10 TCID50-eq/g, respectively. Homogenous distribution of PPRV was shown in the ileum of both goats, with a mean viral load of 4.6 log10 TCID50-eq/g. Mean mucosa, submucosa, and muscular layer/serosa viral loads were 3.5, 2.8, and 1.7 log10 TCID50-eq/g, respectively. This pilot study provides essential data for setting up inactivation experiments with intestines derived from experimentally infected animals, in which the level and the homogeneous distribution of intestinal viral loads are required.
Collapse
Affiliation(s)
- Tinka Jelsma
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Joris J. Wijnker
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.175, 3508 TD Utrecht, The Netherlands;
| | - Bregtje Smid
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Eline Verheij
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Henk J. Wisselink
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| |
Collapse
|
25
|
Lussi C, de Martin E, Schweizer M. Positively Charged Amino Acids in the Pestiviral E rns Control Cell Entry, Endoribonuclease Activity and Innate Immune Evasion. Viruses 2021; 13:v13081581. [PMID: 34452446 PMCID: PMC8402660 DOI: 10.3390/v13081581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four economically important viruses of livestock, i.e., bovine viral diarrhea virus-1 (BVDV-1) and -2 (BVDV-2), border disease virus (BDV) and classical swine fever virus (CSFV). Erns and Npro, both expressed uniquely by pestiviruses, counteract the host's innate immune defense by interfering with the induction of interferon (IFN) synthesis. The structural envelope protein Erns also exists in a soluble form and, by its endoribonuclease activity, degrades immunostimulatory RNA prior to their activation of pattern recognition receptors. Here, we show that at least three out of four positively-charged residues in the C-terminal glycosaminoglycan (GAG)-binding site of BVDV-Erns are required for efficient cell entry, and that a positively charged region more upstream is not involved in cell entry but rather in RNA-binding. Moreover, the C-terminal domain on its own determines intracellular targeting, as GFP fused to the C-terminal amino acids of Erns was found at the same compartments as wt Erns. In summary, RNase activity and uptake into cells are both required for Erns to act as an IFN antagonist, and the C-terminal amphipathic helix containing the GAG-binding site determines the efficiency of cell entry and its intracellular localization.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
| | - Elena de Martin
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Correspondence:
| |
Collapse
|
26
|
Abstract
Atypical porcine pestivirus (APPV) has been identified as the main causative agent for congenital tremor (CT) type A-II in piglets, which is threatening the health of the global swine herd. However, the evolution of APPV remains largely unknown. In this study, phylogenetic analysis showed that APPV could be divided into three phylogroups (I, II, and III). Phylogroups I and II included viral strains from China, while phylogroup III contained strains from Europe, North America, and Asia. Phylogroups I and II are tentatively thought to be of Chinese origin. Next, compositional property analysis revealed that a high frequency of nucleotide A and A-end codons was used in the APPV genome. Intriguingly, the analysis of preferred codons revealed that the AGA[Arg] and AGG[Arg] were overrepresented. Dinucleotide CC was found to be overrepresented, and dinucleotide CG was underrepresented. Furthermore, it was found that the weak codon usage bias of APPV was mainly dominated by selection pressures versus mutational forces. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses showed that the codon usage patterns of phylogroup II and III were more similar to the one of a pig than phylogroup I, suggesting that phylogroup II and III may be more adaptive to pigs. Overall, this study provides insights into APPV evolution through phylogeny and codon usage pattern analysis.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Righi C, Petrini S, Pierini I, Giammarioli M, De Mia GM. Global Distribution and Genetic Heterogeneity of Border Disease Virus. Viruses 2021; 13:950. [PMID: 34064016 PMCID: PMC8223970 DOI: 10.3390/v13060950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Border disease virus (BDV) belongs to the genus Pestivirus of the family Flaviviridae. Interspecies transmission of BDV between sheep, cattle, and pigs occurs regularly, sometimes making diagnosis a challenge. BDV can yield substantial economic losses, including prenatal and postnatal infections in lambs, which are the primary source of infection and maintenance of the virus in the population. Since BDV is antigenically and genetically related to bovine viral diarrhea virus (BVDV), it might pose a significant risk to cattle, influencing BVDV eradication campaigns. Similarly, the presence of BDV in swine herds due to pestivirus spillover between small ruminants and pigs might cause uncertainty in classical swine fever virus (CSFV) diagnostics. Therefore, knowledge of BDV epidemiology in different geographical regions will help prevent its spread and optimize control measures. Previous epidemiological studies have shown that various BDV genotypes are predominant in different countries. This review provides an overview of the spread of BDV world-wide in different host species.
Collapse
Affiliation(s)
| | | | | | | | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (S.P.); (I.P.); (M.G.)
| |
Collapse
|
28
|
Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front Vet Sci 2021; 8:665128. [PMID: 34055953 PMCID: PMC8160231 DOI: 10.3389/fvets.2021.665128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The bovine viral diarrhea virus (BVDV) consists of two species and various subspecies of closely related viruses of varying antigenicity, cytopathology, and virulence-induced pathogenesis. Despite the great ongoing efforts to control and prevent BVDV outbreaks and the emergence of new variants, outbreaks still reported throughout the world. In this review, we are focusing on the molecular biology of BVDV, its molecular pathogenesis, and the immune response of the host against the viral infection. Special attention was paid to discuss some immune evasion strategies adopted by the BVDV to hijack the host immune system to ensure the success of virus replication. Vaccination is one of the main strategies for prophylaxis and contributes to the control and eradication of many viral diseases including BVDV. We discussed the recent advances of various types of currently available classical and modern BVDV vaccines. However, with the emergence of new strains and variants of the virus, it is urgent to find some other novel targets for BVDV vaccines that may overcome the drawbacks of some of the currently used vaccines. Effective vaccination strategy mainly based on the preparation of vaccines from the homologous circulating strains. The BVDV-E2 protein plays important role in viral infection and pathogenesis. We mapped some important potential neutralizing epitopes among some BVDV genomes especially the E2 protein. These novel epitopes could be promising targets against the currently circulating strains of BVDV. More research is needed to further explore the actual roles of these epitopes as novel targets for the development of novel vaccines against BVDV. These potential vaccines may contribute to the global eradication campaign of the BVDV.
Collapse
Affiliation(s)
- Anwar A G Al-Kubati
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah I A Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
29
|
Microfilaments and microtubules alternately coordinate the multi-step endosomal trafficking of Classical Swine Fever Virus. J Virol 2021; 95:JVI.02436-20. [PMID: 33627389 PMCID: PMC8139654 DOI: 10.1128/jvi.02436-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytoskeleton, as a ubiquitous structure in the cells, plays an important role in the process of virus entry, replication, and survival. However, the action mechanism of cytoskeleton in the invasion of Pestivirus into host cells remains unclear. In this study, we systematically dissected the key roles of the main cytoskeleton components, microfilaments and microtubules in the endocytosis of porcine Pestivirus, Classical swine fever virus (CSFV). We observed the dynamic changes of actin filaments in CSFV entry. Confocal microscopy showed that CSFV invasion induced the dissolution and aggregation of stress fibers, resulting in the formation of lamellipodia and filopodia. Chemical inhibitors and RNA interference were used to find that the dynamic changes of actin were caused by EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42-cofilin signaling pathway, which regulates the microfilaments to help CSFV entry. Furthermore, co-localization of the microfilaments with clathrin and Rab5 (early endosome), as well as microtubules with Rab7 (late endosome) and Lamp1 (lysosome) revealed that microfilaments were activated and rearranged to help CSFV trafficking to early endosome after endocytosis. Subsequently, recruitment of microtubules by CSFV also assisted membrane fusion of the virions from late endosome to lysosome with the help of a molecular motor, dynein. Unexpectedly, vimentin, which is an intermediate filament, had no effect on CSFV entry. Taken together, our findings comprehensively revealed the molecular mechanisms of cytoskeletal components that regulated CSFV endocytosis and facilitated further understanding of Pestivirus entry, which would be conducive to explore antiviral molecules to control classical swine fever.IMPORTANCEEndocytosis, an essential biological process mediating cellular internalization events, is often exploited by pathogens for their entry into target cells. Previously, we have reported different mechanisms of CSFV endocytosis into the porcine epithelial cells (PK-15) and macrophages (3D4/21); however, the details of microfilaments/microtubules mediated virus migration within the host cells remained to be elucidated. In this study, we found that CSFV infection induced rearrangement of actin filaments regulated by cofilin through EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42 pathway. Furthermore, we found that CSFV particles were trafficked along actin filaments in early and late endosomes, and through microtubules in lysosomes after entry. Here, we provide for the first time a comprehensive description of the cytoskeleton that facilitates entry and intracellular transport of highly pathogenic swine virus. Results from this study will greatly contribute to the understanding of virus-induced early and complex changes in host cells that are important in CSFV pathogenesis.
Collapse
|
30
|
Bohórquez JA, Sozzi E, Wang M, Alberch M, Abad X, Gaffuri A, Lelli D, Rosell R, Pérez LJ, Moreno A, Ganges L. The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus. Transbound Emerg Dis 2021; 69:1539-1555. [PMID: 33896109 DOI: 10.1111/tbed.14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Several emerging pestiviruses have been reported lately, some of which have proved to cause disease. Recently, a new ovine pestivirus (OVPV), isolated from aborted lambs, with high genetic identity to classical swine fever virus (CSFV), has proved to induce reproductive disorders in pregnant ewes. OVPV also generated strong serological and molecular cross-reaction with CSFV. To assess the capacity of OVPV to infect swine, twelve piglets were infected either by intranasal or intramuscular route. Daily clinical evaluation and weekly samplings were performed to determine pathogenicity, viral replication and excretion and induction of immune response. Five weeks later, two pigs from each group were euthanized and tissue samples were collected to study viral replication and distribution. OVPV generated only mild clinical signs in the piglets, including wasting and polyarthritis. The virus was able to replicate, as shown by the RNA levels found in sera and swabs and persisted in tonsil for at least 5 weeks. Viral replication activated the innate and adaptive immunity, evidenced by the induction of interferon-alpha levels early after infection and cross-neutralizing antibodies against CSFV, including humoural response against CSFV E2 and Erns glycoproteins. Close antigenic relation between OVPV and CSFV genotype 2.3 was detected. To determine the OVPV protection against CSFV, the OVPV-infected pigs were challenged with a highly virulent strain. Strong clinical, virological and immunological protection was generated in the OVPV-infected pigs, in direct contrast with the infection control group. Our findings show, for the first time, the OVPV capacity to infect swine, activate immunity, and the robust protection conferred against CSFV. In addition, their genetic and antigenic similarities, the close relationship between both viruses, suggest their possible coevolution as two branches stemming from a shared origin at the same time in two different hosts.
Collapse
Affiliation(s)
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Mònica Alberch
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Xavier Abad
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Alessandra Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain.,Departament d'Agricultura, Ramadería, Pesca i Alimentació (DARP), Generalitat de Catalunya, Barcelona, Spain
| | - Lester Josue Pérez
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
31
|
Special Issue: Bovine Viral Diarrhea Virus and Related Pestiviruses. Viruses 2020; 12:v12101181. [PMID: 33086661 PMCID: PMC7588974 DOI: 10.3390/v12101181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
|
32
|
Riitho V, Strong R, Larska M, Graham SP, Steinbach F. Bovine Pestivirus Heterogeneity and Its Potential Impact on Vaccination and Diagnosis. Viruses 2020; 12:v12101134. [PMID: 33036281 PMCID: PMC7601184 DOI: 10.3390/v12101134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Bovine Pestiviruses A and B, formerly known as bovine viral diarrhoea viruses (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, responsible for significant economic losses. Bovine viral diarrhoea control programmes are in effect in several high-income countries but less so in low- and middle-income countries where bovine pestiviruses are not considered in disease control programmes. However, bovine pestiviruses are genetically and antigenically diverse, which affects the efficiency of the control programmes. The emergence of atypical ruminant pestiviruses (Pestivirus H or BVDV-3) from various parts of the world and the detection of Pestivirus D (border disease virus) in cattle highlights the challenge that pestiviruses continue to pose to control measures including the development of vaccines with improved cross-protective potential and enhanced diagnostics. This review examines the effect of bovine pestivirus diversity and emergence of atypical pestiviruses in disease control by vaccination and diagnosis.
Collapse
Affiliation(s)
- Victor Riitho
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK;
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
- Correspondence:
| |
Collapse
|
33
|
Alzahrani N, Wu MJ, Shanmugam S, Yi M. Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly. Viruses 2020; 12:v12101090. [PMID: 32993149 PMCID: PMC7601889 DOI: 10.3390/v12101090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Flaviviridae virus family is classified into four different genera, including flavivirus, hepacivirus, pegivirus, and pestivirus, which cause significant morbidity and mortality in humans and other mammals, including ruminants and pigs. These are enveloped, single-stranded RNA viruses sharing a similar genome organization and replication scheme with certain unique features that differentiate them. All viruses in this family express a single polyprotein that encodes structural and nonstructural proteins at the N- and C-terminal regions, respectively. In general, the host signal peptidase cleaves the structural protein junction sites, while virus-encoded proteases process the nonstructural polyprotein region. It is known that signal peptidase processing is a rapid, co-translational event. Interestingly, certain signal peptidase processing site(s) in different Flaviviridae viral structural protein precursors display suboptimal cleavage kinetics. This review focuses on the recent progress regarding the Flaviviridae virus genus-specific mechanisms to downregulate signal peptidase-mediated processing at particular viral polyprotein junction sites and the role of delayed processing at these sites in infectious virus particle assembly.
Collapse
|
34
|
Ruminant pestiviruses in North Africa. Prev Vet Med 2020; 184:105156. [PMID: 33007610 DOI: 10.1016/j.prevetmed.2020.105156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Ruminant pestiviruses are widely distributed worldwide, causing congenital disease and massive economic losses. Although ruminant production is an important economic sector in North Africa, the knowledge about pestiviruses is scarce. The present study aimed at assessing the presence of Pestivirus in cattle in Algeria, and to review the data available on ruminant pestiviruses in North Africa. A cross-sectional study was conducted on dairy farms from North-Western Algeria. Blood samples from 234 dairy cattle from 31 herds were collected. All sera were analysed for the presence of antibodies using a commercial iELISA. The presence of Pestivirus RNA was also assessed by using a Reverse Transcription-PCR, and PCR-positive samples were sequenced. Risk factors related to Pestivirus infection were also analysed. The review of the presence of ruminant pestiviruses in North Africa was performed using a systematic search and compilation methodology of the peer-reviewed literature available in order to identify gaps of knowledge for future research. The seroprevalence at population and farm levels obtained in the present study (59.9% and 93.5%, respectively) concur with data reported in neighbouring countries. Risk factors associated with Pestivirus infection in cattle were the presence of sheep in the herd and the animal category (cow vs heifer). Furthermore, we confirmed the presence of BVDV-1a in Algeria. The scarce data suggest an endemic epidemiological scenario of pestivirus in livestock. The lack of studies about the epidemiology and molecular variability of ruminant pestiviruses in livestock and wildlife in North Africa is of concern for animal health and wildlife conservation, and needs to be addressed.
Collapse
|
35
|
Jiménez-Ruiz S, Vicente J, García-Bocanegra I, Cabezón Ó, Arnal MC, Balseiro A, Ruiz-Fons F, Gómez-Guillamón F, Lázaro S, Escribano F, Acevedo P, Domínguez L, Gortázar C, Fernández de Luco D, Risalde MA. Distribution of Pestivirus exposure in wild ruminants in Spain. Transbound Emerg Dis 2020; 68:1577-1585. [PMID: 32920992 DOI: 10.1111/tbed.13827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023]
Abstract
A large-scale study was carried out to determine the prevalence of antibodies against Pestivirus species in wild ruminants and describe their spatial variation in mainland Spain. Serum samples of 1,874 wild ruminants from different regions of this country were collected between the years 2000 and 2017. A total of 6.6% (123/1,874) animals showed antibodies against Pestivirus by both blocking ELISA (bELISA) and virus neutralization tests (VNT). The prevalence of antibodies against pestiviruses was different both among species and regions. Seroprevalence by species was 30.0% (75/250) in Southern chamois (Rupicapra pyrenaica), 7.0% (25/357) in fallow deer (Dama dama), 2.5% (10/401) in red deer (Cervus elaphus), 2.4% (8/330) in Iberian wild goat (Capra pyrenaica), 1.1% (4/369) in roe deer (Capreolus capreolus) and 0.8% (1/130) in mouflon (Ovis aries musimon), not detecting seropositivity (0/37) in Barbary sheep (Ammotragus lervia). The results confirm that exposure to pestiviruses was detected throughout mainland Spain, with significantly higher seroprevalence in Northern regions associated with the presence of Southern chamois. This indicates an endemic circulation of pestiviruses in Southern chamois and a limited circulation of these viruses in the remaining wild ruminant species during the last two decades, thus suggesting that non-chamois species are not true Pestivirus reservoirs in Spain. Nonetheless, the high spatial spread of these viruses points out that new epidemic outbreaks in naïve wild ruminant populations or transmission to livestock may occur, evidencing the usefulness of monitoring pestiviruses in wild ruminants, especially at the wildlife-livestock interface.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, España
| | - Joaquín Vicente
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, España
| | - Óscar Cabezón
- UAB, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus UAB, Bellaterra, Spain.,Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, España
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León (ULE), León, España.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, España
| | - Francisco Ruiz-Fons
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Félix Gómez-Guillamón
- Programa de Vigilancia Epidemiológica de la Fauna Silvestre, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible (CAGPDS), Junta de Andalucía, Málaga, España
| | - Sonia Lázaro
- Unidad Analítica Regional de Sanidad Animal, Consejería de Agricultura, Medio Ambiente y Desarrollo Rural de Castilla-la Mancha, Talavera de la Reina, España
| | - Fernando Escribano
- Programa de Conservación y Recuperación de Fauna Silvestre, Dirección General del Medio Natural de la Región de Murcia, Murcia, España
| | - Pelayo Acevedo
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Lucas Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid (UCM), Madrid, España
| | - Christian Gortázar
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, España
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, España
| |
Collapse
|
36
|
Gómez-Guillamón F, Díaz-Cao JM, Camacho-Sillero L, Cano-Terriza D, Alcaide EM, Cabezón Ó, Arenas A, García-Bocanegra I. Spatiotemporal monitoring of selected pathogens in Iberian ibex (Capra pyrenaica). Transbound Emerg Dis 2020; 67:2259-2265. [PMID: 32303109 DOI: 10.1111/tbed.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/01/2022]
Abstract
An epidemiological surveillance programme was carried out to assess exposure and spatiotemporal patterns of selected pathogens (Brucella spp., Mycobacterium avium subsp. paratuberculosis (MAP), Mycoplasma agalactiae, Pestivirus and bluetongue virus (BTV)) in Iberian ibex (Capra pyrenaica) from Andalusia (southern Spain), the region with the largest population of this species. A total of 602 animals in five distribution areas were sampled during 2010-2012 (P1) and 2013-2015 (P2). The Rose Bengal test (RBT) and complement fixation test (CFT) were used in parallel to detect anti-Brucella spp. antibodies. Commercial ELISAs were used to test for antibodies against the other selected pathogens. Sera positive for BTV and Pestivirus by ELISA were tested by serum neutralization test (SNT) to identify circulating serotypes/genotypes. The overall seroprevalences were as follows: 0.4% for Brucella spp. (2/549; CI 95%: 0.1-1.3) (14/555 positive by RBT; 2/564 by CFT), 0.5% for MAP (3/564; CI 95%: 0.1-1.5), 5.7% for M. agalactiae (30/529; CI 95%: 3.9-8.0), 11.1% for Pestivirus (58/525; CI 95%: 8.5-14.1) and 3.3% for BTV (18/538; CI 95%: 2.0-5.2). Significantly higher seropositivity to both M. agalactiae and BTV was observed in P1 compared with P2. Spatiotemporal clusters of high seroprevalence were also found for M. agalactiae in four of the five sampling areas in 2010, and for BTV in one of five areas in 2012. Specific antibodies against BTV-4, BDV-4 and BVDV-1 were confirmed by SNT. Our results indicate that the Iberian ibex may be considered spillover hosts of Brucella spp. and MAP rather than true reservoirs. The prevalence of antibodies against M. agalactiae and BTV suggests spatiotemporal variation in the circulation of these pathogens, while Pestivirus has a moderately endemic circulation in Iberian ibex populations. Our study highlights the importance of long-term surveillance for a better understanding of the spatiotemporal distribution of shared infectious diseases and providing valuable information to improve control measures at the wildlife-livestock interface.
Collapse
Affiliation(s)
- Félix Gómez-Guillamón
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - José M Díaz-Cao
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Leonor Camacho-Sillero
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Eva M Alcaide
- Centro de Análisis y Diagnóstico de la Fauna Silvestre en Andalucía, Agencia de Medio Ambiente y Agua M.P., Junta de Andalucía, Málaga, Spain
| | - Óscar Cabezón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
37
|
Knapek KJ, Georges HM, Van Campen H, Bishop JV, Bielefeldt-Ohmann H, Smirnova NP, Hansen TR. Fetal Lymphoid Organ Immune Responses to Transient and Persistent Infection with Bovine Viral Diarrhea Virus. Viruses 2020; 12:v12080816. [PMID: 32731575 PMCID: PMC7472107 DOI: 10.3390/v12080816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.
Collapse
Affiliation(s)
- Katie J. Knapek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre and School of Veterinary Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Natalia P. Smirnova
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Correspondence: ; Tel.: +1-970-988-4582
| |
Collapse
|
38
|
Decrypting the Origin and Pathogenesis in Pregnant Ewes of a New Ovine Pestivirus Closely Related to Classical Swine Fever Virus. Viruses 2020; 12:v12070775. [PMID: 32709168 PMCID: PMC7411581 DOI: 10.3390/v12070775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
This study shows the origin and the pathogenic role of a novel ovine pestivirus (OVPV) isolated in 2017 in Italy, as a pathogenic agent causing severe abortions after infection in pregnant ewes and high capacity for virus trans-placental transmission as well as the birth of lambs suffering OVPV-persistent infection. The OVPV infection induced early antibody response detected by the specific ELISA against classical swine fever virus (CSFV), another important virus affecting swine. The neutralizing antibody response were similar against CSFV strains from genotype 2 and the OVPV. These viruses showed high identity in the B/C domain of the E2-glycoprotein. Close molecular diagnostics cross-reactivity between CSFV and OVPV was found and a new OVPV molecular assay was developed. The phylodynamic analysis showed that CSFV seems to have emerged as the result of an inter-species jump of Tunisian sheep virus (TSV) from sheep to pigs. The OVPV and the CSFV share the TSV as a common ancestor, emerging around 300 years ago. This suggests that the differentiation of TSV into two dangerous new viruses for animal health (CSFV and OVPV) was likely favored by human intervention for the close housing of multiple species for intensive livestock production.
Collapse
|
39
|
Walz PH, Chamorro MF, M Falkenberg S, Passler T, van der Meer F, R Woolums A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 2020; 34:1690-1706. [PMID: 32633084 PMCID: PMC7517858 DOI: 10.1111/jvim.15816] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022] Open
Abstract
Control of bovine viral diarrhea virus (BVDV) in cattle populations across most of the world has remained elusive in spite of advances in knowledge about this viral pathogen. A central feature of virus perseverance in cattle herds is the unique mechanism of persistent infection. Managing BVDV infection in herds involves controlling persistently infected carrier animals using a multidimensional approach of vaccination, biosecurity, and identification of BVDV reservoirs. A decade has passed since the original American College of Veterinary Internal Medicine consensus statement on BVDV. While much has remained the same with respect to clinical signs of disease, pathogenesis of infection including persistent infection, and diagnosis, scientific articles published since 2010 have led to a greater understanding of difficulties associated with control of BVDV. This consensus statement update on BVDV presents greater focus on topics currently relevant to the biology and control of this viral pathogen of cattle, including changes in virus subpopulations, infection in heterologous hosts, immunosuppression, and vaccination.
Collapse
Affiliation(s)
- Paul H Walz
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Manuel F Chamorro
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Shollie M Falkenberg
- USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Thomas Passler
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amelia R Woolums
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
40
|
Asín J, Hilbe M, de Miguel R, Rodríguez-Largo A, Lanau A, Akerman A, Stalder H, Schweizer M, Luján L. An outbreak of abortions, stillbirths and malformations in a Spanish sheep flock associated with a bovine viral diarrhoea virus 2-contaminated orf vaccine. Transbound Emerg Dis 2020; 68:233-239. [PMID: 32386079 DOI: 10.1111/tbed.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhoea virus (BVDV) is a pestivirus that affects both cattle and sheep, causing an array of clinical signs, which include abortions and malformations in the offspring. Manufacturing of modified live virus (MLV) vaccines often includes the use of bovine-derived products, which implies a risk of contamination with viable BVDV. Recently, the circulation of a specific strain of BVDV 2b among Spanish sheep flocks, associated with outbreaks of abortions and malformations, and whose origin was not determined, has been observed. On February 2018, a MLV orf vaccine was applied to a 1,600 highly prolific sheep flock in the Northeast of Spain that included 550 pregnant ewes. In May 2018, during the lambing season, an unusual high rate (72.7%) of abortions, stillbirths, congenital malformations and neurological signs in the offspring was observed. It was estimated that about 1,000 lambs were lost. Three 1- to 3-day-old affected lambs and a sealed vial of the applied vaccine were studied. Lambs showed variable degrees of central nervous system malformations and presence of pestiviral antigen in the brain. Molecular studies demonstrated the presence of exactly the same BVDV 2b in the tissues of the three lambs and in the orf vaccine, thus pointing to a pestivirus contamination in the applied vaccine as the cause of the outbreak. Interestingly, sequencing at the 5'-untranslated region-(UTR) of the contaminating virus showed a complete match with the virus described in the previously reported outbreaks in Spain, thus indicating that the same contaminated vaccine could have also played a role in those cases. This communication provides a clear example of the effects of the application of this contaminated product in a sheep flock. The information presented here can be of interest in putative future cases of suspected circulation of this or other BVDV strains in ruminants.
Collapse
Affiliation(s)
- Javier Asín
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ricardo de Miguel
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Lanau
- Sociedad Cooperativa Limitada Agropecuaria del Sobrarbe (SCLAS) Veterinary Service, Huesca, Spain
| | - Alberto Akerman
- Sociedad Cooperativa Limitada Agropecuaria del Sobrarbe (SCLAS) Veterinary Service, Huesca, Spain
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
41
|
Detection methods and characterization of bovine viral diarrhea virus in aborted fetuses and neonatal calves over a 22-year period. Braz J Microbiol 2020; 51:2077-2086. [PMID: 32415638 DOI: 10.1007/s42770-020-00296-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022] Open
Abstract
Detection of bovine viral diarrhea virus (BVDV) in aborted fetus samples is often difficult due to tissue autolysis and inappropriate sampling. Studies assessing different methods for BVDV identification in fetal specimens are scarce. The present study evaluated the agreement between different diagnostic techniques to detect BVDV infections in specimens from a large number of bovine aborted fetuses and neonatal deaths over a period of 22 years. Additionally, genetic, serological, and pathological analyses were conducted in order to characterize BVDV strains of fetal origin. Samples from 95 selected cases from 1997 to 2018 were analyzed by antigen-capture ELISA (AgELISA), nested RT-PCR (RT-nPCR), and real-time RT-PCR (RT-qPCR). In addition, amplification and sequencing of the 5'UTR region were performed for phylogenetic purposes. Virus neutralization tests against the BVDV-1a, BVDV-1b, and BVDV-2b subtypes were conducted on 60 fetal fluids of the selected cases. Furthermore, the frequency and severity of histopathological lesions were evaluated in BVDV-positive cases. This study demonstrated that RT-nPCR and RT-qPCR were more suitable than AgELISA for BVDV detection in fetal specimens. However, the agreement between the two RT-PCR methods was moderate. The BVDV-1b subtype was more frequently detected than the BVDV-1a and BVDV-2b subtypes. Neutralizing antibodies to any of the three subtypes evaluated were present in 94% of the fetal fluids. Microscopically, half of the BVDV-positive cases showed a mild non-suppurative inflammatory response. These results emphasize the need to consider different methods for a diagnostic approach of BVDV associated to reproductive losses.
Collapse
|
42
|
Pestivirus Infections in Semi-Domesticated Eurasian Tundra Reindeer ( Rangifer tarandus tarandus): A Retrospective Cross-Sectional Serological Study in Finnmark County, Norway. Viruses 2019; 12:v12010029. [PMID: 31888097 PMCID: PMC7019806 DOI: 10.3390/v12010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022] Open
Abstract
Members of the Pestivirus genus (family Flaviviridae) cause severe and economically important diseases in livestock. Serological studies have revealed the presence of pestiviruses in different cervid species, including wild and semi-domesticated Eurasian tundra reindeer. In this retrospective study, serum samples collected between 2006 and 2008 from 3339 semi-domesticated Eurasian reindeer from Finnmark County, Norway, were tested for anti-pestivirus antibodies using an enzyme linked immunosorbent assay (ELISA) and a subset of these by virus neutralization test (VNT). A seroprevalence of 12.5% was found, varying from 0% to 45% among different herding districts, and 20% in western Finnmark, as compared to 1.7% in eastern Finnmark. Seroprevalence increased with age. Pestivirus-specific RNA was not detected in any of the 225 serum samples tested by real-time RT-PCR. Based on VNT results, using a panel of one bovine viral diarrhea virus (BVDV) strain and two border disease virus (BDV) strains, the virus is most likely a reindeer-specific pestivirus closely related to BDV. A characterization of the causative virus and its pathogenic impact on reindeer populations, as well as its potential to infect other domestic and wild ruminants, should be further investigated.
Collapse
|
43
|
Nearly Complete Genome Sequences of Two Bovine Viral Diarrhea Virus Isolates, Subtype 1f Strain SLO/1170/2000 and Subtype 1d Strain SLO/2416/2002. Microbiol Resour Announc 2019; 8:8/46/e00931-19. [PMID: 31727701 PMCID: PMC6856267 DOI: 10.1128/mra.00931-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) subtypes 1f and 1d were isolated for the first time in Slovenia in 1999 and detected later in a majority of BVDV-infected cattle herds. Here, we report the first nearly complete genome sequences of noncytopathogenic BVDV-1f strain SLO/1170/2000 and cytopathogenic BVDV-1d strain SLO/2416/2002, isolated in Slovenia. Bovine viral diarrhea virus (BVDV) subtypes 1f and 1d were isolated for the first time in Slovenia in 1999 and detected later in a majority of BVDV-infected cattle herds. Here, we report the first nearly complete genome sequences of noncytopathogenic BVDV-1f strain SLO/1170/2000 and cytopathogenic BVDV-1d strain SLO/2416/2002, isolated in Slovenia.
Collapse
|
44
|
Colitti B, Nogarol C, Giacobini M, Capucchio MT, Biasato I, Rosati S, Bertolotti L. Compartmentalized evolution of Bovine Viral Diarrhoea Virus type 2 in an immunotolerant persistently infected cow. Sci Rep 2019; 9:15460. [PMID: 31664116 PMCID: PMC6827220 DOI: 10.1038/s41598-019-52023-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important pathogens of cattle worldwide. BVDV-1 is widely distributed in Italy, while BVDV-2 has been detected occasionally. BVDV can be classified in two biotypes, cytopathic (CP) or noncytopathic (NCP). The characteristic of the virus is linked with the infection of a pregnant dam with a NCP strain: due to viral establishment before maturation of the fetal immune system the calf remains persistently infected (PI) and immunotolerant to the infecting BVDV strain. Thanks to their immunotolerance, PI animals represent a unique model to study the viral distribution and compartmentalization in absence of immunoresponse in vivo. In the present study, NGS sequencing was used to characterize the BVDV2 viral strain infecting a PI calf and to describe the viral quasispecies in tissues. Even if the consensus sequences obtained by all the samples were highly similar, quasispecies was described evaluating the presence and the frequency of variants among all the sequencing reads in each tissue. The results suggest a high heterogeneity of the infecting viral strain suggesting viral compartmentalization. The quasispecies analysis highlights the complex dynamics of viral population structure and can increase the knowledge about viral evolution in BVDV-2 persistently infected animals.
Collapse
Affiliation(s)
- Barbara Colitti
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Chiara Nogarol
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Mario Giacobini
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Luigi Bertolotti
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| |
Collapse
|
45
|
Characterization of the Humoral Immune Response Induced after Infection with Atypical Porcine Pestivirus (APPV). Viruses 2019; 11:v11100880. [PMID: 31546571 PMCID: PMC6832543 DOI: 10.3390/v11100880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Atypical porcine pestivirus (APPV) is a widely distributed pathogen causing congenital tremor (CT) in piglets. So far, no data are available regarding the humoral immune response against APPV. In this study, piglets and their sows from an affected herd were tested longitudinally for viral genome and antibodies. APPV genome was detected in the majority of the piglets (14/15) from CT affected litters. Transient infection of gilts was observed. Kinetics of Erns- and E2-specific antibodies and their neutralizing capacity were determined by recently (Erns) and newly (E2) developed antibody ELISAs and virus neutralization assays. Putative maternally derived antibodies (MDA) were detected in most piglets, but displayed only low to moderate neutralizing capacity (ND50 ≤ 112). Horizontal APPV transmission occurred when uninfected and infected piglets were mingled on the flat deck. Horizontally infected piglets were clinically inapparent and showed only transient viremia with subsequently consistently high E2 antibody levels. For piglets from CT affected litters, significantly lower neutralizing antibody titers were observed. Results indicate that E2 represents the main target of neutralizing antibodies. Characterization of the humoral immune response against APPV will help to provide valuable serological diagnosis, to understand the epidemiology of this novel pathogen, and to implement tailored prevention strategies.
Collapse
|
46
|
Fukuhara T, Matsuura Y. Roles of secretory glycoproteins in particle formation of Flaviviridae viruses. Microbiol Immunol 2019; 63:401-406. [PMID: 31342548 DOI: 10.1111/1348-0421.12733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
The family Flaviviridae comprises four genera, namely, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus. These viruses have similar genome structures, but the genomes of Pestivirus and Flavivirus encode the secretory glycoproteins Erns and NS1, respectively. Erns plays an important role in virus particle formation and cell entry, whereas NS1 participates in the formation of replication complexes and virus particles. Conversely, apolipoproteins are known to participate in the formation of infectious particles of hepatitis C virus (HCV) and various secretory glycoproteins play a similar role in HCV particles formation, suggesting that there is no strong specificity for the function of secretory glycoproteins in infectious-particle formation. In addition, recent studies have shown that host-derived apolipoproteins and virus-derived Erns and NS1 play comparable roles in infectious-particle formation of both HCV and pestiviruses. In this review, we summarize the roles of secretory glycoproteins in the formation of Flaviviridae virus particles.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
47
|
Silveira S, Falkenberg SM, Dassanayake RP, Walz PH, Ridpath JF, Canal CW, Neill JD. In vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains using the PrimeFlow RNA assay. Virology 2019; 536:101-109. [PMID: 31415943 DOI: 10.1016/j.virol.2019.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Bovine viral diarrhea viruses (BVDV), segregated in BVDV-1 and BVDV-2 species, lead to substantial economic losses to the cattle industry worldwide. It has been hypothesized that there could be differences in level of replication, pathogenesis and tissue tropism between BVDV-1 and BVDV-2 strains. Thus, this study developed an in vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains. To this end the competitive dynamics of BVDV-1a, BVDV-1b, and BVDV-2a strains in cell cultures was evaluated by a PrimeFlow RNA assay. Similar results were observed in this study, as was observed in an earlier in vivo transmission study. Competitive exclusion was observed as the BVDV-2a strains dominated and excluded the BVDV-1a and BVDV-1b strains. The in vitro model developed can be used to identify viral variations that result in differences in frequency of subgenotypes detected in the field, vaccine failure, pathogenesis, and strain dependent variation in immune responses.
Collapse
Affiliation(s)
- S Silveira
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - S M Falkenberg
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA.
| | - R P Dassanayake
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA
| | - P H Walz
- Department of Pathobiology, College of Veterinary Medicine, 129 Sugg Laboratory, Auburn University, AL, 36849, USA
| | - J F Ridpath
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA
| | - C W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - J D Neill
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA
| |
Collapse
|
48
|
Kaufmann C, Stalder H, Sidler X, Renzullo S, Gurtner C, Grahofer A, Schweizer M. Long-Term Circulation of Atypical Porcine Pestivirus (APPV) within Switzerland. Viruses 2019; 11:E653. [PMID: 31319583 PMCID: PMC6669711 DOI: 10.3390/v11070653] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
In 2015, a new pestivirus was described in pig sera in the United States. This new "atypical porcine pestivirus" (APPV) was later associated with congenital tremor (CT) in newborn piglets. The virus appears to be distributed worldwide, but the limited knowledge of virus diversity and the use of various diagnostic tests prevent direct comparisons. Therefore, we developed an APPV-specific real-time RT-PCR assay in the 5'UTR of the viral genome to investigate both retro- and prospectively the strains present in Switzerland and their prevalence in domestic pigs. Overall, 1080 sera obtained between 1986 and 2018 were analyzed, revealing a virus prevalence of approximately 13% in pigs for slaughter, whereas it was less than 1% in breeding pigs. In the prospective study, APPV was also detected in piglets displaying CT. None of the samples could detect the Linda virus, which is another new pestivirus recently reported in Austria. Sequencing and phylogenetic analysis revealed a broad diversity of APP viruses in Switzerland that are considerably distinct from sequences reported from other isolates in Europe and overseas. This study indicates that APPV has already been widely circulating in Switzerland for many years, mainly in young animals, with 1986 being the earliest report of APPV worldwide.
Collapse
Affiliation(s)
- Cindy Kaufmann
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland
| | - Sandra Renzullo
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Corinne Gurtner
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
- Institute of Animal Pathology, 3001 Bern, Switzerland
| | - Alexander Grahofer
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
49
|
Sexton NR, Ebel GD. Effects of Arbovirus Multi-Host Life Cycles on Dinucleotide and Codon Usage Patterns. Viruses 2019; 11:v11070643. [PMID: 31336898 PMCID: PMC6669465 DOI: 10.3390/v11070643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) of vertebrates including dengue, zika, chikungunya, Rift Valley fever, and blue tongue viruses cause extensive morbidity and mortality in humans, agricultural animals, and wildlife across the globe. As obligate intercellular pathogens, arboviruses must be well adapted to the cellular and molecular environment of both their arthropod (invertebrate) and vertebrate hosts, which are vastly different due to hundreds of millions of years of separate evolution. Here we discuss the comparative pressures on arbovirus RNA genomes as a result of a dual host life cycle, focusing on pressures that do not alter amino acids. We summarize what is currently known about arboviral genetic composition, such as dinucleotide and codon usage, and how cyclical infection of vertebrate and invertebrate hosts results in different genetic profiles compared with single-host viruses. To serve as a comparison, we compile what is known about arthropod tRNA, dinucleotide, and codon usages and compare this with vertebrates. Additionally, we discuss the potential roles of genetic robustness in arboviral evolution and how it may vary from other viruses. Overall, both arthropod and vertebrate hosts influence the resulting genetic composition of arboviruses, but a great deal remains to be investigated.
Collapse
Affiliation(s)
- Nicole R Sexton
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
50
|
Ran X, Chen X, Ma L, Wen X, Zhai J, Wang M, Tong X, Hou G, Ni H. A systematic review and meta-analysis of the epidemiology of bovine viral diarrhea virus (BVDV) infection in dairy cattle in China. Acta Trop 2019; 190:296-303. [PMID: 30165071 DOI: 10.1016/j.actatropica.2018.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection causes significantly economic losses to cattle industry worldwide, also including China. The epidemiological prevalence of infection associated with BVDV in dairy cattle has not been systematically assessed in China. Therefore, we undertook this study to evaluate prevalent of BVDV infection. We conducted a systematic review and meta-analysis of data from papers on the BVDV incidence and prevalence in dairy cattle in China by searching China Science and Technology Journal Database, China National Knowledge Infrastructure (CNKI), Wan Fang Database and PubMed for publication from March 2003 to March 2018. The 41 studies reporting the prevalence of BVDV in cattle in China were selected upon our inclusion criterion. The pooled BVDV prevalence in dairy cattle in China was estimated to 53.0% (95% CI 40.2-65.7) based on the data obtained from the 27,530 cows tested using serological or virological assay in the qualified papers published during the periods (χ² = 51,861.0, I2 = 99.9%). The highest BVDV positive rate in dairy flocks reached 90.0% in Fujian province of China, followed by Shaanxi (88.9%) and Shandong (83.3%). The prevalence in the six administrative districts of China was validated to be highly variable (25.7%-72.2%) and reached 72.2% in dairy cattle flocks of Northern China. Besides, the BVDV-RNA positive rate was estimated 27.1% (95% CI 17.3-37.0) based on 6 studies, comparatively, the pooled BVDV seroprevalence based on 35 studies was about 57.0% (95% CI 44.4-69.5) in China. This systematic review and meta-analysis firstly established an estimated prevalence of BVDV in dairy herds in China, indicating that the BVDV infection is escalating, though there is a bias in the number of studies between 2003-2009 and 2010-2018 timescales. This study may help understand the status of BVDV infection in dairy herds in China. Further extensive and comprehensive investigation is recommended, and effective intervention measures for preventing and controlling BVDV spread in dairy herds should be deployed, especially herds that have been exposed to BVDV.
Collapse
|