1
|
Carlson TL, Colbert K, Vieira M, Guerina FV, Bryant CLN, Habegger K, Pasricha PJ, Petersen J, Polomoscanik S, Jozefiak TH, Nimgaonkar A. Development of a targeted oral pharmacologic duodenal exclusion therapy for the treatment of metabolic diseases. SCIENCE ADVANCES 2025; 11:eadu1326. [PMID: 40446040 PMCID: PMC12124365 DOI: 10.1126/sciadv.adu1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Type 2 diabetes (T2D) and obesity are chronic metabolic diseases with global morbidity and mortality. Decades of evidence from surgical and endoscopic procedures bypassing the duodenum underscore the duodenum's critical role in regulating glycemia and body weight. Although metabolic surgeries and endoscopic procedures are effective, their invasiveness, cost, and scalability limit patient access. We developed an orally administered mucin complexing polymeric (MCP) drug, designed to replicate duodenal exclusion physiology. MCPs, intended to have electrostatic and covalent cross-linkages with mucin glycoproteins, form extended network structures with resulting alteration of mucus barrier properties. Selective targeting of the duodenum is achieved via pH-based activation chemistry. Following screening for physiochemical properties, pharmacokinetics, and efficacy, GLY-200 emerged as the lead drug candidate replicating duodenal exclusion physiology with improved glycemia, reduced body weight, and modulation of gut hormones in rodent models. This targeted oral therapy holds promise for treatment of T2D and obesity by mimicking duodenal exclusion without the invasiveness of surgery or endoscopic procedures.
Collapse
Affiliation(s)
| | - Kevin Colbert
- Glyscend Therapeutics Inc., Baltimore, MD, 21205, USA
| | - Marcela Vieira
- Gastroenterology Imaging, Clario (eResearch Technology) , Philadelphia, PA 19103, USA
| | - Florence V. Guerina
- Department of Molecular Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | | | - Kirk Habegger
- Division of Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pankaj Jay Pasricha
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - John Petersen
- Glyscend Therapeutics Inc., Baltimore, MD, 21205, USA
| | | | | | - Ashish Nimgaonkar
- Glyscend Therapeutics Inc., Baltimore, MD, 21205, USA
- Center for Bioengineering Innovation and Design, Department of Biomedical Engineering, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Dash SK, Marques CNH, Mahler GJ. Small Intestine on a Chip Demonstrates Physiologic Mucus Secretion in the Presence of Lacticaseibacillus rhamnosus Biofilm. Biotechnol Bioeng 2025. [PMID: 40197633 DOI: 10.1002/bit.28989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
The small intestine is an area of the digestive system difficult to access using current medical procedures, which prevents studies on the interactions between food, drugs, the small intestinal epithelium, and resident microbiota. Therefore, there is a need to develop novel microfluidic models that mimic the intestinal biological and mechanical environments. These models can be used for drug discovery and disease modeling and have the potential to reduce reliance on animal models. The goal of this study was to develop a small intestine on a chip with both enterocyte (Caco-2) and goblet (HT29-MTX) cells cocultured with Lacticaseibacillus rhamnosus biofilms, which is of one of several genera present in the small intestinal microbiota. L. rhamnosus was introduced following the establishment of the epithelial barrier. The shear stress within the device was kept in the lower physiological range (0.3 mPa) to enable biofilm development over the in vitro epithelium. The epithelial barrier differentiated after 5 days of dynamic culture with cell polarity and permeability similar to the human small intestine. The presence of biofilms did not alter the barrier's permeability in dynamic conditions. Under fluid flow, the complete model remained viable and functional for more than 5 days, while the static model remained functional for only 1 day. The presence of biofilm increased the secretion of acidic and neutral mucins by the epithelial barrier. Furthermore, the small intestine on a chip also showed increased MUC2 production, which is a dominant gel-forming mucin in the small intestine. This model builds on previous publications as it establishes a stable environment that closely mimics in vivo conditions and can be used to study intestinal physiology, food-intestinal interactions, and drug development.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
3
|
Baral KC, Choi KY. Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances. Pharmaceutics 2025; 17:397. [PMID: 40284395 PMCID: PMC12030352 DOI: 10.3390/pharmaceutics17040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Peptide and protein (PP) therapeutics are highly specific and potent biomolecules that treat chronic and complex diseases. However, their oral delivery is significantly hindered by enzymatic degradation, instability, and poor permeability through the gastrointestinal (GI) epithelium, resulting in low bioavailability. Various strategies have emerged as transformative solutions to address existing challenges, offering enhanced protection, stabilization, and absorption of PPs. These strategies primarily focus on two major challenges: protecting the PP against harsh conditions and enhancing permeation across the intestinal membrane. Innovative approaches such as pH modulation and incorporation of enzyme inhibitors are usually used to mitigate proteolytic degradation of PP during transit across the GI tract. In a similar vein, absorption enhancers and prodrug strategies facilitate epithelial transport, while targeted delivery systems focus on specific areas of the GI tract to enhance absorption. Likewise, mucus-penetrating and mucoadhesive strategies have enhanced retention and interaction with epithelial cells, effectively overcoming barriers like the mucus layer and tight epithelial junctions. Furthermore, structural modifications such as lipidation, peptide cyclization, and polyethylene glycosylation are promising alternatives to render stability, prolong circulation time, and membrane permeability. In particular, functional biomaterials, active targeting, and lymphatic transport strategies have provided new platforms for oral PP delivery. Advancing in materials science, nanotechnology, and the disruption of medical devices holds new frontiers to overcome barriers. Despite substantial advancements, the limited success in clinical translation underscores the urgency of innovative strategies. This review presents oral PPs as a promising platform, highlighting the key barriers and strategies to transform their therapeutic landscapes.
Collapse
Affiliation(s)
- Kshitis Chandra Baral
- Department of Marine Bio-Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Ki Young Choi
- Department of Marine Bio-Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
- NVience Inc., Seoul 04323, Republic of Korea
| |
Collapse
|
4
|
Sharafi Monfared M, Nazmi S, Parhizkar F, Jafari D. Soluble B7 and TNF family in colorectal cancer: Serum level, prognostic and treatment value. Hum Immunol 2025; 86:111232. [PMID: 39793378 DOI: 10.1016/j.humimm.2025.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Soluble immune checkpoints (sIC) are crucial factors in the immune system. They regulate immune responses by transforming intercellular signals via binding to their membrane-bound receptor or ligand. Moreover, soluble ICs are vital in immune regulation, cancer development, and prognosis. They can be identified and measured in various tumor microenvironments. Recently, sICs have become increasingly important in clinically assessing malignancies like colorectal cancer (CRC) patients. This review explores the evolving role of the soluble B7 family and soluble tumor necrosis factor (TNF) superfamily members in predicting disease progression, treatment response, and overall patient outcomes in CRC. We comprehensively analyze the diagnostic and prognostic potential of soluble immune checkpoints in CRC. Understanding the role of these soluble immune checkpoints in CRC management and their potential as targets for precision medicine approaches can be critical for improving outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Mohanna Sharafi Monfared
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Nazmi
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Forough Parhizkar
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Maniyamgama N, Bae KH, Chang ZW, Lee J, Ang MJY, Tan YJ, Ng LFP, Renia L, White KP, Yang YY. Muco-Penetrating Lipid Nanoparticles Having a Liquid Core for Enhanced Intranasal mRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407383. [PMID: 39888252 PMCID: PMC11923898 DOI: 10.1002/advs.202407383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Indexed: 02/01/2025]
Abstract
Intranasal delivery of mRNA vaccines offers promising opportunities to combat airborne viruses like SARS-CoV-2 by provoking mucosal immunity, which not only defends against respiratory infection but also prevents contagious transmission. However, the development of nasal mRNA vaccines has been hampered by the lack of effective means to overcome the mucus barrier. Herein, ionizable lipid-incorporated liquid lipid nanoparticles (iLLNs) capable of delivering mRNA cargo across airway mucosa are designed. Adjusting the ratios of ionizable and cationic lipids allows fine-tuning of the pKa of iLLNs to the range of nasal mucosal pH (5.5-6.5), thus facilitating mucus penetration via the formation of near-neutral, PEGylated muco-inert surfaces. When nasally administered to mice, the top candidate iLLN-2/mRNA complexes enable about 60-fold greater reporter gene expression in the nasal cavity, compared to the benchmark mRNA-lipid nanoparticles (ALC-LNP) having the same lipid composition as that of BNT162b2 vaccine. Moreover, a prime-boost intranasal immunization of iLLN-2/mRNA complexes elicits a greater magnitude of SARS-CoV-2 spike-specific mucosal IgA and IgG response than ALC-LNP, without triggering any noticeable inflammatory reactions. Taken together, these results provide useful insights for the design of nasally deliverable mRNA formulations for prophylactic applications.
Collapse
Affiliation(s)
- Nipuni Maniyamgama
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Ki Hyun Bae
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
| | - Jialing Lee
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Melgious J. Y. Ang
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Yong Jie Tan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore138648Republic of Singapore
- School of Biological SciencesNanyang Technological UniversitySingapore138648Republic of Singapore
| | - Kevin P. White
- Department of Biochemistry and Precision Medicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Republic of Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| |
Collapse
|
6
|
McCoy R, Wang K, Treiber J, Fu Y, Malliaras GG, Salleo A, Owens RM. Mucus-on-a-chip: investigating the barrier properties of mucus with organic bioelectronics. J Mater Chem B 2025; 13:577-587. [PMID: 39575664 DOI: 10.1039/d4tb01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Gastrointestinal (GI) mucus is a biologically complex hydrogel that acts as a partially permeable barrier between the contents of the GI tract and the mucosal epithelial lining. Its structural integrity is essential for the lubrication of the tract thereby aiding smooth transit of contents, and the protection of the epithelium from pathogens that seek to colonise and invade. Understanding its physical response to drugs and the microbiome is essential for treating many gastrointestinal infectious diseases. Given this, a static in vitro model of a GI mucus-on-a-chip has been developed with integrated electronics to monitor the barrier properties of mucus hydrogels. Its application for investigating the effect of drugs and biofilm formation on the mucus structure is validated using rheological techniques, confocal microscopy and electrochemical impedance spectroscopy (EIS).
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Kaixin Wang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Jeremy Treiber
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XQ, Glasgow, UK
| | - George G Malliaras
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| |
Collapse
|
7
|
Mane V, Mehta R, Alvarez N, Sharma V, Park S, Fox A, DeCarlo C, Yang X, Perlin DS, Powell RLR. In vivo antiviral efficacy of LCTG-002, a pooled, purified human milk secretory IgA product, against SARS-CoV-2 in a murine model of COVID-19. Hum Vaccin Immunother 2024; 20:2303226. [PMID: 38251677 PMCID: PMC10807469 DOI: 10.1080/21645515.2024.2303226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosae, with secretory form (sIgA) being dominant and uniquely stable. sIgA is challenging to produce recombinantly but is naturally found in human milk, which could be considered a global resource for this biologic, justifying its development as a mucosal therapeutic. Presently, SARS-CoV-2 was utilized as a model mucosal pathogen, and methods were developed to efficiently extract human milk sIgA from donors who were naïve to SARS-CoV-2 or had recovered from infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA in their milk (pooled to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1% or greater were all associated with sIgA. Western blot demonstrated that all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher Spike binding (mean endpoint of 0.87 versus 5.87). LCTG-002 was capable of blocking the Spike receptor-binding domain - angiotensin-converting enzyme 2 (ACE2) interaction with significantly greater potency compared to control (mean LCTG-002 IC50 154ug/mL versus 50% inhibition not achieved for control), and exhibited significant neutralization activity against Spike-pseudotyped virus infection (mean LCTG-002 IC50 49.8ug/mL versus 114.5ug/mL for control). LCTG-002 was tested for its capacity to reduce viral lung burden in K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 significantly reduced SARS-CoV-2 titers compared to control when administered at 0.25 mg/day or 1 mg/day, with a maximum TCID50 reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure and efficacious in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics.
Collapse
Affiliation(s)
- Viraj Mane
- Lactiga US, Inc. 675 US-1, North Brunswick, NJ, USA
| | - Rikin Mehta
- Lactiga US, Inc. 675 US-1, North Brunswick, NJ, USA
| | - Nadine Alvarez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Vijeta Sharma
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Alisa Fox
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - Claire DeCarlo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - Xiaoqi Yang
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Rebecca L. R. Powell
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| |
Collapse
|
8
|
Prašnikar M, Bjelošević Žiberna M, Gosenca Matjaž M, Ahlin Grabnar P. Novel strategies in systemic and local administration of therapeutic monoclonal antibodies. Int J Pharm 2024; 667:124877. [PMID: 39490550 DOI: 10.1016/j.ijpharm.2024.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Monoclonal antibodies (mAbs) are an evolving class of biopharmaceuticals, with advancements evident across various stages of their development. While discovery, mAb chemical optimization, production and purification processes have been thoroughly reviewed, this paper aims to offer a summary of novel strategies in administration of mAbs. At present, systemic delivery of mAbs is available through parenteral administration routes with focus on subcutaneous administration. In addition, oriented toward patient-friendly therapy, other less invasive administration routes of mAbs, such as inhalation, nasal, transdermal, and oral administration, are explored. Literature data reveals the potential for local delivery of mAbs via inhalation, nasal, transdermal, intratumoral, intravitreal and vaginal administration, offering high efficacy with fewer systemic adverse effects. However, to date, only mAb medicines are available for intravitreal administration, mainly due to higher bioavailability, and an intranasal spray is authorised as a medical device. The review highlights the promising data in approval of novel administration routes, likely through inhalation, but further intensive research considering the current obstacles, is essential.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Dong M, Chen Z, He Y, Zallot R, Jin Y. Bioinformatics-Facilitated Identification of Novel Bacterial Sulfoglycosidases That Hydrolyze 6-Sulfo- N-acetylglucosamine. ACS BIO & MED CHEM AU 2024; 4:342-352. [PMID: 39712202 PMCID: PMC11659886 DOI: 10.1021/acsbiomedchemau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
Glycan sulfation is a widespread postglycosylation modification crucial for modulating biological functions including cellular adhesion, signaling, and bacterial colonization. 6-Sulfo-β-GlcNAcases are a class of enzyme that alters sulfation patterns. Such changes in sulfation patterns are linked to diseases such as bowel inflammation, colitis, and cancer. Despite their significance, 6-sulfo-β-GlcNAcases, which cleave β-linked 6-sulfo-N-acetylglucosamine (6S-GlcNAc), have been but rarely identified. This scarcity results mainly from the short, diverse, and distinctive sulfate-binding motifs required for recognition of the 6-sulfate group in 6S-GlcNAc in addition to the conserved GH20 family features. In this study, we discovered 6-sulfo-β-GlcNAcases and assigned two novel sulfate-binding motifs by the use of comparative genomics, structural predictions, and activity-based screening. Our findings expand the known microbiota capable of degrading sulfated glycans and add significant enzymes to the tool kit for analysis and synthesis of sulfated oligosaccharides.
Collapse
Affiliation(s)
- Mochen Dong
- School of
Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Zhuoyun Chen
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Yuan He
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Rémi Zallot
- Department
of Life Sciences, Manchester Metropolitan
University, Dalton Building, Chester Street, Manchester M1 5GD, United
Kingdom
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
10
|
Sosnowska M, Wierzbicki M, Nasiłowska B, Bakalova TN, Piotrowska K, Strojny-Cieślak B, Sawosz E, Kutwin M. Fullerenol C 60(OH) 40 Nanoparticles and Ectoine Protect Human Nasal Epithelial Cells Against the Cytokine Storm After Addition of the Full-Length Spike Protein from SARS-CoV-2. Int J Nanomedicine 2024; 19:12221-12255. [PMID: 39600409 PMCID: PMC11588572 DOI: 10.2147/ijn.s482652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION AND OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the nasal cavity, penetrates the nasal epithelial cells through the interaction of its spike protein with the host cell receptor angiotensin-converting enzyme 2 (ACE2) and then triggers a cytokine storm. We aimed to assess the biocompatibility of fullerenol nanoparticles C60(OH)40 and ectoine, and to document their effect on the protection of primary human nasal epithelial cells (HNEpCs) against the effects of interaction with the fragment of virus - spike protein. This preliminary research is the first step towards the construction of a intranasal medical device with a protective, mechanical function against SARS-CoV-2 similar to that of personal protective equipment (eg masks). METHODS We used HNEpCs and the full-length spike protein from SARS-CoV-2 to mimic the first stage of virus infection. We assessed cell viability with the XTT assay and a spectrophotometer. May-Grünwald Giemsa and periodic acid-Schiff staining served to evaluate HNEpC morphology. We assessed reactive oxygen species (ROS) production by using 2',7'-dichlorofluorescin diacetate and commercial kit. Finally, we employed reverse transcription polymerase chain reaction, Western blotting and confocal microscopy to determine the expression of angiotensin-converting enzyme 2 (ACE2) and inflammatory cytokines. RESULTS There was normal morphology and unchanged viability of HNEpCs after incubation with 10 mg/L C60(OH)40, 0.2% ectoine or their composite for 24 h. The spike protein exerted cytotoxicity via ROS production. Preincubation with the composite protected HNEpCs against the interaction between the spike protein and the host membrane and prevented the production of key cytokines characteristic of severe coronavirus disease 2019, including interleukin 6 and 8, monocyte chemotactic protein 1 and 2, tissue inhibitor of metalloproteinases 2 and macrophage colony-stimulating factor. CONCLUSION In the future, the combination of fullerenol and ectoine may be used to prevent viral infections as an intranasal medical device for people with reduced immunity and damaged mucous membrane.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Nasiłowska
- Biomedical Engineering Center, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Totka Nikolaeva Bakalova
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Klara Piotrowska
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Obuobi S, Škalko-Basnet N. Understanding vaginal biofilms: The first step in harnessing antimicrobial nanomedicine. J Control Release 2024; 376:1190-1208. [PMID: 39510257 DOI: 10.1016/j.jconrel.2024.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In spite of multipurpose technologies offering broad-spectrum prevention for sexually transmitted infections (STIs) and contraception, the STIs incidences rise worldwide. The situation is even more alarming considering continuous rise in antimicrobial resistance (AMR) that limits therapy options. In this review we address the specific challenges of efficiently treating vaginal infections locally, at the infection site, by understanding the underlying barriers to efficient treatment such as vaginal biofilms. Knowledge on vaginal biofilms remains, up to now, rather scarce and requires more attention. We therefore propose a 'back to basics' insight that seeks to probe the complexity and role of the vaginal microbiota, its relationship with vaginal biofilms and implications to future therapeutic modalities utilizing advanced nano delivery systems. Our key objective is to highlight the interplay between biofilm, (nano)formulation and therapy outcome rather than provide an overview of all nanoformulations that were challenged against biofilms. We focused on the anatomy of the female reproductive organ and its physiological changes from birth, the unique vaginal microenvironment in premenopausal and postmenopausal women, vaginal biofilm infections and current nanomedicine-based approaches to treat infections in the vaginal site. Finally, we offer our perspectives on the current challenges associated with vaginal delivery and key considerations that can aid in the design and development of safer and potent products against persisting vaginal infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
12
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
13
|
Yuan D, Niu Z, Zheng W, Zhao Q, Zhou F, Zhao M. Mind the Particle Rigidity: Blooms the Bioavailability via Rapidly Crossing the Mucus Layer and Alters the Intracellular Fate of Curcumin. ACS NANO 2024; 18:27026-27041. [PMID: 39297569 DOI: 10.1021/acsnano.4c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Overcoming intestinal epithelial barriers to enhance bioavailability is a major challenge for oral delivery systems. Desirable nanocarriers should simultaneously exhibit rapid mucus penetration and efficient epithelial uptake; however, they two generally require contradictory structural properties. Herein, we proposed a strategy to construct multiperformance nanoparticles by modifying the rigidity of amphiphilic nanostructures originating from soy polypeptides (SPNPs), where its ability to overcome multibarriers was examined from both in vitro and in vivo, using curcumin (CUR) as a model cargo. Low-rigidity SPNPs showed higher affinity to mucin and were prone to getting stuck in the mucus layer. When they reached epithelial cells, they tended to be endocytosed through the clathrin and macropinocytosis pathways and further transferred to lysosomes, showing severe degradation and lower transport of CUR. Increased particle rigidity generally improved the absorption of CUR, with medium-rigidity SPNPs bloomed maximum plasma concentration of CUR by 80.62-fold and showed the highest oral bioavailability. Results from monocultured and cocultured cell models demonstrated that medium-rigidity SPNPs were least influenced by the mucus layer and changes in rigidity significantly influenced the endocytosis and intracellular fate of SPNPs. Those with higher rigidity preferred to be endocytosed via a caveolae-mediated pathway and trafficked to the ER and Golgi, facilitating their whole transcytosis, and avoiding intracellular metabolism. Moreover, rigidity modulation efficiently induces the reversible opening of intercellular tight junctions, which synergistically improves the transport of CUR into blood circulation. This study suggested that rigidity regulation on food originated amphiphilic peptides could overcome multiple physiological barriers, showing great potential as natural building block toward oral delivery.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Zhicheng Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Wenyu Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
14
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
15
|
Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-Powered Nanobots for Overcoming the Mucus Barrier. ACS NANO 2024; 18:16701-16714. [PMID: 38885185 PMCID: PMC11223492 DOI: 10.1021/acsnano.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Biological barriers present a significant obstacle to treatment, especially when drugs are administered locally to increase their concentrations at the target site while minimizing unintended off-target effects. Among these barriers, mucus presents a challenge, as it serves as a protective layer in the respiratory, urogenital, and gastrointestinal tracts. Its role is to shield the underlying epithelial cells from pathogens and toxic compounds but also impedes the efficient delivery of drugs. Despite the exploration of mucolytic agents to improve drug delivery, overcoming this protective barrier remains a significant hurdle. In our study, we investigate an alternative approach involving the use of catalase-powered nanobots. We use an in vitro model that simulates intestinal mucus secretion to demonstrate the dual functionality of our nanobots. This includes their ability to disrupt mucus, which we confirmed through in vitro and ex vivo validation, as well as their self-propulsion to overcome the mucus barrier, resulting in a 60-fold increase compared with passive nanoparticles. Therefore, our findings highlight the potential utility of catalase-powered nanobots as carriers for therapeutic agents since they could enhance drug delivery efficiency by penetrating the mucus barrier.
Collapse
Affiliation(s)
- Meritxell Serra-Casablancas
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Universitat
de Barcelona, Facultat de Farmàcia i Ciències de l’Alimentació, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Valerio Di Carlo
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Carles Prado-Morales
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Universitat
de Barcelona, Facultat de Farmàcia i Ciències de l’Alimentació, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Anna C. Bakenecker
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
17
|
Porfiryeva NN, Zlotver I, Davidovich-Pinhas M, Sosnik A. Mucus-Mimicking Mucin-Based Hydrogels by Tandem Chemical and Physical Crosslinking. Macromol Biosci 2024; 24:e2400028. [PMID: 38511568 DOI: 10.1002/mabi.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Mucosal tissues represent a major interface between the body and the external environment and are covered by a highly hydrated mucins gel called mucus. Mucus lubricates, protects and modulates the moisture levels of the tissue and is capitalized in transmucosal drug delivery. Pharmaceutical researchers often use freshly excised animal mucosal membranes to assess mucoadhesion and muco-penetration of pharmaceutical formulations which may struggle with limited accessibility, reproducibility, and ethical questions. Aiming to develop a platform for the rationale study of the interaction of drugs and delivery systems with mucosal tissues, in this work mucus-mimicking mucin-based hydrogels are synthesized by the tandem chemical and physical crosslinking of mucin aqueous solutions. Chemical crosslinking is achieved with glutaraldehyde (0.3% and 0.75% w/v), while physical crosslinking by one or two freeze-thawing cycles. Hydrogels after one freeze-thawing cycle show water content of 97.6-98.1%, density of 0.0529-0.0648 g cm⁻3, and storage and loss moduli of ≈40-60 and ≈3-5 Pa, respectively, that resemble the properties of native gastrointestinal mucus. The mechanical stability of the hydrogels increases over the number of freeze-thawing cycles. Overall results highlight the potential of this simple, reproducible, and scalable method to produce artificial mucus-mimicking hydrogels for different applications in pharmaceutical research.
Collapse
Affiliation(s)
- Natalia N Porfiryeva
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
18
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Shahriar SM, An JM, Surwase SS, Lee DY, Lee YK. Enhancing the Therapeutic Efficacy of GLP-1 for Hyperglycemia Treatment: Overcoming Barriers of Oral Gene Therapy with Taurocholic Acid-Conjugated Protamine Sulfate and Calcium Phosphate. ACS NANOSCIENCE AU 2024; 4:194-204. [PMID: 38912289 PMCID: PMC11191724 DOI: 10.1021/acsnanoscienceau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 06/25/2024]
Abstract
Activating the glucagon-like peptide-1 (GLP-1) receptor by oral nucleic acid delivery would be a promising treatment strategy against hyperglycemia due to its various therapeutic actions. However, GLP-1 receptor agonists are effective only in subcutaneous injections because they face multiple barriers due to harsh gastrointestinal tract (GIT) conditions before reaching the site of action. The apical sodium bile acid transporter (ASBT) pathway at the intestinal site could be an attractive target to overcome the problem. Herein, we used our previously established multimodal carrier system utilizing bile salt, protamine sulfate, and calcium phosphate as excipients (PTCA) and the GLP-1 gene as an active ingredient (GENE) to test the effects of different formulation doses against diabetes and obesity. The carrier system demonstrated the ability to protect the GLP-1 model gene encoded within the plasmid at the GIT and transport it via ASBT at the target site. A single oral dose, regardless of quantity, showed the generation of GLP-1 and insulin from the body and maintained the normoglycemic condition by improving insulin sensitivity and blood sugar tolerance for a prolonged period. This oral gene therapy approach shows significantly higher therapeutic efficacy in preclinical studies than currently available US Food and Drug Administration-approved GLP-1 receptor agonists such as semaglutide and liraglutide. Also, a single oral dose of GENE/PTCA is more effective than 20 insulin injections. Our study suggests that oral GENE/PTCA formulation could be a promising alternative to injection-based therapeutics for diabetics, which is effective in long-term treatment and has been found to be highly safe in all aspects of toxicology.
Collapse
Affiliation(s)
- S. M.
Shatil Shahriar
- Department
of Surgery—Transplant and Mary & Dick Holland Regenerative
Medicine Program, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United States
- KB
Biomed Inc., Chungju 27469, Republic of Korea
| | - Jeong Man An
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Sachin S. Surwase
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department
of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical
Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic
of Korea
- Institute
of Nano Science and Technology (INST), Hanyang
University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department
of Green BioEngineering, Korea National
University of Transportation, Chungju 27469, Republic
of Korea
- 4D
Biomaterials Center, Korea National University
of Transportation, Jeungpyeong 27909, Republic
of Korea
| |
Collapse
|
20
|
López EL, Martín Ferolla F, Meza SN, Mascardi N, Neira P, Chiormi A, Reyero M, Retta A, Contrini MM, Acosta PL. MUC5AC: A potential biomarker of severity in pediatric patients infected with influenza. J Med Virol 2024; 96:e29715. [PMID: 38808542 DOI: 10.1002/jmv.29715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Numerous factors can increase the risk of severe influenza; however, a majority of severe cases occur in previously healthy children. Identification of high-risk children is important for targeted preventive interventions and prompt treatment. The aim of this study was to evaluate MUC5AC as a biomarker for influenza disease severity in children. For this, a prospective cohort study was conducted in 2019. Children hospitalized with acute respiratory infection (ARI) with confirmed positive influenza infection were enrolled. Influenza cases were identified by reverse transcriptase-polymerase chain reaction. Life-threatening disease (LTD) was defined by the need for intensive care and ventilatory support. MUC5AC, epidemiologic, and clinical risk factors were assessed. Three hundred and forty-two patients were hospitalized with ARI, of which 49 (14%) had confirmed influenza infection and 6 (12%) of them developed LTD. MUC5AC levels were higher in those patients with mild disease compared to cases with poorer outcomes. Our results show that the severity of influenza infection in children is significantly associated with low levels of MUC5AC. These findings suggest its potential as a suitable biomarker for predicting disease severity.
Collapse
Affiliation(s)
- Eduardo L López
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Ricardo Gutiérrez, University of Buenos Aires, Buenos Aires, Argentina
- Department of Medicine, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Fausto Martín Ferolla
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Ricardo Gutiérrez, University of Buenos Aires, Buenos Aires, Argentina
| | - Santiago N Meza
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Ricardo Gutiérrez, University of Buenos Aires, Buenos Aires, Argentina
| | - Normando Mascardi
- Department of Medicine, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Pablo Neira
- Pediatric Intensive Care Unit, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Agustina Chiormi
- Deparment of Kinesiology, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Reyero
- Pediatric Intensive Care Unit, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Alejandra Retta
- Pediatric Intensive Care Unit, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María M Contrini
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Ricardo Gutiérrez, University of Buenos Aires, Buenos Aires, Argentina
| | - Patricio L Acosta
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Ricardo Gutiérrez, University of Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
21
|
He YJ, Chen YR, Song JR, Jiang JX, Liu TT, Li JY, Li L, Jia J. Ubiquitin-specific protease-7 promotes expression of airway mucin MUC5AC via the NF-κB signaling pathway. Heliyon 2024; 10:e30967. [PMID: 38778971 PMCID: PMC11109812 DOI: 10.1016/j.heliyon.2024.e30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and other respiratory diseases frequently present with airway mucus hypersecretion, which not only affects the patient's quality of life but also poses a constant threat to their life expectancy. Ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme, affects cell differentiation, tissue growth, and disease development. However, its role in airway mucus hypersecretion induced by COPD remains elusive. In this study, USP7 expression was significantly upregulated in airway epithelial samples from patients with COPD, and USP7 was also overexpressed in mouse lung and human airway epithelial cells in models of airway mucus hypersecretion. Inhibition of USP7 reduced the expression of nuclear factor kappa B (NF-κB), phosphorylated-NF-κB (p-NF-κB), and phosphonated inhibitor of nuclear factor kappa B (p-IκBα), and alleviated the airway mucus hypersecretion in vivo and in vitro. Further research revealed that USP7 stimulated airway mucus hypersecretion through the activation of NF-κB nuclear translocation. In addition, the expression of mucin 5AC (MUC5AC) was suppressed by the NF-κB inhibitor erdosteine. These findings suggest that USP7 stimulates the NF-κB signaling pathway, which promotes airway mucus hypersecretion. This study identifies one of the mechanisms regulating airway mucus secretion and provides a new potential target for its prevention and treatment.
Collapse
Affiliation(s)
- Yi-Jing He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yi-Rong Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Rui Song
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jin-Xiu Jiang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ting-Ting Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Yao Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liu Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
22
|
Mac CH, Tai HM, Huang SM, Peng HH, Sharma AK, Nguyen GLT, Chang PJ, Wang JT, Chang Y, Lin YJ, Sung HW. Orally Ingested Self-Powered Stimulators for Targeted Gut-Brain Axis Electrostimulation to Treat Obesity and Metabolic Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310351. [PMID: 38591658 DOI: 10.1002/adma.202310351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.
Collapse
Affiliation(s)
- Cam-Hoa Mac
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsien-Meng Tai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350401, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Giang Le Thi Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ju Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
23
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Fatima R, Prasher P, Sharma M, Singh SK, Gupta G, Dua K. The contemplation of amylose for the delivery of ulcerogenic nonsteroidal anti-inflammatory drugs. Future Med Chem 2024; 16:791-809. [PMID: 38573051 PMCID: PMC11221539 DOI: 10.4155/fmc-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
This manuscript proposes an innovative approach to mitigate the gastrointestinal adversities linked with nonsteroidal anti-inflammatory drugs (NSAIDs) by exploiting amylose as a novel drug delivery carrier. The intrinsic attributes of V-amylose, such as its structural uniqueness, biocompatibility and biodegradability, as well as its capacity to form inclusion complexes with diverse drug molecules, are meticulously explored. Through a comprehensive physicochemical analysis of V-amylose and ulcerogenic NSAIDs, the plausibility of amylose as a protective carrier for ulcerogenic NSAIDs to gastrointestinal regions is elucidated. This review further discusses the potential therapeutic advantages of amylose-based drug delivery systems in the management of gastric ulcers. By providing controlled release kinetics and enhanced bioavailability, these systems offer promising prospects for the development of more effective ulcer therapies.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
25
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Li X, Xiu X, Su R, Ma S, Li Z, Zhang L, Wang Z, Zhu Y, Ma F. Immune cell receptor-specific nanoparticles as a potent adjuvant for nasal split influenza vaccine delivery. NANOTECHNOLOGY 2024; 35:125101. [PMID: 38100843 DOI: 10.1088/1361-6528/ad1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Mucosal delivery systems have gained much attention as effective way for antigen delivery that induces both systemic and mucosal immunity. However, mucosal vaccination faces the challenges of mucus barrier and effective antigen uptake and presentation. In particular, split, subunit and recombinant protein vaccines that do not have an intact pathogen structure lack the efficiency to stimulate mucosal immunity. In this study, poly (lactic acid-co-glycolic acid-polyethylene glycol) (PLGA-PEG) block copolymers were modified by mannose to form a PLGA-PEG-Man conjugate (mannose modified PLGA-PEG), which were characterized. The novel nanoparticles (NPs) prepared with this material had a particle size of about 150 nm and a zeta potential of -15 mV, and possessed ideal mucus permeability, immune cell targeting, stability and low toxicity. Finally, PLGA-PEG-Man nanoparticles (PLGA-PEG-Man NPs) were successfully applied for intranasal delivery of split influenza vaccine in rat for the first time, which triggered strong systemic and mucosal immune responses. These studies suggest that PLGA-PEG-Man NPs could function as competitive potential nano-adjuvants to address the challenge of inefficient mucosal delivery of non-allopathogenic antigens.
Collapse
Affiliation(s)
- Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Xueliang Xiu
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou 310023, People's Republic of China
| |
Collapse
|
27
|
Horikiri M, Taniguchi M, Yoshikawa HY, Okumura R, Matsuzaki T. Mechanical Characterization of Mucus on Intestinal Tissues by Atomic Force Microscopy. Methods Mol Biol 2024; 2763:403-414. [PMID: 38347430 DOI: 10.1007/978-1-0716-3670-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Mucus is part of the innate immune system that defends the mucosa against microbiota and other infectious threats. The mechanical characteristics of mucus, such as viscosity, elasticity, and lubricity, are critically involved in its barrier function. However, assessing the mechanical properties of mucus remains challenging because of technical limitations. Thus, a new approach that characterizes the mechanical properties of mucus on colonic tissues needs to be developed. Here, we describe a novel strategy to characterize the ex vivo mechanical properties of mucus on colonic tissues using atomic force microscopy. This description includes the preparation of the mouse colon sample, AFM calibration, and determining the elasticity (Young's modulus, E [kPa]) of the mucus layer in the colon.
Collapse
Affiliation(s)
- Momoka Horikiri
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mugen Taniguchi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Takahisa Matsuzaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan.
- Center for Future Innovation, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
28
|
Meziu E, Shehu K, Koch M, Schneider M, Kraegeloh A. Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity. Int J Pharm X 2023; 6:100212. [PMID: 37771516 PMCID: PMC10522980 DOI: 10.1016/j.ijpx.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5-10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
Collapse
Affiliation(s)
- Enkeleda Meziu
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Kristela Shehu
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Annette Kraegeloh
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Mules TC, Inns S, Le Gros G. Helminths' therapeutic potential to treat intestinal barrier dysfunction. Allergy 2023; 78:2892-2905. [PMID: 37449458 DOI: 10.1111/all.15812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The intestinal barrier is a dynamic multi-layered structure which can adapt to environmental changes within the intestinal lumen. It has the complex task of allowing nutrient absorption while limiting entry of harmful microbes and microbial antigens present in the intestinal lumen. Excessive entry of microbial antigens via microbial translocation due to 'intestinal barrier dysfunction' is hypothesised to contribute to the increasing incidence of allergic, autoimmune and metabolic diseases, a concept referred to as the 'epithelial barrier theory'. Helminths reside in the intestinal tract are in intimate contact with the mucosal surfaces and induce a range of local immunological changes which affect the layers of the intestinal barrier. Helminths are proposed to prevent, or even treat, many of the diseases implicated in the epithelial barrier theory. This review will focus on the effect of helminths on intestinal barrier function and explore whether this could explain the proposed health benefits delivered by helminths.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
30
|
Bartlett BA, Feng Y, Fromen CA, Ford Versypt AN. Computational fluid dynamics modeling of aerosol particle transport through lung airway mucosa. Comput Chem Eng 2023; 179:108458. [PMID: 37946856 PMCID: PMC10634618 DOI: 10.1016/j.compchemeng.2023.108458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Delivery of aerosols to the lung can treat various lung diseases. However, the conducting airways are coated by a protective mucus layer with complex properties that make this form of delivery difficult. Mucus is a non-Newtonian fluid and is cleared from the lungs over time by ciliated cells. Further, its gel-like structure hinders the diffusion of particles through it. Any aerosolized treatment of lung diseases must penetrate the mucosal barrier. Using computational fluid dynamics, a model of the airway mucus and periciliary layer was constructed to simulate the transport of impacted aerosol particles. The model predicts the dosage fraction of particles of a certain size that penetrate the mucus and reach the underlying tissue, as well as the distance downstream of the dosage site where tissue concentration is maximized. Reactions that may occur in the mucus are also considered, with simulated data for the interaction of a model virus and an antibody.
Collapse
Affiliation(s)
- Blake A. Bartlett
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Catherine A. Fromen
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ashlee N. Ford Versypt
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
31
|
Liu K, Chen Y, Yang D, Cai Y, Yang Z, Jin J. Betaine-Based and Polyguanidine-Inserted Zwitterionic Micelle as a Promising Platform to Conquer the Intestinal Mucosal Barrier. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878752 DOI: 10.1021/acsami.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Developing nanocarriers for oral drug delivery is often hampered by the dilemma of balancing mucus permeation and epithelium absorption, since huge differences in surface properties are required for sequentially overcoming these two processes. Inspired by mucus-penetrating viruses that universally possess a dense charge distribution with equal opposite charges on their surfaces, we rationally designed and constructed a poly(carboxybetaine)-based and polyguanidine-inserted cationic micelle platform (hybrid micelle) for oral drug delivery. The optimized hybrid micelle exhibited a great capacity for sequentially overcoming the mucus and villi barriers. It was demonstrated that a longer zwitterionic chain was favorable for mucus diffusion for hybrid micelles but not conducive to cellular uptake. In addition, the significantly enhanced internalization absorption of hybrid micelles was attributed to the synergistic effect of polyguanidine and proton-assisted amine acid transporter 1 (PAT1). Moreover, the retrograde pathway was mainly involved in the intracellular transport of hybrid micelles and transcytosis delivery. Furthermore, the prominent intestinal mucosa absorption in situ and in vivo liver distribution of the oral hybrid micelle were both detected. The results of this study indicated that the hybrid micelles were capable of conquering the intestinal mucosal barrier, having a great potential for oral application of drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Kedong Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dutao Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Zupančič O, Kushwah V, Paudel A. Pancreatic lipase digestion: The forgotten barrier in oral administration of lipid-based delivery systems? J Control Release 2023; 362:381-395. [PMID: 37579977 DOI: 10.1016/j.jconrel.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/3, 8010 Graz, Austria.
| |
Collapse
|
33
|
Upadhaya P, Hazari PP, Mishra AK, Dutta B, Hassan P, Patravale V. Radiolabelled folate micellar carriers as proposed diagnostic aid for CNS tumors by nasal route. Drug Deliv Transl Res 2023; 13:2604-2613. [PMID: 37084174 DOI: 10.1007/s13346-023-01341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
Glioma refers to the most atypical variant of the malignant central nervous system tumors posturing massive challenge to the research fraternity owing to the flimsy improvement in the patient survival rate over the past years. The aim of the proposed work was developing a diagnostic aid for brain tumors, which could be administered via the non-invasive intranasal route. Since overexpression of folate receptors in the central nervous system tumors is 500 times more than the normal healthy cells, we aimed at fabricating a radiolabeled folate encapsulated micellar delivery system to be given via the nasal route. Folate conjugated bifunctional chelating agent was synthesized, radiolabeled with 99mTc, and encapsulated in a micellar carrier. The fabricated micelles were further evaluated for in vivo nasal toxicity in rats and the same were found safe for intranasal administration. The fabricated micelles owing to their nano size, mucoadhesive nature, and enhanced permeation were observed to have a higher uptake into the brain (around 16% in 4 h) than as compared to the radiolabeled conjugated folate solution when studied for in vivo biodistribution in mice. Single-photon emission computerized tomography imaging performed in higher animals upon intranasal administration of the micellar formulation revealed enhanced uptake of the micelles into the animal brain. It is believed that the aforementioned formulation can be of a great diagnostic value in the detection of not only brain tumors but also other folate expressing cancers such as cervical, breast, and lungs as the system is fast, non-toxic, accurate, non-invasive, and simple.
Collapse
Affiliation(s)
- Prashant Upadhaya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Puthusserickal Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
34
|
Taniguchi M, Okumura R, Matsuzaki T, Nakatani A, Sakaki K, Okamoto S, Ishibashi A, Tani H, Horikiri M, Kobayashi N, Yoshikawa HY, Motooka D, Okuzaki D, Nakamura S, Kida T, Kameyama A, Takeda K. Sialylation shapes mucus architecture inhibiting bacterial invasion in the colon. Mucosal Immunol 2023; 16:624-641. [PMID: 37385587 DOI: 10.1016/j.mucimm.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation. However, the mechanisms by which Muc2 creates the network structure and sialylation prevents mucin degradation remain unknown. Here, by focusing on two glycosyltransferases, St6 N-acetylgalactosaminide α-2,6-sialyltransferase 6 (St6galnac6) and β-1,3-galactosyltransferase 5 (B3galt5), mediating the generation of desialylated glycans, we show that sialylation forms the network structure of Muc2 by providing negative charge and hydrophilicity. The colonic mucus of mice lacking St6galnac6 and B3galt5 was less sialylated, thinner, and more permeable to microbiota, resulting in high susceptibility to intestinal inflammation. Mice with a B3galt5 mutation associated with inflammatory bowel disease (IBD) also showed the loss of desialylated glycans of mucus and the high susceptibility to intestinal inflammation, suggesting that the reduced sialylation of Muc2 is associated with the pathogenesis of IBD. In mucins of mice with reduced sialylation, negative charge was reduced, the network structure was disturbed, and many bacteria invaded. Thus, sialylation mediates the negative charging of Muc2 and facilitates the formation of the mucin network structure, thereby inhibiting bacterial invasion in the colon to maintain gut homeostasis.
Collapse
Affiliation(s)
- Mugen Taniguchi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
| | - Takahisa Matsuzaki
- Center for Future Innovation, Graduate School of Engineering, Osaka University, Osaka, Japan; Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ayaka Nakatani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kei Sakaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shota Okamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Airi Ishibashi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Haruka Tani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Momoka Horikiri
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Naritaka Kobayashi
- Department of Electronic Systems Engineering, The University of Shiga Prefecture, Shiga, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshiyuki Kida
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
35
|
Yang W, Zhang X, Qi L, Wang Z, Wu W, Feng W, Gu Y. Colon-targeted EMSCs conditional medium hydrogel for treatment of ulcerative colitis in mice. Biomed Mater 2023; 18:065010. [PMID: 37722391 DOI: 10.1088/1748-605x/acfadb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Oral ecto-mesenchymal stem cells-conditional medium (EMSCs-CM) is a promising strategy for treating ulcerative colitis (UC). However, this therapy is currently limited by the harsh gastrointestinal environment and poor colonic targeting ability. Herein, a glutamine transaminase 2 (TG2) crosslinked EMSCs-CM hydrogel (EMSCs-CM-Gel) was fabricated by combining EMSCs-CM with negatively chargedγ-polyglutamic acid (γ-PGA) hydrogel. Intestinal epithelial cell 6 (IEC-6) was applied to construct a cell model with lipopolysaccharide to evaluate the anti-inflammatory potential of EMSCs-CMin vitro. The crosslinked gel was orally administered to mice in liquid form to access the effects of EMSCs-CM-Gelin vivo. This study was based on the fact that the hydrogel containing EMSCs-CM has negative charges, which ensure it remains at the positively charged inflamed colon tissue. The EMSCs-CM could continuously be released in the damaged colon mucosa along with the degradation of theγ-PGA hydrogel. Immunofluorescence and western blot were performed to assess the effects of EMSCs-CM-Gel on mice. The resultsin vivoshowed that EMSCs-CM-Gel could significantly suppress the expression of inflammatory cytokines, prevent the shortening of the length of the intestine and repair the intestinal barrier. Collectively, our findings provided a novel colon-targeted strategy, hoping to benefit UC patients a lot.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xingxing Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Liuyao Qi
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Weijiang Wu
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wenjing Feng
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yahan Gu
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
36
|
Yamamoto T, Tanji M, Mitsunaga F, Nakamura S. SARS-CoV-2 sublingual vaccine with RBD antigen and poly(I:C) adjuvant: Preclinical study in cynomolgus macaques. Biol Methods Protoc 2023; 8:bpad017. [PMID: 37711440 PMCID: PMC10497375 DOI: 10.1093/biomethods/bpad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Mucosal vaccine for sublingual route was prepared with recombinant SARS-CoV-2 spike protein receptor binding domain (RBD) antigen and poly(I:C) adjuvant components. The efficacy of this sublingual vaccine was examined using Cynomolgus macaques. Nine of the macaque monkeys were divided into three groups of three animals: control [just 400 µg poly(I:C) per head], low dose [30 µg RBD and 400 µg poly(I:C) per head], and high dose [150 µg RBD and 400 µg poly(I:C) per head], respectively. N-acetylcysteine (NAC), a mild reducing agent losing mucin barrier, was used to enhance vaccine delivery to mucosal immune cells. RBD-specific IgA antibody secreted in pituita was detected in two of three monkeys of the high dose group and one of three animals of the low dose group. RBD-specific IgG and/or IgA antibodies in plasma were also detected in these monkeys. These indicated that the sublingual vaccine stimulated mucosal immune response to produce antigen-specific secretory IgA antibodies in pituita and/or saliva. This sublingual vaccine also affected systemic immune response to produce IgG (IgA) in plasma. Little RBD-specific IgE was detected in plasma, suggesting no allergic antigenicity of this sublingual vaccine. Thus, SARS-CoV-2 sublingual vaccine consisting of poly(I:C) adjuvant showed reasonable efficacy in a non-human primate model.
Collapse
Affiliation(s)
- Tetsuro Yamamoto
- Innovation Research Center, EPS Holdings, Inc., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- EP Mediate Co., Ltd, 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- Research Center, EPS Innovative Medicine Co., Ltd, 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Masanori Tanji
- Innovation Research Center, EPS Holdings, Inc., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- EP Mediate Co., Ltd, 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Fusako Mitsunaga
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| | - Shin Nakamura
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| |
Collapse
|
37
|
Bustos NA, Ribbeck K, Wagner CE. The role of mucosal barriers in disease progression and transmission. Adv Drug Deliv Rev 2023; 200:115008. [PMID: 37442240 DOI: 10.1016/j.addr.2023.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen's fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Wang CM, Fernez MT, Woolston BM, Carrier RL. Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria. Adv Drug Deliv Rev 2023; 200:114966. [PMID: 37329985 PMCID: PMC11184232 DOI: 10.1016/j.addr.2023.114966] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
39
|
Mane V, Mehta R, Alvarez N, Sharma V, Park S, Fox A, DeCarlo C, Yang X, Perlin DS, Powell RLR. In Vivo Antiviral Efficacy of LCTG-002, a Pooled, Purified Human Milk Secretory IgA product, Against SARS-CoV-2 in a Murine Model of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554813. [PMID: 37693438 PMCID: PMC10491103 DOI: 10.1101/2023.08.25.554813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosal compartments including the respiratory tract, with the secretory form of IgA (sIgA) being dominant and uniquely stable in these environments. sIgA is naturally found in human milk, which could be considered a global resource for this biologic, justifying the development of human milk sIgA as a dedicated airway therapeutic for respiratory infections such as SARS-CoV-2. In the present study, methods were therefore developed to efficiently extract human milk sIgA from donors who were either immunologically naïve to SARS-CoV-2 (pooled as a control IgA) or had recovered from a PCR-confirmed SARS-CoV-2 infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA Abs in their milk (pooled together to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1.0% or greater were all associated with sIgA. None of the proteins exhibited statistically significant differences between batches. Western blot demonstrated all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher binding to Spike, and was also capable of blocking the Spike - ACE2 interaction in vitro with 6.3x greater potency compared to control IgA (58% inhibition at ∼240ug/mL). LCTG-002 was then tested in vivo for its capacity to reduce viral burden in the lungs of K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 was demonstrated to significantly reduce SARS-CoV-2 titers in the lungs compared to control IgA when administered at either 250ug/day or 1 mg/day, as measured by TCID50, plaque forming units (PFU), and qRT-PCR, with a maximum reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure, efficacious, and well tolerated in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics against SARS-CoV-2 and other mucosal infections.
Collapse
|
40
|
Zhang S, Zhu C, Huang W, Liu H, Yang M, Zeng X, Zhang Z, Liu J, Shi J, Hu Y, Shi X, Wang ZH. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release 2023; 360:514-527. [PMID: 37429360 DOI: 10.1016/j.jconrel.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Ciprandi G, Varriccchio A. Sobrerol: New Perspectives to Manage Patients with Frequent Respiratory Infections. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1210. [PMID: 37508708 PMCID: PMC10378669 DOI: 10.3390/children10071210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Respiratory tract infections (RTIs) are usually characterized by mucus hypersecretion. This condition may worsen and prolong symptoms and signs. For this reason, reducing mucus production and improving mucus removal represent relevant aspects of managing patients with RTIs. In this regard, mucoactive drugs may be effective. Mucoactive agents constitute a large class of compounds characterized by different mechanisms of action. Sobrerol is a monoterpene able to fluidify mucus, increase mucociliary clearance, and exert antioxidant activity. Sobrerol is available in various formulations (granules, syrup, nebulized, and suppository). Sobrerol has been on the market for over 50 years. Therefore, the present article revised the evidence concerning this compound and proposed new possible strategies. The literature analysis showed that several studies investigated the efficacy and safety of sobrerol in acute and chronic RTIs characterized by mucus hyperproduction. Seven pediatric studies have been conducted with favorable outcomes. However, the regulatory agencies recently reduced the treatment duration to three days. Therefore, a future study will test the hypothesis that a combination of oral and topical sobrerol could benefit children and adults with frequent respiratory tract infections. The rationale of this new approach is based on the concept that mucus accumulation could be a risk factor for increased susceptibility to infections.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- Allergy Center, Casa di Cura Villa Montallegro, 16145 Genoa, Italy
| | - Attilio Varriccchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
42
|
Mei X, Li J, Wang Z, Zhu D, Huang K, Hu S, Popowski KD, Cheng K. An inhaled bioadhesive hydrogel to shield non-human primates from SARS-CoV-2 infection. NATURE MATERIALS 2023; 22:903-912. [PMID: 36759564 PMCID: PMC10615614 DOI: 10.1038/s41563-023-01475-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration. SHIELD's protective effect is first demonstrated in mice against two SARS-CoV-2 pseudo-viruses with different mutated spike proteins. Strikingly, in African green monkeys, a single SHIELD inhalation provides protection for up to 8 hours, efficiently reducing infection by the SARS-CoV-2 WA1 and B.1.617.2 (Delta) variants. Notably, SHIELD is made with food-grade materials and does not affect normal respiratory functions. This approach could offer additional protection to the population against SARS-CoV-2 and other respiratory pathogens.
Collapse
Affiliation(s)
- Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill & Raleigh, NC, USA.
| |
Collapse
|
43
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
44
|
Crouzier T. A defensive blanket against viral infection of the lungs. NATURE MATERIALS 2023:10.1038/s41563-023-01594-1. [PMID: 37353640 DOI: 10.1038/s41563-023-01594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health (CBH), AlbaNova University Center, KTH Royal Institute of Technology, Stockholm, Sweden.
- Cirqle Biomedical Contraception ApS, Copenhagen, Denmark.
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Dang Y, Ma C, Chen K, Chen Y, Jiang M, Hu K, Li L, Zeng Z, Zhang H. The Effects of a High-Fat Diet on Inflammatory Bowel Disease. Biomolecules 2023; 13:905. [PMID: 37371485 PMCID: PMC10296751 DOI: 10.3390/biom13060905] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The interactions among diet, intestinal immunity, and microbiota are complex and play contradictory roles in inflammatory bowel disease (IBD). An increasing number of studies has shed light on this field. The intestinal immune balance is disrupted by a high-fat diet (HFD) in several ways, such as impairing the intestinal barrier, influencing immune cells, and altering the gut microbiota. In contrast, a rational diet is thought to maintain intestinal immunity by regulating gut microbiota. In this review, we emphasize the crucial contributions made by an HFD to the gut immune system and microbiota.
Collapse
Affiliation(s)
- Yuan Dang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kehan Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Golubkova A, Hunter CJ. Development of the Neonatal Intestinal Barrier, Microbiome, and Susceptibility to NEC. Microorganisms 2023; 11:1247. [PMID: 37317221 PMCID: PMC10221463 DOI: 10.3390/microorganisms11051247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The function of the intestinal barrier is partially dependent on host maturity and the colonization patterns of the microbiome to which it is exposed. Premature birth and stressors of neonatal intensive care unit (NICU)-related support (e.g., antibiotics, steroids, etc.) can alter the host internal environment resulting in changes in the intestinal barrier. Pathogenic microbial proliferation and breach of the immature intestinal barrier are proposed to be crucial steps in the development of neonatal diseases such as necrotizing enterocolitis. This article will review the current literature on the intestinal barrier in the neonatal gut, the consequences of microbiome development for this defense system, and how prematurity can influence neonatal susceptibility to gastrointestinal infection.
Collapse
Affiliation(s)
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Effects of prophylactic antibiotics administration on barrier properties of intestinal mucosa and mucus from preterm born piglets. Drug Deliv Transl Res 2023; 13:1456-1469. [PMID: 36884193 DOI: 10.1007/s13346-023-01309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Early intervention and short-duration treatments with antibiotics in premature infants are reported to reduce the incidence of necrotizing enterocolitis (NEC), a terrible disease with severe inflammation and impaired intestinal barrier properties. Yet, it is unclear how antibiotics exposure, as well as route of administration used for dosing, can minimize the risk of NEC. With this study, we aimed to investigate if and how administration of antibiotics may affect the barrier properties of intestinal mucosa and mucus. We compared how parenteral (PAR) and a combination of enteral and parenteral (ENT+PAR) ampicillin and gentamicin given to preterm born piglets within 48 h after birth affected both barrier and physical properties of ex vivo small intestinal mucosa and mucus. Permeation of the markers mannitol, metoprolol, and fluorescein-isothiocyanate dextran of 4 kDa (FD4) and 70 kDa (FD70) through the mucosa and mucus was evaluated. For all markers, permeation through the mucosa and mucus collected from PAR piglets tended to be reduced when compared to that observed using untreated piglets. In contrast, permeation through the mucosa and mucus collected from ENT+PAR piglets tended to be similar to that observed for untreated piglets. Additionally, rheological measurements on the mucus from PAR piglets and ENT+PAR piglets displayed a decreased G' and G'/G" ratio and decreased viscosity at 0.4 s-1 as well as lower stress stability compared to the mucus from untreated piglets.
Collapse
|
48
|
Liu K, Chen Y, Yang Z, Jin J. zwitterionic Pluronic analog-coated PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol 2023; 236:123870. [PMID: 36870645 DOI: 10.1016/j.ijbiomac.2023.123870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
In recent years, zwitterionic materials have drawn great attention in oral drug delivery system due to their capacity for rapid mucus diffusion and enhanced cellular internalization. However, zwitterionic materials tend to show strong polarity that was hard to directly coat hydrophobic nanoparticles (NPs). Inspired by Pluronic coating, a simple and convenient strategy to coat NPs with zwitterionic materials using zwitterionic Pluronic analogs was developed in this investigation. Poly(carboxybetaine)-poly(propylene oxide)-Poly(carboxybetaine) (PCB-PPO-PCB, PPP), containing PPO segments with MW > 2.0 kDa, can effectively adsorb on the surface of PLGA NPs with typical core-shell spherical in shape. The PLGA@PPP4K NPs were stable in gastrointestinal physiological environment and sequentially conquered mucus and epithelium barriers. Proton-assisted amine acid transporter 1 (PAT1) was verified to contribute to the enhanced internalization of PLGA@PPP4K NPs, and the NPs could partially evade lysosomal degradation pathway and utilize retrograde pathway for intracellular transport. In addition, the enhanced villi absorption in situ and oral liver distribution in vivo were also observed compared to PLGA@F127 NPs. Moreover, insulin-loaded PLGA@PPP4K NPs as an oral delivery application for diabetes induce a fine hypoglycemic response in diabetic rats after oral administration. The results of this study demonstrated that zwitterionic Pluronic analogs-coated NPs might provide a new perspective for zwitterionic materials application as well as oral delivery of biotherapeutics.
Collapse
Affiliation(s)
- Kedong Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
49
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
50
|
Novel Approach for the Approximation of Vitamin D3 Pharmacokinetics from In Vivo Absorption Studies. Pharmaceutics 2023; 15:pharmaceutics15030783. [PMID: 36986644 PMCID: PMC10052077 DOI: 10.3390/pharmaceutics15030783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
The changing environment and modified lifestyles have meant that many vitamins and minerals are deficient in a significant portion of the human population. Therefore, supplementation is a viable nutritional approach, which helps to maintain health and well-being. The supplementation efficiency of a highly hydrophobic compound such as cholecalciferol (logP > 7) depends predominantly on the formulation. To overcome difficulties associated with the evaluation of pharmacokinetics of cholecalciferol, a method based on the short time absorption data in the clinical study and physiologically based mathematical modeling is proposed. The method was used to compare pharmacokinetics of liposomal and oily formulations of vitamin D3. The liposomal formulation was more effective in elevating calcidiol concentration in serum. The determined AUC value for liposomal vitamin D3 formulation was four times bigger than that for the oily formulation.
Collapse
|