1
|
Kim Y, Jeong S, Park I, Moon HK. Revisiting Phryma leptostachya L.: phylogenetic relationships and biogeographical patterns from complete plastome. BMC PLANT BIOLOGY 2025; 25:278. [PMID: 40033209 PMCID: PMC11877724 DOI: 10.1186/s12870-025-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Phryma leptostachya L. is a notable example of a species with a disjunct distribution, found in both East Asia and Eastern North America. Despite the striking morphological similarities between these geographically isolated populations, molecular evidence suggests that they may have diverged sufficiently to be considered distinct taxa. RESULTS To clarify this, we analyzed the plastomes of P. leptostachya from Korea, Russia, and the USA. Their sizes ranged from 152,974 to 153,325 bp, each containing 113 genes. Differences were observed in the boundaries between large single copy (LSC)/IRa and IRb/LSC. In P. leptostachya_USA, the rps19 gene extended 30-31 bp into the IRa, and the rpl2 gene contracted 51-53 bp at the IRa/b compared to those of P. leptostachya_Korea and P. leptostachya_Russia, suggesting that expansion of the inverted repeat (IR) region occurred in P. leptostachya_USA. Regions such as psbZ-trnG, ccsA-ndhD, petA-psbJ, and psbC-trnS were identified as hotspots with sequence differences in the plastome, indicating differences among P. leptostachya variants. Phylogenetic analysis showed that P. leptostachya from Korea and Russia formed monophyletic groups, while the variety from the USA was paraphyletic. The divergence of P. leptostachya_USA occurred during the Pliocene, about 5.25 million years ago (MYA), whereas the split between P. leptostachya_Korea and P. leptostachya_Russia is estimated to have occurred approximately 0.87 MYA during the Pleistocene. The results also reveal that the family Phrymaceae underwent multiple dispersal and vicariance events from North America to East Asia, offering key insights into the phylogenetic relationships between P. leptostachya populations from Korea, Russia, and the USA. Based on the evidence, it is likely that P. leptostachya originated in North America and later migrated to East Asia via the Russian Far East and the Bering Land Bridge. CONCLUSIONS In conclusion, our study demonstrates clear molecular differences among P. leptostachya populations from various geographic locations, suggesting that these populations should be recognized as distinct species rather than conspecifics.
Collapse
Affiliation(s)
- Yeseul Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Sumin Jeong
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea.
| | - Hye-Kyoung Moon
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang C, Wang M, Yang S, Wu X, Zhu S, Yan Y, Xu J, Wen Y. Taxonomic status and spatial genetic pattern of Taxus in northern and central China: insights from integrative taxonomy, ecology and phylogeography. BMC PLANT BIOLOGY 2025; 25:181. [PMID: 39934695 PMCID: PMC11818355 DOI: 10.1186/s12870-025-06142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Phenotypic, ecological, and genetic differences are crucial for species delimitation and understanding speciation. However, the defining the distribution boundaries and mechanisms driving lineage differentiation of Taxus species in northern and central China remain unclear. This study combines three molecular markers (trnL-trnF, rbcL, ITS), leaf morphological, and ecological data, integrating multiple taxonomy, ecology, and phylogeography approaches to systematically investigate the taxonomic status and spatial genetic patterns of Taxus species in these regions. RESULTS A total of 177 samples from 27 populations, representing the natural distribution of Taxus in central and northern China, were collected. T. chinensis (TC) mainly occurs from 1000-2400 m in the south of Qinling Mountains, T. mairei (TM) from 100-1000 m in the south of Daba Mountains, and T. qinlingensis (TQ) from 900-1800 m in the north of Qinling Mountains. The three species overlap in the central Qinling, eastern Daba, and Wushan Mountains at elevations of 900-1800 m. Seventeen haplotypes and 21 ribotypes were identified, forming three clusters corresponding to TC, TM, and TQ. Both cpDNA and nDNA data reveals distinct phylogeographic structures, significant genetic differentiation, and smaller bidirectional gene flow among species. Genetic and niche play a more prominent role in species divergence than morphological traits. Effective population sizes and genetic diversity are higher in TC and TM than in TQ. Suitable habitats expanded southwestward after the Last Glacial Maximum (LGM) and are projected to shift northwestward and contract under future warming scenarios. CONCLUSION Geologic movement (rapid uplift of the Qinling and surrounding mountains), climate fluctuations (cold-drying effect, and glacial-interglacial cycles), and habitat heterogeneity (gradients in geography and elevation) together shaped interspecific adaptive differentiation and shifts in population dynamics of the three Taxus species. The Qinling-Daba-Wushan mountain range likely played a key role in the independent evolution of these species in local glacial refugia and their post-glacial recontact at the intersection of these mountain ranges. This study provides new insights into the taxonomic status and genetic variation pattern of Taxus species in central and northern China.
Collapse
Affiliation(s)
- Chuncheng Wang
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Minqiu Wang
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Shaolong Yang
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Xintong Wu
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Shanshan Zhu
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Yadan Yan
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Jing Xu
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Yafeng Wen
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China.
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China.
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China.
| |
Collapse
|
3
|
Wang C, Li Y, Yang G, Zhang W, Guo C. Comparative analysis of chloroplast genomes and phylogenetic relationships in the endemic Chinese bamboo Gelidocalamus (Bambusoideae). FRONTIERS IN PLANT SCIENCE 2024; 15:1470311. [PMID: 39588086 PMCID: PMC11586178 DOI: 10.3389/fpls.2024.1470311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Introduction Gelidocalamus Wen is a small yet taxonomically challenging genus within the Arundinarieae tribe. Recent molecular studies have suggested it may not be monophyletic. However, limited species sampling and insufficient molecular marker information have resulted in poorly resolved phylogenetic relationships within this genus. Methods The complete chloroplast genomes covering all 16 species and one variant of Gelidocalamus were sequenced, and comparative analyses were conducted. Phylogenetic analyses were performed using different molecular markers, including chloroplast data, the nuclear ribosomal DNA (nrDNA) repeats region, and 29 mitochondrial protein-coding genes. Additionally, the divergence times of Gelidocalamus were estimated to reveal their evolutionary history. Results The plastomes of Gelidocalamus ranged in size from 139,500 bp to 139,801 bp, with a total of 137 identified genes, including 90 protein-coding genes, 39 tRNA genes, and 8 rRNA genes. The size of the nrDNA repeats ranged from 5,802 bp to 5,804 bp. Phylogenetic analysis based on chloroplast data revealed that Gelidocalamus is polyphyletic, with different subclades distributed within the IV and V clades. However, phylogenetic analysis based on nrDNA and mitochondrial genes did not effectively resolve the relationships within the genus. Discussion Comparative analysis of chloroplast genomes indicated that Gelidocalamus shares a high degree of similarity with closely related genera in terms of chloroplast genome collinearity, codon usage bias, and repetitive sequences. Divergence time estimation suggests that it is a relatively young group, with all members appearing successively over the past four million years. The complex phylogenetic patterns may arise from the rapid radiation of Arundinarieae. This study provides a preliminary foundation for further in-depth research on the phylogeny, genomic structural features, and divergence times of this genus.
Collapse
Affiliation(s)
| | | | | | | | - Chunce Guo
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Forestry College, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Sánchez-Gómez D, Aranda I. Unveiling intra-population functional variability patterns in a European beech (Fagus sylvatica L.) population from the southern range edge: drought resistance, post-drought recovery and phenotypic plasticity. TREE PHYSIOLOGY 2024; 44:tpae107. [PMID: 39163264 PMCID: PMC11412075 DOI: 10.1093/treephys/tpae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Understanding covariation patterns of drought resistance, post-drought recovery and phenotypic plasticity, and their variability at the intra-population level are crucial for predicting forest vulnerability to increasing aridity. This knowledge is particularly urgent at the trailing range edge since, in these areas, tree species are proximal to their ecological niche boundaries. While this proximity increases their susceptibility, these populations are recognized as valuable genetic reservoirs against environmental stressors. The conservation of this genetic variability is critical for the adaptive capacity of the species in the current context of climate change. Here we examined intra-population patterns of stem basal growth, gas exchange and other leaf functional traits in response to an experimental drought in seedlings of 16 open-pollinated families within a marginal population of European beech (Fagus sylvatica L.) from its southern range edge. We found a high degree of intra-population variation in leaf functional traits, photosynthetic performance, growth patterns and phenotypic plasticity in response to water availability. Low phenotypic plasticity was associated with higher resistance to drought. Both drought resistance and post-drought recovery of photosynthetic performance varied between maternal lines. However, drought resistance and post-drought recovery exhibited independent variation. We also found intra-population variation in stomatal sensitivity to soil drying, but it was not associated with either drought resistance or post-drought recovery. We conclude that an inverse relationship between phenotypic plasticity and drought resistance is not necessarily a sign of maladaptive plasticity, but rather it may reflect stability of functional performance and hence adaptation to withstand drought. The independent variation found between drought resistance and post-drought recovery should facilitate to some extent microevolution and adaption to increasing aridity. The observed variability in stomatal sensitivity to soil drying was consistent with previous findings at other scales (e.g., inter-specific variation, inter-population variation) that challenge the iso-anisohydric concept as a reliable surrogate of drought tolerance.
Collapse
Affiliation(s)
- David Sánchez-Gómez
- Department of Ecology and Forest Genetics, Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera La Coruña Km 7.5, E-28040 Madrid, Spain
| | - Ismael Aranda
- Department of Ecology and Forest Genetics, Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera La Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
5
|
Keppel G, Stralberg D, Morelli TL, Bátori Z. Managing climate-change refugia to prevent extinctions. Trends Ecol Evol 2024; 39:800-808. [PMID: 39232275 DOI: 10.1016/j.tree.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
Earth is facing simultaneous biodiversity and climate crises. Climate-change refugia - areas that are relatively buffered from climate change - can help address both of these problems by maintaining biodiversity components when the surrounding landscape no longer can. However, this capacity to support biodiversity is often vulnerable to severe climate change and other stressors. Thus, management actions need to consider the complex and multidimensional nature of refugia. We outline an approach to understand refugia-promoting processes and to evaluate refugial capacity to determine suitable management actions. Our framework applies climate-change refugia as tools to facilitate resistance in modern conservation planning. Such refugia-focused management can reduce extinctions and maintain biodiversity under climate change.
Collapse
Affiliation(s)
- Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001, Adelaide, Australia; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Diana Stralberg
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 122 Street, Edmonton, Alberta T6H 3S5, Canada
| | - Toni Lyn Morelli
- Northeast Climate Adaptation Science Center, US Geological Survey, Amherst, MA 01003, USA
| | - Zoltán Bátori
- Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; MTA-SZTE 'Momentum' Applied Ecology Research Group, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
6
|
Ogée J, Walbott M, Barbeta A, Corcket E, Brunet Y. Decametric-scale buffering of climate extremes in forest understory within a riparian microrefugia: the key role of microtopography. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1741-1755. [PMID: 38850441 DOI: 10.1007/s00484-024-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations, together with two other landscape features (elevation above the river and woodland fraction within a 300m radius). However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and + 15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~ 5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Our results explain well why beech trees in this climate refugium are restricted to the river gorges where microtopographic variations are the strongest and canopy gaps are rare.
Collapse
Affiliation(s)
- Jérôme Ogée
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France.
| | - Marion Walbott
- BIOGECO, Université de Bordeaux, INRAE, 33615, Pessac, France
| | - Adrià Barbeta
- BEECA, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Emmanuel Corcket
- BIOGECO, Université de Bordeaux, INRAE, 33615, Pessac, France
- IMBE, Aix Marseille Université, Avignon Université, CNRS, IRD, Marseille, 13397, France
| | - Yves Brunet
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France
| |
Collapse
|
7
|
Zhou T, Chen X, López-Pujol J, Bai G, Herrando-Moraira S, Nualart N, Zhang X, Zhao Y, Zhao G. Genetically- and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia. PLANT DIVERSITY 2024; 46:585-599. [PMID: 39290880 PMCID: PMC11403150 DOI: 10.1016/j.pld.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 09/19/2024]
Abstract
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere. Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations. One of these relict lineages is Dipteronia, an oligotypic tree genus with a fossil record extending to the Paleocene. Here, we investigated the genetic variability, demographic dynamics and diversification patterns of the two currently recognized Dipteronia species (D ipteronia sinensis and D . dyeriana). Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions, two single copy nuclear genes and 15 simple sequence repeat loci. The genetic study was combined with niche comparison analyses on the environmental space, ecological niche modeling, and landscape connectivity analysis. We found that the two Dipteronia species have highly diverged both in genetic and ecological terms. Despite the incipient speciation processes that can be observed in D. sinensis, the occurrence of long-term stable refugia and, particularly, a dispersal corridor along Daba Shan-west Qinling, likely ensured its genetic and ecological integrity to date. Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic, but also provide insight into how Arcto-Tertiary relict plants in East Asia survived, evolved, and diversified.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaodan Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | | | - Neus Nualart
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
| | - Xiao Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
McNichol BH, Wang R, Hefner A, Helzer C, McMahon SM, Russo SE. Topography-driven microclimate gradients shape forest structure, diversity, and composition in a temperate refugial forest. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10153. [PMID: 38863691 PMCID: PMC11166229 DOI: 10.1002/pei3.10153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Macroclimate drives vegetation distributions, but fine-scale topographic variation can generate microclimate refugia for plant persistence in unsuitable areas. However, we lack quantitative descriptions of topography-driven microclimatic variation and how it shapes forest structure, diversity, and composition. We hypothesized that topographic variation and the presence of the forest overstory cause spatiotemporal microclimate variation affecting tree performance, causing forest structure, diversity, and composition to vary with topography and microclimate, and topography and the overstory to buffer microclimate. In a 20.2-ha inventory plot in the North American Great Plains, we censused woody stems ≥1 cm in diameter and collected detailed topographic and microclimatic data. Across 59-m of elevation, microclimate covaried with topography to create a sharp desiccation gradient, and topography and the overstory buffered understory microclimate. The magnitude of microclimatic variation mirrored that of regional-scale variation: with increasing elevation, there was a decrease in soil moisture corresponding to the difference across ~2.1° of longitude along the east-to-west aridity gradient and an increase in air temperature corresponding to the difference across ~2.7° of latitude along the north-to-south gradient. More complex forest structure and higher diversity occurred in moister, less-exposed habitats, and species occupied distinct topographic niches. Our study demonstrates how topographic and microclimatic gradients structure forests in putative climate-change refugia, by revealing ecological processes enabling populations to be maintained during periods of unfavorable macroclimate.
Collapse
Affiliation(s)
- Bailey H. McNichol
- School of Biological SciencesUniversity of Nebraska–LincolnLincolnNebraskaUSA
| | - Ran Wang
- School of Natural ResourcesUniversity of Nebraska–LincolnLincolnNebraskaUSA
| | | | | | - Sean M. McMahon
- Smithsonian Institution Forest Global Earth ObservatorySmithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Sabrina E. Russo
- School of Biological SciencesUniversity of Nebraska–LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of Nebraska–LincolnLincolnNebraskaUSA
| |
Collapse
|
9
|
Backus GA, Clements CF, Baskett ML. Restoring spatiotemporal variability to enhance the capacity for dispersal-limited species to track climate change. Ecology 2024; 105:e4257. [PMID: 38426609 DOI: 10.1002/ecy.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 03/02/2024]
Abstract
Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia-like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia-like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.
Collapse
Affiliation(s)
- Gregory A Backus
- Environmental Science and Policy, University of California, Davis, Davis, California, USA
| | | | - Marissa L Baskett
- Environmental Science and Policy, University of California, Davis, Davis, California, USA
| |
Collapse
|
10
|
Mazza G, Monteverdi MC, Altieri S, Battipaglia G. Climate-driven growth dynamics and trend reversal of Fagus sylvatica L. and Quercus cerris L. in a low-elevation beech forest in Central Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168250. [PMID: 37926261 DOI: 10.1016/j.scitotenv.2023.168250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In highly climate-change-sensitive regions, such as the Mediterranean, increasing knowledge of climate-driven growth dynamics is required for habitat conservation and forecasting species adaptability under future climate change. In this study, we test a high spectrum of climatic signals, not only monthly and seasonal but also on a multi-year scale and include the single tree analysis to answer this issue, focusing on a low-elevation thermophilic old-growth beech forest surrounding the Bracciano Lake in Central Italy. Through a dendroecological and isotope analysis, we evaluate both short- and long-term sensitivity of F. sylvatica and the coexisting better-drought-adapted species Q. cerris to climatic and hydrological variability in terms of growth reduction and δ13C responses. After the 1990s, beech trees showed a climate-driven decrease in growth compared to oak, especially after 2003 (-20 % of basal area increment), with a significant growth trend reversal between the species. For F. sylvatica, the significant correlations with precipitation decreased, whereas for Q. cerris, they increased, with a higher number of trees positively influenced. However, the temperature highlighted more clearly the contrasting climate-growth correlation pattern between the two species. In F. sylvatica after the '90s, the negative effect of temperatures has significantly intensified, as shown by past summer values up to four years previously, involving about half of the trees. Surprisingly, the water-level fluctuations showed a highly significant influence on tree-ring growth in both species. Nevertheless, it reduced after the '90s. Finally, Q. cerris trees showed a significantly higher ability to recover their growth levels after extreme droughts (+55 %). The growth trend reversal and the shift in iWUE of the last years may point to potential changes in the future species composition, raising the need for climate-adaptive silviculture (e.g., selective thinning) to reduce growth decline, enhance resilience and favour the natural regeneration of the target species for habitat conservation.
Collapse
Affiliation(s)
| | | | - Simona Altieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
11
|
Park JS, Lee H. Predicting the spatio-temporal distribution of the invasive alien plant Andropogon virginicus, in the South Korean peninsula considering long-distance dispersal capacities. PLoS One 2023; 18:e0291365. [PMID: 37963154 PMCID: PMC10645320 DOI: 10.1371/journal.pone.0291365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/26/2023] [Indexed: 11/16/2023] Open
Abstract
The spread of invasive alien species is a major threat to biodiversity. Estimating the long-distance dispersal capacity of invasive alien plants is vital for understanding their population dynamics and community composition. We predicted the spatial-temporal distribution of the alien plant Andropogon virginicus, in the Korean peninsula under climate change scenario using Random Forest (RF) and Cellular Automaton (CA) methods. Land use, barriers to dispersal, long-distance dispersal frequency, and maximum long-distance dispersal range were considered in our analysis. Our results showed that, among the five selected environmental variables, annual mean temperature and Human Foot-Printing (HFP) were positively associated with the occurrence probability of A. virginicus. This suggests that A. virginicus is likely to spread to the disturbed northern part of the Korean Peninsula due to climate change and habitat preference. When comparing modeling results for dispersal to field survey data, the modeling raster sets drawn from the long-distance dispersal frequency of 0.05 and maximum long-distance dispersal distance of 30 km y-1 had the most similar spatial expansion among the six long-distance dispersal parameter sets. The dispersal directions were associated with the landscape. Specifically, seeds dispersed by wind (anemochorous seeds) could propagate into open landscapes more easily than in forests. Regarding A. virginicus management, this grass can quickly invade bare ground with their wind-dispersed seeds, therefore habitat destruction, such as excessive logging and weeding, should be restrained.
Collapse
Affiliation(s)
- Jeong-Soo Park
- Division of Climate Change Research, National Institute of Ecology, Seocheon, Korea
| | - Hyohyemi Lee
- Division of Climate Change Research, National Institute of Ecology, Seocheon, Korea
| |
Collapse
|
12
|
Santos JCDOCV, Hoch H, Zampaulo RDEA, Simes MH, Ferreira RL. Adaptive shifts in Neotropical planthoppers: new troglobitic species and the first surface species of Ferricixius Hoch & Ferreira, 2012 (Hemiptera: Fulgoromorpha: Cixiidae) from Brazilian caves. Zootaxa 2023; 5330:375-397. [PMID: 38221131 DOI: 10.11646/zootaxa.5330.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 01/16/2024]
Abstract
Here we describe three cixiid species new to science which we assign to the hitherto monotypic genus Ferricixius Hoch & Ferreira, 2012 from Brazil. Ferricixius michaeli sp. nov. and F. goliathi sp. nov. of the new species arelike the type species Ferricixius davidi Hoch &Ferreira, 2012obligately cavernicolous and display varying degrees of troglomorphy, such as the reduction of compound eyes, wings, and bodily pigmentation, while F. urieli sp. nov. displays well developed compound eyes and wings, andalthough so far only found inside cavesis ecologically classified as either epigean, or subtroglophile. We provide a modified diagnosis for the genus and an identification key to the species of Ferricixius, as well as information on the distribution, ecology, and habitat of the three new species herein described. Evolutionary implications are discussed, and adaptive shifts from epigean to subterranean habitat are presumed to be the most likely scenario underlying the evolution of cave dwelling Ferricixius.
Collapse
Affiliation(s)
- Jlio Csar DO Carmo Vaz Santos
- Centro de Estudos em Biologia Subterrnea; Departamento de Ecologia e Conservao; Instituto de Cincias Naturais; Universidade Federal de Lavras; MG. CEP 37200-900; Brazil; Programa de Ps-graduao em Ecologia Aplicada (PPGECO); Universidade Federal de Lavras.
| | - Hannelore Hoch
- Museum fr Naturkunde; Leibniz Institute for Evolution and Biodiversity Science; Humboldt-University; Invalidenstr. 43; D-10115 Berlin; Germany.
| | - Robson DE Almeida Zampaulo
- Gerncia de Espeleologia e Licenciamento Ambiental - Vale S.A; Nova Lima; Minas Gerais; CEP: 34.006-200; Brazil.
| | - Matheus Henrique Simes
- Gerncia de Espeleologia e Licenciamento Ambiental - Vale S.A; Nova Lima; Minas Gerais; CEP: 34.006-200; Brazil.
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrnea; Departamento de Ecologia e Conservao; Instituto de Cincias Naturais; Universidade Federal de Lavras; MG. CEP 37200-900; Brazil; Programa de Ps-graduao em Ecologia Aplicada (PPGECO); Universidade Federal de Lavras.
| |
Collapse
|
13
|
Méndez-Cea B, García-García I, Linares JC, Gallego FJ. Warming appears as the main risk of non-adaptedness for western Mediterranean relict fir forests under expected climate change scenarios. FRONTIERS IN PLANT SCIENCE 2023; 14:1155441. [PMID: 37636100 PMCID: PMC10451094 DOI: 10.3389/fpls.2023.1155441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Circum-Mediterranean firs are considered among the most drought-sensitive species to climate change. Understanding the genetic basis of trees' adaptive capacity and intra-specific variability to drought avoidance is mandatory to define conservation measures, thus potentially preventing their extinction. We focus here on Abies pinsapo and Abies marocana, both relict tree species, endemic from south Spain and north Morocco, respectively. A total of 607 samples were collected from eight nuclei: six from Spanish fir and two from Moroccan fir. A genotyping by sequencing technique called double digestion restriction site-associated DNA sequencing (ddRAD-seq) was performed to obtain a genetic matrix based on single-nucleotide polymorphisms (SNPs). This matrix was utilized to study the genetic structure of A. pinsapo populations and to carry out selection signature studies. In order to understand how Spanish fir and Moroccan fir cope with climate change, genotype-environment associations (GEAs) were identified. Further, the vulnerability of these species to climate variations was estimated by the risk of non-adaptedness (RONA). The filtering of the de novo assembly of A. pinsapo provided 3,982 SNPs from 504 out of 509 trees sequenced. Principal component analysis (PCA) genetically separated Grazalema from the rest of the Spanish populations. However, FST values showed significant differences among the sampling points. We found 51 loci potentially under selection. Homolog sequences were found for some proteins related to abiotic stress response, such as dehydration-responsive element binding transcription factor, regulation of abscisic acid signaling, and methylation pathway. A total of 15 associations with 11 different loci were observed in the GEA studies, with the maximum temperature of the warmest month being the variable with the highest number of associated loci. This temperature sensitivity was also supported by the risk of non-adaptedness, which yielded a higher risk for both A. pinsapo and A. marocana under the high emission scenario (Representative Concentration Pathway (RCP) 8.5). This study sheds light on the response to climate change of these two endemic species.
Collapse
Affiliation(s)
- Belén Méndez-Cea
- Dpto. Genética, Fisiología y Microbiología, Unidad Docente de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel García-García
- Dpto. Genética, Fisiología y Microbiología, Unidad Docente de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Linares
- Dpto. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto. Genética, Fisiología y Microbiología, Unidad Docente de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Tonin R, Wilhelmi S, Gültas M, Gerdol R, Paun O, Trucchi E, Schmitt AO, Wellstein C. Ice holes microrefugia harbor genetically and functionally distinct populations of Vaccinium vitis-idaea (Ericaceae). Sci Rep 2023; 13:13055. [PMID: 37567871 PMCID: PMC10421893 DOI: 10.1038/s41598-023-39772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In the mountain terrain, ice holes are little depressions between rock boulders that are characterized by the exit of cold air able to cool down the rock surface even in summer. This cold air creates cold microrefugia in warmer surroundings that preserve plant species probably over thousands of years under extra-zonal climatic conditions. We hypothesized that ice hole populations of the model species Vaccinium vitis-idaea (Ericaceae) show genetic differentiation from nearby zonal subalpine populations, and high functional trait distinctiveness, in agreement with genetic patterns. We genotyped almost 30,000 single nucleotide polymorphisms using restriction site-associated DNA sequencing and measured eight functional traits indicative of individual performance and ecological strategies. Genetic results showed high differentiation among the six populations suggesting isolation. On siliceous bedrock, ice hole individuals exhibited higher levels of admixture than those from subalpine populations which could have experienced more bottlenecks during demographic fluctuations related to glacial cycles. Ice hole and subalpine calcareous populations clearly separated from siliceous populations, indicating a possible effect of bedrock in shaping genetic patterns. Trait analysis reflected the bedrock effect on populations' differentiation. The significant correlation between trait and genetic distances suggests the genetic contribution in shaping intraspecific functional differentiation. In conclusion, extra-zonal populations reveal a prominent genetic and phenotypic differentiation determined by history and ecological contingency. Therefore, microrefugia populations can contribute to the overall variability of the species and lead to intraspecific-driven responses to upcoming environmental changes.
Collapse
Affiliation(s)
- Rita Tonin
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bozen, Italy
| | - Selina Wilhelmi
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), 37075, Göttingen, Germany
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), 37075, Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, 59494, Soest, Germany
| | - Renato Gerdol
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Ovidiu Paun
- Department for Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Emiliano Trucchi
- Department of Life and Environmental Science, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), 37075, Göttingen, Germany
| | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bozen, Italy.
| |
Collapse
|
15
|
Marsh JR, Milner SJ, Shaw M, Stempel AJ, Harvey MS, Rix MG. A Case for Below-Ground Dispersal? Insights into the Biology, Ecology and Conservation of Blind Cave Spiders in the Genus Troglodiplura (Mygalomorphae: Anamidae). INSECTS 2023; 14:449. [PMID: 37233077 PMCID: PMC10231051 DOI: 10.3390/insects14050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Previously described from only fragments of exoskeleton and juvenile specimens, the cave spider genus Troglodiplura (Araneae: Anamidae), endemic to the Nullarbor Plain, is the only troglomorphic member of the infraorder Mygalomorphae recorded from Australia. We investigated the distribution of Troglodiplura in South Australia, collecting and observing the first (intact) mature specimens, widening the number of caves it has been recorded in, and documenting threats to conservation. Phylogenetic analyses support the placement of Troglodiplura as an independent lineage within the subfamily Anaminae (the 'Troglodiplura group') and provide unequivocal evidence that populations from apparently isolated cave systems are conspecifics of T. beirutpakbarai Harvey & Rix, 2020, with extremely low or negligible inter-population mitochondrial divergences. This is intriguing evidence for recent or contemporary subterranean dispersal of these large, troglomorphic spiders. Observations of adults and juvenile spiders taken in the natural cave environment, and supported by observations in captivity, revealed the use of crevices within caves as shelters, but no evidence of silk use for burrow construction, contrasting with the typical burrowing behaviours seen in other Anamidae. We identify a range of threats posed to the species and to the fragile cave ecosystem, and provide recommendations for further research to better define the distribution of vulnerable taxa within caves and identify actions needed to protect them.
Collapse
Affiliation(s)
- Jessica R. Marsh
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Biological Sciences, South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia
- Invertebrates Australia, Osborne Park, WA 6017, Australia
| | - Steven J. Milner
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Matthew Shaw
- Biological Sciences, South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia
| | | | - Mark S. Harvey
- Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia; (M.S.H.); (M.G.R.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael G. Rix
- Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia; (M.S.H.); (M.G.R.)
- Biodiversity and Geosciences Program, Queensland Museum Collections & Research Centre, Hendra, QLD 4011, Australia
| |
Collapse
|
16
|
Ramos RF, Franco AMA, Gilroy JJ, Silva JP. Combining bird tracking data with high-resolution thermal mapping to identify microclimate refugia. Sci Rep 2023; 13:4726. [PMID: 36959254 PMCID: PMC10036614 DOI: 10.1038/s41598-023-31746-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Elevated temperatures can have a range of fitness impacts, including high metabolic cost of thermoregulation, hence access to microclimate refugia may buffer individuals against exposure to high temperatures. However, studies examining the use of microclimate refugia, remain scarce. We combined high resolution microclimate modelling with GPS tracking data as a novel approach to identify the use and availability of cooler microclimate refugia (sites > 0.5 °C cooler than the surrounding landscape) at the scales experienced by individual animals. 77 little bustards (Tetrax tetrax) were tracked between 2009 and 2019. The 92,685 GPS locations obtained and their surrounding 500 m areas were characterised with hourly temperature and habitat information at 30 m × 30 m and used to determine microclimate refugia availability and use. We found that the semi-natural grassland landscapes used by little bustards have limited availability of cooler microclimate areas-fewer than 30% of the locations. The use of cooler microclimate sites by little bustards increased at higher ambient temperatures, suggesting that individuals actively utilise microclimate refugia in extreme heat conditions. Microclimate refugia availability and use were greater in areas with heterogeneous vegetation cover, and in coastal areas. This study identified the landscape characteristics that provide microclimate opportunities and shelter from extreme heat conditions. Little bustards made greater use of microclimate refugia with increasing temperatures, particularly during the breeding season, when individuals are highly site faithful. This information can help identify areas where populations might be particularly exposed to climate extremes due to a lack of microclimate refugia, and which habitat management measures may buffer populations from expected increased exposure to temperature extremes.
Collapse
Affiliation(s)
- Rita F Ramos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
- Departamento Biologia Faculdade de Ciências, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- School of Environmental Sciences, University of East Anglia, Norwich, UK.
| | - Aldina M A Franco
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - James J Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - João P Silva
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
17
|
Uluar O, Yahyaoğlu Ö, Başıbüyük HH, Çıplak B. Taxonomy of the rear-edge populations: the case of genus Anterastes (Orthoptera, Tettigoniidae). ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-023-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
18
|
McNichol BH, Russo SE. Plant Species' Capacity for Range Shifts at the Habitat and Geographic Scales: A Trade-Off-Based Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:1248. [PMID: 36986935 PMCID: PMC10056461 DOI: 10.3390/plants12061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Climate change is causing rapid shifts in the abiotic and biotic environmental conditions experienced by plant populations, but we lack generalizable frameworks for predicting the consequences for species. These changes may cause individuals to become poorly matched to their environments, potentially inducing shifts in the distributions of populations and altering species' habitat and geographic ranges. We present a trade-off-based framework for understanding and predicting whether plant species may undergo range shifts, based on ecological strategies defined by functional trait variation. We define a species' capacity for undergoing range shifts as the product of its colonization ability and the ability to express a phenotype well-suited to the environment across life stages (phenotype-environment matching), which are both strongly influenced by a species' ecological strategy and unavoidable trade-offs in function. While numerous strategies may be successful in an environment, severe phenotype-environment mismatches result in habitat filtering: propagules reach a site but cannot establish there. Operating within individuals and populations, these processes will affect species' habitat ranges at small scales, and aggregated across populations, will determine whether species track climatic changes and undergo geographic range shifts. This trade-off-based framework can provide a conceptual basis for species distribution models that are generalizable across plant species, aiding in the prediction of shifts in plant species' ranges in response to climate change.
Collapse
Affiliation(s)
- Bailey H. McNichol
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
- Center for Plant Science Innovation, University of Nebraska–Lincoln, 1901 Vine Street, N300 Beadle Center, Lincoln, NE 68588-0118, USA
| |
Collapse
|
19
|
Assessment of the Diversity, Distinctiveness and Conservation of Australia’s Central Queensland Coastal Rainforests Using DNA Barcoding. DIVERSITY 2023. [DOI: 10.3390/d15030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Globally threatened dry rainforests are poorly studied and conserved when compared to mesic rainforests. Investigations of dry rainforest communities within Australia are no exception. We assessed the community diversity, distinctiveness and level of conservation in Central Queensland coastal dry rainforest communities. Our three-marker DNA barcode-based phylogeny, based on rainforest species from the Central Queensland Coast, was combined with the phylogeny from Southeast Queensland. The phylogenetic tree and Central Queensland Coast (CQC) community species lists were used to evaluate phylogenetic diversity (PD) estimates and species composition to pinpoint regions of significant rainforest biodiversity. We evaluated the patterns and relationships between rainforest communities of the biogeographical areas of Central Queensland Coast and Southeast Queensland, and within and between Subregions. Subsequently, we identified areas of the highest distinctiveness and diversity in phylogenetically even rainforest communities, consistent with refugia, and areas significantly more related than random, consistent with expansion into disturbed or harsher areas. We found clear patterns of phylogenetic clustering that suggest that selection pressures for moisture and geology were strong drivers of rainforest distribution and species diversity. These results showed that smaller dry rainforests in Central Queensland Coast (CQC) represented areas of regional plant migration but were inadequately protected. To sustain species diversity and distribution under intense selection pressures of moisture availability and substrate type throughout this dry and geologically complex region, the future conservation of smaller patches is essential.
Collapse
|
20
|
Méndez-Cea B, García-García I, Sánchez-Salguero R, Lechuga V, Gallego FJ, Linares JC. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. PLANTS (BASEL, SWITZERLAND) 2023; 12:873. [PMID: 36840220 PMCID: PMC9959318 DOI: 10.3390/plants12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The frequency and intensity of drought events are increasing worldwide, challenging the adaptive capacity of several tree species. Here, we evaluate tree growth patterns and climate sensitivity to precipitation, temperature, and drought in the relict Moroccan fir Abies marocana. We selected two study sites, formerly stated as harboring contrasting A. marocana taxa (A. marocana and A. tazaotana, respectively). For each tree, dendrochronological methods were applied to quantify growth patterns and climate-growth sensitivity. Further, ddRAD-seq was performed on the same trees and close saplings to obtain single nucleotide polymorphisms (SNPs) and related genotype-phenotype associations. Genetic differentiation between the two studied remnant populations of A. marocana was weak. Growth patterns and climate-growth relationships were almost similar at the two sites studied, supporting a negative effect of warming. Growth trends and tree size showed associations with SNPs, although there were no relationships with phenotypes related to climatic sensitivity. We found significant differences in the SNPs subjected to selection in the saplings compared to the old trees, suggesting that relict tree populations might be subjected to genetic differentiation and local adaptation to climate dryness. Our results illustrate the potential of tree rings and genome-wide analysis to improve our understanding of the adaptive capacity of drought-sensitive forests to cope with ongoing climate change.
Collapse
Affiliation(s)
- Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Víctor Lechuga
- Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente (CEACTEMA), Universidad de Jaén, 23071 Jaén, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan C. Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
21
|
Cobo-Simón I, Maloof JN, Li R, Amini H, Méndez-Cea B, García-García I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Wegrzyn JL, Seco JI, Linares JC, Gallego FJ. Contrasting transcriptomic patterns reveal a genomic basis for drought resilience in the relict fir Abies pinsapo Boiss. TREE PHYSIOLOGY 2023; 43:315-334. [PMID: 36210755 DOI: 10.1093/treephys/tpac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Julin N Maloof
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Ruijuan Li
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Hajar Amini
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Belén Méndez-Cea
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Isabel García-García
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - José Ignacio Seco
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Carlos Linares
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| |
Collapse
|
22
|
Méndez-Cea B, García-García I, Gazol A, Camarero JJ, de Andrés EG, Colangelo M, Valeriano C, Gallego FJ, Linares JC. Weak genetic differentiation but strong climate-induced selective pressure toward the rear edge of mountain pine in north-eastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159778. [PMID: 36309267 DOI: 10.1016/j.scitotenv.2022.159778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Local differentiation at distribution limits may influence species' adaptive capacity to environmental changes. However, drivers, such gene flow and local selection, are still poorly understood. We focus on the role played by range limits in mountain forests to test the hypothesis that relict tree populations are subjected to genetic differentiation and local adaptation. Two alpine treelines of mountain pine (Pinus uncinata Ram. ex DC) were investigated in the Spanish Pyrenees. Further, an isolated relict population forming the species' southernmost distribution limit in north-eastern Spain was also investigated. Using genotyping by sequencing, a genetic matrix conformed by single nucleotide polymorphisms (SNPs) was obtained. This matrix was used to perform genotype-environment and genotype-phenotype associations, as well as to model risk of non-adaptedness. Increasing climate seasonality appears as an essential element in the interpretation of SNPs subjected to selective pressures. Genetic differentiations were overall weak. The differences in leaf mass area and radial growth rate, as well as the identification of several SNPs subjected to selective pressures, exceeded neutral predictions of differentiation among populations. Despite genetic drift might prevail in the isolated population, the Fst values (0.060 and 0.066) showed a moderate genetic drift and Nm values (3.939 and 3.555) indicate the presence of gene flow between the relict population and both treelines. Nonetheless, the SNPs subjected to selection pressures provide evidences of possible selection in treeline ecotones. Persistence in range boundaries seems to involve several selective pressures in species' traits, which were significantly related to enhanced drought seasonality at the limit of P. uncinata distribution range. We conclude that gene flow is unlikely to constrain adaptation in the P. uncinata rear edge, although this species shows vulnerability to future climate change scenarios involving warmer and drier conditions.
Collapse
Affiliation(s)
- Belén Méndez-Cea
- Dpto. Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040, Spain.
| | - Isabel García-García
- Dpto. Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040, Spain.
| | - Antonio Gazol
- Pyrenean Institute of Ecology (IPE-CSIC), Zaragoza E-50059, Spain.
| | - J Julio Camarero
- Pyrenean Institute of Ecology (IPE-CSIC), Zaragoza E-50059, Spain.
| | | | - Michele Colangelo
- Pyrenean Institute of Ecology (IPE-CSIC), Zaragoza E-50059, Spain; School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza 85100, Italy
| | | | - Francisco Javier Gallego
- Dpto. Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040, Spain.
| | - Juan Carlos Linares
- Dpto. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| |
Collapse
|
23
|
Sanchez DE, Walker FM, Sobek CJ, Lausen C, Chambers CL. Once upon a time in Mexico: Holocene biogeography of the spotted bat (Euderma maculatum). PLoS One 2023; 18:e0274342. [PMID: 37163547 PMCID: PMC10171611 DOI: 10.1371/journal.pone.0274342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Holocene-era range expansions are relevant to understanding how a species might respond to the warming and drying climates of today. The harsh conditions of North American deserts have phylogenetically structured desert bat communities but differences in flight capabilities are expected to affect their ability to compete, locate, and use habitat in the face of modern climate change. A highly vagile but data-deficient bat species, the spotted bat (Euderma maculatum), is thought to have expanded its range from central Mexico to western Canada during the Holocene. With specimens spanning this latitudinal extent, we examined historical demography, and used ecological niche modeling (ENM) and phylogeography (mitochondrial DNA), to investigate historic biogeography from the rear to leading edges of the species' range. The ENM supported the notion that Mexico was largely the Pleistocene-era range, whereas haplotype pattern and Skyline plots indicated that populations expanded from the southwestern US throughout the Holocene. This era provided substantial gains in suitable climate space and likely facilitated access to roosting habitat throughout the US Intermountain West. Incongruent phylogenies among different methods prevented a precise understanding of colonization history. However, isolation at the southern-most margin of the range suggests a population was left behind in Mexico as climate space contracted and are currently of unknown status. The species appears historically suited to follow shifts in climate space but differences in flight behaviors between leading edge and core-range haplogroups suggest range expansions could be influenced by differences in habitat quality or climate (e.g., drought). Although its vagility could facilitate response to environmental change and thereby avoid extinction, anthropogenic pressures at the core range could still threaten the ability for beneficial alleles to expand into the leading edge.
Collapse
Affiliation(s)
- Daniel Enrique Sanchez
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
- The Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Faith M Walker
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
- The Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Colin J Sobek
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
- The Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Cori Lausen
- Wildlife Conservation Society Canada, Kaslo, British Columbia, Canada
| | - Carol L Chambers
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
24
|
Cobo-Simón I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Maloof JN, Méndez-Cea B, Seco JI, Linares JC, Gallego FJ. De novo transcriptome sequencing and gene co-expression reveal a genomic basis for drought sensitivity and evidence of a rapid local adaptation on Atlas cedar ( Cedrus atlantica). FRONTIERS IN PLANT SCIENCE 2023; 14:1116863. [PMID: 37152146 PMCID: PMC10155838 DOI: 10.3389/fpls.2023.1116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Introduction Understanding the adaptive capacity to current climate change of drought-sensitive tree species is mandatory, given their limited prospect of migration and adaptation as long-lived, sessile organisms. Knowledge about the molecular and eco-physiological mechanisms that control drought resilience is thus key, since water shortage appears as one of the main abiotic factors threatening forests ecosystems. However, our current background is scarce, especially in conifers, due to their huge and complex genomes. Methods Here we investigated the eco-physiological and transcriptomic basis of drought response of the climate change-threatened conifer Cedrus atlantica. We studied C. atlantica seedlings from two locations with contrasting drought conditions to investigate a local adaptation. Seedlings were subjected to experimental drought conditions, and were monitored at immediate (24 hours) and extended (20 days) times. In addition, post-drought recovery was investigated, depicting two contrasting responses in both locations (drought resilient and non-resilient). Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of drought resilience and investigate a rapid local adaptation of C. atlantica. Results De novo transcriptome assembly was performed for the first time in this species, providing differences in gene expression between the immediate and extended treatments, as well as among the post-drought recovery phenotypes. Weighted gene co-expression network analysis showed a regulation of stomatal closing and photosynthetic activity during the immediate drought, consistent with an isohydric dynamic. During the extended drought, growth and flavonoid biosynthesis inhibition mechanisms prevailed, probably to increase root-to-shoot ratio and to limit the energy-intensive biosynthesis of secondary metabolites. Drought sensitive individuals failed in metabolism and photosynthesis regulation under drought stress, and in limiting secondary metabolite production. Moreover, genomic differences (SNPs) were found between drought resilient and sensitive seedlings, and between the two studied locations, which were mostly related to transposable elements. Discussion This work provides novel insights into the transcriptomic basis of drought response of C. atlantica, a set of candidate genes mechanistically involved in its drought sensitivity and evidence of a rapid local adaptation. Our results may help guide conservation programs for this threatened conifer, contribute to advance drought-resilience research and shed light on trees' adaptive potential to current climate change.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Department of Physical, Chemical and Natural Systems. University Pablo de Olavide, Seville, Spain
- Department of Genetics, Physiology and Microbiology, Genetics Unit. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Irene Cobo-Simón,
| | - Jèssica Gómez-Garrido
- Nacional Center for Genomic Analysis-Center for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- Nacional Center for Genomic Analysis-Center for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Dabad
- Nacional Center for Genomic Analysis-Center for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tyler Alioto
- Nacional Center for Genomic Analysis-Center for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Julin N. Maloof
- Department of Plant Biology, University of California at Davis, Davis, CA, United States
| | - Belén Méndez-Cea
- Department of Genetics, Physiology and Microbiology, Genetics Unit. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - José Ignacio Seco
- Department of Physical, Chemical and Natural Systems. University Pablo de Olavide, Seville, Spain
| | - Juan Carlos Linares
- Department of Physical, Chemical and Natural Systems. University Pablo de Olavide, Seville, Spain
| | - Francisco Javier Gallego
- Department of Genetics, Physiology and Microbiology, Genetics Unit. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Cortés-Molino Á, Linares JC, Viñegla B, Lechuga V, Salvo-Tierra AE, Flores-Moya A, Fernández-Luque I, Carreira JA. Unexpected resilience in relict Abies pinsapo Boiss forests to dieback and mortality induced by climate change. FRONTIERS IN PLANT SCIENCE 2022; 13:991720. [PMID: 36618643 PMCID: PMC9822712 DOI: 10.3389/fpls.2022.991720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Acute and early symptoms of forest dieback linked to climate warming and drought episodes have been reported for relict Abies pinsapo Boiss. fir forests from Southern Spain, particularly at their lower ecotone. Satellite, orthoimages, and field data were used to assess forest decline, tree mortality, and gap formation and recolonization in the lower half of the altitudinal range of A. pinsapo forests (850-1550 m) for the last 36 years (1985-2020). Field surveys were carried out in 2003 and in 2020 to characterize changes in stand canopy structure and mortality rates across the altitudinal range. Time series of the Normalized Difference Vegetation Index (NDVI) at the end of the dry season (derived from Landsat 5 and 7 imagery) were used for a Dynamic Factor Analysis to detect common trends across altitudinal bands and topographic solar incidence gradients (SI). Historical canopy cover changes were analyzed through aerial orthoimages classification. Here we show that extensive decline and mortality contrast to the almost steady alive basal area for 17 years, as well as the rising photosynthetic activity derived from NDVI since the mid-2000s and an increase in the forest canopy cover in the late years at mid and high altitudes. We hypothesized that these results suggest an unexpected resilience in A. pinsapo forests to climate change-induced dieback, that might be promoted by compensation mechanisms such as (i) recruitment of new A. pinsapo individuals; (ii) facilitative effects on such recruitment mediated by revegetation with other species; and (iii) a 'release effect' in which surviving trees can thrive with fewer resource competition. Future research is needed to understand these compensation mechanisms and their scope in future climate change scenarios.
Collapse
Affiliation(s)
- Álvaro Cortés-Molino
- Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente (CEACTEMA), Universidad de Jaén, Jaén, Spain
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad de Pablo Olavide, Sevilla, Spain
| | - Benjamín Viñegla
- Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente (CEACTEMA), Universidad de Jaén, Jaén, Spain
| | - Víctor Lechuga
- Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente (CEACTEMA), Universidad de Jaén, Jaén, Spain
| | | | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | | | - Jose A. Carreira
- Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente (CEACTEMA), Universidad de Jaén, Jaén, Spain
| |
Collapse
|
26
|
Pasta S, Gristina AS, Scuderi L, Fazan L, Marcenò C, Guarino R, Perraudin V, Kozlowski G, Garfì G. Conservation of Ptilostemon greuteri (Asteraceae), an endemic climate relict from Sicily (Italy): State of knowledge after the discovery of a second population. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Li X, Ru D, Garber PA, Zhou Q, Li M, Zhao X. Climate change and human activities promoted speciation of two endangered langurs (François' langur and white-headed langur). Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Phylogeographic structure of common sage (Salvia officinalis L.) reveals microrefugia throughout the Balkans and colonizations of the Apennines. Sci Rep 2022; 12:15726. [PMID: 36130954 PMCID: PMC9492721 DOI: 10.1038/s41598-022-20055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Studying the population-genetic and phylogeographic structures of a representative species of a particular geographical region can not only provide us with information regarding its evolutionary history, but also improve our understanding of the evolutionary processes underlying the patterns of species diversity in that area. By analysing eight highly polymorphic microsatellite loci and two chloroplast DNA regions, we have investigated the influence of Pleistocene climate fluctuations on the evolutionary history of Salvia officinalis L. (common sage). The populations with the highest genetic diversity were located in the central parts of the Balkan distribution range. A large group of closely related haplotypes was distributed throughout the Balkans and the central Apennines, while the private lineage occupied the southern Apennines. In addition, two highly differentiated lineages were scattered only over the Balkans. The results suggest that a single refugium of the studied species from the last glacial period was located in the central part of the range in the Balkans. Numerous microrefugia, probably spanning several glaciation cycles, were scattered across the Balkans, while colonisation of the Apennines from the Balkans occurred at least on two occasions.
Collapse
|
29
|
Liu Y, Erbilgin N, Ratcliffe B, Klutsch JG, Wei X, Ullah A, Cappa EP, Chen C, Thomas BR, El-Kassaby YA. Pest defences under weak selection exert a limited influence on the evolution of height growth and drought avoidance in marginal pine populations. Proc Biol Sci 2022; 289:20221034. [PMID: 36069017 PMCID: PMC9449467 DOI: 10.1098/rspb.2022.1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While droughts, intensified by climate change, have been affecting forests worldwide, pest epidemics are a major source of uncertainty for assessing drought impacts on forest trees. Thus far, little information has documented the adaptability and evolvability of traits related to drought and pests simultaneously. We conducted common-garden experiments to investigate how several phenotypic traits (i.e. height growth, drought avoidance based on water-use efficiency inferred from δ13C and pest resistance based on defence traits) interact in five mature lodgepole pine populations established in four progeny trials in western Canada. The relevance of interpopulation variation in climate sensitivity highlighted that seed-source warm populations had greater adaptive capability than cold populations. In test sites, warming generated taller trees with higher δ13C and increased the evolutionary potential of height growth and δ13C across populations. We found, however, no pronounced gradient in defences and their evolutionary potential along populations or test sites. Response to selection was weak in defences across test sites, but high for height growth particularly at warm test sites. Response to the selection of δ13C varied depending on its selective strength relative to height growth. We conclude that warming could promote the adaptability and evolvability of growth response and drought avoidance with a limited evolutionary influence from pest (biotic) pressures.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK.,Wolfson College, University of Cambridge, Barton Road, Cambridge CB3 9BB, UK
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Xiaojing Wei
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Eduardo Pablo Cappa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, De Los Reseros y Doctor Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Barb R Thomas
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Sonne J, Dalsgaard B, Borregaard MK, Kennedy J, Fjeldså J, Rahbek C. Biodiversity cradles and museums segregating within hotspots of endemism. Proc Biol Sci 2022; 289:20221102. [PMID: 35975440 PMCID: PMC9382217 DOI: 10.1098/rspb.2022.1102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
The immense concentrations of vertebrate species in tropical mountains remain a prominent but unexplained pattern in biogeography. A long-standing hypothesis suggests that montane biodiversity hotspots result from endemic species aggregating within ecologically stable localities. Here, the persistence of ancient lineages coincides with frequent speciation events, making such areas both 'cradles' (where new species arise) and 'museums' (where old species survive). Although this hypothesis refers to processes operating at the scale of valleys, it remains supported primarily by patterns generated from coarse-scale distribution data. Using high-resolution occurrence and phylogenetic data on Andean hummingbirds, we find that old and young endemic species are not spatially aggregated. The young endemic species tend to have non-overlapping distributions scattered along the Andean treeline, a long and narrow habitat where populations easily become fragmented. By contrast, the old endemic species have more aggregated distributions, but mainly within pockets of cloud forests at lower elevations than the young endemic species. These findings contradict the premise that biogeographical cradles and museums should overlap in valley systems where pockets of stable climate persist through periods of climate change. Instead, Andean biodiversity hotspots may derive from large-scale fluctuating climate complexity in conjunction with local-scale variability in available area and habitat connectivity.
Collapse
Affiliation(s)
- Jesper Sonne
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Bo Dalsgaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael K. Borregaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonathan Kennedy
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
- Zoological Museum of the Natural History Museum of Denmark, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Zoological Museum of the Natural History Museum of Denmark, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
31
|
Ebner JN, Wyss MK, Ritz D, von Fumetti S. Effects of thermal acclimation on the proteome of the planarian Crenobia alpina from an alpine freshwater spring. J Exp Biol 2022; 225:276068. [PMID: 35875852 PMCID: PMC9440759 DOI: 10.1242/jeb.244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Species' acclimation capacity and their ability to maintain molecular homeostasis outside ideal temperature ranges will partly predict their success following climate change-induced thermal regime shifts. Theory predicts that ectothermic organisms from thermally stable environments have muted plasticity, and that these species may be particularly vulnerable to temperature increases. Whether such species retained or lost acclimation capacity remains largely unknown. We studied proteome changes in the planarian Crenobia alpina, a prominent member of cold-stable alpine habitats that is considered to be a cold-adapted stenotherm. We found that the species' critical thermal maximum (CTmax) is above its experienced habitat temperatures and that different populations exhibit differential CTmax acclimation capacity, whereby an alpine population showed reduced plasticity. In a separate experiment, we acclimated C. alpina individuals from the alpine population to 8, 11, 14 or 17°C over the course of 168 h and compared their comprehensively annotated proteomes. Network analyses of 3399 proteins and protein set enrichment showed that while the species' proteome is overall stable across these temperatures, protein sets functioning in oxidative stress response, mitochondria, protein synthesis and turnover are lower in abundance following warm acclimation. Proteins associated with an unfolded protein response, ciliogenesis, tissue damage repair, development and the innate immune system were higher in abundance following warm acclimation. Our findings suggest that this species has not suffered DNA decay (e.g. loss of heat-shock proteins) during evolution in a cold-stable environment and has retained plasticity in response to elevated temperatures, challenging the notion that stable environments necessarily result in muted plasticity. Summary: The proteome of an alpine Crenobia alpina population shows plasticity in response to acclimation to warmer temperatures.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mirjam Kathrin Wyss
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- 2 Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Stefanie von Fumetti
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Carrera L, Pavia M, Varela S. Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds. Sci Rep 2022; 12:10813. [PMID: 35752649 PMCID: PMC9233688 DOI: 10.1038/s41598-022-14972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Investigation of ecological responses of species to past climate oscillations provides crucial information to understand the effects of global warming. In this work, we investigated how past climate changes affected the distribution of six bird species with different climatic requirements and migratory behaviours in the Western Palearctic and in Africa. Species Distribution Models and Marine Isotopic Stage (MIS) 2 fossil occurrences of selected species were employed to evaluate the relation between changes in range size and species climatic tolerances. The Last Glacial Maximum (LGM) range predictions, generally well supported by the MIS 2 fossil occurrences, suggest that cold-dwelling species considerably expanded their distribution in the LGM, experiencing more pronounced net changes in range size compared to temperate species. Overall, the thermal niche proves to be a key ecological trait for explaining the impact of climate change in species distributions. Thermal niche is linked to range size variations due to climatic oscillations, with cold-adapted species currently suffering a more striking range reduction compared to temperate species. This work also supports the persistence of Afro-Palearctic migrations during the LGM due to the presence of climatically suitable wintering areas in Africa even during glacial maxima.
Collapse
Affiliation(s)
- Lisa Carrera
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Via Zamboni 67, 40126, Bologna, Italy.
| | - Marco Pavia
- Dipartimento di Scienze della Terra, Museo di Geologia e Paleontologia, University of Torino, Via Valperga Caluso 35, 10125, Turin, Italy
| | - Sara Varela
- MAPAS Lab, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
33
|
Snead AA, Earley RL. Predicting the in-between: Present and future habitat suitability of an intertidal euryhaline fish. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Contingency planning for coral reefs in the Anthropocene; The potential of reef safe havens. Emerg Top Life Sci 2022; 6:107-124. [PMID: 35225326 DOI: 10.1042/etls20210232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Reducing the global reliance on fossil fuels is essential to ensure the long-term survival of coral reefs, but until this happens, alternative tools are required to safeguard their future. One emerging tool is to locate areas where corals are surviving well despite the changing climate. Such locations include refuges, refugia, hotspots of resilience, bright spots, contemporary near-pristine reefs, and hope spots that are collectively named reef 'safe havens' in this mini-review. Safe havens have intrinsic value for reefs through services such as environmental buffering, maintaining near-pristine reef conditions, or housing corals naturally adapted to future environmental conditions. Spatial and temporal variance in physicochemical conditions and exposure to stress however preclude certainty over the ubiquitous long-term capacity of reef safe havens to maintain protective service provision. To effectively integrate reef safe havens into proactive reef management and contingency planning for climate change scenarios, thus requires an understanding of their differences, potential values, and predispositions to stress. To this purpose, I provide a high-level review on the defining characteristics of different coral reef safe havens, how they are being utilised in proactive reef management and what risk and susceptibilities they inherently have. The mini-review concludes with an outline of the potential for reef safe haven habitats to support contingency planning of coral reefs under an uncertain future from intensifying climate change.
Collapse
|
35
|
Rojas IM, Jennings MK, Conlisk E, Syphard AD, Mikesell J, Kinoshita AM, West K, Stow D, Storey E, De Guzman ME, Foote D, Warneke A, Pairis A, Ryan S, Flint LE, Flint AL, Lewison RL. A landscape-scale framework to identify refugia from multiple stressors. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13834. [PMID: 34476838 PMCID: PMC9298232 DOI: 10.1111/cobi.13834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 05/12/2023]
Abstract
From a conservation perspective, quantifying potential refugial capacity has been predominantly focused on climate refugia, which is critical for maintaining the persistence of species and ecosystems. However, protection from other stressors, such as human-induced changes in fire and hydrology, that cause habitat loss, degradation, and fragmentation is also necessary to ensure that conservation efforts focused on climate are not undermined by other threats. Thus, conceptual and methodological advances for quantifying potential refugia from multiple anthropogenic stressors are important to support conservation efforts. We devised a new conceptual approach, the domains of refugia, for assessing refugial capacity that identifies areas where exposure to multiple stressors is low. In our framework, patterns of environmental variability (e.g., increased frequency of warm summers), thresholds of resilience, and extent and intensity of stressors are used to identify areas of potential refugia from a suite of ongoing anthropogenic stressors (e.g., changes in fire regime). To demonstrate its utility, we applied the framework to a Southern California landscape. Sites with high refugial capacity (super-refugia sites) had on average 30% fewer extremely warm summers, 20% fewer fire events, 10% less exposure to altered river channels and riparian areas, and 50% fewer recreational trails than the surrounding landscape. Our results suggest that super-refugia sites (∼8200 km2 ) for some natural communities are underrepresented in the existing protected area network, a finding that can inform efforts to expand protected areas. Our case study highlights how considering exposure to multiple stressors can inform planning and practice to conserve biodiversity in a changing world.
Collapse
Affiliation(s)
- Isabel M. Rojas
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Megan K. Jennings
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Institute for Ecological Monitoring and ManagementSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Erin Conlisk
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Point Blue Conservation SciencePetalumaCaliforniaUSA
| | - Alexandra D. Syphard
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
- Vertus WildfireSan DiegoCaliforniaUSA
- Conservation Biology InstituteLa MesaCaliforniaUSA
| | - Jack Mikesell
- Department of Civil, Construction, & Environmental EngineeringSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Alicia M. Kinoshita
- Department of Civil, Construction, & Environmental EngineeringSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Krista West
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Doug Stow
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Emanuel Storey
- Department of GeographySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mark E. De Guzman
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| | - Diane Foote
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- School of Public AffairsSan Diego State UniversitySan DiegoCaliforniaUSA
| | | | | | - Sherry Ryan
- School of Public AffairsSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Lorraine E. Flint
- Water Resources DisciplineU.S. Geological SurveySacramentoCaliforniaUSA
| | - Alan L. Flint
- Water Resources DisciplineU.S. Geological SurveySacramentoCaliforniaUSA
| | - Rebecca L. Lewison
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Institute for Ecological Monitoring and ManagementSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
36
|
Microarthropods Living on the Endemic Tree Zelkova abelicea (Ulmaceae) with Particular Attention to Collembola Diversity. FORESTS 2022. [DOI: 10.3390/f13020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zelkova abelicea is an endemic tree species growing in several localities in the mountainous regions of Crete, Greece. To date, the microarthropod species associated with this tree species have not been identified. Since Z. abelicea populations are isolated and fragmented, it was hypothesized that the characteristics of microarthropod assemblages, particularly in the case of springtails (Collembola), would vary and differ among localities. Moreover, rare microarthropod species that colonize microhabitats not included in previous studies on Zelkova trees were expected to be recorded. Samples were collected from the bark and twigs of Z. abelicea at eight localities in all main mountain ranges. Among the collected material, Collembola were the most numerous (10,285), followed by Acari (2237) and representatives of Psocoptera (422). The obtained material and statistical analyses showed that the arthropod assemblages differed considerably at each experimental site, with the most distinct assemblage characteristics observed at the Gerakari site on Mt. Kedros in central Crete. The most numerous specimens were species of Collembola: Xenylla maritima (3844), Xenylla sp. 2 (maritima complex) (3364) and Xenylla sp. 1 (maritima complex) (2631). A total of 33 Collembola species were recorded, of which 19 had not been previously reported in Crete. Among them, 11 species were likely new to science and will be the subject of separate taxonomic studies.
Collapse
|
37
|
Sanz-Arnal M, Benítez-Benítez C, Miguez M, Jiménez-Mejías P, Martín-Bravo S. Are Cenozoic relict species also climatic relicts? Insights from the macroecological evolution of the giant sedges of Carex sect. Rhynchocystis (Cyperaceae). AMERICAN JOURNAL OF BOTANY 2022; 109:115-129. [PMID: 34655478 DOI: 10.1002/ajb2.1788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Most of the Paleotropical flora widely distributed in the Western Palearctic became extinct during the Mio-Pliocene as a result of global geoclimatic changes. A few elements from this Cenozoic flora are believed to remain as relicts in Macaronesia, forming part of the laurel forests. Although the origins of the present species assembly are known to be heterogeneous, it is unclear whether some species should be considered climatic relicts with conserved niches. An ideal group for studying such relict characteristics is a Miocene lineage of Carex sect. Rhynchocystis (Cyperaceae), which comprises four species distributed in mainland Palearctic and Macaronesia. METHODS We reconstructed the current and past environmental spaces for extant mainland and Macaronesian species, as well as for Pliocene fossils. We also studied the bioclimatic niche evolution. Species distribution modeling and ensemble small modeling were performed to assess the potential distribution over time. RESULTS Climatic niche analyses and distribution modeling revealed that the ecological requirements of Macaronesian species did not overlap with those of either mainland species or with the Pliocene fossils. Conversely, the niches of mainland species displayed significant similarity and equivalence. CONCLUSIONS Macaronesian species are not climatic relicts from the Paleotropical flora, but instead seem to have changed the ecological niche of their ancestors. By contrast, despite their ancient divergence (Late Miocene), mainland C. pendula and C. agastachys show conserved niches, with competitive exclusion likely shaping their mostly allopatric ranges.
Collapse
Affiliation(s)
- María Sanz-Arnal
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Carmen Benítez-Benítez
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Monica Miguez
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Pedro Jiménez-Mejías
- Department of Biology, Universidad Autónoma de Madrid (UAM), Campus Cantoblanco, Madrid, 28049, Spain
| | - Santiago Martín-Bravo
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, 41013, Spain
| |
Collapse
|
38
|
Zacharias M, Pampuch T, Heer K, Avanzi C, Würth DG, Trouillier M, Bog M, Wilmking M, Schnittler M. Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149267. [PMID: 34332391 DOI: 10.1016/j.scitotenv.2021.149267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Knowledge on the adaptation of trees to rapid environmental changes is essential to preserve forests and their ecosystem services under climate change. Treeline populations are particularly suitable for studying adaptation processes in trees, as environmental stress together with reduced gene flow can enhance local adaptation. We investigated white spruce (Picea glauca) populations in Alaska on one moisture-limited and two cold-limited treeline sites with a paired plot design of one forest and one treeline population each, resulting in six plots. Additionally, one forest plot in the middle of the distribution range complements the study design. We combined spatial, climatic and dendrochronological data with neutral genetic marker of 2203 trees to investigate population genetic structure and drivers of tree growth. We used several individual-based approaches including random slope mixed-effects models to test the influence of genetic similarity and microenvironment on growth performance. A high degree of genetic diversity was found within each of the seven plots associated with high rates of gene flow. We discovered a low genetic differentiation between the three sites which was better explained by geographic distances than by environmental differences, indicating genetic drift as the main driver of population differentiation. Our findings indicated that microenvironmental features had an overall larger influence on growth performances than genetic similarity among individuals. The effects of climate on growth differed between sites but were smaller than the effect of tree size. Overall, our results suggest that the high genetic diversity of white spruce may result in a wider range of phenotypes which enhances the efficiency of selection when the species is facing rapid climatic changes. In addition, the large intra-individual variability in growth responses may indicate the high phenotypic plasticity of white spruce which can buffer short-term environmental changes and, thus, allow enduring the present changing climate conditions.
Collapse
Affiliation(s)
- Melanie Zacharias
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Timo Pampuch
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Camilla Avanzi
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - David G Würth
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Mario Trouillier
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Manuela Bog
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Martin Wilmking
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Martin Schnittler
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| |
Collapse
|
39
|
Hatzilazarou S, El Haissoufi M, Pipinis E, Kostas S, Libiad M, Khabbach A, Lamchouri F, Bourgou S, Megdiche-Ksouri W, Ghrabi-Gammar Z, Aslanidou V, Greveniotis V, Sakellariou MA, Anestis I, Tsoktouridis G, Krigas N. GIS-Facilitated Seed Germination and Multifaceted Evaluation of the Endangered Abies marocana Trab. (Pinaceae) Enabling Conservation and Sustainable Exploitation. PLANTS (BASEL, SWITZERLAND) 2021; 10:2606. [PMID: 34961077 PMCID: PMC8707146 DOI: 10.3390/plants10122606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 05/27/2023]
Abstract
In the frame of the sustainable use of neglected and underutilized phytogenetic resources, and along with numerous studies in Abies spp. due to the innate conservation value of fir forests, this research focused on the Moroccan endemic fir, Abies marocana. The aim was triple-fold: to assess its potential and dynamics in economic sectors for sustainable exploitation; to determine the ecological conditions in which the species naturally thrives; and to find the appropriate requirements for its successful seed germination. We sourced multifaceted evaluations for three economic sectors performed in three levels, using 48 attributes and eight criteria from previous studies of our own, and the relevant species-specific assessments are overviewed herein in detail. The species' ecological profile was constructed using Geographical Information Systems (GIS) and open access data (Worldclim). Seed germination trials were performed to examine the effect of cold stratification (non-stratified, one- and two-months stratified seeds), the influence of four temperatures (10 °C, 15 °C, 20 °C, and 25 °C), and interactions thereof in relation to germination percentage (GP) and mean germination time (MGT). The experiments showed that the interaction of cold stratification and germination temperature has a strong effect on the GP and MGT of A. marocana seeds. A detailed GIS-derived ecological profile of the focal species was created in terms of precipitation and temperature natural regimes, enabling the interpretation of the seed germination results. The multifaceted evaluations reveal an interesting potential of the Moroccan fir in different economic sectors, which is mainly compromised due to extant research gaps, unfavorable conditions, and low stakeholder attraction. The findings of this study fill in extant research gaps, contribute to in situ and ex situ conservation strategies, and can facilitate the sustainable exploitation of this emblematic local endemic plant of northern Morocco.
Collapse
Affiliation(s)
- Stefanos Hatzilazarou
- Laboratory of Floriculture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.H.); (S.K.); (V.A.)
| | - Mohamed El Haissoufi
- Laboratory of Natural Substances, Pharmacology, Environment, Modelling, Health and Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza Gare, Taza 35000, Morocco; (M.L.); (A.K.); (F.L.)
| | - Elias Pipinis
- Laboratory of Silviculture, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stefanos Kostas
- Laboratory of Floriculture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.H.); (S.K.); (V.A.)
| | - Mohamed Libiad
- Laboratory of Natural Substances, Pharmacology, Environment, Modelling, Health and Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza Gare, Taza 35000, Morocco; (M.L.); (A.K.); (F.L.)
- Laboratory of Ecology, Systematics and Biodiversity Conservation (LESCB), CNRST Labeled Research Unit N°18, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, B.P. 2121, M’Hannech II, Tetouan 93000, Morocco
| | - Abdelmajid Khabbach
- Laboratory of Natural Substances, Pharmacology, Environment, Modelling, Health and Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza Gare, Taza 35000, Morocco; (M.L.); (A.K.); (F.L.)
- Laboratory of Biotechnology, Conservation and Development of Natural Resources (BCVRN), Department of Biology, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fès-Atlas 30003, Morocco
| | - Fatima Lamchouri
- Laboratory of Natural Substances, Pharmacology, Environment, Modelling, Health and Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza Gare, Taza 35000, Morocco; (M.L.); (A.K.); (F.L.)
| | - Soumaya Bourgou
- Centre de Biotechnologie de Borj-Cédria, Laboratoire des Plantes Aromatiques et Médicinales, B.P. 901, Tunis 2050, Tunisia; (S.B.); (W.M.-K.)
| | - Wided Megdiche-Ksouri
- Centre de Biotechnologie de Borj-Cédria, Laboratoire des Plantes Aromatiques et Médicinales, B.P. 901, Tunis 2050, Tunisia; (S.B.); (W.M.-K.)
| | - Zeineb Ghrabi-Gammar
- Institut National Agronomique de Tunisie, Université de Carthage, 43 Avenue Charles Nicolle, Cité Mahrajène, Tunis 1082, Tunisia;
- Laboratoire de Recherche Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE 18ES13), Faculté des Lettres des Arts et des Humanités de Manouba, Campus Universitaire de la Manouba, Université de la Manouba, Manouba 2010, Tunisia
| | - Vasiliki Aslanidou
- Laboratory of Floriculture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.H.); (S.K.); (V.A.)
| | - Vasileios Greveniotis
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization Demeter, 41335 Larisa, Greece;
| | - Michalia A. Sakellariou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thermi, Greece; (M.A.S.); (I.A.); (G.T.)
| | - Ioannis Anestis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thermi, Greece; (M.A.S.); (I.A.); (G.T.)
| | - Georgios Tsoktouridis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thermi, Greece; (M.A.S.); (I.A.); (G.T.)
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thermi, Greece; (M.A.S.); (I.A.); (G.T.)
| |
Collapse
|
40
|
Leaf Vein Morphological Variation in Four Endangered Neotropical Magnolia Species along an Elevation Gradient in the Mexican Tropical Montane Cloud Forests. PLANTS 2021; 10:plants10122595. [PMID: 34961066 PMCID: PMC8703730 DOI: 10.3390/plants10122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Climatic variations influence the adaptive capacity of trees within tropical montane cloud forests species. Phenology studies have dominated current studies on tree species. Leaf vein morphology has been related to specific climatic oscillations and varies within species along altitudinal gradients. We tested that certain Neotropical broad leaf Magnolia species might be more vulnerable to leaf vein adaptation to moisture than others, as they would be more resilient to the hydric deficit. We assessed that leaf vein trait variations (vein density, primary vein size, vein length, and leaf base angle) among four Magnolia species (Magnolia nuevoleonensis, M. alejandrae, M. rzedowskiana, and Magnolia vovidesii) through the Mexican Tropical montane cloud forest with different elevation gradient and specific climatic factors. The temperature, precipitation, and potential evaporation differed significantly among Magnolia species. We detected that M. rzedowskiana and M. vovidesii with longer leaves at higher altitude sites are adapted to higher humidity conditions, and that M. nuevoleonensis and M. alejandrae inhabiting lower altitude sites are better adjusted to the hydric deficit. Our results advance efforts to identify the Magnolia species most vulnerable to climate change effects, which must focus priorities for conservation of this ecosystem, particularly in the Mexican tropical montane cloud forests.
Collapse
|
41
|
Shen Y, Xia H, Tu Z, Zong Y, Yang L, Li H. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments. Mol Ecol 2021; 31:916-933. [PMID: 34773328 DOI: 10.1111/mec.16271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Ecological adaptive differentiation alters both the species diversity and intraspecific genetic diversity in forests, thus affecting the stability of forest ecosystems. Therefore, knowledge of the genetic underpinnings of the ecological adaptive differentiation of forest species is critical for effective species conservation. In this study, single-nucleotide polymorphisms (SNPs) from population transcriptomes were used to investigate the spatial distribution of genetic variation in Liriodendron to assess whether environmental variables can explain genetic divergence. We examined the contributions of environmental variables to population divergence and explored the genetic underpinnings of local adaptation using a landscape genomic approach. Niche models and statistical analyses showed significant niche divergence between L. chinense and L. tulipifera, suggesting that ecological adaptation may play a crucial role in driving interspecific divergence. We detected a new fine-scale genetic structure in L. chinense, and divergence of the six groups occurred during the late Pliocene to early Pleistocene. Redundancy analysis (RDA) revealed significant associations between genetic variation and multiple environmental variables. Environmental association analyses identified 67 environmental association loci (EALs; nonsynonymous SNPs) that underwent interspecific or intraspecific differentiation, 28 of which were associated with adaptive genes. These 28 candidate adaptive loci provide substantial evidence for local adaptation in Liriodendron. Our findings reveal ecological adaptive divergence pattern between Liriodendron species and provide novel insight into the role of heterogeneous environments in shaping genetic structure and driving local adaptation among populations, informing future L. chinense conservation efforts.
Collapse
Affiliation(s)
- Yufang Shen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lichun Yang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
42
|
Beissinger SR, Riddell EA. Why Are Species’ Traits Weak Predictors of Range Shifts? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-092849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We examine the evidence linking species’ traits to contemporary range shifts and find they are poor predictors of range shifts that have occurred over decades to a century. We then discuss reasons for the poor performance of traits for describing interspecific variation in range shifts from two perspectives: ( a) factors associated with species’ traits that degrade range-shift signals stemming from the measures used for species’ traits, traits that are typically not analyzed, and the influence of phylogeny on range-shift potential and ( b) issues in quantifying range shifts and relating them to species’ traits due to imperfect detection of species, differences in the responses of altitudinal and latitudinal ranges, and emphasis on testing linear relationships between traits and range shifts instead of nonlinear responses. Improving trait-based approaches requires a recognition that traits within individuals interact in unexpected ways and that different combinations of traits may be functionally equivalent.
Collapse
Affiliation(s)
- Steven R. Beissinger
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Eric A. Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50050, USA
| |
Collapse
|
43
|
Taillie PJ, McCleery RA. Climate relict vulnerable to extinction from multiple climate‐driven threats. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Paul J. Taillie
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Robert A. McCleery
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| |
Collapse
|
44
|
Kikuchi A, Kyan R, Maki M. Population genetic diversity and conservation priority of prince’s pine Chimaphila umbellata populations around the south margin of their distribution. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01366-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Gene Frequency Shift in Relict Abies pinsapo Forests Associated with Drought-Induced Mortality: Preliminary Evidence of Local-Scale Divergent Selection. FORESTS 2021. [DOI: 10.3390/f12091220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current climate change constitutes a challenge for the survival of several drought-sensitive forests. The study of the genetic basis of adaptation offers a suitable way to understand how tree species may respond to future climatic conditions, as well as to design suitable conservation and management strategies. Here, we focus on selected genetic signatures of the drought-sensitive relict fir, Abies pinsapo Boiss. Field sampling of 156 individuals was performed in two elevation ecotones, characterized by widespread A. pinsapo decline and mortality. The DNA from dead trees was investigated and compared to living individuals, accounting for different ages and elevations. We studied the genes gated outwardly-rectifying K+ (GORK) channel and Plasma membrane Intrinsic Protein (PIP1) aquaporin, previously related to drought response in plant model species, to test whether drought was the main abiotic factor driving the decline of A. pinsapo forests. A combination of linear regression and factor models were used to test these selection signatures, as well as a fixation index (Fst), used here to analyze the genetic structure. The results were consistent among these approaches, supporting a statistically significant association of the GORK gene with survival in one of the A. pinsapo populations. These results provide preliminary evidence for the potential role of the GORK gene in the resilience to drought of A. pinsapo.
Collapse
|
46
|
Genetic Differentiation and Demographic History of Three Cerris Oak Species in China Based on Nuclear Microsatellite Makers. FORESTS 2021. [DOI: 10.3390/f12091164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of interspecific divergence and population expansions/contractions of dominant forest trees in response to geological events and climatic oscillations is of major importance to understand their evolution and demography. However, the interspecific patterns of genetic differentiation and spatiotemporal population dynamics of three deciduous Cerris oak species (Q. acutissima, Q. variabilis and Q. chenii) that are widely distributed in China remain poorly understood. In this study, we genotyped 16 nuclear loci in 759 individuals sampled from 44 natural populations of these three sibling species to evaluate the plausible demographical scenarios of the closely related species. We also tested the hypothesis that macro- and microevolutionary processes of the three species had been triggered and molded by Miocene–Pliocene geological events and Quaternary climatic change. The Bayesian cluster analysis showed that Q. acutissima and Q. chenii were clustered in the same group, whereas Q. variabilis formed a different genetic cluster. An approximate Bayesian computation (ABC) analyses suggested that Q. variabilis and Q. acutissima diverged from their most common ancestor around 19.84 Ma, and subsequently Q. chenii diverged from Q. acutissima at about 9.6 Ma, which was significantly associated with the episodes of the Qinghai–Tibetan Plateau (QTP). In addition, ecological niche modeling and population history analysis showed that these three Cerris oak species repeatedly underwent considerable ‘expansion–contraction’ during the interglacial and glacial periods of the Pleistocene, although they have varying degrees of tolerance for the climatic change. Overall, these findings indicated geological and climatic changes during the Miocene–Pliocene and Pleistocene as causes of species divergence and range shifts of dominant tree species in the subtropical and warm temperature areas in China.
Collapse
|
47
|
Allen KE, Greenbaum E, Hime PM, Tapondjou N. WP, Sterkhova VV, Kusamba C, Rödel M, Penner J, Peterson AT, Brown RM. Rivers, not refugia, drove diversification in arboreal, sub-Saharan African snakes. Ecol Evol 2021; 11:6133-6152. [PMID: 34141208 PMCID: PMC8207163 DOI: 10.1002/ece3.7429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
The relative roles of rivers versus refugia in shaping the high levels of species diversity in tropical rainforests have been widely debated for decades. Only recently has it become possible to take an integrative approach to test predictions derived from these hypotheses using genomic sequencing and paleo-species distribution modeling. Herein, we tested the predictions of the classic river, refuge, and river-refuge hypotheses on diversification in the arboreal sub-Saharan African snake genus Toxicodryas. We used dated phylogeographic inferences, population clustering analyses, demographic model selection, and paleo-distribution modeling to conduct a phylogenomic and historical demographic analysis of this genus. Our results revealed significant population genetic structure within both Toxicodryas species, corresponding geographically to river barriers and divergence times from the mid-Miocene to Pliocene. Our demographic analyses supported the interpretation that rivers are indications of strong barriers to gene flow among populations since their divergence. Additionally, we found no support for a major contraction of suitable habitat during the last glacial maximum, allowing us to reject both the refuge and river-refuge hypotheses in favor of the river-barrier hypothesis. Based on conservative interpretations of our species delimitation analyses with the Sanger and ddRAD data sets, two new cryptic species are identified from east-central Africa. This study highlights the complexity of diversification dynamics in the African tropics and the advantages of integrative approaches to studying speciation in tropical regions.
Collapse
Affiliation(s)
- Kaitlin E. Allen
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Eli Greenbaum
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTXUSA
| | - Paul M. Hime
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Walter P. Tapondjou N.
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Viktoria V. Sterkhova
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Chifundera Kusamba
- Laboratoire d’Hérpétologie, Département de BiologieCentre de Recherche en Sciences NaturellesLwiroDemocratic Republic of Congo
| | - Mark‐Oliver Rödel
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Johannes Penner
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Rafe M. Brown
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| |
Collapse
|
48
|
De Frenne P, Lenoir J, Luoto M, Scheffers BR, Zellweger F, Aalto J, Ashcroft MB, Christiansen DM, Decocq G, De Pauw K, Govaert S, Greiser C, Gril E, Hampe A, Jucker T, Klinges DH, Koelemeijer IA, Lembrechts JJ, Marrec R, Meeussen C, Ogée J, Tyystjärvi V, Vangansbeke P, Hylander K. Forest microclimates and climate change: Importance, drivers and future research agenda. GLOBAL CHANGE BIOLOGY 2021; 27:2279-2297. [PMID: 33725415 DOI: 10.1111/gcb.15569] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 05/05/2023]
Abstract
Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
Collapse
Affiliation(s)
| | - Jonathan Lenoir
- UMR 7058 CNRS "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | - Miska Luoto
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Brett R Scheffers
- Wildlife Ecology & Conservation, University of Florida, Gainesville, FL, USA
| | | | - Juha Aalto
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Michael B Ashcroft
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Ditte M Christiansen
- Department of Ecology, Environment and Plant Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Guillaume Decocq
- UMR 7058 CNRS "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | - Karen De Pauw
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| | - Sanne Govaert
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| | - Caroline Greiser
- Department of Ecology, Environment and Plant Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Eva Gril
- UMR 7058 CNRS "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - David H Klinges
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA
| | - Irena A Koelemeijer
- Department of Ecology, Environment and Plant Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | | | - Ronan Marrec
- UMR 7058 CNRS "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | | | - Jérôme Ogée
- INRAE, Bordeaux Science Agro, ISPA, Villenave d'Ornon, France
| | - Vilna Tyystjärvi
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
| | | | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
49
|
Sakaguchi S, Asaoka Y, Takahashi D, Isagi Y, Imai R, Nagano AJ, Qiu YX, Li P, Lu R, Setoguchi H. Inferring historical survivals of climate relicts: the effects of climate changes, geography, and population-specific factors on herbaceous hydrangeas. Heredity (Edinb) 2021; 126:615-629. [PMID: 33510468 PMCID: PMC8115046 DOI: 10.1038/s41437-020-00396-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Climate relicts hold considerable importance because they have resulted from numerous historical changes. However, there are major interspecific variations among the ways by which they survived climate changes. Therefore, investigating the factors and timing that affected population demographics can expand our understanding of how climate relicts responded to historical environmental changes. Here, we examined herbaceous hydrangeas of genus Deinanthe in East Asia, which show limited distributions and a remarkable disjunction between Japan and central China. Chloroplast genome and restriction site-associated DNA sequencing revealed that speciation event occurred in the late Miocene (ca. 7-9 Mya) in response to global climate change. Two lineages apparently remained not branched until the middle Quaternary, and afterwards started to diverge to regional population groups. The narrow endemic species in central China showed lower genetic diversity (He = 0.082), as its population size rapidly decreased during the Holocene due to isolation in montane refugia. Insular populations in the three Japanese islands (He = 0.137-0.160) showed a genetic structure that was inconsistent with sea barriers, indicating that it was shaped in the glacial period when its range retreated to coastal refugia on the exposed sea floor. Demographic modelling by stairway-plot analysis reconstructed variable responses of Japanese populations: some experienced glacial bottlenecks in refugial isolation, while post-glacial range expansion seemingly exerted founder effects on other populations. Overall, this study demonstrated the involvement of not just one, but multiple factors, such as the interplay between climate changes, geography, and other population-specific factors, that determine the demographics of climate relicts.
Collapse
Affiliation(s)
- Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Yui Asaoka
- Faculty of Integrated Human Studies, Kyoto University, Kyoto, 606-8501, Japan
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Daiki Takahashi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuji Isagi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryosuke Imai
- Iriomote Station, Tropical Biosphere Research Centre, University of the Ryukyus, Okinawa, 907-1541, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
| | - Ying-Xiong Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruisen Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
50
|
Connectivity Predicts Presence but Not Population Density in the Habitat-Specific Mountain Lizard Iberolacerta martinezricai. SUSTAINABILITY 2021. [DOI: 10.3390/su13052647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Batuecan lizard Iberolacerta martinezricai is a critically endangered species due to its significantly reduced distribution, which is restricted to the scree slopes (SS) of a few mountain peaks within the Batuecas-Sierra de Francia Natural Park (western Spain). Given its high specialisation in this type of discontinuous habitat, the long-term conservation of the species requires maintaining the connectivity between populations. This study analyses the contribution of connectivity, as well as other patch-related factors, in the distribution and density patterns of the species. With this aim, 67 SS were sampled by line transects from May to October 2018. Each SS was characterised using variables indicative of the microhabitat conditions for the lizard. Inter-SS connectivity was quantified using graph theory for seven distances. Generalised linear models (GLMs) were performed for both presence and density. Model results showed that while connectivity was a relevant factor in the presence of lizards, density only involved patch-related variables. Discrepancies probably occurred because the factors influencing presence operate on a wider scale than those of abundance. In view of the results, the best-connected SS, but also those where the lizard is most abundant and from which more dispersed individuals are likely to depart, seem to be the essential patches in any conservation strategy. The results may also be relevant to other species with habitat-specific requirements.
Collapse
|