1
|
O'Kennedy MM, Reedy SE, Abolnik C, Khan A, Smith T, du Preez I, Olajide E, Daly J, Cullinane A, Chambers TM. Protective efficacy of a bivalent equine influenza H3N8 virus-like particle vaccine in horses. Vaccine 2025; 50:126861. [PMID: 39938315 DOI: 10.1016/j.vaccine.2025.126861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Equine influenza (EI) is a highly contagious acute respiratory disease of wild and domesticated horses, donkeys, mules, and other Equidae. EI is caused by the Equine Influenza virus (EIV), is endemic in many countries and outbreaks still have a severe impact on the equine industry globally. Conventional EI vaccines are widely used, but a need exists for a platform that facilitates prompt manufacturing of a highly immunogenic, antigenically matched, updated vaccine product. Here we developed a plant-produced bivalent EI virus-like particle (VLP) vaccine candidate which lacks the viral genome and are therefore non-infectious. We conducted a pilot safety/dose response study of a plant produced bivalent VLP vaccine expressing the HA proteins of Florida clade (FC) 1 and FC2 EIV in 1:1 ratio. Groups of three EIV seronegative horses were vaccinated using four antigen levels (0 sham control, 250, 500, 1000 HAU/dose component). Two doses of vaccines were administered one month apart, and horses were observed for adverse reactions, which were minimal. Sera were collected for hemagglutination inhibition (HI) testing using FC1 and FC2 viruses. One month after the second dose, all horses were challenged with the aerosolized FC1 virus. Horses were observed daily for clinical signs, and nasopharyngeal swabs were collected to quantify viral RNA using qPCR and infectious virus by titration in embryonated hens' eggs. Results showed that all vaccinated groups seroconverted prior to challenge. Post-challenge, both clinical scores and virus shedding were much reduced in all vaccinates compared to the sham-vaccinated controls. We conclude that the VLP vaccines were safe and effective in this natural host challenge model. A safe, efficacious, new-generation bivalent EI VLP vaccine produced in plants, which can promptly and regularly be antigenically matched to ensure optimal protection, will pave the way to highly competitive commercially viable vaccine products for all economic environments globally.
Collapse
Affiliation(s)
- Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR), Biomanufacturing Technologies, Future Production: Chemical Cluster, South Africa; Department of Production Animal Studies, University of Pretoria, South Africa.
| | | | - Celia Abolnik
- Department of Production Animal Studies, University of Pretoria, South Africa
| | - Amjad Khan
- University of Kentucky, Department of Veterinary Science, USA; University of Haripur, Department of Public Health, Pakistan
| | - Tanja Smith
- Council for Scientific and Industrial Research (CSIR), Biomanufacturing Technologies, Future Production: Chemical Cluster, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR), Biomanufacturing Technologies, Future Production: Chemical Cluster, South Africa
| | - Edward Olajide
- University of Kentucky, Department of Veterinary Science, USA
| | - Janet Daly
- School of Veterinary Medicine & Science, University of Nottingham, United Kingdom
| | | | | |
Collapse
|
2
|
Sanfaçon H. 3C-like proteases at the interface of plant-virus-vector interactions: Focus on potyvirid NIa proteases and secovirid proteases. Virology 2025; 602:110299. [PMID: 39579507 DOI: 10.1016/j.virol.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Plant viruses of the families Potyviridae and Secoviridae encode 3C-like proteases (3CLpro) that are related to picornavirus 3C proteases. This review discusses recent advances in deciphering the multifunctional activities of plant virus 3CLpro. These proteases regulate viral polyprotein processing and facilitate virus replication. They are also determinants of host range, virulence, symptomatology and super-infection exclusion in some plant-virus interactions and facilitate aphid transmission. Potyvirid NIa-Pro proteases interact with host factors to interfere with a variety of defense mechanisms: salicylic acid-dependent signaling, ethylene-dependent signaling, transcriptional gene silencing and RNA decay. Potyvirid NIa-Pro also cleave host proteins at signature cleavage sites, although the biological impact of these cleavage remains to be determined. Recently, a plant defense mechanism was uncovered that inhibits the proteolytic activity of a comovirus 3CLpro. Future perspectives are discussed including using proteomic and degradomic techniques to elucidate the network of interactions of plant virus 3CLpro with the host proteome.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| |
Collapse
|
3
|
Lozano-Sanchez E, Daròs JA, Merwaiss F. Production of Plant Virus-Derived Hybrid Nanoparticles Decorated with Different Nanobodies. ACS NANO 2024; 18:33890-33906. [PMID: 39622501 DOI: 10.1021/acsnano.4c07066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Viral nanoparticles (VNPs) are self-assembled nanometric complexes whose size and shape are similar to those of the virus from which they are derived. VNPs are arousing great attention due to potential biotechnological applications in fields like nanomedicine and nanotechnology because they allow the presentation of polypeptides of choice linked to the virus structural proteins. Starting from tobacco etch virus (TEV), a plant plus-strand RNA virus that belongs to the genus Potyvirus (family Potyviridae), here we describe the development of recombinant hybrid VNPs in Nicotiana benthamiana plants able of exposing simultaneously different proteins on their surface. This system is based on the synergic coinfection of TEV and potato virus X (PVX; Potexvirus), in which PVX provides a second TEV CP in trans allowing a mixed assembly. We first generated genetically modified hybrid VNPs simultaneously displaying green and red fluorescent proteins on their surface. A population of decorated and nondecorated CPs resulting from the insertion of the picornavirus F2A ribosomal escape peptide was required for viral particle assembly. Correct assembly of the recombinant mosaic VNPs presenting the exogenous peptides was successfully observed by immunoelectron microscopy. We next achieved the production of hybrid VNPs expressing a nanobody against SARS-CoV-2 and a fluorescent reporter protein, whose functionality was demonstrated by ELISA and dot-blot assay. Finally, we engineered the production of hybrid multivalent VNPs carrying two different nanobodies against distinct epitopes of the same SARS-CoV-2 antigenic protein, emulating a nanobody cocktail. These plant-produced recombinant mosaic VNPs, which are filamentous and flexuous in shape, presenting two different fused proteins on the surface, represent a molecular tool with several potential applications in biotechnology.
Collapse
Affiliation(s)
- Enrique Lozano-Sanchez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| | - Fernando Merwaiss
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
4
|
Bamogo P, Tiendrébéogo F, Brugidou C, Sérémé D, Djigma FW, Simporé J, Lacombe S. Rice yellow mottle virus is a suitable amplicon vector for an efficient production of an anti-leishmianiasis vaccine in Nicotiana benthamiana leaves. BMC Biotechnol 2024; 24:21. [PMID: 38658899 PMCID: PMC11044499 DOI: 10.1186/s12896-024-00851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Since the 2000's, plants have been used as bioreactors for the transient production of molecules of interest such as vaccines. To improve protein yield, "amplicon" vectors based on plant viruses are used. These viral constructs, engineered to carry the gene of interest replicate strongly once introduced into the plant cell, allowing significant accumulation of the protein. Here, we evaluated the suitability of the monocot-infecting RNA virus Rice yellow mottle virus (RYMV) as an amplicon vector. The promastigote surface antigen (PSA) of the protozoan Leishmania was considered as a protein of interest due to its vaccine properties against canine leishmaniasis. RESULTS Since P1 (ORF1) and CP (ORF3) proteins are not strictly necessary for viral replication, ORF1 was deleted and the PSA gene was substituted to ORF3 in the RYMV-based vector. We evaluated its expression in the best described plant bioreactor system, Nicotiana benthamiana which, unlike rice, allows transient transformation by Agrobacterium. Despite not being its natural host, we demonstrated a low level of RYMV-based vector replication in N. benthamiana leaves. Under optimized ratio, we showed that the P19 silencing suppressor in combination with the missing viral CP ORF significantly enhanced RYMV amplicon replication in N. benthamiana. Under these optimized CP/P19 conditions, we showed that the RYMV amplicon replicated autonomously in the infiltrated N. benthamiana cells, but was unable to move out of the infiltrated zones. Finally, we showed that when the RYMV amplicon was expressed under the optimized conditions we set up, it allowed enhanced PSA protein accumulation in N. benthamiana compared to the PSA coding sequence driven by the 35S promoter without amplicon background. CONCLUSION This work demonstrates that a non-dicot-infecting virus can be used as an amplicon vector for the efficient production of proteins of interest such as PSA in N. benthamiana leaves.
Collapse
Affiliation(s)
- Pka Bamogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso.
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso.
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - F Tiendrébéogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - C Brugidou
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - D Sérémé
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - F W Djigma
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - J Simporé
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - S Lacombe
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
6
|
Reingold V, Eliyahu A, Luria N, Leibman D, Sela N, Lachman O, Smith E, Mandelik Y, Sadeh A, Dombrovsky A. A Distinct Arabidopsis Latent Virus 1 Isolate Was Found in Wild Brassica hirta Plants and Bees, Suggesting the Potential Involvement of Pollinators in Virus Spread. PLANTS (BASEL, SWITZERLAND) 2024; 13:671. [PMID: 38475517 DOI: 10.3390/plants13050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
During our search for aphid-pathogenic viruses, a comovirus was isolated from wild asymptomatic Brassica hirta (white mustard) plants harboring a dense population of Brevicoryne brassicae aphids. The transmission-electron-microscopy visualization of purified virions revealed icosahedral particles. The virus was mechanically transmitted to plants belonging to Brassicaceae, Solanaceae, Amaranthaceae, and Fabaceae families, showing unique ringspot symptoms only on B. rapa var. perviridis plants. The complete viral genome, comprised of two RNA segments, was sequenced. RNA1 and RNA2 contained 5921 and 3457 nucleotides, respectively, excluding the 3' terminal poly-adenylated tails. RNA1 and RNA2 each had one open-reading frame encoding a polyprotein of 1850 and 1050 amino acids, respectively. The deduced amino acids at the Pro-Pol region, delineated between a conserved CG motif of 3C-like proteinase and a GDD motif of RNA-dependent RNA polymerase, shared a 96.5% and 90% identity with the newly identified Apis mellifera-associated comovirus and Arabidopsis latent virus 1 (ArLV1), respectively. Because ArLV1 was identified early in 2018, the B. hirta comovirus was designated as ArLV1-IL-Bh. A high-throughput-sequencing-analyses of the extracted RNA from managed honeybees and three abundant wild bee genera, mining bees, long-horned bees, and masked bees, sampled while co-foraging in a Mediterranean ecosystem, allowed the assembly of ArLV1-IL-Bh, suggesting pollinators' involvement in comovirus spread in weeds.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avi Eliyahu
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Noa Sela
- Bioinformatics Unit, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Yael Mandelik
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Asaf Sadeh
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| |
Collapse
|
7
|
Shahgolzari M, Venkataraman S, Osano A, Akpa PA, Hefferon K. Plant Virus Nanoparticles Combat Cancer. Vaccines (Basel) 2023; 11:1278. [PMID: 37631846 PMCID: PMC10459942 DOI: 10.3390/vaccines11081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Plant virus nanoparticles (PVNPs) have garnered considerable interest as a promising nanotechnology approach to combat cancer. Owing to their biocompatibility, stability, and adjustable surface functionality, PVNPs hold tremendous potential for both therapeutic and imaging applications. The versatility of PVNPs is evident from their ability to be tailored to transport a range of therapeutic agents, including chemotherapy drugs, siRNA, and immunomodulators, thereby facilitating targeted delivery to the tumor microenvironment (TME). Furthermore, PVNPs may be customized with targeting ligands to selectively bind to cancer cell receptors, reducing off-target effects. Additionally, PVNPs possess immunogenic properties and can be engineered to exhibit tumor-associated antigens, thereby stimulating anti-tumor immune responses. In conclusion, the potential of PVNPs as a versatile platform for fighting cancer is immense, and further research is required to fully explore their potential and translate them into clinical applications.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anne Osano
- Department of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
| | - Paul Achile Akpa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Marchetti L, Simon-Gracia L, Lico C, Mancuso M, Baschieri S, Santi L, Teesalu T. Targeting of Tomato Bushy Stunt Virus with a Genetically Fused C-End Rule Peptide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1428. [PMID: 37111013 PMCID: PMC10143547 DOI: 10.3390/nano13081428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Homing peptides are widely used to improve the delivery of drugs, imaging agents, and nanoparticles (NPs) to their target sites. Plant virus-based particles represent an emerging class of structurally diverse nanocarriers that are biocompatible, biodegradable, safe, and cost-effective. Similar to synthetic NPs, these particles can be loaded with imaging agents and/or drugs and functionalized with affinity ligands for targeted delivery. Here we report the development of a peptide-guided Tomato Bushy Stunt Virus (TBSV)-based nanocarrier platform for affinity targeting with the C-terminal C-end rule (CendR) peptide, RPARPAR (RPAR). Flow cytometry and confocal microscopy demonstrated that the TBSV-RPAR NPs bind specifically to and internalize in cells positive for the peptide receptor neuropilin-1 (NRP-1). TBSV-RPAR particles loaded with a widely used anticancer anthracycline, doxorubicin, showed selective cytotoxicity on NRP-1-expressing cells. Following systemic administration in mice, RPAR functionalization conferred TBSV particles the ability to accumulate in the lung tissue. Collectively, these studies show the feasibility of the CendR-targeted TBSV platform for the precision delivery of payloads.
Collapse
Affiliation(s)
- Luca Marchetti
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Lorena Simon-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50090 Tartu, Estonia
| | - Chiara Lico
- Laboratory of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50090 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Bragard C, Baptista P, Chatzivassiliou E, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Stefani E, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Streissl F, Carluccio AV, Chiumenti M, Di Serio F, Rubino L, Reignault PL. Pest categorisation of cowpea mosaic virus. EFSA J 2023; 21:e07847. [PMID: 36846393 PMCID: PMC9951085 DOI: 10.2903/j.efsa.2023.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The EFSA Panel on Plant Health conducted a pest categorisation of cowpea mosaic virus (CPMV) for the EU territory. The identity of CPMV, a member of the genus Comovirus (family Secoviridae), is established and detection and identification methods are available. The pathogen is not included in the Commission Implementing Regulation (EU) 2019/2072. It has been reported from the Americas, and several countries in Africa and Asia and it is not known to be present in the EU in natural conditions. CPMV is considered a major pathogen of cowpea on which it causes symptoms ranging from mild to severe mosaic, chlorosis and necrosis. The virus has been reported sporadically on some other cultivated species of the family Fabaceae, including soybean and some common bean varieties. CPMV is transmitted by cowpea seeds, with uncertainty on the transmission rate. There is uncertainty on seed transmission by other Fabaceae host species due to lack of information. CPMV is also transmitted by several beetle species, one of which, Diabrotica virgifera virgifera, is present in the EU. Seeds for sowing of cowpea are identified as the major entry pathway. The cultivated area and production of cowpea in the EU territory are mainly limited to local varieties cultivated at a small scale in Mediterranean EU Member States. Should the pest establish in the EU, an impact is expected on cowpea crops at local scale. There is high uncertainty on the potential impact that CPMV would cause on other natural hosts cultivated in the EU due to the lack of information from the areas of CPMV's current distribution. Despite the uncertainty concerning the potential impact on bean and soybean crops in the EU, CPMV satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
10
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
11
|
Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More MP, Pardeshi SR, Dhaneshwar G, Junnuthula V, Dyawanapelly S. Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotechnol 2023; 11:1159193. [PMID: 37200842 PMCID: PMC10185809 DOI: 10.3389/fbioe.2023.1159193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Rushikesh Sherkar
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Chaitali Shirsathe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Rushikesh Sonwane
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Nikita Varpe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Mahesh P. More
- Department of Pharmaceutics, Dr Rajendra Gode College of Pharmacy, Malkapur, Buldana, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St John Institute of Pharmacy and Research, Palghar, India
| | | | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| |
Collapse
|
12
|
Martí M, Merwaiss F, Butković A, Daròs JA. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants. Front Bioeng Biotechnol 2022; 10:877363. [PMID: 35433643 PMCID: PMC9008781 DOI: 10.3389/fbioe.2022.877363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses—the largest group of RNA viruses that infect plants—decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.
Collapse
|
13
|
Venkataraman S, Apka P, Shoeb E, Badar U, Hefferon K. Plant Virus Nanoparticles for Anti-cancer Therapy. Front Bioeng Biotechnol 2021; 9:642794. [PMID: 34976959 PMCID: PMC8714775 DOI: 10.3389/fbioe.2021.642794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Plant virus nanoparticles (VNPs) are inexpensive to produce, safe, biodegradable and efficacious as treatments. The applications of r plant virus nanoparticles range from epitope carriers for vaccines to agents in cancer immunotherapy. Both VNPs and virus-like particles (VLPs) are highly immunogenic and are readily phagocytosed by antigen presenting cells (APCs), which in turn elicit antigen processing and display of pathogenic epitopes on their surfaces. Since the VLPs are composed of multiple copies of their respective capsid proteins, they present repetitive multivalent scaffolds which aid in antigen presentation. Therefore, the VLPs prove to be highly suitable platforms for delivery and presentation of antigenic epitopes, resulting in induction of more robust immune response compared to those of their soluble counterparts. Since the tumor microenvironment poses the challenge of self-antigen tolerance, VLPs are preferrable platforms for delivery and display of self-antigens as well as otherwise weakly immunogenic antigens. These properties, in addition to their diminutive size, enable the VLPs to deliver vaccines to the draining lymph nodes in addition to promoting APC interactions. Furthermore, many plant viral VLPs possess inherent adjuvant properties dispensing with the requirement of additional adjuvants to stimulate immune activity. Some of the highly immunogenic VLPs elicit innate immune activity, which in turn instigate adaptive immunity in tumor micro-environments. Plant viral VLPs are nontoxic, inherently stable, and capable of being mass-produced as well as being modified with antigens and drugs, therefore providing an attractive option for eliciting anti-tumor immunity. The following review explores the use of plant viruses as epitope carrying nanoparticles and as a novel tools in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Paul Apka
- Theranostics and Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Erum Shoeb
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
15
|
Chan SK, Steinmetz NF. Isolation of Cowpea Mosaic Virus-Binding Peptides. Biomacromolecules 2021; 22:3613-3623. [PMID: 34314166 DOI: 10.1021/acs.biomac.1c00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.
Collapse
|
16
|
Fang L, Wei XY, Liu LZ, Zhou LX, Tian YP, Geng C, Li XD. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits. PLANT PHYSIOLOGY 2021; 186:853-864. [PMID: 33764466 PMCID: PMC8195500 DOI: 10.1093/plphys/kiab146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/11/2021] [Indexed: 06/01/2023]
Abstract
Cucurbits are economically important crops worldwide. The genomic data of many cucurbits are now available. However, functional analyses of cucurbit genes and noncoding RNAs have been impeded because genetic transformation is difficult for many cucurbitaceous plants. Here, we developed a set of tobacco ringspot virus (TRSV)-based vectors for gene and microRNA (miRNA) function studies in cucurbits. A TRSV-based expression vector could simultaneously express GREEN FLUORESCENT PROTEIN (GFP) and heterologous viral suppressors of RNA silencing in TRSV-infected plants, while a TRSV-based gene silencing vector could knock down endogenous genes exemplified by PHYTOENE DESATURASE (PDS) in Cucumis melo, Citrullus lanatus, Cucumis sativus, and Nicotiana benthamiana plants. We also developed a TRSV-based miRNA silencing vector to dissect the functions of endogenous miRNAs. Four representative miRNAs, namely, miR159, miR166, miR172, and miR319, from different cucurbits were inserted into the TRSV vector using a short tandem target mimic strategy and induced characteristic phenotypes in TRSV-miRNA-infected plants. This TRSV-based vector system will facilitate functional genomic studies in cucurbits.
Collapse
Affiliation(s)
- Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xin-Yu Wei
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Ling-Zhi Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Ling-Xi Zhou
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
17
|
Microparticles and Nanoparticles from Plants-The Benefits of Bioencapsulation. Vaccines (Basel) 2021; 9:vaccines9040369. [PMID: 33920425 PMCID: PMC8069552 DOI: 10.3390/vaccines9040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.
Collapse
|
18
|
Abrahamian P, Hammond RW, Hammond J. Plant Virus-Derived Vectors: Applications in Agricultural and Medical Biotechnology. Annu Rev Virol 2020; 7:513-535. [PMID: 32520661 DOI: 10.1146/annurev-virology-010720-054958] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances in our understanding of plant viral genome expression strategies and the interaction of a virus with its host for replication and movement, induction of disease, and resistance responses have been made through the generation of infectious molecules from cloned viral sequences. Autonomously replicating viral vectors derived from infectious clones have been exploited to express foreign genes in plants. Applications of virus-based vectors include the production of human/animal therapeutic proteins in plant cells and the specific study of plant biochemical processes, including those that confer resistance to pathogens. Additionally, virus-induced gene silencing, which is RNA mediated and triggered through homology-dependent RNA degradation mechanisms, has been exploited as an efficient method to study the functions of host genes in plants and to deliver small RNAs to insects. New and exciting strategies for vector engineering, delivery, and applications of plant virus-based vectors are the subject of this review.
Collapse
Affiliation(s)
- Peter Abrahamian
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
19
|
Sainsbury F. Innovation in plant-based transient protein expression for infectious disease prevention and preparedness. Curr Opin Biotechnol 2020; 61:110-115. [PMID: 31816585 PMCID: PMC7127347 DOI: 10.1016/j.copbio.2019.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
Addressing new challenges in global health and biosecurity requires responsive and accessible platforms for the manufacture of preventative or therapeutic interventions. Transient protein expression in plants has evolved into a technology that offers a unique combination of rapid expression, inherent scalability, and flexibility in gene stacking with the capability to produce complex proteins and protein assemblies. Technical developments that have driven the progress of transient expression in plants include advanced expression systems, protein engineering and synthetic biology approaches to transiently, or stably, modify host plants. The plasticity of transient expression in plants, speed of scalability and relatively low capital costs, highlight the great potential of this technology in the future of human and animal health.
Collapse
Affiliation(s)
- Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD 4001, Australia.
| |
Collapse
|
20
|
Santoni M, Zampieri R, Avesani L. Plant Virus Nanoparticles for Vaccine Applications. Curr Protein Pept Sci 2020; 21:344-356. [PMID: 32048964 DOI: 10.2174/1389203721666200212100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
| | | | - Linda Avesani
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
- Diamante srl. Strada Le Grazie, 15. 37134 Verona, Italy
| |
Collapse
|
21
|
Wang C, Beiss V, Steinmetz NF. Cowpea Mosaic Virus Nanoparticles and Empty Virus-Like Particles Show Distinct but Overlapping Immunostimulatory Properties. J Virol 2019; 93:e00129-19. [PMID: 31375592 PMCID: PMC6803287 DOI: 10.1128/jvi.00129-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that has been developed for multiple biomedical and nanotechnology applications, including immunotherapy. Two key platforms are available: virus nanoparticles (VNPs) based on the complete CMPV virion, including the genomic RNA, and virus-like nanoparticles (VLPs) based on the empty CPMV (eCPMV) virion. It is unclear whether these platforms differ in terms of immunotherapeutic potential. We therefore compared their physicochemical properties and immunomodulatory activities following in situ vaccination of an aggressive ovarian tumor mouse model (ID8-Defb29/Vegf-A). In physicochemical terms, CPMV and eCPMV were very similar, and both significantly increased the survival of tumor-bearing mice and showed promising antitumor efficacy. However, they demonstrated distinct yet overlapping immunostimulatory effects due to the presence of virus RNA in wild-type particles, indicating their suitability for different immunotherapeutic strategies. Specifically, we found that the formulations had similar effects on most secreted cytokines and immune cells, but the RNA-containing CPMV particles were uniquely able to boost populations of potent antigen-presenting cells, such as tumor-infiltrating neutrophils and activated dendritic cells. Our results will facilitate the development of CPMV and eCPMV as immunotherapeutic vaccine platforms with tailored responses.IMPORTANCE The engagement of antiviral effector responses caused by viral infection is essential when using viruses or virus-like particles (VLPs) as an immunotherapeutic agent. Here, we compare the chemophysical and immunostimulatory properties of wild-type cowpea mosaic virus (CPMV) (RNA containing) and eCPMV (RNA-free VLPs) produced from two expression systems (agrobacterium-based plant expression system and baculovirus-insect cell expression). CPMV and eCPMV could each be developed as novel adjuvants to overcome immunosuppression and thus promote tumor regression in ovarian cancer (and other tumor types). To our knowledge, this is the first study to define the immunotherapeutic differences between CPMV and eCPMV, which is essential for the further development of biomedical applications for plant viruses and the selection of rational combinations of immunomodulatory reagents.
Collapse
Affiliation(s)
- Chao Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California, USA
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California, USA
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
23
|
Matsumura EE, Coletta‐Filho HD, Machado MA, Nouri S, Falk BW. Rescue of Citrus sudden death-associated virus in Nicotiana benthamiana plants from cloned cDNA: insights into mechanisms of expression of the three capsid proteins. MOLECULAR PLANT PATHOLOGY 2019; 20:611-625. [PMID: 30575252 PMCID: PMC6637869 DOI: 10.1111/mpp.12780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus sudden death-associated virus (CSDaV) is a member of the genus Marafivirus in the family Tymoviridae, and has been associated with citrus sudden death (CSD) disease in Brazil. Difficulties in the purification of CSDaV from infected citrus plants have prevented progress in the investigation of the role of this virus in CSD and an understanding of its molecular biology. In this work, we have constructed a full-length cDNA clone of CSDaV driven by the 35S promoter (35SRbz-CSDaV). Agrobacterium tumefaciens-mediated inoculation of 35SRbz-CSDaV in Nicotiana benthamiana plants enabled a fast recovery of large amounts of virions from the agroinfiltrated leaves, which allowed a better molecular characterization of CSDaV. In vivo analyses of mutant versions of 35SRbz-CSDaV revealed the expression strategies used by CSDaV for production of the capsid proteins (CPs). We showed that CSDaV virions contain three forms of CP, each of which is generated from the same coding sequence, but by different mechanisms. The major CPp21 is a product of direct translation by leaky scanning from the second start codon in the subgenomic RNA (sgRNA), whereas the minor CPs, p25 and p23, are produced by direct translation from the first start codon in the sgRNA and by trans-proteolytic cleavage processing derived from the p25 precursor, respectively. Together, these findings contribute to advance our understanding of CSDaV genome expression strategies. In addition, the construction and characterization of the CSDaV infectious clone represent important steps towards the investigation of the role of this virus in CSD and of its use as a tool for citrus biotechnology.
Collapse
Affiliation(s)
| | | | - Marcos A. Machado
- Centro de Citricultura Sylvio MoreiraInstituto Agronômico de CampinasCordeirópolisSP13490‐970Brazil
| | - Shahideh Nouri
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
24
|
Application of Plant Viruses as a Biotemplate for Nanomaterial Fabrication. Molecules 2018; 23:molecules23092311. [PMID: 30208562 PMCID: PMC6225259 DOI: 10.3390/molecules23092311] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Viruses are widely used to fabricate nanomaterials in the field of nanotechnology. Plant viruses are of great interest to the nanotechnology field because of their symmetry, polyvalency, homogeneous size distribution, and ability to self-assemble. This homogeneity can be used to obtain the high uniformity of the templated material and its related properties. In this paper, the variety of nanomaterials generated in rod-like and spherical plant viruses is highlighted for the cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV), brome mosaic virus (BMV), and tobacco mosaic virus (TMV). Their recent studies on developing nanomaterials in a wide range of applications from biomedicine and catalysts to biosensors are reviewed.
Collapse
|
25
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
26
|
Abstract
Background Synthetic virology is an important multidisciplinary scientific field, with emerging applications in biotechnology and medicine, aiming at developing methods to generate and engineer synthetic viruses. In particular, many of the RNA viruses, including among others the Dengue and Zika, are widespread pathogens of significant importance to human health. The ability to design and synthesize such viruses may contribute to exploring novel approaches for developing vaccines and virus based therapies. Results Here we develop a full multidisciplinary pipeline for generation and analysis of synthetic RNA viruses and specifically apply it to Dengue virus serotype 2 (DENV-2). The major steps of the pipeline include comparative genomics of endogenous and synthetic viral strains. Specifically, we show that although the synthetic DENV-2 viruses were found to have lower nucleotide variability, their phenotype, as reflected in the study of the AG129 mouse model morbidity, RNA levels, and neutralization antibodies, is similar or even more pathogenic in comparison to the wildtype master strain. Additionally, the highly variable positions, identified in the analyzed DENV-2 population, were found to overlap with less conserved homologous positions in Zika virus and other Dengue serotypes. These results may suggest that synthetic DENV-2 could enhance virulence if the correct sequence is selected. Conclusions The approach reported in this study can be used to generate and analyze synthetic RNA viruses both on genotypic and on phenotypic level. It could be applied for understanding the functionality and the fitness effects of any set of mutations in viral RNA and for editing RNA viruses for various target applications. Electronic supplementary material The online version of this article (10.1186/s12859-018-2132-3) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Berardi A, Evans DJ, Baldelli Bombelli F, Lomonossoff GP. Stability of plant virus-based nanocarriers in gastrointestinal fluids. NANOSCALE 2018; 10:1667-1679. [PMID: 29231944 PMCID: PMC5804478 DOI: 10.1039/c7nr07182e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 05/17/2023]
Abstract
Cowpea mosaic virus (CPMV) is a plant virus which is being extensively investigated as a drug delivery and vaccine nanocarrier for parenteral administration. However, to date little is known about the suitability of plant-based nanocarriers for oral delivery. In this study, the colloidal (i.e. aggregation), physical (i.e. denaturation) and chemical (i.e. digestion of the polypeptides) stability of CPMV and its empty virus-like particles (eVLPs) in conditions resembling the gastrointestinal fluids were evaluated. The nanoparticles were incubated in various simulated gastric and intestinal fluids and in pig gastric and intestinal fluids. CPMV and eVLPs had similar stabilities. In simulated gastric media, they were stable at pH ≥ 2.5. At lower pH destabilisation of the particle structure occurred, which, in turn, rendered the polypeptides extremely sensitive to pepsin digestion. However, both CPMV and eVLPs were stable in simulated intestinal fluids, in pig gastric fluids and in pig intestinal fluids. Thus CPMV, despite being a protein-based nanoparticle, was much more resistant to the harsh GI conditions than soluble proteins. Remarkably, both CPMV and eVLPs incubated in pig gastric and intestinal fluids were not subject to protein adsorption, with no formation of a detectable protein corona. The lack of a protein corona on CPMV and eVLP surfaces in GI fluids would imply that, if orally administered, these nanoparticles could maintain their native surface characteristics; thus, their biological interactions would remain predictable and unchanged. In summary, CPMV and eVLPs can be considered promising nanocarriers for applications requiring oral delivery, given their chemical, physical and colloidal stability and lack of protein adsorption from the environment in most of the tested conditions.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan. and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David J Evans
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
28
|
Abstract
Empty (containing no genomic material) CPMV virus-like particles are loaded within the virus capsid with metal or metal oxide. Metal ions are allowed to diffuse through pores in the capsid surface and are reduced or hydrolyzed to metallic nanoparticles. The external surface of the virus-like particles remains amenable to further chemical modification.
Collapse
Affiliation(s)
| | - David J Evans
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
29
|
Dickmeis C, Altintoprak K, van Rijn P, Wege C, Commandeur U. Bioinspired Silica Mineralization on Viral Templates. Methods Mol Biol 2018; 1776:337-362. [PMID: 29869253 DOI: 10.1007/978-1-4939-7808-3_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant virus capsids are attractive entities for nanotechnological applications because of their variation in shape and natural assembly ability. This chapter describes the production and modification of three differently shaped plant virus capsids for silica mineralization purposes. The chosen plant viruses exhibit either an icosahedral (cowpea mosaic virus, CPMV), or a flexuous rod-like structure (potato virus X, PVX), or a rigid rod-like shape (tobacco mosaic virus, TMV), and are well-known and frequently used plant viruses for biotechnological applications. We describe the production (including genetic or chemical modification) and purification of the plant viruses or of empty virus-like particles in the case of CPMV, as well as the characterization of these harvested templates. The mineralization procedures and differences in the protocols specific to the distinct viruses are described, and the analyses of the mineralization results are explained.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Patrick van Rijn
- Faculty of Medical Sciences, University of Groningen, AV, Groningen, The Netherlands
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
30
|
Combining high-resolution cryo-electron microscopy and mutagenesis to develop cowpea mosaic virus for bionanotechnology. Biochem Soc Trans 2017; 45:1263-1269. [PMID: 29101307 PMCID: PMC5730940 DOI: 10.1042/bst20160312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/26/2023]
Abstract
Particles of cowpea mosaic virus (CPMV) have enjoyed considerable success as nanoparticles. The development of a system for producing empty virus-like particles (eVLPs) of the virus, which are non-infectious and have the potential to be loaded with heterologous material, has increased the number of possible applications for CPMV-based particles. However, for this potential to be realised, it was essential to demonstrate that eVLPs were accurate surrogates for natural virus particles, and this information was provided by high-resolution cryo-EM studies of eVLPs. This demonstration has enabled the approaches developed for the production of modified particles developed with natural CPMV particles to be applied to eVLPs. Furthermore, a combination of cryo-EM and mutagenic studies allowed the development of particles which are permeable but which could still assemble efficiently. These particles were shown to be loadable with cobalt, indicating that they can, indeed, be used as nano-containers.
Collapse
|
31
|
Wongsa K, Duangphakdee O, Rattanawannee A. Genetic Structure of the Aphis craccivora (Hemiptera: Aphididae) From Thailand Inferred From Mitochondrial COI Gene Sequence. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3966736. [PMID: 28973491 PMCID: PMC5510963 DOI: 10.1093/jisesa/iex058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
The cowpea aphid, Aphis craccivora Koch (Hemiptera: Aphididae), is one of the most destructive insect pests of legume plants worldwide. Although outbreaks of this pest occur annually in Thailand causing heavy damage, its genetic structure and demographic history are poorly understood. In order to determine genetic structure and genetic relationship of the geographic populations of this species, we examined sequences of mitochondrial cytochrome c oxidase subunit I (COI) gene of 51 individuals collected from 32 localities throughout Thailand. Within the sequences of these geographic populations, 32 polymorphic sites defined 17 haplotypes, ranging in sequence divergence from 0.2% (1 nucleotide) to 2.7% (16 nucleotides). A relatively high haplotype diversity but low nucleotide diversity was detected in the populations of A. craccivora, a finding that is typical for migratory species. Phylogenetic analysis revealed a weak phylogeographic structuring among the geographic populations and among the haplotypes, indicating their close relationship. Considering the distance between the sampling sites, the occurrence of identical haplotypes over wide areas is noteworthy. Moreover, the low genetic distance (FST ranging from -0.0460 to 0.3263) and high rate of per-generation female migration (Nm ranging from 1.0323 to 20.3333) suggested population exchange and gene flow between the A. craccivora populations in Thailand.
Collapse
Affiliation(s)
- Kanyanat Wongsa
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand (; )
| | - Orawan Duangphakdee
- King Mongkut’s University of Technology Thonburi, Ratchaburi Campus, 126, Bangmod, Thung Khru, Bangkok 10140, Thailand ()
| | - Atsalek Rattanawannee
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand (; )
| |
Collapse
|
32
|
Belval L, Hemmer C, Sauter C, Reinbold C, Fauny J, Berthold F, Ackerer L, Schmitt‐Keichinger C, Lemaire O, Demangeat G, Ritzenthaler C. Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2288-2299. [PMID: 27178344 PMCID: PMC5103221 DOI: 10.1111/pbi.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) derived from nonenveloped viruses result from the self-assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self-assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N- and C-terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant-based production of nucleic acid-free VLPs. Remarkably, expression of N- or C-terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.
Collapse
Affiliation(s)
- Lorène Belval
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Caroline Hemmer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | | | - Jean‐Daniel Fauny
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | - François Berthold
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Léa Ackerer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
- Institut Français de la Vigne et du VinDomaine de l'EspiguetteLe Grau‐du‐RoiFrance
| | - Corinne Schmitt‐Keichinger
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | | | | | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| |
Collapse
|
33
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
34
|
Aguilera BE, Chávez-Calvillo G, Elizondo-Quiroga D, Jimenez-García MN, Carrillo-Tripp M, Silva-Rosales L, Hernández-Gutiérrez R, Gutiérrez-Ortega A. Porcine circovirus type 2 protective epitope densely carried by chimeric papaya ringspot virus-like particles expressed in Escherichia coli as a cost-effective vaccine manufacture alternative. Biotechnol Appl Biochem 2016; 64:406-414. [PMID: 26970530 DOI: 10.1002/bab.1491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Porcine circovirus type 2 (PCV2) still represents a major problem to the swine industry worldwide, causing high mortality rates in infected animals. Virus-like particles (VLPs) have gained attention for vaccine development, serving both as scaffolds for epitope expression and immune response enhancers. The commercial subunit vaccines against PCV2 consist of VLPs formed by the self-assembly of PCV2 capsid protein (CP) expressed in the baculovirus vector system. In this work, a PCV2 protective epitope was inserted into three different regions of papaya ringspot virus (PRSV) CP, namely, the N- and C-termini and a predicted antigenic region located near the N-terminus. Wild-type and chimeric CPs were modeled in silico, expressed in Escherichia coli, purified, and visualized by transmission electron microscopy. This is the first report that shows the formation of chimeric VLPs using PRSV as epitope-presentation scaffold. Moreover, it was found that PCV2 epitope localization strongly influences VLP length. Also, the estimated yields of the chimeric VLPs at a small-scale level ranged between 65 and 80 mg/L of culture medium. Finally, the three chimeric VLPs induced high levels of immunoglobulin G against the PCV2 epitope in immunized BALB/c mice, suggesting that these chimeric VLPs can be used for swine immunoprophylaxis against PCV2.
Collapse
Affiliation(s)
- Brenda Eugenia Aguilera
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Normalistas 800, Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Gabriela Chávez-Calvillo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Darwin Elizondo-Quiroga
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Normalistas 800, Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Mónica Noemí Jimenez-García
- Laboratorio de la Diversidad Biomolecular, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norte km 9.6, Carretera Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Mauricio Carrillo-Tripp
- Laboratorio de la Diversidad Biomolecular, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norte km 9.6, Carretera Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Laura Silva-Rosales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Rodolfo Hernández-Gutiérrez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Normalistas 800, Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Abel Gutiérrez-Ortega
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Normalistas 800, Colinas de la Normal, Guadalajara, Jalisco 44270, México
| |
Collapse
|
35
|
Niehl A, Appaix F, Boscá S, van der Sanden B, Nicoud JF, Bolze F, Heinlein M. Fluorescent Tobacco mosaic virus-Derived Bio-Nanoparticles for Intravital Two-Photon Imaging. FRONTIERS IN PLANT SCIENCE 2016; 6:1244. [PMID: 26793221 PMCID: PMC4710741 DOI: 10.3389/fpls.2015.01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-photon intravital imaging has become a powerful tool to investigate the healthy and diseased brain vasculature in living animals. Although agents for multi-photon fluorescence microscopy of the microvasculature are available, issues related to stability, bioavailability, toxicity, cost or chemical adaptability remain to be solved. In particular, there is a need for highly fluorescent dyes linked to particles that do not cross the blood brain barrier (BBB) in brain diseases like tumor or stroke to estimate the functional blood supply. Plant virus particles possess a number of distinct advantages over other particles, the most important being the multi-valency of chemically addressable sites on the particle surface. This multi-valency, together with biological compatibility and inert nature, makes plant viruses ideal carriers for in vivo imaging agents. Here, we show that the well-known Tobacco mosaic virus is a suitable nanocarrier for two-photon dyes and for intravital imaging of the mouse brain vasculature.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Florence Appaix
- Two-Photon Microscopy Platform, Grenoble Institut des Neurosciences, Institut National de la Santé et de la Recherche Médicale U836, Université Grenoble AlpesGrenoble, France
| | - Sonia Boscá
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| | | | - Jean-François Nicoud
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 Centre National de la Recherche Scientifique-Université de StrasbourgIllkirch, France
| | - Frédéric Bolze
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 Centre National de la Recherche Scientifique-Université de StrasbourgIllkirch, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| |
Collapse
|
36
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
37
|
Dickmeis C, Honickel MMA, Fischer R, Commandeur U. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors. Front Bioeng Biotechnol 2015; 3:189. [PMID: 26636076 PMCID: PMC4653303 DOI: 10.3389/fbioe.2015.00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/04/2015] [Indexed: 12/30/2022] Open
Abstract
We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | | | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany ; Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen , Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
38
|
Peyret H, Lomonossoff GP. When plant virology met Agrobacterium: the rise of the deconstructed clones. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1121-35. [PMID: 26073158 PMCID: PMC4744784 DOI: 10.1111/pbi.12412] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 05/20/2023]
Abstract
In the early days of molecular farming, Agrobacterium-mediated stable genetic transformation and the use of plant virus-based vectors were considered separate and competing technologies with complementary strengths and weaknesses. The demonstration that 'agroinfection' was the most efficient way of delivering virus-based vectors to their target plants blurred the distinction between the two technologies and permitted the development of 'deconstructed' vectors based on a number of plant viruses. The tobamoviruses, potexviruses, tobraviruses, geminiviruses and comoviruses have all been shown to be particularly well suited to the development of such vectors in dicotyledonous plants, while the development of equivalent vectors for use in monocotyledonous plants has lagged behind. Deconstructed viral vectors have proved extremely effective at the rapid, high-level production of a number of pharmaceutical proteins, some of which are currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
39
|
Majer E, Navarro JA, Daròs JA. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnol J 2015; 10:1792-802. [PMID: 26147811 DOI: 10.1002/biot.201500042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/11/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain.
| |
Collapse
|
40
|
Hassani-Mehraban A, Creutzburg S, van Heereveld L, Kormelink R. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations. BMC Biotechnol 2015; 15:80. [PMID: 26311254 PMCID: PMC4551372 DOI: 10.1186/s12896-015-0180-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/29/2015] [Indexed: 11/23/2022] Open
Abstract
Background & Methods Within the last decade Virus-Like Particles (VLPs) have increasingly received attention from scientists for their use as a carrier of (peptide) molecules or as scaffold to present epitopes for use in subunit vaccines. To test the feasibility of Cowpea chlorotic mottle virus (CCMV) particles as a scaffold for epitope presentation and identify sites for epitope fusion or insertion that would not interfere with virus-like-particle formation, chimeric CCMV coat protein (CP) gene constructs were engineered, followed by expression in E. coli and assessment of VLP formation. Various constructs were made encoding a 6x-His-tag, or selected epitopes from Influenza A virus [IAV] (M2e, HA) or Foot and Mouth Disease Virus [FMDV] (VP1 and 2C). The epitopes were either inserted 1) in predicted exposed loop structures of the CCMV CP protein, 2) fused to the amino- (N) or carboxyl-terminal (C) ends, or 3) to a N-terminal 24 amino acid (aa) deletion mutant (N∆24-CP) of the CP protein. Results High levels of insoluble protein expression, relative to proteins from the entire cell lysate, were obtained for CCMV CP and all chimeric derivatives. A straightforward protocol was used that, without the use of purification columns, successfully enabled CCMV CP protein solubilization, reassembly and subsequent collection of CCMV CP VLPs. While insertions of His-tag or M2e (7-23 aa) into the predicted external loop structures did abolish VLP formation, high yields of VLPs were obtained with all fusions of His-tag or various epitopes (13- 27 aa) from IAV and FMDV at the N- or C-terminal ends of CCMV CP or N∆24-CP. VLPs derived from CCMV CP still encapsulated RNA, while those from CCMV CP-chimera containing a negatively charged N-terminal domain had lost this ability. The usefulness and rapid ease of exploitation of CCMV VLPs for the production of potential subunit vaccines was demonstrated with the synthesis of chimeric CCMV VLPs containing selected sequences from the GN and GC glycoproteins of the recently emerged Schmallenberg orthobunyavirus at both termini of the CP protein. Conclusions CCMV VLPs can be successfully exploited as scaffold for epitope fusions up to 31 aa at the N- and C-terminus, and at a N-terminal 24 amino acid (aa) deletion mutant (N∆24-CP) of the CP protein.
Collapse
Affiliation(s)
- Afshin Hassani-Mehraban
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Sjoerd Creutzburg
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Luc van Heereveld
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
41
|
Yang C, Pan H, Liu Y, Zhou X. Temperature and Development Impacts on Housekeeping Gene Expression in Cowpea Aphid, Aphis craccivora (Hemiptera: Aphidiae). PLoS One 2015; 10:e0130593. [PMID: 26090683 PMCID: PMC4474611 DOI: 10.1371/journal.pone.0130593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/22/2015] [Indexed: 12/23/2022] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is a powerful technique to quantify gene expression. To standardize gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to consistently expressed housekeeping genes (HKGs) is required. In this study, ten candidate HKGs including elongation factor 1 α (EF1A), ribosomal protein L11 (RPL11), ribosomal protein L14 (RPL14), ribosomal protein S8 (RPS8), ribosomal protein S23 (RPS23), NADH-ubiquinone oxidoreductase (NADH), vacuolar-type H+-ATPase (ATPase), heat shock protein 70 (HSP70), 18S ribosomal RNA (18S), and 12S ribosomal RNA (12S) from the cowpea aphid, Aphis craccivora Koch were selected. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method were employed to evaluate the expression profiles of these HKGs as endogenous controls across different developmental stages and temperature regimes. Based on RefFinder, which integrates all four analytical algorithms to compare and rank the candidate HKGs, RPS8, RPL14, and RPL11 were the three most stable HKGs across different developmental stages and temperature conditions. This study is the first step to establish a standardized qRT-PCR analysis in A. craccivora following the MIQE guideline. Results from this study lay a foundation for the genomics and functional genomics research in this sap-sucking insect pest with substantial economic impact.
Collapse
Affiliation(s)
- Chunxiao Yang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| | - Huipeng Pan
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
- * E-mail: (XGZ); (YL)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
- * E-mail: (XGZ); (YL)
| |
Collapse
|
42
|
Blandino A, Lico C, Baschieri S, Barberini L, Cirotto C, Blasi P, Santi L. In vitro and in vivo toxicity evaluation of plant virus nanocarriers. Colloids Surf B Biointerfaces 2015; 129:130-6. [PMID: 25847457 DOI: 10.1016/j.colsurfb.2015.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
The use of biological self-assembling materials, plant virus nanoparticles in particular, appears very intriguing as it allows a great choice of symmetries and dimensions, easy chemical and biological engineering of both surface and/or internal cavity as well as safe and rapid production in plants. In this perspective, we present an initial evaluation of the safety profile of two structurally different plant viruses produced in Nicotiana benthamiana L. plants: the filamentous Potato virus X and the icosahedral Tomato bushy stunt virus. In vitro haemolysis assay was used to test the cytotoxic effects, which could arise by pVNPs interaction with cellular membranes, while early embryo assay was used to evaluate toxicity and teratogenicity in vivo. Data indicates that these structurally robust particles, still able to infect plants after incubation in serum up to 24h, have neither toxic nor teratogenic effects in vitro and in vivo. This work represents the first safety-focused characterization of pVNPs in view of their possible use as drug delivery carriers.
Collapse
Affiliation(s)
- Agnese Blandino
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, Technical Unit Radiation Biology and Human Health, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Technical Unit Radiation Biology and Human Health, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy
| | - Lanfranco Barberini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, via elce di sotto, 06123 Perugia, Italy
| | - Carlo Cirotto
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, via elce di sotto, 06123 Perugia, Italy
| | - Paolo Blasi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy.
| | - Luca Santi
- Department of Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
43
|
Plant virus directed fabrication of nanoscale materials and devices. Virology 2015; 479-480:200-12. [DOI: 10.1016/j.virol.2015.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022]
|
44
|
Nagata T, Inoue-Nagata AK. Simplified methods for the construction of RNA and DNA virus infectious clones. Methods Mol Biol 2015; 1236:241-54. [PMID: 25287508 DOI: 10.1007/978-1-4939-1743-3_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infectious virus clones are one of the most powerful tools in plant pathology, molecular biology, and biotechnology. The construction of infectious clones of RNA and DNA viruses, however, usually requires laborious cloning and subcloning steps. In addition, instability of the RNA virus genome is frequently reported after its introduction into the vector and transference to Escherichia coli. These difficulties hamper the cloning procedures, making it tedious and cumbersome. This chapter describes two protocols for a simple construction of infectious viruses, an RNA virus, the tobamovirus Pepper mild mottle virus, and a DNA virus, a bipartite begomovirus. For this purpose, the strategy of overlap-extension PCR was used for the construction of infectious tobamovirus clone and of rolling circle amplification (RCA) for the construction of a dimeric form of the begomovirus clone.
Collapse
Affiliation(s)
- Tatsuya Nagata
- Laboratório de Microscopia e Virologia, Departamento de Biologia Celular, Conselho de Ensino, Pesquisa, e Extensão, Universidade de Brasília, IB-Bloco K, Asa Norte, 70910-900, Brasilia, DF, Brazil,
| | | |
Collapse
|
45
|
Guerrero-Rodríguez J, Manuel-Cabrera CA, Palomino-Hermosillo YA, Delgado-Guzmán PG, Escoto-Delgadillo M, Silva-Rosales L, Herrera-Rodríguez SE, Sánchez-Hernández C, Gutiérrez-Ortega A. Virus-like particles from Escherichia Coli-derived untagged papaya ringspot virus capsid protein purified by immobilized metal affinity chromatography enhance the antibody response against a soluble antigen. Mol Biotechnol 2014; 56:1110-20. [PMID: 25119647 DOI: 10.1007/s12033-014-9791-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is a growing interest in using virus-like particles (VLPs) as scaffolds for the presentation of antigens of choice to the immune system. In this work, VLPs from papaya ringspot virus capsid protein expressed in Escherichia coli were evaluated as enhancers of antibody response against a soluble antigen. Interestingly, although the capsid protein lacks a histidine tag, its purification by immobilized metal affinity chromatography was achieved. The formation of VLPs was demonstrated by electron microscopy for the first time for this capsid protein. VLPs were enriched by polyethylene glycol precipitation. Additionally, these VLPs were chemically coupled to green fluorescent protein in order to evaluate them as antigen carriers; however, bioconjugate instability was observed. Nonetheless, the adjuvant effect of these VLPs on BALB/c mice was evaluated, using GFP as antigen, resulting in a significant increase in anti-GFP IgG response, particularly, IgG1 class, demonstrating that the VLPs enhance the immune response against the antigen chosen in this study.
Collapse
Affiliation(s)
- Jesús Guerrero-Rodríguez
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales km 15.5, 45110, Zapopan, Jalisco, Mexico,
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Woappi YL, Jangiti R, Singh OV. Synthetic immunosurveillance systems: nanodevices to monitor physiological events. Biosens Bioelectron 2014; 61:152-64. [PMID: 24874659 PMCID: PMC7065416 DOI: 10.1016/j.bios.2014.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
Abstract
The field of nanotechnology has recently seen vast advancements in its applications for therapeutic strategy. This technological revolution has led way to nanomedicine, which spurred the development of clever drug delivery designs and ingenious nanovehicles for the monitoring of cellular events in vivo. The clinical implementations of this technology are innumerable and have demonstrated utility as diagnostic tools and fortifying machineries for the mammalian immune system. Recently engineered viral vectors and multi-subunit packaging RNAs have verified stable enough for long-term existence in the physiological environment and therefore reveal unique potential as artificial immunosurveillance devices. Physiological and pathological events recorded by nanodevices could help develop "biocatalogs" of patients' infection history, frequency of disease, and much more. In this article, we introduce a novel design concept for a multilayer synthetic immune network parallel to the natural immune system; an artificial network of continuously patrolling nanodevices incorporated in the blood and lymphatic systems, and adapted for molecular event recording, anomaly detection, drug delivery, and gene silencing. We also aim to discuss the approaches and advances recently reported in nanomedicine, especially as it pertains to promising viral and RNA-based nanovehicles and their prospective applications for the development of a synthetic immunosurveillance system (SIS). Alternative suggestions and limitations of these technologies are also discussed.
Collapse
Affiliation(s)
- Yvon L Woappi
- Division of Biological and Health Sciences, 300 Campus Drive, University of Pittsburgh, Bradford, PA 16701, USA
| | - Rahul Jangiti
- Division of Physical and Computational Sciences, 300 Campus Drive, University of Pittsburgh, Bradford, PA 16701, USA
| | - Om V Singh
- Division of Biological and Health Sciences, 300 Campus Drive, University of Pittsburgh, Bradford, PA 16701, USA.
| |
Collapse
|
47
|
Sainsbury F, Lomonossoff GP. Transient expressions of synthetic biology in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:1-7. [PMID: 24631883 PMCID: PMC4070481 DOI: 10.1016/j.pbi.2014.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/10/2014] [Indexed: 05/20/2023]
Abstract
Recent developments in transient expression methods have enabled the efficient delivery and expression of multiple genes within the same plant cell over a timescale of days. In some cases, the vectors deployed can be fine-tuned to allow differential expression of the various genes. This has opened the way to the deployment of transient expression for such applications as the production of macromolecular complexes and the analysis and manipulation of metabolic pathways. The ability to observe the effect of gene expression in a matter of days means that transient expression is becoming the method of choice for many plant-based synthetic biology applications.
Collapse
Affiliation(s)
- Frank Sainsbury
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, QLD 4072, Australia
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
48
|
Lin J, Guo J, Finer J, Dorrance AE, Redinbaugh MG, Qu F. The bean pod mottle virus RNA2-encoded 58-kilodalton protein P58 is required in cis for RNA2 accumulation. J Virol 2014; 88:3213-22. [PMID: 24390330 PMCID: PMC3957913 DOI: 10.1128/jvi.03301-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/24/2013] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA plant virus in the Secoviridae family. Its RNA1 encodes proteins required for genome replication, whereas RNA2 primarily encodes proteins needed for virion assembly and cell-to-cell movement. However, the function of a 58-kDa protein (P58) encoded by RNA2 has not been resolved. P58 and the movement protein (MP) of BPMV are two largely identical proteins differing only at their N termini, with P58 extending MP upstream by 102 amino acid residues. In this report, we unveil a unique role for P58. We show that BPMV RNA2 accumulation in infected cells was abolished when the start codon of P58 was eliminated. The role of P58 does not require the region shared by MP, as RNA2 accumulation in individual cells remained robust even when most of the MP coding sequence was removed. Importantly, the function of P58 required the P58 protein, rather than its coding RNA, as compensatory mutants could be isolated that restored RNA2 accumulation by acquiring new start codons upstream of the original one. Most strikingly, loss of P58 function could not be complemented by P58 provided in trans, suggesting that P58 functions in cis to selectively promote the accumulation of RNA2 copies that encode a functional P58 protein. Finally, we found that all RNA1-encoded proteins are cis-acting relative to RNA1. Together, our results suggest that P58 probably functions by recruiting the RNA1-encoded polyprotein to RNA2 to enable RNA2 reproduction. IMPORTANCE Bean pod mottle virus (BPMV) is one of the most important pathogens of the crop plant soybean, yet its replication mechanism is not well understood, hindering the development of knowledge-based control measures. The current study examined the replication strategy of BPMV RNA2, one of the two genomic RNA segments of this virus, and established an essential role for P58, one of the RNA2-encoded proteins, in the process of RNA2 replication. Our study demonstrates for the first time that P58 functions preferentially with the very RNA from which it is translated, thus greatly advancing our understanding of the replication mechanisms of this and related viruses. Furthermore, this study is important because it provides a potential target for BPMV-specific control, and hence could help to mitigate soybean production losses caused by this virus.
Collapse
Affiliation(s)
- Junyan Lin
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Jiangbo Guo
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- School of Mathematics, Physics, and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - John Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Anne E. Dorrance
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Margaret G. Redinbaugh
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- USDA-ARS, Corn and Soybean Research Unit, Wooster, Ohio, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
49
|
Nam M, Kim JS, Lim S, Park CY, Kim JG, Choi HS, Lim HS, Moon JS, Lee SH. Development of the large-scale oligonucleotide chip for the diagnosis of plant viruses and its practical use. THE PLANT PATHOLOGY JOURNAL 2014; 30:51-7. [PMID: 25288985 PMCID: PMC4174837 DOI: 10.5423/ppj.oa.08.2013.0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 05/08/2023]
Abstract
A large-scale oligonucleotide (LSON) chip was developed for the detection of the plant viruses with known genetic information. The LSON chip contains two sets of 3,978 probes for 538 species of targets including plant viruses, satellite RNAs and viroids. A hundred forty thousand probes, consisting of isolate-, species- and genus-specific probes respectively, are designed from 20,000 of independent nucleotide sequence of plant viruses. Based on the economic importance, the amount of genome information, and the number of strains and/or isolates, one to fifty-one probes for each target virus are selected and spotted on the chip. The standard and field samples for the analysis of the LSON chip have been prepared and tested by RT-PCR. The probe's specific and/or nonspecific reaction patterns by LSON chip allow us to diagnose the unidentified viruses. Thus, the LSON chip in this study could be highly useful for the detection of unexpected plant viruses, the monitoring of emerging viruses and the fluctuation of the population of major viruses in each plant.
Collapse
Affiliation(s)
- Moon Nam
- Institute of Plant Medicine, Kyungpook National University, Daegu 702-701, Korea
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Academy of Agricultural Science, RDA, Suwon 441-707, Korea
| | - Seungmo Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea
| | - Chung Youl Park
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jeong-Gyu Kim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, RDA, Suwon 441-707, Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, Korea
- Co-Corresponding authors. Jae-Sun Moon, Phone) +82-42-860-4680, FAX) +82-42-860-4608, E-mail)
| | - Su-Heon Lee
- Institute of Plant Medicine, Kyungpook National University, Daegu 702-701, Korea
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
- Su-Heon Lee, Phone) +82-53-950-5763, FAX) +82-53-950-6758, E-mail)
| |
Collapse
|
50
|
Junqueira BRT, Nicolini C, Lucinda N, Orílio AF, Nagata T. A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector. J Virol Methods 2014; 198:32-6. [PMID: 24388933 DOI: 10.1016/j.jviromet.2013.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants.
Collapse
Affiliation(s)
| | - Cícero Nicolini
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Natalia Lucinda
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Anelise Franco Orílio
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Tatsuya Nagata
- Pós-graduação em Biologia Molecular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|