1
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
2
|
Braz M, Pereira C, Freire CSR, Almeida A. A Review on Recent Trends in Bacteriophages for Post-Harvest Food Decontamination. Microorganisms 2025; 13:515. [PMID: 40142412 PMCID: PMC11946132 DOI: 10.3390/microorganisms13030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Infectious diseases resulting from unsafe food consumption are a global concern. Despite recent advances and control measures in the food industry aimed at fulfilling the growing consumer demand for high-quality and safe food products, infection outbreaks continue to occur. This review stands out by providing an overview of post-harvest food decontamination methods against some of the most important bacterial foodborne pathogens, with particular focus on the advantages and challenges of using phages, including their most recent post-harvest applications directly to food and integration into active food packaging systems, highlighting their potential in providing safer and healthier food products. The already approved commercial phage products and the numerous available studies demonstrate their antibacterial efficacy against some of the most problematic foodborne pathogens in different food products, reinforcing their possible use in the future as a current practice in the food industry for food decontamination. Moreover, the incorporation of phages into packaging materials holds particular promise, providing protection against harsh conditions and enabling their controlled and continuous release into the food matrix. The effectiveness of phage-added packaging materials in reducing the growth of pathogens in food systems has been well-demonstrated. However, there are still some challenges associated with the development of phage-based packaging systems that need to be addressed with future research.
Collapse
Affiliation(s)
- Márcia Braz
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
| | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
| |
Collapse
|
3
|
Lira RLDS, Nogueira FAB, Campos RDFPDC, Ferreira DRM, Roxo PLBT, de Azevedo CCS, Gimenes ECM, Bastos RLC, Nascimento CEC, Nunes FDO, Marques MCP, Campos CDL, Martinez CG, Zagmignan A, Silva LCN, Ribeiro RM, de Azevedo dos Santos APS, Carvalho RC, de Sousa EM. Mycobacterium abscessus subsp. massiliense: Biofilm Formation, Host Immune Response, and Therapeutic Strategies. Microorganisms 2025; 13:447. [PMID: 40005812 PMCID: PMC11858063 DOI: 10.3390/microorganisms13020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Infection by Mycobacterium abscessus subsp. massiliense poses a growing public health threat, especially to immunocompromised individuals. The pathogenicity of this mycobacterium is directly linked to its ability to form biofilms, complex structures that confer resistance to antibiotics and the host immune response. The extracellular matrix of the biofilm acts as a physical barrier, hindering the penetration of drugs and the action of the immune system, while also inducing a slow-growth state that reduces susceptibility to antibiotics. Current therapies, which involve prolonged use of multiple antibiotics, are often ineffective and cause significant side effects. Therefore, it is essential to explore new strategies targeting bacterial resistance and biofilm destruction. This narrative review explores the biofilm-forming capacity of Mycobacterium abscessus subsp. massiliense and the potential of novel therapeutic strategies. Promising approaches include inhibiting biofilm formation, developing drugs with improved penetration of the extracellular matrix, combination therapies with agents that destabilize the biofilm structure, and modulating the host immune response. Investing in research and development of new therapeutic strategies is essential to combat this resistant bacterium and improve patient outcomes.
Collapse
Affiliation(s)
- Roseane Lustosa de Santana Lira
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Flávio Augusto Barros Nogueira
- Graduate Program in Biodiversity and Biotechnology, Amazônia—BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (F.A.B.N.); (A.Z.)
| | | | - Dayenne Regina Mota Ferreira
- Graduate Program in Biosciences Applied to Health, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (R.d.F.P.d.C.C.); (D.R.M.F.); (C.G.M.); (L.C.N.S.)
| | - Pedro Lucas Brito Tromps Roxo
- Undergraduate in Medicine, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.L.B.T.R.); (C.C.S.d.A.); (E.C.M.G.); (R.L.C.B.)
| | - Caio César Santana de Azevedo
- Undergraduate in Medicine, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.L.B.T.R.); (C.C.S.d.A.); (E.C.M.G.); (R.L.C.B.)
| | - Eleonôra Costa Monteiro Gimenes
- Undergraduate in Medicine, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.L.B.T.R.); (C.C.S.d.A.); (E.C.M.G.); (R.L.C.B.)
| | - Ruan Lucas Costa Bastos
- Undergraduate in Medicine, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.L.B.T.R.); (C.C.S.d.A.); (E.C.M.G.); (R.L.C.B.)
| | - Camila Evangelista Carnib Nascimento
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Flávia Danyelle Oliveira Nunes
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Mayane Cristina Pereira Marques
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Carmem Duarte Lima Campos
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Camila Guerra Martinez
- Graduate Program in Biosciences Applied to Health, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (R.d.F.P.d.C.C.); (D.R.M.F.); (C.G.M.); (L.C.N.S.)
| | - Adrielle Zagmignan
- Graduate Program in Biodiversity and Biotechnology, Amazônia—BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (F.A.B.N.); (A.Z.)
- Graduate Program in Biosciences Applied to Health, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (R.d.F.P.d.C.C.); (D.R.M.F.); (C.G.M.); (L.C.N.S.)
| | - Luís Cláudio Nascimento Silva
- Graduate Program in Biosciences Applied to Health, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (R.d.F.P.d.C.C.); (D.R.M.F.); (C.G.M.); (L.C.N.S.)
| | - Rachel Melo Ribeiro
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Ana Paula Silva de Azevedo dos Santos
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
| | - Eduardo Martins de Sousa
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (C.E.C.N.); (F.D.O.N.); (M.C.P.M.); (C.D.L.C.); (R.M.R.); (A.P.S.d.A.d.S.); (R.C.C.)
- Graduate Program in Biodiversity and Biotechnology, Amazônia—BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (F.A.B.N.); (A.Z.)
- Graduate Program in Biosciences Applied to Health, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (R.d.F.P.d.C.C.); (D.R.M.F.); (C.G.M.); (L.C.N.S.)
| |
Collapse
|
4
|
Sabzali S, Pazhouhnia S, Shahzamani K, Sedeh PA. Role of phage therapy in acute gastroenteritis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:2. [PMID: 40200968 PMCID: PMC11974603 DOI: 10.4103/jrms.jrms_464_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 04/10/2025]
Abstract
The gut ecosystem, comprising the gut microbiota and its interactions, plays a crucial role in human health and disease. This complex ecosystem involves a diverse array of microorganisms such as viruses, fungi, and bacteria, collectively known as the gut microbiota. These microorganisms contribute to various functions, including nutrient metabolism and immune modulation, thereby impacting human health. Dysbiosis, or an imbalance in the gut microbiota, has been associated with the pathogenesis of several diseases, ranging from intestinal disorders such as inflammatory bowel disease to extra-intestinal conditions such as metabolic and neurological disorders. The implications of dysbiosis in the gut ecosystem are far-reaching, affecting not only gastrointestinal health but also contributing to the development and progression of conditions such as autoimmune gastritis and gastric cancer. Furthermore, the burden of antimicrobial use and subsequent side effects, including antibiotic resistance, poses additional challenges in managing gastrointestinal diseases. In light of these complexities, investigating the role of bacteriophages as regulators of the gut ecosystem and their potential clinical applications presents a promising opportunity to tackle antibiotic resistance and fight infectious diseases.
Collapse
Affiliation(s)
- Somaieh Sabzali
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Setareh Pazhouhnia
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Kiana Shahzamani
- Hepatitis Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Adibi Sedeh
- Gastroenterology and Hepatology Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Ahmad TA, Houjeiry SE, Kanj SS, Matar GM, Saba ES. From forgotten cure to modern medicine: The resurgence of bacteriophage therapy. J Glob Antimicrob Resist 2024; 39:231-239. [PMID: 39486687 DOI: 10.1016/j.jgar.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVES The unregulated use of antibiotics has led to the rise of antibiotic-resistant bacterial strains. This study explores bacteriophage therapy as an alternative treatment, highlighting its history, significance, and advancements in Europe, the United States, and the Middle East. METHODS A comprehensive literature review on bacteriophage therapy was conducted, focusing on its development, clinical trials, and patient treatment applications. The study also examined challenges, limitations, criteria for ideal phage selection, and manipulation techniques. RESULTS The United States and several European countries have advanced in phage therapy, progressing from clinical trials to patient treatment, whereas Middle Eastern countries are still in the early stages. Bacteriophages offer specificity, abundance, and minimal side effects, but challenges like safety concerns and potential resistance limit their widespread use. CONCLUSION Bacteriophage therapy shows promise as an antibiotic alternative but faces safety and resistance challenges. Continued research and better regulatory frameworks, especially in the Middle East, are needed to realize its potential.
Collapse
Affiliation(s)
- Tasnime Abdo Ahmad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Samar El Houjeiry
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Esber S Saba
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
6
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
7
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Zheng J, Chen H. Effects of intratumoral microbiota on tumorigenesis, anti-tumor immunity, and microbe-based cancer therapy. Front Oncol 2024; 14:1429722. [PMID: 39391251 PMCID: PMC11464362 DOI: 10.3389/fonc.2024.1429722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Intratumoral microbiota (IM) has emerged as a significant component of the previously thought sterile tumor microenvironment (TME), exerting diverse functions in tumorigenesis and immune modulation. This review outlines the historical background, classification, and diversity of IM, elucidating its pivotal roles in oncogenicity, cancer development, and progression, alongside its influence on anti-tumor immunity. The signaling pathways through which IM impacts tumorigenesis and immunity, including reactive oxygen species (ROS), β-catenin, stimulator of interferon genes (STING), and other pathways [NF-κB, Toll-like receptor (TLR), complement, RhoA/ROCK, PKR-like ER kinase (PERK)], are discussed comprehensively. Furthermore, we briefly introduce the clinical implications of IM, emphasizing its potential as a target for novel cancer therapies, diagnostic biomarkers, and prognostic indicators. Notably, microbe-based therapeutic strategies such as fecal microbiome transplantation (FMT), probiotics regulation, bacteriotherapy, bacteriophage therapy, and oncolytic virotherapy are highlighted. These strategies hold promise for enhancing the efficacy of current cancer treatments and warrant further exploration in clinical settings.
Collapse
Affiliation(s)
| | - Hao Chen
- Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
9
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
10
|
Uchechukwu CF, Shonekan A. Current status of clinical trials for phage therapy. J Med Microbiol 2024; 73:001895. [PMID: 39320361 PMCID: PMC11423923 DOI: 10.1099/jmm.0.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Recently, bacteriophages have been considered alternatives to antibacterial treatments. Infectious diseases continue to plague the world because bacteria can adapt and develop defence mechanisms against antibiotics. The growing incidence of antibiotic-resistant bacterial infections necessitated the development of new techniques for treating bacterial infections worldwide. Clinical trials have shown efficiency against antibiotic-resistant bacteria. However, scientists in future clinical trials should scrutinize phage resistance implications, assess combination strategies with antimicrobial agents and address challenges in phage therapy delivery for effective implementation.
Collapse
Affiliation(s)
- Chidiebere F. Uchechukwu
- Warwick Medical School, University of Warwick, Coventry, UK
- University of Birmingham, Birmingham, UK
| | | |
Collapse
|
11
|
Khadka RB, Karki K, Pandey J, Gyawali R, Chaudhary GP. Strengthening global health resilience: Marburg virus-like particle vaccines and the One Health approach. SCIENCE IN ONE HEALTH 2024; 3:100076. [PMID: 39309209 PMCID: PMC11415973 DOI: 10.1016/j.soh.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
The Marburg virus (MARV), belonging to the Filoviridae family, poses a significant global health threat, emphasizing the urgency to develop Marburg virus-like particle (VLP) vaccines for outbreak mitigation. The virus's menacing traits accentuate the need for such vaccines, which can be addressed by VLPs that mimic its structure safely, potentially overcoming past limitations. Early Marburg vaccine endeavors and their challenges are examined in the historical perspectives section, followed by an exploration of VLPs as transformative tools, capable of eliciting immune responses without conventional risks. Noteworthy milestones and achievements in Marburg VLP vaccine development, seen through preclinical and clinical trials, indicate potential cross-protection. Ongoing challenges, encompassing durability, strain diversity, and equitable distribution, are addressed, with proposed innovations like novel adjuvant, mRNA technology, and structure-based design poised to enhance Marburg VLP vaccines. This review highlights the transformative potential of Marburg VLPs in countering the virus, showcasing global collaboration, regulatory roles, and health equity for a safer future through the harmonious interplay of science, regulation, and global efforts.
Collapse
Affiliation(s)
- Ram Bahadur Khadka
- Department of Laboratory Science, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal
| | - Khimdhoj Karki
- Department of Laboratory Science, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal
| | - Jitendra Pandey
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Rabin Gyawali
- Padmodaya Campus, Affiliated to Tribhuwan University, Dang 21906, Nepal
| | - Gautam Prasad Chaudhary
- Department of Pharmacy, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal
| |
Collapse
|
12
|
Raman SK, Siva Reddy DV, Jain V, Bajpai U, Misra A, Singh AK. Mycobacteriophages: therapeutic approach for mycobacterial infections. Drug Discov Today 2024; 29:104049. [PMID: 38830505 DOI: 10.1016/j.drudis.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.
Collapse
Affiliation(s)
- Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - D V Siva Reddy
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji , New Delhi 110019, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra 282004, Uttar Pradesh, India.
| |
Collapse
|
13
|
Samananda Singh L. Nano-emulsion encapsulation for the efficient delivery of bacteriophage therapeutics. Biologicals 2024; 85:101725. [PMID: 37951140 DOI: 10.1016/j.biologicals.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023] Open
Abstract
Antibiotic resistance has become the major concern for global public health. Phage therapy is being considered as an alternative for antibiotics to treat the multidrug resistant bacterial infections. Bacteriophage therapeutic developments has faced many challenges, including the drug formulations for sustainable phage delivery. The nano-emulsion platform has been described as the best approach to retain phage efficacy, shelf life and stability. Encapsulated phage drugs ensure stable delivery of phages to the target site and integrate in the system. In this review, our main focus is on the nano-emulsion encapsulation of bacteriophages and its effects towards the phage therapeutic development.
Collapse
|
14
|
Jiang A, Liu Z, Lv X, Zhou C, Ran T, Tan Z. Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. BIOLOGY 2024; 13:28. [PMID: 38248459 PMCID: PMC10812986 DOI: 10.3390/biology13010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
The overuse and misuse of antibiotics in the livestock and poultry industry has led to the development of multi-drug resistance in animal pathogens, and antibiotic resistance genes (ARGs) in bacteria transfer from animals to humans through the consumption of animal products, posing a serious threat to human health. Therefore, the use of antibiotics in livestock production has been strictly controlled. As a result, bacteriophages have attracted increasing research interest as antibiotic alternatives, since they are natural invaders of bacteria. Numerous studies have shown that dietary bacteriophage supplementation could regulate intestinal microbial composition, enhance mucosal immunity and the physical barrier function of the intestinal tract, and play an important role in maintaining intestinal microecological stability and normal body development of animals. The effect of bacteriophages used in animals is influenced by factors such as species, dose, and duration. However, as a category of mobile genetic elements, the high frequency of gene exchange of bacteriophages also poses risks of transmitting ARGs among bacteria. Hence, we summarized the mechanism and efficacy of bacteriophage therapy, and highlighted the feasibility and challenges of bacteriophage utilization in farm animal production, aiming to provide a reference for the safe and effective application of bacteriophages as an antibiotic alternative in livestock and poultry.
Collapse
Affiliation(s)
- Aoyu Jiang
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaokang Lv
- College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China;
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
15
|
Uyttebroek S, Bessems L, Metsemakers WJ, Debaveye Y, Van Gerven L, Dupont L, Depypere M, Wagemans J, Lavigne R, Merabishvili M, Pirnay JP, Devolder D, Spriet I, Onsea J. Stability of magistral phage preparations before therapeutic application in patients with chronic rhinosinusitis, sepsis, pulmonary, and musculoskeletal infections. Microbiol Spectr 2023; 11:e0290723. [PMID: 37819122 PMCID: PMC10715222 DOI: 10.1128/spectrum.02907-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE As antimicrobial resistance becomes more prevalent, the application of (bacterio)phage therapy as an alternative treatment for difficult-to-treat infections is (re)gaining popularity. Over the past decade, numerous promising case reports and series have been published demonstrating the therapeutic potential of phage therapy. However, important questions remain regarding the optimal treatment protocol and, unlike for medicinal products, there are currently no predefined quality standards for the stability of phage preparations. Phage titers can be influenced by several factors which could lead to reduced titers after preparation and storage and, ultimately, subtherapeutic applications. Determining the stability of different phages in different recipients according to the route of administration is therefore one of the first important steps in establishing a standardized protocol for phage therapy.
Collapse
Affiliation(s)
- Saartje Uyttebroek
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Laura Bessems
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Yves Debaveye
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Laura Van Gerven
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Melissa Depypere
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Jeroen Wagemans
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - David Devolder
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Dharmaraj T, Kratochvil MJ, Pourtois JD, Chen Q, Hajfathalian M, Hargil A, Lin YH, Evans Z, Oromí-Bosch A, Berry JD, McBride R, Haddock NL, Holman DR, van Belleghem JD, Chang TH, Barr JJ, Lavigne R, Heilshorn SC, Blankenberg FG, Bollyky PL. Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS NEXUS 2023; 2:pgad406. [PMID: 38111822 PMCID: PMC10726995 DOI: 10.1093/pnasnexus/pgad406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. In this study, we use dynamic light scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-y-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web application (Phage-Estimator of Lytic Function) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and nondestructive tool for quality control of phage preparations in academic and commercial settings.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julie D Pourtois
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zoe Evans
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | | | - Joel D Berry
- Felix Biotechnology, South SanFrancisco, CA 94080, USA
| | | | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Derek R Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonas D van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Tony H Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Francis G Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children's Hospital, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
18
|
Dharmaraj T, Kratochvil MJ, Pourtois JD, Chen Q, Hajfathalian M, Hargil A, Lin YH, Evans Z, Oromí-Bosch A, Berry JD, McBride R, Haddock NL, Holman DR, van Belleghem JD, Chang TH, Barr JJ, Lavigne R, Heilshorn SC, Blankenberg FG, Bollyky PL. Rapid assessment of changes in phage bioactivity using dynamic light scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547396. [PMID: 37425882 PMCID: PMC10327207 DOI: 10.1101/2023.07.02.547396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. Here, we use Dynamic Light Scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-year-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web-application (Phage-ELF) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and non-destructive tool for quality control of phage preparations in academic and commercial settings.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Julie D. Pourtois
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zoe Evans
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonas D. van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tony H. Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, 3800, VIC, Australia
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA 94305, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Saha S, Ojobor CD, Li ASC, Mackinnon E, North OI, Bondy-Denomy J, Lam JS, Ensminger AW, Maxwell KL, Davidson AR. F-Type Pyocins Are Diverse Noncontractile Phage Tail-Like Weapons for Killing Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0002923. [PMID: 37260386 PMCID: PMC10294684 DOI: 10.1128/jb.00029-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.
Collapse
Affiliation(s)
- Senjuti Saha
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Chidozie D. Ojobor
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Annie Si Cong Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Erik Mackinnon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Olesia I. North
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, Quantitative Biosciences Institute, University of California—San Francisco, San Francisco, California, USA
| | - Joseph S. Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R. Davidson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Singh J, Fitzgerald DA, Jaffe A, Hunt S, Barr JJ, Iredell J, Selvadurai H. Single-arm, open-labelled, safety and tolerability of intrabronchial and nebulised bacteriophage treatment in children with cystic fibrosis and Pseudomonas aeruginosa. BMJ Open Respir Res 2023; 10:e001360. [PMID: 37160359 PMCID: PMC10173968 DOI: 10.1136/bmjresp-2022-001360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a multisystem condition that is complicated by recurrent pulmonary infections requiring aggressive antibiotic treatment. This predisposes the patient to complications such as sensorineural hearing loss, renal impairment, hypersensitivity and the development of antibiotic resistance. Pseudomonas aeruginosa is one of the more common organisms which cause recurrent infections and result in greater morbidity and mortality in people living with CF. Bacteriophages have been identified as a potential alternative or adjunct to antibiotics. We hypothesise that bacteriophage therapy is a safe and well-tolerated treatment in children with CF infected with P. aeruginosa infection in their airways. METHODS This single-arm, open-labelled, non-randomised trial will run for a maximum period of 36 months with up to 10 participants. Adolescents (≥12 years and <18 years of age) who continue to shed P.aeruginosa (within 3 months of enrolment) despite undergoing eradication therapy previously, will be considered for this trial. Non-genetically modified bacteriophages that have demonstrated obligate lytic activity against each of the study participants' P. aeruginosa strains will be selected and prepared according to a combination of established protocols (isolation, purification, sterility testing and packaging) to achieve close to good manufacturing practice recommendations. The selected bacteriophage will be administered endo-bronchially first under direct vision, followed by two times a day nebulisation for 7 days in addition to standard CF treatment (intravenous antibiotics, physiotherapy to be completed as inpatient for 10-14 days). Safety and tolerability will be defined as the absence of (1) fever above 38.5°C occurring within 1 hour of the administration of the nebulised bacteriophage, (2) a 10% decline in spirometry (forced expiratory volume in 1 s %) measured preadministration and postadministration of the first dose of nebulised bacteriophage. Clinical reviews including repeat sputum cultures and spirometry will be performed at 3, 6, 9 and 12 months following bacteriophage treatment. ETHICS AND DISSEMINATION Our clinical trial is conducted in accordance with (1) good clinical practice, (2) Australian legislation, (3) National Health and Medical Research Council guidelines for the ethical conduct of research. TRIAL REGISTRATION NUMBER Australia and New Zealand Clinical Trial Registry (ACTRN12622000767707).
Collapse
Affiliation(s)
- Jagdev Singh
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sharon Hunt
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Jonathan Iredell
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Infectious Diseases, Westmead Hospital, Westmead, New South Wales, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
23
|
Ferreira A, Silva D, Almeida C, Rodrigues ME, Silva S, Castro J, Mil-Homens D, García-Meniño I, Mora A, Henriques M, Oliveira A. Effect of phage vB_EcoM_FJ1 on the reduction of ETEC O9:H9 infection in a neonatal pig cell line. Vet Res 2023; 54:26. [PMID: 36949480 PMCID: PMC10035155 DOI: 10.1186/s13567-023-01157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonizes the intestine of young pigs causing severe diarrhoea and consequently bringing high production costs. The rise of antibiotic selective pressure together with ongoing limitations on their use, demands new strategies to tackle this pathology. The pertinence of using bacteriophages as an alternative is being explored, and in this work, the efficacy of phage vB_EcoM_FJ1 (FJ1) in reducing the load of ETEC EC43-Ph (serotype O9:H9 expressing the enterotoxin STa and two adhesins F5 and F41) was assessed. Foreseeing the oral application on piglets, FJ1 was encapsulated on calcium carbonate and alginate microparticles, thus preventing phage release under adverse conditions of the simulated gastric fluid (pH 3.0) and allowing phage availability in simulated intestinal fluid (pH 6.5). A single dose of encapsulated FJ1, provided to IPEC-1 cultured cells (from intestinal epithelium of piglets) previously infected by EC43, provided bacterial reductions of about 99.9% after 6 h. Although bacteriophage-insensitive mutants (BIMs) have emerged from treatment, the consequent fitness costs associated with this new phenotype were demonstrated, comparatively to the originating strain. The higher competence of the pig complement system to decrease BIMs' viability, the lower level of colonization of IPEC-1 cells observed with these mutants, and the increased survival rates and health index recorded in infected Galleria mellonella larvae supported this observation. Most of all, FJ1 established a proof-of-concept of the efficiency of phages to fight against ETEC in piglet intestinal cells.
Collapse
Affiliation(s)
- Alice Ferreira
- ALS ControlVet, Zona Industrial de Tondela ZIMII, Lote 6, 3460-605, Tondela, Portugal
| | - Daniela Silva
- ALS ControlVet, Zona Industrial de Tondela ZIMII, Lote 6, 3460-605, Tondela, Portugal
| | - Carina Almeida
- ALS ControlVet, Zona Industrial de Tondela ZIMII, Lote 6, 3460-605, Tondela, Portugal
| | - Maria Elisa Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS- Associate Laboratory, 4800-122, Guimarães, Portugal
| | - Sónia Silva
- I.P - National Institute for Agrarian and Veterinarian Research (INIAV), Rua Dos Lagidos, 4485-655, Vila Do Conde, Portugal
| | - Joana Castro
- I.P - National Institute for Agrarian and Veterinarian Research (INIAV), Rua Dos Lagidos, 4485-655, Vila Do Conde, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, 1049-001, Lisbon, Portugal
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia Coli (LREC), Departamento de Microbioloxía E Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia Coli (LREC), Departamento de Microbioloxía E Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Mariana Henriques
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS- Associate Laboratory, 4800-122, Guimarães, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS- Associate Laboratory, 4800-122, Guimarães, Portugal.
| |
Collapse
|
24
|
Torres Di Bello D, Narváez DM, Groot de Restrepo H, Vives MJ. Cytotoxic Evaluation in HaCaT Cells of the Pa.7 Bacteriophage from Cutibacterium ( Propionibacterium) acnes, Free and Encapsulated Within Liposomes. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:26-34. [PMID: 37214651 PMCID: PMC10196082 DOI: 10.1089/phage.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Introduction Acne is a multifactorial disease involving the colonization of skin follicles by Cutibacterium (formerly Propionibacterium) acnes. A combination of different retinoid-derived products, antibiotics, and hormonal antiandrogens are used to treat the disease, but these treatments require extended periods, may have secondary effects, are expensive, and not always effective. Owing to antibiotic resistance, the use of bacteriophages has been proposed as an alternative treatment. However, if they are intended for a cosmetic or pharmaceutical use, it is necessary to evaluate the safety of the phages and the preparations containing them. Materials and Methods In this study, the cytotoxicity of Pa.7 bacteriophage was evaluated in HaCaT cells, along with a liposome suitable for their encapsulation, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. Results We found that Pa.7 was not cytotoxic for HaCaT cells. Also, 30 mM of liposomes, or below are considered noncytotoxic concentrations. Conclusion Phages encapsulated in the liposomes presented in this study can be used safely for skin treatments.
Collapse
Affiliation(s)
- Daniela Torres Di Bello
- Microbiology Research Center–CIMIC, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Diana M. Narváez
- Human Genetics Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Helena Groot de Restrepo
- Human Genetics Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Martha J. Vives
- Microbiology Research Center–CIMIC, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
25
|
Sanmukh SG, Admella J, Moya-Andérico L, Fehér T, Arévalo-Jaimes BV, Blanco-Cabra N, Torrents E. Accessing the In Vivo Efficiency of Clinically Isolated Phages against Uropathogenic and Invasive Biofilm-Forming Escherichia coli Strains for Phage Therapy. Cells 2023; 12:cells12030344. [PMID: 36766686 PMCID: PMC9913540 DOI: 10.3390/cells12030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli is one of the most common members of the intestinal microbiota. Many of its strains are associated with various inflammatory infections, including urinary or gut infections, especially when displaying antibiotic resistance or in patients with suppressed immune systems. According to recent reports, the biofilm-forming potential of E. coli is a crucial factor for its increased resistance against antibiotics. To overcome the limitations of using antibiotics against resistant E. coli strains, the world is turning once more towards bacteriophage therapy, which is becoming a promising candidate amongst the current personalized approaches to target different bacterial infections. Although matured and persistent biofilms pose a serious challenge to phage therapy, they can still become an effective alternative to antibiotic treatment. Here, we assess the efficiency of clinically isolated phages in phage therapy against representative clinical uropathogenic and invasive biofilm-forming E. coli strains. Our results demonstrate that irrespective of host specificity, bacteriophages producing clear plaques with a high burst size, and exhibiting depolymerizing activity, are good candidates against biofilm-producing E. coli pathogens as verified from our in vitro and in vivo experiments using Galleria mellonella where survival was significantly increased for phage-therapy-treated larvae.
Collapse
Affiliation(s)
- Swapnil Ganesh Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
- Correspondence: or (S.G.S.); or (E.T.)
| | - Joana Admella
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: or (S.G.S.); or (E.T.)
| |
Collapse
|
26
|
Hibstu Z, Belew H, Akelew Y, Mengist HM. Phage Therapy: A Different Approach to Fight Bacterial Infections. Biologics 2022; 16:173-186. [PMID: 36225325 PMCID: PMC9550173 DOI: 10.2147/btt.s381237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Phage therapy is one of the alternatives to treat infections caused by both antibiotic-sensitive and antibiotic-resistant bacteria, with no or low toxicity to patients. It was started a century ago, although rapidly growing bacterial antimicrobial resistance, resulting in high levels of morbidity, mortality, and financial cost, has initiated the revival of phage therapy. It involves the use of live lytic, bioengineered, phage-encoded biological products, in combination with chemical antibiotics to treat bacterial infections. Importantly, phages will be removed from the body within seven days of clearing an infection. They target specific bacterial strains and cause minimal disruption to the microbial balance in humans. Phages for medication must be screened for the absence of resistant genes, virulent genes, cytotoxicity, and their interaction with the host tissue and organs. Since they are immunogenic, applying a high phage titer for therapy exposes them and activates the host immune system. To date, no serious side effects have been reported with human phage therapy. In this review, we describe phage–phagocyte interaction, bacterial resistance to phages, how phages conquer bacterial resistance, the role of genetic engineering and other technologies in phage therapy, and the therapeutic application of modified phages and phage-encoded products. We also highlight the comparison of antibiotics and lytic phage therapy, the pros and cons of phage therapy, determinants of human phage therapy trials, phage quality and safety requirements, phage storage and handling, and current challenges in phage therapy.
Collapse
Affiliation(s)
- Zigale Hibstu
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia,Correspondence: Zigale Hibstu, Email
| | - Habtamu Belew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
27
|
Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, Pirot F. Paving the way for phage therapy using novel drug delivery approaches. J Control Release 2022; 347:414-424. [PMID: 35569589 DOI: 10.1016/j.jconrel.2022.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Bacterial resistance against antibiotics is an emergent medical issue. The development of novel therapeutic approaches is urgently needed and, in this context, bacteriophages represent a promising strategy to fight multi resistant bacteria. However, for some applications, bacteriophages cannot be used without an appropriate drug delivery system which increases their stability or provides an adequate targeting to the site of infection. This review summarizes the main application routes for bacteriophages and presents the new delivery approaches designed to increase phage's activity. Clinical successes of these formulations are also highlighted. Globally, this work paves the way for the design and optimization of nano and micro delivery systems for phage therapy.
Collapse
Affiliation(s)
- Thomas Briot
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France.
| | - Camille Kolenda
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Tristan Ferry
- Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France; Infectious and Tropical Diseases unit, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Medina
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Frederic Laurent
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Leboucher
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Fabrice Pirot
- Plateforme FRIPHARM, Service pharmaceutique, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, Plateforme FRIPHARM, Faculté de Pharmacie, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique - UMR 5305, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
28
|
Kabwe M, Dashper S, Tucci J. The Microbiome in Pancreatic Cancer-Implications for Diagnosis and Precision Bacteriophage Therapy for This Low Survival Disease. Front Cell Infect Microbiol 2022; 12:871293. [PMID: 35663462 PMCID: PMC9160434 DOI: 10.3389/fcimb.2022.871293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
While the mortality rates for many cancers have decreased due to improved detection and treatments, that of pancreatic cancer remains stubbornly high. The microbiome is an important factor in the progression of many cancers. Greater understanding of the microbiome in pancreatic cancer patients, as well as its manipulation, may assist in diagnosis and treatment of this disease. In this report we reviewed studies that compared microbiome changes in pancreatic cancer patients and non-cancer patients. We then identified which bacterial genera were most increased in relative abundance across the oral, pancreatic, duodenal, and faecal tissue microbiomes. In light of these findings, we discuss the potential for utilising these bacteria as diagnostic biomarkers, as well as their potential control using precision targeting with bacteriophages, in instances where a causal oncogenic link is made.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
29
|
Viability, Stability and Biocontrol Activity in Planta of Specific Ralstonia solanacearum Bacteriophages after Their Conservation Prior to Commercialization and Use. Viruses 2022; 14:v14020183. [PMID: 35215777 PMCID: PMC8876693 DOI: 10.3390/v14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.
Collapse
|
30
|
Witeof AE, McClary W, Rea LT, Yang Q, Davis MM, Funke H, Catalano C, Randolph T. Atomic-Layer Deposition Processes Applied to Phage λ and a Phage-Like Particle Platform Yield Thermostable, Single-Shot Vaccines. J Pharm Sci 2022; 111:1354-1362. [DOI: 10.1016/j.xphs.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
|
31
|
Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N. Phage therapeutics: from promises to practices and prospectives. Appl Microbiol Biotechnol 2021; 105:9047-9067. [PMID: 34821965 PMCID: PMC8852341 DOI: 10.1007/s00253-021-11695-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
The rise in multi-drug resistant bacteria and the inability to develop novel antibacterial agents limits our arsenal against infectious diseases. Antibiotic resistance is a global issue requiring an immediate solution, including the development of new antibiotic molecules and other alternative modes of therapy. This article highlights the mechanism of bacteriophage treatment that makes it a real solution for multidrug-resistant infectious diseases. Several case reports identified phage therapy as a potential solution to the emerging challenge of multi-drug resistance. Bacteriophages, unlike antibiotics, have special features, such as host specificity and do not impact other commensals. A new outlook has also arisen with recent advancements in the understanding of phage immunobiology, where phages are repurposed against both bacterial and viral infections. Thus, the potential possibility of phages in COVID-19 patients with secondary bacterial infections has been briefly elucidated. However, significant obstacles that need to be addressed are to design better clinical studies that may contribute to the widespread use of bacteriophage therapy against multi-drug resistant pathogens. In conclusion, antibacterial agents can be used with bacteriophages, i.e. bacteriophage-antibiotic combination therapy, or they can be administered alone in cases when antibiotics are ineffective.Key points• AMR, a consequence of antibiotic generated menace globally, has led to the resurgence of phage therapy as an effective and sustainable solution without any side effects and high specificity against refractory MDR bacterial infections.• Bacteriophages have fewer adverse reactions and can thus be used as monotherapy as well as in conjunction with antibiotics.• In the context of the COVID-19 pandemic, phage therapy may be a viable option.
Collapse
Affiliation(s)
- Kanika Bhargava
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303 002 India
- Department of Microbiology, IMS, Banaras Hindu University, Varanasi, 221005 India
| | - Gopal Nath
- Department of Microbiology, IMS, Banaras Hindu University, Varanasi, 221005 India
| | - Amit Bhargava
- Department of Medicine, Hayes Memorial Hospital, SHUATS, Allahabad, 211007 India
| | - G. K. Aseri
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303 002 India
| | - Neelam Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303 002 India
| |
Collapse
|
32
|
Pathak-Vaidya P, Sharma S, Telang M. Bacteriophage as an antibacterial agent: a patent perspective. Future Microbiol 2021; 16:1327-1339. [PMID: 34755539 DOI: 10.2217/fmb-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present review encompasses a patent landscape on bacteriophage as an antimicrobial agent and one of the alternatives to combat antibiotic resistance in bacteria. This study gives a perspective on use of bacteriophages in various industries such as healthcare, food safety and animal and plant protection. Patenting activity was noted for all the antibiotic-resistant bacterial pathogens listed in the 'critical' category by the WHO. Broadly, claims of the analyzed patents were directed toward bacteriophage, composition/formulation containing phage, phage proteins and various methods of using or producing phage. The challenges to approval of phage therapy in clinical use may be overcome with the help of focused research and modification of the regulatory guidelines for phage therapy.
Collapse
Affiliation(s)
- Prachitee Pathak-Vaidya
- CSIR Unit for Research & Development of Information Products 'Tapovan' S. no. 113 & 114, NCL Estate Pashan Road, Pune-411008, Maharashtra, India
| | - Surbhi Sharma
- CSIR Unit for Research & Development of Information Products 'Tapovan' S. no. 113 & 114, NCL Estate Pashan Road, Pune-411008, Maharashtra, India
| | - Manasi Telang
- CSIR Unit for Research & Development of Information Products 'Tapovan' S. no. 113 & 114, NCL Estate Pashan Road, Pune-411008, Maharashtra, India
| |
Collapse
|
33
|
Manufacturing Bacteriophages (Part 1 of 2): Cell Line Development, Upstream, and Downstream Considerations. Pharmaceuticals (Basel) 2021; 14:ph14090934. [PMID: 34577634 PMCID: PMC8471501 DOI: 10.3390/ph14090934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
Within this first part of the two-part series on phage manufacturing, we will give an overview of the process leading to bacteriophages as a drug substance, before covering the formulation into a drug product in the second part. The principal goal is to provide the reader with a comprehensive framework of the challenges and opportunities that present themselves when developing manufacturing processes for bacteriophage-based products. We will examine cell line development for manufacture, upstream and downstream processes, while also covering the additional opportunities that engineered bacteriophages present.
Collapse
|
34
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
35
|
Prophylactic Administration of a Bacteriophage Cocktail Is Safe and Effective in Reducing Salmonella enterica Serovar Typhimurium Burden in Vivo. Microbiol Spectr 2021; 9:e0049721. [PMID: 34431719 PMCID: PMC8552648 DOI: 10.1128/spectrum.00497-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nontyphoidal Salmonella bacteria are the causative agent of salmonellosis, which accounts for the majority of foodborne illness of bacterial etiology in humans. Here, we demonstrate the safety and efficacy of the prophylactic administration of a bacteriophage preparation termed FOP (foodborne outbreak pill), which contains lytic phages targeting Salmonella (SalmoFresh phage cocktail), Shiga toxin-producing Escherichia coli (STEC), and Listeria monocytogenes, for lowering Salmonella burdens in OMM12 gnotobiotic mice. Prophylactic administration of FOP significantly reduced the levels of Salmonella in feces and in intestinal sections compared to the levels in controls. Moreover, the overall symptoms of the disease were also considerably lessened. Dose-dependent administration of FOP showed that phage amplification reached similarly high levels in less than 48 h independent of dose. In addition, 16S rRNA gene analysis showed that FOP did not alter the intestinal microbiota of healthy OMM12 mice and reduced microbiota perturbations induced by Salmonella. FOP maintained its full potency against Salmonella in comparison to that of SalmoFresh, its Salmonella-targeting component phages alone. Altogether, the data support that preventive administration of FOP may offer a safe and effective approach for reducing the risk of foodborne infections caused by Salmonella and, potentially, other foodborne bacteria (namely, STEC and L. monocytogenes) targeted by the FOP preparation. IMPORTANCE Foodborne bacterial infections cause worldwide economic loss. During an epidemic, the use of antibiotics to slow down the spread of the disease is not recommended because of their side effects on the resident microbiota and the selection of antibiotic-resistant bacteria. Here, we investigated the potential for the prophylactic administration of bacteriophages (viruses infecting bacteria) to reduce the burden of Salmonella in vivo using mice colonized by a synthetic microbiota. We found that the repeated administration of bacteriophages was safe and efficient in lowering the Salmonella burden. Perturbations of the microbiota by the Salmonella infection were also reduced when mice received bacteriophages. Altogether, these data support the use of bacteriophages as a prophylactic intervention to lower the spread of foodborne epidemics.
Collapse
|
36
|
Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations. Pharmaceuticals (Basel) 2021; 14:ph14090895. [PMID: 34577595 PMCID: PMC8467454 DOI: 10.3390/ph14090895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Within this second piece of the two-part series of phage manufacturing considerations, we are examining the creation of a drug product from a drug substance in the form of formulation, through to fill-finish. Formulation of a drug product, in the case of bacteriophage products, is often considered only after many choices have been made in the development and manufacture of a drug substance, increasing the final product development timeline and difficulty of achieving necessary performance parameters. As with the preceding review in this sequence, we aim to provide the reader with a framework to be able to consider pharmaceutical development choices for the formulation of a bacteriophage-based drug product. The intent is to sensitize and highlight the tradeoffs that are necessary in the development of a finished drug product, and to be able to take the entire spectrum of tradeoffs into account, starting with early-stage R&D efforts. Furthermore, we are arming the reader with an overview of historical and current analytical methods with a special emphasis on most relevant and most widely available methods. Bacteriophages pose some challenges that are related to but also separate from eukaryotic viruses. Last, but not least, we close this two-part series by briefly discussing quality control (QC) aspects of a bacteriophage-based product, taking into consideration the opportunities and challenges that engineered bacteriophages uniquely present and offer.
Collapse
|
37
|
Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev 2021; 176:113856. [PMID: 34237403 DOI: 10.1016/j.addr.2021.113856] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The symbiotic microbiota is nowadays regarded as a human "invisible organ", its imbalance has been shown to be associated with many diseases. Besides, the progress of diseases can in turn change the internal structure of microbiota. Some diseases have shown their unique microbiota markers that may be potential therapeutic targets. Therefore, modulating microbiota may be a powerful strategy for diseases treatment. However, conventional microbiota modulation strategies lack selectivity and are suffer from side effects. In recent years, with the increasing challenge of antibiotic resistance, bacteriophage (phage) therapy has gradually presented its potential to treat drug-resistant infections. Phages are viruses that infect bacteria, with high selectivity for specific bacteria and almost no tropism for mammalian cells. Studies showed that phage-mediated precise modulation of microbiota has achieved great success in diseases treatment. Here, we briefly summarized the treatment strategies of phage-mediated modulation of microbiota, and discussed prospect of possible development in this field.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
38
|
Loganathan A, Manohar P, Eniyan K, VinodKumar CS, Leptihn S, Nachimuthu R. Phage therapy as a revolutionary medicine against Gram-positive bacterial infections. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:49. [PMID: 34485539 PMCID: PMC8401357 DOI: 10.1186/s43088-021-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Antibiotic resistance among pathogenic bacteria has created a global emergency, prompting the hunt for an alternative cure. Bacteriophages were discovered over a century ago and have proven to be a successful replacement during antibiotic treatment failure. This review discusses on the scientific investigation of phage therapy for Gram-positive pathogens and general outlook of phage therapy clinical trials and commercialization. MAIN BODY OF THE ABSTRACT This review aimed to highlight the phage therapy in Gram-positive bacteria and the need for phage therapy in the future. Phage therapy to treat Gram-positive bacterial infections is in use for a very long time. However, limited review on the phage efficacy in Gram-positive bacteria exists. The natural efficiency and potency of bacteriophages against bacterial strains have been advantageous amidst the other non-antibiotic agents. The use of phages to treat oral biofilm, skin infection, and recurrent infections caused by Gram-positive bacteria has emerged as a predominant research area in recent years. In addition, the upsurge in research in the area of phage therapy for spore-forming Gram-positive bacteria has added a wealth of information to phage therapy. SHORT CONCLUSION We conclude that the need of phage as an alternative treatment is obvious in future. However, phage therapy can be used as reserve treatment. This review focuses on the potential use of phage therapy in treating Gram-positive bacterial infections, as well as their therapeutic aspects. Furthermore, we discussed the difficulties in commercializing phage drugs and their problems as a breakthrough medicine.
Collapse
Affiliation(s)
- Archana Loganathan
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, School of Medicine, Haining, 314400 Zhejiang People’s Republic of China
- School of Medicine, The Second Affiliated Hospital Zhejiang University (SAHZU), Hangzhou, Zhejiang People’s Republic of China
| | - Kandasamy Eniyan
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - C. S. VinodKumar
- Department of Microbiology, S.S. Institute of Medical Sciences and Research Centre, Davanagere, India
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, School of Medicine, Haining, 314400 Zhejiang People’s Republic of China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ UK
| | - Ramesh Nachimuthu
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
39
|
In vitro efficiency evaluation of phage cocktail for biocontrol of Salmonella spp. in food products. Arch Microbiol 2021; 203:5445-5452. [PMID: 34406443 DOI: 10.1007/s00203-021-02522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
This study used a set of different bacteriophages to control contaminations of Salmonella spp., a major food pathogen. A cocktail of four phages designated based on host range and in vitro lytic assay showed a lower bacteriophage insensitive mutant frequency and considerable stability at 4 °C and 28 °C up to 60 days. The work evaluated the effectiveness of cocktail of four phages in reducing Salmonella spp. in four different food matrices (liquid egg, eggshell, milk, lettuce). A maximum of 1.7 log reduction in Salmonella spp. was achieved upon treatment of liquid eggs with phage cocktail for 72 h at 4 °C. In milk, the application of phage cocktail reduced recoverable Salmonella spp. by 1.9 log and 1.8 log at 28ºC (6 h) and 4ºC (72 h), respectively. A significant 2.9 log reduction of Salmonella spp. was obtained in eggshell after a 6 h incubation and Salmonella spp. was beyond detection level after 24 h at 28ºC. The application of cocktail also reduced Salmonella spp. beyond the detectable level in lettuce after 8 h at 28 °C. Our results indicated considerable stability of phages in different food matrices. Taken together, our findings establish the potential effectiveness of the bacteriophage cocktail as a biocontrol agent for Salmonella spp. in different food matrices.
Collapse
|
40
|
Abstract
Rising antimicrobial resistance severely limits efforts to treat infections and is a cause for critical concern. Renewed interest in bacteriophage therapy has advanced understanding of the breadth of species capable of targeting bacterial antimicrobial resistance mechanisms, but many questions concerning ideal application remain unanswered. The following minireview examines bacterial resistance mechanisms, the current state of bacteriophage therapy, and how bacteriophage therapy can augment strategies to combat resistance with a focus on the clinically relevant bacterium Pseudomonas aeruginosa, as well as the role of efflux pumps in antimicrobial resistance. Methods to prevent antimicrobial efflux using efflux pump inhibitors and phage steering, a type of bacteriophage therapy, are also covered. The evolutionary context underlying antimicrobial resistance and the need to include theory in the ongoing development of bacteriophage therapy are also discussed.
Collapse
|
41
|
Mkwata HM, Omoregie AI, Nissom PM. Lytic bacteriophages isolated from limestone caves for biocontrol of Pseudomonas aeruginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Front Cell Infect Microbiol 2021; 11:635597. [PMID: 34136415 PMCID: PMC8201069 DOI: 10.3389/fcimb.2021.635597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Holger D, Kebriaei R, Morrisette T, Lev K, Alexander J, Rybak M. Clinical Pharmacology of Bacteriophage Therapy: A Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:556. [PMID: 34064648 PMCID: PMC8151982 DOI: 10.3390/antibiotics10050556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common causes of healthcare-associated diseases and is among the top three priority pathogens listed by the World Health Organization (WHO). This Gram-negative pathogen is especially difficult to eradicate because it displays high intrinsic and acquired resistance to many antibiotics. In addition, growing concerns regarding the scarcity of antibiotics against multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa infections necessitate alternative therapies. Bacteriophages, or phages, are viruses that target and infect bacterial cells, and they represent a promising candidate for combatting MDR infections. The aim of this review was to highlight the clinical pharmacology considerations of phage therapy, such as pharmacokinetics, formulation, and dosing, while addressing several challenges associated with phage therapeutics for MDR P. aeruginosa infections. Further studies assessing phage pharmacokinetics and pharmacodynamics will help to guide interested clinicians and phage researchers towards greater success with phage therapy for MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Katherine Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Jose Alexander
- Department of Microbiology, Virology and Immunology, AdventHealth Central Florida, Orlando, FL 32803, USA;
| | - Michael Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Department of Pharmacy, Detroit, MI 48201, USA
| |
Collapse
|
44
|
Benala M, Vaiyapuri M, Visnuvinayagam S, George JC, Raveendran K, George I, Mothadaka MP, Badireddy MR. A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. J Virol Methods 2021; 294:114177. [PMID: 33965457 DOI: 10.1016/j.jviromet.2021.114177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023]
Abstract
A 2-step microtiter plate assay was developed to simultaneously check wide values of MOIs of bacteriophages, ranging between MOI-0.0001 and MOI-10000 in the first step and optimize the most suitable MOI (lowest quantity of phage) for inhibiting the growth of the target bacteria in the second step. The results of the first step revealed that the effective MOI of coliphage-ɸ5 for controlling the growth of antimicrobial resistant (AMR) E. coli was between 4.36 and 43.6 for E.coli-EC-3; between 38.2 and 382 for E.coli-EC-7 and between 81.5 and 815 for E.coli-EC-11. The optimum MOI of coliphage-ɸ5 determined in the second step was 17.44, 191 and 326 for controlling the growth of E.coli-EC-3; E.coli-EC-7 and E.coli-EC-11, respectively. The effective MOI of vibriophage-ɸLV6 for controlling luminescent Vibrio harveyi in the first step was found to be between 18.3 and 183 and the optimum MOI as determined in the second step was 79. The sequential 2-step microtiter plate method yielded faster optimization of MOI and was economical compared to the conventional flask method. The measurement of OD values at 550 nm and 600 nm showed similar trend and replicate data from 5-wells and 3-wells yielded identical pattern indicating that the measuring absorbance data in 3-replicate wells at either OD550 or OD600 is sufficient to generate quantifiable phage lysis data. The 2-step microtiter plate assay finds application in phage therapy in human health care, agriculture and animal agriculture for determining the optimum MOIs for selected bacteriophages.
Collapse
Affiliation(s)
- Manikantha Benala
- Visakhapatnam Research Centre of ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Visakhapatnam, 530003, Andhra Pradesh, India; Department of Microbiology and FST, Institute of Science, GITAM, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Murugadas Vaiyapuri
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, Kerala, India
| | - Sivam Visnuvinayagam
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, Kerala, India
| | - Joshy Chalil George
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, Kerala, India
| | - Karthika Raveendran
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, Kerala, India
| | - Iris George
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, Kerala, India
| | - Mukteswar Prasad Mothadaka
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, Kerala, India
| | - Madhusudana Rao Badireddy
- Visakhapatnam Research Centre of ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Visakhapatnam, 530003, Andhra Pradesh, India.
| |
Collapse
|
45
|
Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann Clin Microbiol Antimicrob 2021; 20:30. [PMID: 33902597 PMCID: PMC8077874 DOI: 10.1186/s12941-021-00433-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Multi-Drug Resistant (MDR) uropathogenic bacteria have increased in number in recent years and the development of new treatment options for the corresponding infections has become a major challenge in the field of medicine. In this respect, recent studies have proposed bacteriophage (phage) therapy as a potential alternative against MDR Urinary Tract Infections (UTI) because the resistance mechanism of phages differs from that of antibiotics and few side effects have been reported for them. Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis are the most common uropathogenic bacteria against which phage therapy has been used. Phages, in addition to lysing bacterial pathogens, can prevent the formation of biofilms. Besides, by inducing or producing polysaccharide depolymerase, phages can easily penetrate into deeper layers of the biofilm and degrade it. Notably, phage therapy has shown good results in inhibiting multiple-species biofilm and this may be an efficient weapon against catheter-associated UTI. However, the narrow range of hosts limits the use of phage therapy. Therefore, the use of phage cocktail and combination therapy can form a highly attractive strategy. However, despite the positive use of these treatments, various studies have reported phage-resistant strains, indicating that phage–host interactions are more complicated and need further research. Furthermore, these investigations are limited and further clinical trials are required to make this treatment widely available for human use. This review highlights phage therapy in the context of treating UTIs and the specific considerations for this application.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Alireza Moradabadi
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
47
|
Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals (Basel) 2021; 14:ph14040359. [PMID: 33924739 PMCID: PMC8069877 DOI: 10.3390/ph14040359] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of antibiotic-resistant pathogens is becoming increasingly problematic in the treatment of bacterial diseases. This has led to bacteriophages receiving increased attention as an alternative form of treatment. Phages are effective at targeting and killing bacterial strains of interest and have yielded encouraging results when administered as part of a tailored treatment to severely ill patients as a last resort. Despite this, success in clinical trials has not always been as forthcoming, with several high-profile trials failing to demonstrate the efficacy of phage preparations in curing diseases of interest. Whilst this may be in part due to reasons surrounding poor phage selection and a lack of understanding of the underlying disease, there is growing consensus that future success in clinical trials will depend on effective delivery of phage therapeutics to the area of infection. This can be achieved using bacteriophage formulations instead of purely liquid preparations. Several encapsulation-based strategies can be applied to produce phage formulations and encouraging results have been observed with respect to efficacy as well as long term phage stability. Immobilization-based approaches have generally been neglected for the production of phage therapeutics but could also offer a viable alternative.
Collapse
|
48
|
Kim SG, Giri SS, Yun S, Kim SW, Han SJ, Kwon J, Oh WT, Lee SB, Park YH, Park SC. Two Novel Bacteriophages Control Multidrug- and Methicillin-Resistant Staphylococcus pseudintermedius Biofilm. Front Med (Lausanne) 2021; 8:524059. [PMID: 33869236 PMCID: PMC8044756 DOI: 10.3389/fmed.2021.524059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/08/2021] [Indexed: 01/13/2023] Open
Abstract
As a primary bacterial pathogen in companion animals, Staphylococcus pseudintermedius has zoonotic potential. This pathogen exhibits multidrug resistance, including resistance to methicillin, and biofilm-forming ability, making it hard to eradicate with antimicrobial agents. One potential alternative is bacteriophage therapy. In this study, we first characterized the antimicrobial resistance profile of S. pseudintermedius from canine samples and isolated two novel bacteriophages, pSp-J and pSp-S, from canine pet parks in South Korea to potentially control S. pseudintermedius. The biological characteristics of phages were assessed, and the phages could infect most of the methicillin-resistant S. pseudintermedius strains. We found that these phages were stable under the typical environment of the body (~37°C, pH 7). We also assessed bacterial lysis kinetics using the two phages and their cocktail, and found that the phages could prevent biofilm formation at low doses and could degrade biofilm at high doses. Taken together, this study demonstrates that bacteriophages pSp-J and pSp-S isolated in this study can be used to potentially treat methicillin-resistant S. pseudintermedius.
Collapse
Affiliation(s)
- Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo Teak Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine, BK21 Plus Program for Veterinary Science and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Askoura M, Saed N, Enan G, Askora A. Characterization of Polyvalent Bacteriophages Targeting Multidrug-Resistant Klebsiella pneumonia with Enhanced Anti-Biofilm Activity. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382101004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|