1
|
Sun J, Liu C, Yang G, Li Q, An Y, Zhu Y, Zhang P, Guan Y, Peng C, Du Z, Huang P, Chen Y. Targeting NEDD8 in pediatric acute myeloid leukemia: an integrated bioinformatics and experimental approach. Hematology 2025; 30:2478650. [PMID: 40103351 DOI: 10.1080/16078454.2025.2478650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
SUMMARYThis study systematically explored the role of NEDD8 in pediatric acute myeloid leukemia (AML) through patient sample analysis, database mining, and in vitro experiments. Our results demonstrated that NEDD8 was significantly overexpressed in newly diagnosed pediatric AML patients and was associated with poor survival outcomes. Functional enrichment analysis of the TARGET database further revealed a strong correlation between NEDD8 and cancer-related pathways. In vitro experiments showed that NEDD8 knockdown significantly inhibited the proliferation of AML cells (THP-1 and MV4-11) and induced cell cycle arrest. Collectively, these findings highlight the critical role of NEDD8 in pediatric AML pathogenesis and suggest its potential as both a prognostic biomarker and a therapeutic target.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- NEDD8 Protein/genetics
- NEDD8 Protein/metabolism
- Child
- Computational Biology/methods
- Female
- Male
- Cell Line, Tumor
- Child, Preschool
- Cell Proliferation
- Gene Expression Regulation, Leukemic
- Prognosis
- Adolescent
Collapse
Affiliation(s)
- Jian Sun
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Cui Liu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Guangli Yang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Qian Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yang An
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yin Zhu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Pingping Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yaning Guan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Zuochen Du
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| |
Collapse
|
2
|
Hao Y, Zhang B, Chen R. Application of mass spectrometry for the advancement of PROTACs. J Pharm Biomed Anal 2025; 261:116829. [PMID: 40121702 DOI: 10.1016/j.jpba.2025.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
The advent of targeted protein degradation technologies, particularly Proteolysis-Targeting Chimeras (PROTACs), enable the selective elimination of target proteins and open up new avenues for the treatment of various diseases. This review delves into the pivotal role of mass spectrometry (MS) in the advancement of PROTACs. MS-based methodologies serve as invaluable tools for identifying PROTAC targets, validating their efficacy, and elucidating ubiquitination sites and protein degradation dynamics. These insights profoundly enrich our comprehension of the mechanisms of action and facilitate the rational design of PROTACs. Furthermore, this review discusses the role of MS in the structural analysis of proteins and the formation of ternary complexes crucial for the activity of PROTACs. The synergy between MS and PROTAC technology holds the promise of groundbreaking advancements in drug discovery by deepening our understanding of the underlying mechanisms that govern PROTAC drug action, thereby promoting the development of innovative strategies for disease treatment.
Collapse
Affiliation(s)
- Yuechen Hao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Baoshuang Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Qin R, Tang Y, Yuan Y, Meng F, Zheng K, Yang X, Zhao J, Yang C. Studies on the functional role of UFMylation in cells (Review). Mol Med Rep 2025; 32:191. [PMID: 40341950 PMCID: PMC12076054 DOI: 10.3892/mmr.2025.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Protein post‑translational modifications (PTMs) play crucial roles in various life activities and aberrant protein modifications are closely associated with numerous major human diseases. Ubiquitination, the first identified protein modification system, involves the covalent attachment of ubiquitin molecules to lysine residues of target proteins. UFMylation, a recently discovered ubiquitin‑like modification, shares similarities with ubiquitination. The precursor form of ubiquitin fold modifier 1 (UFM1) undergoes synthesis and cleavage by UFM1‑specific protease 1 or UFM1‑specific protease 2 to generate activated UFM1‑G83. Subsequently, UFM1‑G83 is activated by a specific E1‑like activase, UFM1‑activating enzyme 5. UFM1‑conjugating enzyme 1 and an E3‑like ligase, UFM1‑specific ligase 1, recognize the target protein and facilitate UFMylation, leading to the degradation of the target protein. Current knowledge regarding UFMylation remains limited. Previous studies have demonstrated that defects in the UFMylation pathway can result in embryonic lethality in mice and various human diseases, highlighting the critical biological functions of UFMylation. However, the precise mechanisms underlying UFMylation remain elusive. This present review aimed to summarize recent research advances in UFMylation, with the aim of providing novel insights and perspectives for future investigations into this essential protein modification system.
Collapse
Affiliation(s)
- Rong Qin
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuhang Yuan
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Fangyu Meng
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, Yunnan 650000, P.R. China
| | - Xingyu Yang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Chuanhua Yang
- Department of General Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Wang J, Wang S, Wang Y, Xu L, Wu C, Zhang X, Liang C, Wan S, Xia Y, Huang X, Xu L. Hsa_circ_0000479 promotes gastric cancer progression by inhibiting BTRC-mediated ubiquitination of G3BP1. Exp Cell Res 2025; 449:114585. [PMID: 40320200 DOI: 10.1016/j.yexcr.2025.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/30/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
An increasing number of studies have shown that circular RNAs (circRNAs) are key regulators of cancer development and progression. RNA-binding proteins (RBPs) play critical roles in the regulation of biological activities, such as RNA synthesis, selective splicing, modification, translocation, and translation; therefore, research on the interactions of circRNAs with RBPs is key to identifying potential targets for cancer treatment. However, the biological roles and mechanisms of circRNAs in gastric cancer (GC) remain largely unknown. We identified differentially expressed circRNAs in GC by analysing Gene Expression Omnibus (GEO) datasets. Concurrently, in vitro functional assays and in vivo animal studies were performed to explore the biological role of circRNAs in GC. We performed western blotting (WB) of labelled proteins, salvage assays, mass spectrometry (MS), and RNA sequencing to investigate the mechanism of circRNAs in GC to explore their effects on GC cell proliferation and metastasis and to validate their potential value as therapeutic targets. Upregulated expression of cyclic RNA EPSTI1 (circEPSTI1; hsa_circ_0000479) was found in GC tissues and was associated with a poor clinical prognosis. hsa_circ_0000479 promotes the proliferation and migration of GC cells in vitro and in vivo. Notably, hsa_circ_0000479 interacts with Ras-GTPase-activated protein-binding protein 1 (G3BP1) in GC cells and inhibits the degradation of G3BP1 via the ubiquitin‒proteasome pathway, whereas hsa_circ_0000479 blocks the binding of G3BP1 to the E3 ligase BTRC. Mechanistic studies suggest that hsa_circ_0000479 promotes GC progression by competitively inhibiting the G3BP1 ubiquitination-mediated degradation facilitated by BTRC. Our results reveal the molecular mechanism by which hsa_circ_0000479 promotes GC progression through BTRC-mediated competitive binding to G3BP1 to inhibit its ubiquitination-mediated degradation, which provides a new theoretical basis for the targeted treatment of GC and elucidates the potential of hsa_circ_0000479-G3BP1-BTRC as a therapeutic target in GC. These findings provide a new direction for the treatment of patients with GC.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China; Department of General Surgery, Maanshan Maternal and Child Health Care Hospital, Maanshan, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Ye Wang
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lishuai Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Xu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Changming Liang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Senlin Wan
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
| |
Collapse
|
5
|
Koch J, Elbæk CR, Priesmann D, Damgaard RB. The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling. Chembiochem 2025; 26:e202500114. [PMID: 40192223 PMCID: PMC12118340 DOI: 10.1002/cbic.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Modification of proteins and other biomolecules with ubiquitin regulates virtually all aspects of eukaryotic cell biology. Ubiquitin can be attached to substrates as a monomer or as an array of polyubiquitin chains with defined linkages between the ubiquitin moieties. Each ubiquitin linkage type adopts a distinct structure, enabling the individual linkage types to mediate specific functions or outcomes in the cell. The dynamics, heterogeneity, and in some cases low abundance, make analysis of linkage type-specific ubiquitin signaling a challenging and complex task. Herein, the strategies and molecular tools available for enrichment, detection, and characterization of linkage type-specific ubiquitin signaling, are reviewed. The molecular "toolbox" consists of a range of molecularly different affinity reagents, including antibodies and antibody-like molecules, affimers, engineered ubiquitin-binding domains, catalytically inactive deubiquitinases, and macrocyclic peptides, each with their unique characteristics and binding modes. The molecular engineering of these ubiquitin-binding molecules makes them useful tools and reagents that can be coupled to a range of analytical methods, such as immunoblotting, fluorescence microscopy, mass spectrometry-based proteomics, or enzymatic analyses to aid in deciphering the ever-expanding complexity of ubiquitin modifications.
Collapse
Affiliation(s)
- Julian Koch
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Dominik Priesmann
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Rune Busk Damgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| |
Collapse
|
6
|
Jing Q, Chen Q, Wang G, Wu T, Wang L, Xiong Q, Yang X, Qiu L, Han J. LINC02593 impedes cell senescence via COP1-mediated p53 degradation in cervical cancer. Cell Signal 2025; 134:111907. [PMID: 40441468 DOI: 10.1016/j.cellsig.2025.111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/15/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
Evasion of cellular senescence is one of the hallmarks of cervical carcinoma (CC) to maintain malignant development. Even though the regulators driving CC cell senescence are widely recognized, the underlying upstream mechanisms are still not fully understood. Long non-coding RNAs (lncRNAs) are emerging as important regulators in cell senescence. Here, we conducted a lncRNA profiling and identified LINC02593 as a significantly downregulated lncRNA in induced senescent cervical squamous cell carcinoma (CSCC) cells. LINC02593 is upregulated in CSCC tissues. Depletion of LINC02593 resulted in a marked cellular senescence phenotype and tumor growth inhibition in vitro and in vivo, whereas LINC02593 overexpression suppressed doxorubicin-induced cell senescence. LINC02593 was shown to impede cell senescence by inhibiting p21 expression, and this regulation was mainly dependent on p53 protein degradation. Mechanistically, LINC02593 served as a scaffold, bridging the coiled-coil domain of COP1 and the C-terminal domain of p53, enhancing the affinity between p53 and its E3 ubiquitin ligase COP1. The "scaffold" function facilitated p53 degradation by COP1 as well as the downstream p21 repression, eventually evading cell senescence. Overall, we characterized a previously unknown mechanism by which LINC02593 manipulated senescence to promote CC progression.
Collapse
Affiliation(s)
- Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Chen
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guosong Wang
- Laboratory of Gastrointestinal Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Wu
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingli Wang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Laboratory of Gastrointestinal Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610093, China.
| |
Collapse
|
7
|
Ruiz-Gómez G, Uvizl A, Bakos G, Leung JK, Pisabarro MT, Mansfeld J. De Novo-Designed APC/C Inhibitors Provide a Rationale for Targeting RING-Type E3 Ubiquitin Ligases. J Med Chem 2025. [PMID: 40397069 DOI: 10.1021/acs.jmedchem.5c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The ubiquitin system represents an attractive pharmacological target for numerous pathological processes, including cancer and neurodegeneration. RING domain-containing E3 ubiquitin ligases constitute the largest class of ubiquitin enzymes, providing a scaffold for substrate recognition and catalysis. Their shallow groove recognition interfaces involving discontinuous epitopes and a lack of defined binding pockets have largely rendered them undruggable. Inspired by natural RING inhibitors, we have developed a pharmacophore-based strategy for the rational design of peptidomimetics targeting RING domains, and we demonstrate its feasibility by using the macromolecular APC/C complex (anaphase-promoting complex/cyclosome). We designed scaffolds binding to the APC/C RING domain and efficiently inhibiting its activity in vitro. Iterative structure-based design and experimental studies to optimize their chemical stability, permeability, and specificity lead to new hydrocarbon-stapled-based molecules inhibiting APC/C in vitro and in cancer cells. Our results provide a robust rationale for targeting RING-containing enzymes of therapeutic value and promising leads for clinical APC/C inhibition.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Alena Uvizl
- Cell Cycle, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Gabor Bakos
- Cell Cycle, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Jacky K Leung
- Division of Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, SW3 6JB London, U.K
| | - M Teresa Pisabarro
- Structural Bioinformatics, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
- Division of Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, SW3 6JB London, U.K
| |
Collapse
|
8
|
Li Y, Qu L, Tang Y, Ni F, Shen S, Guo H, Yu XF, Wei W. Cullin 3-mediated ubiquitination restricts enterovirus D68 replication and is counteracted by viral protease 3C. J Virol 2025:e0035425. [PMID: 40396757 DOI: 10.1128/jvi.00354-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025] Open
Abstract
Enterovirus D68 (EV-D68) has emerged as a significant threat to public health because of its association with respiratory illnesses and neurological complications, including acute flaccid myelitis. However, the molecular mechanisms underlying EV-D68 replication and pathogenesis remain unclear. Here, we revealed a novel interaction between EV-D68 and the host Cullin-RING E3 ligase system, specifically Cullin 3, which was reported to restrict viral replication. We initially demonstrated that proteasome inhibition enhanced EV-D68 replication, suggesting an important role for the ubiquitin-proteasome system in viral restriction. Cullin 3 was further identified as a key factor that inhibits EV-D68 replication, and the downregulation of its expression increased viral titers. Mechanistically, Cullin 3 was observed to target the viral capsid protein VP1 for ubiquitination and degradation. However, EV-D68 was determined to utilize its protease 3C to cleave Cullin 3 at the Q681 residue, thereby inhibiting E3 ligase activity and facilitating resistance to Cullin 3-mediated VP1 degradation. This study uncovered a host-virus arms race, wherein the ubiquitin-proteasome system of the host actively targets viral proteins for degradation, and viral proteases counteract this defense mechanism. Accordingly, these findings could lead to more effective antiviral treatments. IMPORTANCE The ubiquitin-proteasome system (UPS) is a critical cellular pathway involved in the regulation of protein stability and has been implicated in the regulation of viral infections. However, its role in EV-D68 infection has not been extensively explored. Our study proves that the host UPS, through the scaffold protein Cullin 3, can restrict EV-D68 replication, representing a previously unrecognized antiviral mechanism. Furthermore, we describe a viral strategy used to evade this host defense mechanism comprising Cullin 3 cleavage, which has broad implications for understanding virus-host interactions and could inform the development of novel therapeutic strategies against EV-D68 and other enteroviruses.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Limei Qu
- Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
- Cancer Center Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
9
|
Ahel J, Balci A, Faas V, Grabarczyk DB, Harmo R, Squair DR, Zhang J, Roitinger E, Lamoliatte F, Mathur S, Deszcz L, Bell LE, Lehner A, Williams TL, Sowar H, Meinhart A, Wood NT, Clausen T, Virdee S, Fletcher AJ. ATP functions as a pathogen-associated molecular pattern to activate the E3 ubiquitin ligase RNF213. Nat Commun 2025; 16:4414. [PMID: 40360510 PMCID: PMC12075652 DOI: 10.1038/s41467-025-59444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The giant E3 ubiquitin ligase RNF213 is a conserved component of mammalian cell-autonomous immunity, limiting the replication of bacteria, viruses and parasites. To understand how RNF213 reacts to these unrelated pathogens, we employ chemical and structural biology to find that ATP binding to its ATPases Associated with diverse cellular Activities (AAA) core activates its E3 function. We develop methodology for proteome-wide E3 activity profiling inside living cells, revealing that RNF213 undergoes a reversible switch in E3 activity in response to cellular ATP abundance. Interferon stimulation of macrophages raises intracellular ATP levels and primes RNF213 E3 activity, while glycolysis inhibition depletes ATP and downregulates E3 activity. These data imply that ATP bears hallmarks of a danger/pathogen associated molecular pattern, coordinating cell-autonomous defence. Furthermore, quantitative labelling of RNF213 with E3-activity probes enabled us to identify the catalytic cysteine required for substrate ubiquitination and obtain a cryo-EM structure of the RNF213-E2-ubiquitin conjugation enzyme transfer intermediate, illuminating an unannotated E2 docking site. Together, our data demonstrate that RNF213 represents a new class of ATP-dependent E3 enzyme, employing distinct catalytic and regulatory mechanisms adapted to its specialised role in the broad defence against intracellular pathogens.
Collapse
Affiliation(s)
- Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Arda Balci
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Victoria Faas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Daniel B Grabarczyk
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Roosa Harmo
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jiazhen Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Elisabeth Roitinger
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter, Vienna, Austria
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sunil Mathur
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Luiza Deszcz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Lillie E Bell
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Anita Lehner
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Thomas L Williams
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Hanna Sowar
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| | - Adam J Fletcher
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
10
|
Tian L, Zhao Z, Gao W, Liu Z, Li X, Zhang W, Li Z. SARS-CoV-2 nsp16 is regulated by host E3 ubiquitin ligases, UBR5 and MARCHF7. eLife 2025; 13:RP102277. [PMID: 40358464 PMCID: PMC12074641 DOI: 10.7554/elife.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health threat with considerable economic consequences. The nonstructural protein 16 (nsp16), in complex with nsp10, facilitates the final viral mRNA capping step through its 2'-O-methylase activity, helping the virus to evade host immunity and prevent mRNA degradation. However, nsp16 regulation by host factors remains poorly understood. While various E3 ubiquitin ligases interact with SARS-CoV-2 proteins, their roles in targeting nsp16 for degradation remain unclear. In this study, we demonstrate that nsp16 undergoes ubiquitination and proteasomal degradation mediated by the host E3 ligases UBR5 and MARCHF7. UBR5 induces K48-linked ubiquitination, whereas MARCHF7 promotes K27-linked ubiquitination, independently suppressing SARS-CoV-2 replication in cell cultures and in mice. Notably, UBR5 and MARCHF7 also degrade nsp16 variants from different viral strains, exhibiting broad-spectrum antiviral activity. Our findings reveal novel antiviral mechanisms of the ubiquitin-proteasome system (UPS) and highlight their potential therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Li Tian
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| | - Zongzheng Zhao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChangchunChina
| | - Wenying Gao
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| | - Zirui Liu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChangchunChina
| | - Xiao Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChangchunChina
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
11
|
Castro B, Baik S, Tran M, Zhu J, Li T, Tang A, Aoun N, Blundell AC, Gomez M, Zhang E, Cho MJ, Lowe-Power T, Siddique S, Staskawicz B, Coaker G. Gene editing of the E3 ligase PIRE1 fine-tunes reactive oxygen species production for enhanced bacterial disease resistance in tomato. THE PLANT CELL 2025; 37:koaf049. [PMID: 40445949 PMCID: PMC12124405 DOI: 10.1093/plcell/koaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 06/02/2025]
Abstract
Reactive oxygen species (ROS) accumulation is required for effective plant defense. Accumulation of the Arabidopsis (Arabidopsis thaliana) NADPH oxidase respiratory burst oxidase homolog D (RBOHD) is regulated by phosphorylation of a conserved C-terminal residue (T912) leading to ubiquitination by the RING E3 ligase Pbl13-interacting RING domain E3 ligase (PIRE). Arabidopsis PIRE knockouts exhibit enhanced ROS production and resistance to the foliar pathogen Pseudomonas syringae. Here, we identified 170 PIRE homologs, which emerged in tracheophytes and expanded in angiosperms. We investigated the role of tomato (Solanum lycopersicum) PIRE homologs in regulating ROS production, RBOH stability, and disease resistance. Mutational analyses of residues corresponding to T912 in the tomato RBOHD ortholog, SlRBOHB, affected protein accumulation and ROS production in a PIRE-dependent manner. Using genome editing, we generated mutants in 2 S. lycopersicum PIRE (SlPIRE) homologs. SlPIRE1 edited lines (Slpire1) in the tomato cultivar M82 displayed enhanced ROS production upon treatment with flg22, an immunogenic epitope of flagellin. Furthermore, Slpire1 exhibited decreased disease symptoms and bacterial accumulation when inoculated with foliar bacterial pathogens P. syringae and Xanthomonas campestris. However, Slpire1 exhibited similar levels of colonization as wild type upon inoculation with diverse soil-borne pathogens. These results indicate that PIRE regulates RBOHs in multiple plant species and is a promising target for foliar disease control. This study also highlights the pathogen-specific role of PIRE, indicating its potential for targeted manipulation to enhance foliar disease resistance without affecting root-associated pathogenic interactions.
Collapse
Affiliation(s)
- Bardo Castro
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Suji Baik
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Megann Tran
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Jie Zhu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Andrea Tang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Nathalie Aoun
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Alison C Blundell
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Michael Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Elaine Zhang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Tiffany Lowe-Power
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Zhu X, Li W, Zhu T, Zheng W, Luo Q, Xu T, Sun Y. Identification and functional regulation of two alternative splicing isoforms of the Uhrf2 gene in Miichthysmiiuy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105356. [PMID: 40074104 DOI: 10.1016/j.dci.2025.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Alternative splicing can produce a variety of splicing isoforms to increase protein diversity, participate in the regulation of gene expression and the occurrence and development of diseases, and thus play an important role in innate immunity. Ubiquitin like with PHD and ring finger domains 2 (Uhrf2) protein is associated with cell proliferation, inflammation, tumors, and cancer, and is currently the focus of medical immunology research, but there is little research on alternative splicing of the Uhrf2 gene. In this study, we identified two different splicing isoforms of Uhrf2 in Miichthys miiuy through Sanger sequencing, dual-luciferase reporter gene assay, qRT-PCR, subcellular localization experiments, and named them Uhrf2-α and Uhrf2-β. Subcellular localization experiments found that Uhrf2-α was mainly located in the nucleus, while Uhrf2-β was mainly located in the cytoplasm. Although their localization was different, both could significantly inhibit the activation of IRF3 and NF-κB signaling pathways, and effectively inhibit the levels of inflammatory cytokines. These results indicate that Uhrf2-α and Uhrf2-β play important negative regulatory roles in innate immune responses in fish.
Collapse
Affiliation(s)
- Xiangxiang Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenxin Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tongtong Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
13
|
Chargui A, Hammami I, Hashem A, Al-Hazzani AA, Abd Allah EF, belaid A, Marzougui S, Elmay MV, Mograbi B. Cd stabilizes HIF-1α under normoxic conditions via lysine-63-linked ubiquitination and induces ER stress and cell proliferation. Toxicol Res 2025; 41:221-234. [PMID: 40291115 PMCID: PMC12021772 DOI: 10.1007/s43188-024-00266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 04/30/2025] Open
Abstract
Cadmium, a carcinogenic and toxic substance released into the environment, has emerged as a potent activator of lysine-63 ubiquitination, and lysine-63 is a crucial regulator of signal transduction pathways. Although critical, very little information is currently available about how the activation of lysine 63 ubiquitination by Cd might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cd stabilizes hypoxia-inducible factor-1-alpha, a transcription factor, under normoxic conditions via lysine 63 ubiquitination. Cd induces the accumulation of lysine 63 polyubiquitinated proteins. Importantly, Cd-induced ubiquitination does not prevent oxidative damage or proteasome impairment. Instead, we demonstrated that Cd activates lysine 63 ubiquitination and amplifies its accumulation by overloading the capacity of the autophagy pathway, thus promoting endoplasmic reticulum stress and cell death. At the molecular level, Cd-induced lysine 63 polyubiquitination is correlated with the stabilization of hypoxia-inducible factor-1-alpha, which translocates into the nucleus and promotes the expression of oncogenes such as interleukin 8 and vascular endothelial growth factor. Strikingly, prolonged cell exposure to high Cd concentrations induces increased lysine-63 polyubiquitination, which promotes aggresome formation, thus preventing this protein from interacting with its downstream nuclear targets. Our results showed that Cd is an activator of K63-linked ubiquitination that stabilizes and promotes the accumulation of HIF-1α, which blocks autophagy, thus resulting in endoplasmic reticulum stress. In addition, a small amount of HIF-1α was observed in the nucleus. We therefore propose that the aberrant activation of lysine 63 polyubiquitination by the carcinogen Cd could promote cell proliferation and inflammation at low levels, while high levels lead to cell death. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00266-9.
Collapse
Affiliation(s)
- Abderrahmen Chargui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la durabilite des systemes de production agricoles du Nord-Ouest, 7119 Le Kef, Tunisia
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Institute of Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, FHU OncoAge Centre Antoine Lacassagne Université Côte d’Azur, 06189 Nice, France
| | - Imen Hammami
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Amal A. Al-Hazzani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Amin belaid
- Institute of Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, FHU OncoAge Centre Antoine Lacassagne Université Côte d’Azur, 06189 Nice, France
| | - Salem Marzougui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la durabilite des systemes de production agricoles du Nord-Ouest, 7119 Le Kef, Tunisia
| | - Michèle V. Elmay
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Baharia Mograbi
- Institute of Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, FHU OncoAge Centre Antoine Lacassagne Université Côte d’Azur, 06189 Nice, France
| |
Collapse
|
14
|
Xiong K, Chen S, Xu H, Tu S, Weng H, Wang Y, Li M, Yu J, Qian K, Ju L, Zhang Y, Xiao Y, Wang X, Wang G. RNF112 Facilitates Ubiquitin-Mediated Degradation of c-Myc, Suppressing Proliferation, Migration and Lipid Synthesis in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408311. [PMID: 40178292 PMCID: PMC12120744 DOI: 10.1002/advs.202408311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The E3 ubiquitin ligase RNF112 is significantly downregulated in bladder cancer (BLCA) and is correlated with disease progression. In vitro and in vivo studies indicated that RNF112 suppresses BLCA cell proliferation, migration, and lipid synthesis. Mechanistically, RNF112 directly interacts with the MB II domain of MYC through its N-terminal zinc finger motif, and its catalytic site C97 facilitates K48-linked polyubiquitination of the K389 residue on the c-Myc protein, accelerating its degradation. Additionally, this research validated the interaction of c-Myc with the promoter of ATP citrate lyase (ACLY), a central enzyme of lipid metabolism, promoting its transcriptional activity. The restoration of c-Myc or ACLY expression attenuated the inhibitory effects of RNF112 on BLCA cell growth, migration, and lipid synthesis. In conclusion, this study confirmed that RNF112 suppressed the proliferation, migration, and lipid synthesis of BLCA cells by facilitating the ubiquitin-mediated degradation of c-Myc.
Collapse
Affiliation(s)
- Kangping Xiong
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Siming Chen
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Huimin Xu
- Department of Obstetrics and Gynecology UltrasoundZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Sheng Tu
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hong Weng
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of UrologySir Run Run Shaw Hospital of Zhejiang UniversityHangzhou310016China
| | - Mingxing Li
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jingtian Yu
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kaiyu Qian
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yi Zhang
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyZGC Life Sciences ParkBeijing102206China
- Center for Quantitative BiologySchool of Life SciencesPeking UniversityBeijing100091China
| | - Yu Xiao
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Xinghuan Wang
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteFrontier Science Center of Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Gang Wang
- Department of UrologyHubei Key Laboratory of Urological DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| |
Collapse
|
15
|
Yang D, Yang C, Huang L, Guan M, Song C. Role of ubiquitination-driven metabolisms in oncogenesis and cancer therapy. Semin Cancer Biol 2025; 110:17-35. [PMID: 39929409 DOI: 10.1016/j.semcancer.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Ubiquitination represents one of the most critical post-translational modifications, comprising a multi-stage enzyme process that plays a pivotal role in a myriad of cellular biological activities. The deregulation of the processes of ubiquitination and deubiquitination is associated with the development of cancers and other diseases. This typescript reviews the impact of ubiquitination on metabolic processes, elucidating the regulatory functions of ubiquitination on pivotal enzymes within metabolic pathways in pathological contexts. It underscores the role of ubiquitination-driven metabolism disorders in the etiology of cancers, and oncogenesis, and highlights the potential therapeutic efficacy of targeting ubiquitination-driven enzymes in cancer metabolism, their combination with immune checkpoint inhibitors, and their clinical applications.
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China; Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Can Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Huang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Ming Guan
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, the James Cancer Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Hwang J, Lauinger L, Kaiser P. Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing. Bioessays 2025; 47:e202400249. [PMID: 40091294 DOI: 10.1002/bies.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Cullin-RING ligases (CRLs) are central regulators of environmental and cellular stress responses, orchestrating diverse processes through the ubiquitination of substrate proteins. As modular complexes, CRLs employ substrate-specific adaptors to target proteins for degradation and other ubiquitin-mediated processes, enabling dynamic adaptation to environmental cues. Recent advances have highlighted the largest CRL subfamily SCF (Skp1-cullin-F-box) in environmental sensing, a role historically underappreciated for SCF ubiquitin ligases. Notably, emerging evidence suggests that the F-box domain, a 50-amino acid motif traditionally recognized for mediating protein-protein interactions, can act as a direct environmental sensor due to its ability to bind heavy metals. Despite these advances, the roles of many CRL components in environmental sensing remain poorly understood. This review provides an overview of CRLs in stress response regulation and emphasizes the emerging functions of F-box proteins in environmental adaptation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
17
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2025; 52:615-627. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
18
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025; 308:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Rizvi Z, Lander GC. Illuminating ubiquitination mechanisms: How cryo-EM has shed light on Cullin RING E3 ligase function. Curr Opin Struct Biol 2025; 92:103055. [PMID: 40311545 DOI: 10.1016/j.sbi.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
The ubiquitin-proteasome system (UPS) governs protein homeostasis by orchestrating the selective degradation of regulatory and misfolded proteins through a tightly regulated series of ATP-driven ubiquitination reactions. E3 ubiquitin ligases play a central role in this process by conferring substrate specificity, yet the structural complexity and dynamic nature of these large macromolecular assemblies poses challenges for traditional structural biology techniques such as X-ray crystallography and nuclear magnetic resonance (NMR). The advent of single-particle cryo-electron microscopy (cryo-EM) has transformed our ability to study these enzymes, revealing previously inaccessible mechanistic insights into their allosteric regulation, conformational transitions, and substrate recognition. By integrating high-resolution crystallographic data with cryo-EM's ability to resolve heterogeneous and dynamic complexes, researchers have uncovered fundamental principles governing E3 ligase activity. This review explores how cryo-EM has reshaped our understanding of Ligases. We highlight key discoveries enabled by this technique, and discuss how emerging cryo-EM approaches, alongside complementary methodologies, are advancing therapeutic strategies targeting ubiquitin signaling by this family of ligases.
Collapse
Affiliation(s)
- Zeba Rizvi
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Ibrahim NK, Schreek S, Cinar B, Stasche AS, Lee SH, Zeug A, Dolgner T, Niessen J, Ponimaskin E, Shcherbata H, Fehlhaber B, Bourquin JP, Bornhauser B, Stanulla M, Pich A, Gutierrez A, Hinze L. SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response. Cell Rep 2025; 44:115434. [PMID: 40131931 PMCID: PMC12094083 DOI: 10.1016/j.celrep.2025.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Adaptation to changes in amino acid availability is crucial for cellular homeostasis, which requires an intricate orchestration of involved pathways. Some cancer cells can maintain cellular fitness upon amino acid shortage, which has a poorly understood mechanistic basis. Leveraging a genome-wide CRISPR-Cas9 screen, we find that superoxide dismutase 2 (SOD2) has a previously unrecognized dismutase-independent function. We demonstrate that SOD2 regulates global proteasomal protein degradation and promotes cell survival under conditions of metabolic stress in malignant cells through the E3 ubiquitin ligases UBR1 and UBR2. Consequently, inhibition of SOD2-mediated protein degradation highly sensitizes different cancer entities, including patient-derived xenografts, to amino acid depletion, highlighting the pathophysiological relevance of our findings. Our study reveals that SOD2 is a regulator of proteasomal protein breakdown upon starvation, which serves as an independent catabolic source of amino acids, a mechanism co-opted by cancer cells to maintain cellular fitness.
Collapse
Affiliation(s)
- Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Buesra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Halyna Shcherbata
- Department of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Research Core Unit - Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Chunthorng-Orn J, Noureddine M, Dawson PWJ, Lord SO, Ng J, Boyton L, Gehmlich K, Mohammed F, Lai YC. HCM-Associated MuRF1 Variants Compromise Ubiquitylation and Are Predicted to Alter Protein Structure. Int J Mol Sci 2025; 26:3921. [PMID: 40332812 PMCID: PMC12027535 DOI: 10.3390/ijms26083921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
MuRF1 [muscle RING (Really Interesting New Gene)-finger protein-1] is an ubiquitin-protein ligase (E3), which encode by TRIM63 (tripartite motif containing 63) gene, playing a crucial role in regulating cardiac muscle size and function through ubiquitylation. Among hypertrophic cardiomyopathy (HCM) patients, 24 TRIM63 variants have been identified, with 1 additional variant linked to restrictive cardiomyopathy. However, only three variants have been previously investigated for their functional effects. The structural impacts of the 25 variants remain unexplored. This study investigated the effects of 25 MuRF1 variants on ubiquitylation activity using in vitro ubiquitylation assays and structural predictions using computational approaches. The variants were generated using site-directed PCR (Polymerase Chain Reaction) mutagenesis and subsequently purified with amylose affinity chromatography. In vitro ubiquitylation assays demonstrated that all 25 variants compromised the ability of MuRF1 to monoubiquitylate a titin fragment (A168-A170), while 17 variants significantly impaired or completely abolished auto-monoubiquitylation. Structural modelling predicted that 10 MuRF1 variants disrupted zinc binding or key stabilising interactions, compromising structural integrity. In contrast, three variants were predicted to enhance the structural stability of MuRF1, while six others were predicted to have no discernible impact on the structure. This study underscores the importance of functional assays and structural predictions in evaluating MuRF1 variant pathogenicity and provides novel insights into mechanisms by which these variants contribute to HCM and related cardiomyopathies.
Collapse
Affiliation(s)
- Jitpisute Chunthorng-Orn
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, University of Thammasat, Pathumthani 12120, Thailand
| | - Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (M.N.); or (K.G.)
| | - Peter W. J. Dawson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
| | - Samuel O. Lord
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK;
| | - Jimi Ng
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Luke Boyton
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (M.N.); or (K.G.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
23
|
Schmidt HM, Jarrett KE, de Aguiar Vallim TQ, Tarling EJ. Pathways and Molecular Mechanisms Governing LDL Receptor Regulation. Circ Res 2025; 136:902-919. [PMID: 40208925 PMCID: PMC11989972 DOI: 10.1161/circresaha.124.323578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Clearance of circulating plasma LDL (low-density lipoprotein) cholesterol by the liver requires hepatic LDLR (low-density lipoprotein receptor). Complete absence of functional LDLR manifests in severe hypercholesterolemia and premature atherosclerotic cardiovascular disease. Since the discovery of the LDLR 50 years ago by Brown and Goldstein, all approved lipid-lowering medications have been aimed at increasing the abundance and availability of LDLR on the surface of hepatocytes to promote the removal of LDL particles from the circulation. As such a critical regulator of circulating and cellular cholesterol, it is not surprising that LDLR activity is tightly regulated. Despite over half a century's worth of study, there are still many facets of LDLR biology that remain unexplored. This review will focus on pathways that regulate the LDLR and emerging concepts of LDLR biology.
Collapse
Affiliation(s)
- Heidi M. Schmidt
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
| | - Kelsey E. Jarrett
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
| | - Thomas Q. de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
| | - Elizabeth J. Tarling
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Lead contact
| |
Collapse
|
24
|
Nassar H, Sarnow A, Celik I, Abdelsalam M, Robaa D, Sippl W. Ternary Complex Modeling, Induced Fit Docking and Molecular Dynamics Simulations as a Successful Approach for the Design of VHL-Mediated PROTACs Targeting the Kinase FLT3. Arch Pharm (Weinheim) 2025; 358:e3126. [PMID: 40223615 PMCID: PMC11995253 DOI: 10.1002/ardp.202500102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) have proven to be a novel approach for the degradation of disease-causing proteins in drug discovery. One of the E3 ligases for which efficient PROTACs have been described is the Von Hippel-Lindau factor (VHL). However, the development of PROTACs has so far often relied on a minimum of computational tools, so that it is mostly based on a trial-and-error process. Therefore, there is a great need for resource- and time-efficient structure-based or computational approaches to streamline PROTAC design. In this study, we present a combined computational approach that integrates static ternary complex formation, induced-fit docking, and molecular dynamics (MD) simulations. Our methodology was tested using four experimentally derived ternary complex structures of VHL PROTACs, reported for BRD4, SMARCA2, FAK, and WEE1. In addition, we applied the validated approach to model a recently in-house developed FLT3-targeted PROTAC (MA49). The results show that static ternary models generated with a protein-protein docking method implemented in the software MOE have a high predictive power for reproducing the experimental 3D structures. The induced-fit docking of different active PROTACs to their respective models showed the reliability of this model for the development of new VHL-mediated degraders. In particular, the induced-fit docking was sensitive to structural changes in the PROTACs, as evidenced by the failed binding modes of the PROTAC negative controls. Furthermore, MD simulations confirmed the stability of the generated complexes and emphasized the importance of dynamic studies for understanding the relationship between PROTAC structure and function.
Collapse
Affiliation(s)
- Husam Nassar
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Anne‐Christin Sarnow
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Ismail Celik
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErciyes UniversityKayseriTurkey
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
25
|
Li Y, Wang Y, Jing Y, Zhu Y, Huang X, Wang J, Dilraba E, Guo C. Visualization analysis of breast cancer-related ubiquitination modifications over the past two decades. Discov Oncol 2025; 16:431. [PMID: 40163091 PMCID: PMC11958930 DOI: 10.1007/s12672-025-02032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Ubiquitination is a type of post-translational modification, referring to the process in which the small molecular protein ubiquitin covalently binds to target proteins under the catalysis of a series of enzymes. The process of ubiquitination is vital in the onset and progression of breast cancer. The use of the ubiquitin-protease system is expected to be a new way to treat human breast cancer. This research aimed to investigate the evolution patterns, key areas of interest, and future directions of ubiquitination in breast cancer via bibliometric analysis. METHODS Research articles on ubiquitination modifications in breast cancer were sourced from the Web of Science Core Collection database and analyzed via Microsoft Excel 2021, Bibliometrix, VOSviewer, and Citespace software for thorough bibliometrics. RESULTS From 2005-2024, 1850 English articles published in 405 journals by 1842 institutions/universities from 61 countries were included in the study. Keywords, research fields, co-cited literature and other information were included. Research on ubiquitination modifications has focused on breast cancer, expression, protein, activation, degradation, ubiquitination, phosphorylation, etc. Notably, the keywords that broke out in the past five years have focused on "triple-negative breast cancer", "promotion", and "metabolism". These findings suggest that key areas of current research are metabolism, immunity, survival, and prognosis in triple-negative breast cancer. CONCLUSIONS Our findings indicate that research on triple-negative breast cancer, as well as its immunological and metabolic aspects, is a burgeoning and promising area. Our work offers valuable guidance and fresh perspectives on the relationship between breast cancer and ubiquitin modification.
Collapse
Affiliation(s)
- Yongxiang Li
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yiyang Wang
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yubo Jing
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Youseng Zhu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xinzhu Huang
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - JunYi Wang
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Elihamu Dilraba
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
26
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
27
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
28
|
Wang S, Peng R, Chen C, Tu D, Cao J, Su B, Fan S, Miao Y, Zhang C, Jiang G, Jin S, Bai D. FBXO32 ubiquitination of SUFU promotes progression and lenvatinib resistance in hepatocellular carcinoma via hedgehog signaling. Med Oncol 2025; 42:98. [PMID: 40067532 DOI: 10.1007/s12032-025-02644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Lenvatinib is a prevalent treatment for hepatocellular carcinoma (HCC), yet resistance to the drug significantly limits its effectiveness. This study investigates the role of FBXO32 (F-Box Protein 32) in HCC progression and lenvatinib resistance. Methods: We utilized the GSE211850 and GSE46408 datasets to identify an E3 ubiquitin ligase that is highly expressed in both lenvatinib-resistant HCC cells and HCC tissues. The expression and clinical relevance of this E3 ubiquitin ligase were further validated using lenvatinib-resistant HCC cells, online databases, and HCC clinical tissue samples. The phenotype was verified by cell and animal experiments. Techniques such as RNA sequencing, western blotting, immunofluorescence, Co-immunoprecipitation (Co‑IP), Ubiquitination, and cycloheximide (CHX) chase assay reveal the mechanism. FBXO32 is highly expressed in both lenvatinib-resistant HCC cells and HCC tissues. High FBXO32 expression correlated with increased ALT, AFP levels, larger tumors, and advanced TNM stages, serving as an independent risk factor for overall survival (OS) and recurrence-free survival (RFS). Functional assays demonstrated that FBXO32 overexpression enhanced cell proliferation, stemness, apoptosis resistance, and lenvatinib resistance, while knockdown had opposing effects. KEGG enrichment analysis indicated a link between FBXO32 and the Hedgehog signaling pathway. FBXO32-mediated degradation of SUFU, a Hedgehog pathway inhibitor, activated this pathway. Inhibiting Hedgehog signaling counteracted FBXO32's impact on HCC growth and resistance. Conclusion: FBXO32 is a critical marker for lenvatinib efficacy and HCC prognosis, suggesting that targeting FBXO32 or the Hedgehog pathway could provide innovative strategies for overcoming lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Songsong Fan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yangyang Miao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China.
| |
Collapse
|
29
|
Zhao W, Wen J, Zhao J, Liu L, Wang M, Huang M, Fang C, Liu Q. E3 Ubiquitin Ligase OsRFI2 Regulates Salinity Tolerance by Targeting Ascorbate Peroxidase OsAPX8 for its Degradation in Rice. RICE (NEW YORK, N.Y.) 2025; 18:12. [PMID: 40059282 PMCID: PMC11891124 DOI: 10.1186/s12284-025-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Salinity is a major abiotic stress that adversely affects rice growth and production. However, the detailed regulatory mechanisms of salt stress response in rice remain largely unexplored. In this study, we established that the RING-type E3 ubiquitin ligase OsRFI2 plays a negative role in salt tolerance in rice. Knockout mutants of OsRFI2 (Osrfi2) exhibited high tolerance, whereas OsRFI2-overexpressed transgenic lines (OE-OsRFI2) were more sensitive to salt stress. OsRFI2 that has E3 ligase activity interacts with ascorbate peroxidase OsAPX8 in chloroplast, and catalyzes its ubiquitination and degradation through the 26 S proteasome pathway. The Osapx8 mutants, like OE-OsRFI2 lines, showed high sensitivity to high salt concentrations, accumulating greater amounts of MDA, H2O2 and O2-, which lead to compromised cell permeability and ROS accumulation. Thus, the OsRFI2-OsAPX8 module adds novel clues for better understanding the regulatory mechanism of salt stress response in rice.
Collapse
Affiliation(s)
- Wenjing Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Junli Wen
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Juan Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China.
| | - Linlin Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Menghan Huang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Chaowei Fang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Qingpo Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China.
| |
Collapse
|
30
|
Kenny S, Iyer S, Gabel CA, Tegenfeldt N, DeMarco AG, Hall MC, Chang L, Davisson VJ, Pol SV, Das C. Structure of E6AP in complex with HPV16-E6 and p53 reveals a novel ordered domain important for E3 ligase activation. Structure 2025; 33:504-516.e4. [PMID: 39818213 DOI: 10.1016/j.str.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function. The structure reveals that the N-terminal ordered domain (NOD) in E6AP has a terminal alpha helix that mediates the interaction of the NOD with the HECT domain of E6AP and protects the HPV-E6 protein from ubiquitination. In addition, this NOD helix is required for E6AP ligase function by contributing to the affinity of the E6-E6AP association, modulating E6 substrate recognition, while displacing UbcH7.
Collapse
Affiliation(s)
- Sebastian Kenny
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Clinton A Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Natalia Tegenfeldt
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
31
|
Liu Y, Qian M, Li Y, Dong X, Wu Y, Yuan T, Ma J, Yang B, Zhu H, He Q. The ubiquitin-proteasome system: A potential target for the MASLD. Acta Pharm Sin B 2025; 15:1268-1280. [PMID: 40370547 PMCID: PMC12069246 DOI: 10.1016/j.apsb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver condition globally, lacks adequate and effective therapeutic remedies in clinical practice. Recent studies have increasingly highlighted the close connection between the ubiquitin-proteasome system (UPS) and the progression of MASLD. This relationship is crucial for understanding the disease's underlying mechanism. As a sophisticated process, the UPS govern protein stability and function, maintaining protein homeostasis, thus influencing a multitude of elements and biological events of eukaryotic cells. It comprises four enzyme families, namely, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), ubiquitin-protein ligases (E3), and deubiquitinating enzymes (DUBs). This review aims to delve into the array of pathways and therapeutic targets implicated in the ubiquitination within the pathogenesis of MASLD. Therefore, this review unveils the role of ubiquitination in MASLD while spotlighting potential therapeutic targets within the context of this disease.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meijia Qian
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Zhongmei Huadong Pharmaceut Co., Ltd., Hangzhou 310011, China
| | - Yonghao Li
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Dong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yulian Wu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Ma
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
32
|
Peters N, Kanngießer S, Pajonk O, Salazar Claros R, Hubbe P, Mogk A, Schuck S. Reprograming of the ubiquitin ligase Ubr1 by intrinsically disordered Roq1 through cooperating multifunctional motifs. EMBO J 2025; 44:1774-1803. [PMID: 39920309 PMCID: PMC11914429 DOI: 10.1038/s44318-025-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
One way cells control the speed and specificity of protein degradation is by regulating the activity of ubiquitin ligases. Upon proteotoxic stress in yeast, the intrinsically disordered protein Roq1 binds the ubiquitin ligase Ubr1 as a pseudosubstrate, thereby modulating the degradation of substrates of the N-degron pathway and promoting the elimination of misfolded proteins. The mechanism underlying this reprograming of Ubr1 is unknown. Here, we show that Roq1 controls Ubr1 by means of two cooperating multifunctional motifs. The N-terminal arginine and a short hydrophobic motif of Roq1 interact with Ubr1 as part of a heterobivalent binding mechanism. Via its N-terminal arginine, Roq1 regulates the ubiquitination of various N-degron substrates and folded proteins. Via its hydrophobic motif, Roq1 accelerates the ubiquitination of misfolded proteins. These findings reveal how a small, intrinsically disordered protein with a simple architecture engages parallel channels of communication to reprogram a functionally complex ubiquitin ligase.
Collapse
Affiliation(s)
- Niklas Peters
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
| | | | - Oliver Pajonk
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
| | - Rafael Salazar Claros
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Petra Hubbe
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University, 69120, Heidelberg, Germany
| | - Sebastian Schuck
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany.
| |
Collapse
|
33
|
Briney CA, Henriksen JC, Lin C, Jones LA, Benner L, Rains AB, Gutierrez R, Gafken PR, Rissland OS. Muskelin is a substrate adaptor of the highly regulated Drosophila embryonic CTLH E3 ligase. EMBO Rep 2025; 26:1647-1669. [PMID: 39979464 PMCID: PMC11933467 DOI: 10.1038/s44319-025-00397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies because Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting the degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental regulation of the CTLH complex is multi-pronged, including transcriptional control by OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate is a substrate adaptor for the Drosophila CTLH complex. Finally, we find that Muskelin has few targets beyond the three known RNA-binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, during which time it regulates three important RNA-binding proteins.
Collapse
Affiliation(s)
- Chloe A Briney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jesslyn C Henriksen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chenwei Lin
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lisa A Jones
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Addison B Rains
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roxana Gutierrez
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip R Gafken
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
34
|
Guo D, Pang Y, Wang W, Feng Y, Wang L, Sun Y, Hao J, Li F, Zhao S. Modification of RNF183 via m6A Methylation Mediates Podocyte Dysfunction in Diabetic Nephropathy by Regulating PKM2 Ubiquitination and Degradation. Cells 2025; 14:365. [PMID: 40072093 PMCID: PMC11899265 DOI: 10.3390/cells14050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication associated with diabetes in which podocyte dysfunction significantly contributes to the development and progression of the condition. Ring finger protein 183 (RNF183) is an ER-localized, transmembrane ring finger protein with classical E3 ligase activity. However, whether RNF183 is involved in glomerular podocyte dysfunction, which is the mechanism of action of DKD, is still poorly understood. In this study, we first demonstrated that RNF183 expression in glomerular podocytes of patients with DKD decreased as the disease progressed. Additionally, our transcriptome sequencing analysis of kidney tissues from diabetic mice revealed a significant reduction in RNF183 expression within the kidney cortex. Similarly, the expression of RNF183 was significantly reduced both in the kidneys of diabetic mice and in human podocytes exposed to high glucose conditions. The downregulation of RNF183 resulted in a suppression of autophagic activity, an increase in apoptotic cell death, and reduced expression of cellular markers in HPC cells. We found that RNF183 was modified via N6-methyladenosine (m6A) RNA methylation. Meanwhile, treatment with meclofenamic acid 2 (MA2), an m6A demethylase inhibitor, resulted in the upregulation of RNF183 expression in HPC cells cultured in high glucose conditions. Furthermore, high glucose treatment decreased the transcription and protein levels in both the m6A writer methyltransferaselike3 (METTL3) and the m6A reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). IGF2BP2 assisted with METTL3, which is jointly involved in the transcription of RNF183. Furthermore, we confirmed that RNF183 directly ubiquitinates M2 pyruvate kinase (PKM2) through co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometry (LC-MS) experiments. The level of PKM2 ubiquitination was increased following RNF183 overexpression, leading to enhanced PKM2 protein degradation and subsequently alleviating high glucose-induced podocyte damage. The results of this study indicated that RNF183 was regulated via m6A methylation modification and that RNF183 expression was reduced in HPC cells treated with high glucose, which resulted in decreased PKM2 ubiquitination levels and subsequently aggravated podocyte injury. The findings suggest that RNF183 may serve as a potential therapeutic target for diabetic kidney injury, offering new insights into its role in the progression of DKD.
Collapse
Affiliation(s)
- Dongwei Guo
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxue Pang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Wenjie Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yueying Feng
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Luxuan Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuanyuan Sun
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; (D.G.); (Y.P.); (W.W.); (Y.F.); (L.W.); (Y.S.); (J.H.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
- Hebei Provincial Key Laboratory of Medical Imaging Science, Shijiazhuang 050017, China
| |
Collapse
|
35
|
Onea G, Ghahramani A, Wang X, Hassan HM, Bérubé NG, Schild-Poulter C. WDR26 depletion alters chromatin accessibility and gene expression profiles in mammalian cells. Genomics 2025; 117:111001. [PMID: 39837355 DOI: 10.1016/j.ygeno.2025.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
WD-repeat containing protein 26 (WDR26) is an essential component of the CTLH E3 ligase complex. Mutations in WDR26 lead to Skraban-Deardorff, an intellectual disability syndrome with clinical features resembling other disorders arising from defects in transcriptional regulation and chromatin structure. However, the role of WDR26 and its associated CTLH complex in regulating chromatin or transcription has not been elucidated. Here, we assessed how loss of WDR26 affects chromatin accessibility and gene expression. Transcriptome analysis of WDR26 knockout HeLa cells revealed over 2000 differentially expressed genes, while ATAC-Seq analysis showed over 32,000 differentially accessible chromatin regions, the majority mapping to intergenic and intronic regions and 13 % mapping to promoters. Above all, we found that WDR26 loss affected expression of genes regulated by AP-1 and NF-1 transcription factors and resulted in dramatic changes in their chromatin accessibility. Overall, our analyses implicate WDR26 and the CTLH complex in chromatin regulation.
Collapse
Affiliation(s)
- Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, Canada; Department of Biochemistry, University of Western Ontario, London, Canada
| | - Alireza Ghahramani
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada; Children's Health Research Institute, Division of Genetics & Development, London, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, Canada
| | - Haider M Hassan
- Robarts Research Institute, University of Western Ontario, London, Canada; Department of Oncology, University of Western Ontario, London, Canada
| | - Nathalie G Bérubé
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada; Children's Health Research Institute, Division of Genetics & Development, London, Canada; Department of Oncology, University of Western Ontario, London, Canada; Department of Paediatrics, University of Western Ontario, London, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, Canada; Department of Biochemistry, University of Western Ontario, London, Canada; Department of Oncology, University of Western Ontario, London, Canada.
| |
Collapse
|
36
|
Vaziri C, Forker K, Zhang X, Wu D, Zhou P, Bowser JL. Pathological modulation of genome maintenance by cancer/testes antigens (CTAs). DNA Repair (Amst) 2025; 147:103818. [PMID: 39983270 PMCID: PMC11923853 DOI: 10.1016/j.dnarep.2025.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The Cancer Testis Antigens (CTAs) are a group of germ cell proteins that are absent from normal somatic cells yet aberrantly expressed in many cancer cells. When mis-expressed in cancer cells, many CTAs promote tumorigenic characteristics including genome instability, DNA damage tolerance and therapy resistance. Here we highlight some of the CTAs for which their roles in genome maintenance in cancer cells are well established. We consider three broad CTA categories: (1) Melanoma Antigens (MAGEs) (2) Mitotic CTAs and (3) CTAs with roles in meiotic homologous recombination. Many cancer cells rely on CTAs to tolerate intrinsic and therapy-induced genotoxic stress. Therefore, CTAs represent molecular vulnerabilities of cancer cells and may provide opportunities for therapy. Owing to their high-level expression in tumors and absence from normal somatic cells, CTA-directed therapies could have a high level of specificity and would likely be devoid of side-effect toxicity.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Karly Forker
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Di Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Wang K, Li L, Kenny S, Gan D, Reitsma JM, Zhou Y, Das C, Liu X. Molecular mechanisms of CAND2 in regulating SCF ubiquitin ligases. Nat Commun 2025; 16:1998. [PMID: 40011427 PMCID: PMC11865535 DOI: 10.1038/s41467-025-57065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Protein degradation orchestrated by SKP1·CUL1·F-box protein (SCF) ubiquitin ligases is a fundamental process essential for cellular and organismal function. The dynamic assembly of SCFs, facilitated by CAND1, ensures timely ubiquitination of diverse SCF target proteins. As a homolog of CAND1, CAND2 alone has been implicated in various human diseases, yet its functional mechanisms remain elusive. Here, we investigate the role of CAND2 in human cells and its distinct mode of action compared to CAND1. Using an array of quantitative assays, we demonstrate that CAND2 promotes SCF-mediated protein degradation as an F-box protein exchange factor. While CAND2 binds CUL1 with structure and affinity comparable to CAND1, it exhibits lower efficiency in exchanging F-box proteins. Kinetic measurements reveal a significantly higher KM for CAND2-catalyzed SCF disassembly than CAND1, which explains the lower exchange efficiency of CAND2 and is likely due to conformations of the CAND2·SCF exchange intermediate complex being less favorable for F-box protein dissociation. Our study provides mechanistic insights into the biochemical and structural properties of CAND2, as well as its role in regulating cellular dynamics of SCFs, laying a foundation for understanding contributions of CAND2 to healthy and diseased human cells.
Collapse
Affiliation(s)
- Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Sebastian Kenny
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- AbbVie Inc., North Chicago, IL, USA
| | - Yun Zhou
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
38
|
Suiter CC, Calderon D, Lee DS, Chiu M, Jain S, Chardon FM, Lee C, Daza RM, Trapnell C, Zheng N, Shendure J. Combinatorial mapping of E3 ubiquitin ligases to their target substrates. Mol Cell 2025; 85:829-842.e6. [PMID: 39919746 PMCID: PMC11845296 DOI: 10.1016/j.molcel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
E3 ubiquitin ligases (E3s) confer specificity of protein degradation through ubiquitination of substrate proteins. Yet, the vast majority of the >600 human E3s have no known substrates. To identify proteolytic E3-substrate pairs at scale, we developed combinatorial mapping of E3 targets (COMET), a framework for testing the role of many E3s in degrading many candidate substrates within a single experiment. We applied COMET to SCF ubiquitin ligase subunits that mediate degradation of target substrates (6,716 F-box-ORF [open reading frame] combinations) and E3s that degrade short-lived transcription factors (TFs) (26,028 E3-TF combinations). Our data suggest that many E3-substrate relationships are complex rather than 1:1 associations. Finally, we leverage deep learning to predict the structural basis of E3-substrate interactions and probe the strengths and limits of such models. Looking forward, we consider the practicality of transposing this framework, i.e., computational structural prediction of all possible E3-substrate interactions, followed by multiplex experimental validation.
Collapse
Affiliation(s)
- Chase C Suiter
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA.
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David S Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melodie Chiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shruti Jain
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Florence M Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jay Shendure
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Wu K, Pan ZQ. COMET enables direct screening for interactions between E3 ubiquitin ligases and their proteolytic target proteins. Mol Cell 2025; 85:671-673. [PMID: 39983670 DOI: 10.1016/j.molcel.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
In this issue of Molecular Cell, Sulter et al.1 describe a high-throughput method named COMET (combinatorial mapping of E3 targets) that enables direct screening for interactions between E3 ubiquitin ligases and their proteolytic substrate proteins.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
| |
Collapse
|
40
|
Dudey A, Hughes GR, Rigby JM, Monaco S, Stephenson GR, Storr TE, Angulo J, Chantry A, Hemmings AM. 3,3'-Diindolylmethane (DIM): A Molecular Scaffold for Inhibition of WWP1 and WWP2, Members of the NEDD4 Family HECT E3 Ligases. ACS OMEGA 2025; 10:5963-5972. [PMID: 39989805 PMCID: PMC11840788 DOI: 10.1021/acsomega.4c09944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
Indole-3-carbinol (I3C) is a metabolic derivative of glucobrassicin found in cruciferous vegetables. Known for its anticarcinogenic properties, I3C has been shown to target the NEDD4 family HECT E3 ligases, NEDD4-1 and WWP1, yet in vitro confirmation for the latter is lacking. Here, we characterize the interactions of I3C and a set of 17 derivatives with WWP1 and its homologue, WWP2. Saturation transfer difference (STD) NMR analysis confirmed strong interaction of I3C with WWP1 but weaker with WWP2. However, while autoubiquitination activity assays revealed weak inhibition of WWP1, the I3C condensation product, 3,3'-diindolylmethane (DIM), was more potent (IC50 111.2 μM; 95% CI = 85.1, 145.8). Molecular modeling of DIM to the ubiquitin exosite of both enzymes suggested the WW2 domain makes hydrophobic interactions with the ligand that may contribute to inhibitory action. Taken together, our results suggest future drug lead development should focus on the SAR between WWP1 and DIM.
Collapse
Affiliation(s)
- Ashley
P. Dudey
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Gregory R. Hughes
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Jake M. Rigby
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Serena Monaco
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - G. Richard Stephenson
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Thomas E. Storr
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Jesus Angulo
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
- Instituto
de Investigaciones Químicas (CSIC-Universidad de Sevilla), Sevilla 41092, Spain
| | - Andrew Chantry
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Andrew M. Hemmings
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
- International
Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Nanhui New City, Shanghai 201306, P. R. China
| |
Collapse
|
41
|
Ganesan IP, Kiyokawa H. A Perspective on Therapeutic Targeting Against Ubiquitin Ligases to Stabilize Tumor Suppressor Proteins. Cancers (Basel) 2025; 17:626. [PMID: 40002221 PMCID: PMC11853300 DOI: 10.3390/cancers17040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The loss of functions of tumor suppressor (TS) genes plays a key role in not only tumor initiation but also tumor progression leading to poor prognosis. While therapeutic inhibition of oncogene-encoded kinases has shown clinical success, restoring TS functions remains challenging due to conceptual and technical limitations. E3 ubiquitin ligases that ubiquitinate TS proteins for accelerated degradation in cancers emerge as promising therapeutic targets. Unlike proteasomal inhibitors with a broad spectrum, inhibitors of an E3 ligase would offer superior selectivity and efficacy in enhancing expression of its substrate TS proteins as far as the TS proteins retain wild-type structures. Recent advances in developing E3 inhibitors, including MDM2 inhibitors, highlight their potential and ultimately guide the framework to establish E3 inhibition as effective strategies to treat specific types of cancers. This review explores E3 ligases that negatively regulate bona fide TS proteins, the developmental status of E3 inhibitors, and their promise and pitfalls as therapeutic agents for anti-cancer precision medicine.
Collapse
Affiliation(s)
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
42
|
Shade O, Ryan A, Belsito G, Deiters A. Investigating protein degradability through site-specific ubiquitin ligase recruitment. RSC Chem Biol 2025; 6:240-248. [PMID: 39711601 PMCID: PMC11657224 DOI: 10.1039/d4cb00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest via conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders. Two proteins without known small molecule ligands, EGFP and DUSP6, were differentially degraded when modified at different locations on their protein surfaces. Further, the cereblon-mediated degradation of the known PROTAC target ERRα was improved through the recruitment of the E3 ligase to regions different from the known ligand binding site. This new methodology will provide insight into overall protein degradability, even in the absence of a known small molecule ligand and inform the process of new ligand and PROTAC development to achieve optimal protein degradation. Furthermore, this approach represents a new, small molecule-based conditional OFF switch of protein function with complete genetic specificity. Importantly, the protein of interest is only modified with a minimal surface modification (<200 Da) and does not require any protein domain fusions.
Collapse
Affiliation(s)
- Olivia Shade
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Gabriella Belsito
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
43
|
Claridge SE, Nath S, Baum A, Farias R, Cavallo J, Rizvi NM, De Boni L, Park E, Granados GL, Hauesgen M, Fernandez‐Rodriguez R, Kozan EN, Kanshin E, Huynh KQ, Chen P, Wu K, Ueberheide B, Mosquera JM, Hirsch FR, DeVita RJ, Elemento O, Pauli C, Pan Z, Hopkins BD. Functional genomics pipeline identifies CRL4 inhibition for the treatment of ovarian cancer. Clin Transl Med 2025; 15:e70078. [PMID: 39856363 PMCID: PMC11761363 DOI: 10.1002/ctm2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The goal of precision oncology is to find effective therapeutics for every patient. Through the inclusion of emerging therapeutics in a high-throughput drug screening platform, our functional genomics pipeline inverts the common paradigm to identify patient populations that are likely to benefit from novel therapeutic strategies. APPROACH Utilizing drug screening data across a panel of 46 cancer cell lines from 11 tumor lineages, we identified an ovarian cancer-specific sensitivity to the first-in-class CRL4 inhibitors KH-4-43 and 33-11. CRL4 (i.e., Cullin-4 RING E3 ubiquitin ligase) is known to be dysregulated in a variety of cancer contexts, making it an attractive therapeutic target. Unlike proteasome inhibitors that are associated with broad toxicity, CRL4 inhibition offers the potential for tumor-specific effects. RESULTS We observed that CRL4 inhibition negatively regulates core gene signatures that are upregulated in ovarian tumors and significantly slowed tumor growth as compared to the standard of care, cisplatin, in OVCAR8 xenografts. Building on this, we performed combination drug screening in conjunction with proteomic and transcriptomic profiling to identify ways to improve the antitumor effects of CRL4 inhibition in ovarian cancer models. CRL4 inhibition consistently resulted in activation of the mitogen-activated protein kinase (MAPK) signaling cascade at both the transcriptomic and protein levels, suggesting that survival signaling is induced in response to CRL4 inhibition. These observations were concordant with the results of the combination drug screens in seven ovarian cancer cell lines that showed CRL4 inhibition cooperates with MEK inhibition. Preclinical studies in OVCAR8 and A2780 xenografts confirmed the therapeutic potential of the combination of KH-4-43 and trametinib, which extended overall survival and slowed tumor progression relative to either single agent or the standard of care. CONCLUSIONS Together, these data demonstrate the prospective utility of functional modeling pipelines for therapeutic development and underscore the clinical potential of CRL4 inhibition in the ovarian cancer context. HIGHLIGHTS A precision medicine pipeline identifies ovarian cancer sensitivity to CRL4 inhibitors. CRL4 inhibition induces activation of MAPK signalling as identified by RNA sequencing, proteomics, and phosphoproteomics. Inhibitor combinations that target both CRL4 and this CRL4 inhibitor-induced survival signalling enhance ovarian cancer sensitivity to treatment.
Collapse
Affiliation(s)
- Sally E. Claridge
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shalini Nath
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Anneliese Baum
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard Farias
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Julie‐Ann Cavallo
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nile M. Rizvi
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lamberto De Boni
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eric Park
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Genesis Lara Granados
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Hauesgen
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruben Fernandez‐Rodriguez
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eda Nur Kozan
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
| | - Khoi Q. Huynh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peng‐Jen Chen
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kenneth Wu
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Fred R. Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Hematology, and Medical OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robert J. DeVita
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- Clinical and Translational Science Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Chantal Pauli
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Zhen‐Qiang Pan
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin D. Hopkins
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
44
|
Gou Q, Yan B, Duan Y, Guo Y, Qian J, Shi J, Hou Y. Ubiquitination of CD47 Regulates Innate Anti-Tumor Immune Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412205. [PMID: 39665172 PMCID: PMC11792004 DOI: 10.1002/advs.202412205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Indexed: 12/13/2024]
Abstract
In addition to adaptive immune checkpoint of PD-1/PD-L1, the innate immune checkpoint SIRPα/CD47 plays an important role in regulation of tumor immune escape. However, the mechanism of CD47 ubiquitination on tumor immune escape remains unclear. Here it is found that TRAF2 bound to the C-terminal of CD47 cytoplasmic fragment and induced its ubiquitination, leading to inhibition of CD47 autophagic degradation by disrupting its binding to LC3, which in turn inhibited macrophage phagocytosis and promoted tumor immune escape. In contrast, loss of TRAF2 facilitated CD47 autophagic degradation and inhibited tumor immune escape. Moreover, autophagy induction promoted CD47 degradation and enhanced the efficacy of CD47 antibody anti-tumor immunotherapy. These findings revealed a novel mechanism of ubiquitination of CD47 on tumor immune escape.
Collapse
Affiliation(s)
- Qian Gou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Bingjun Yan
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Yalan Duan
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Yilei Guo
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Jing Qian
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Juanjuan Shi
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Yongzhong Hou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| |
Collapse
|
45
|
Wu H, Zuo J, Dai Y, Li H, Wang S. NEDD4 family E3 ligases in osteoporosis: mechanisms and emerging potential therapeutic targets. J Orthop Surg Res 2025; 20:92. [PMID: 39849530 PMCID: PMC11761774 DOI: 10.1186/s13018-025-05517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems. Recent advances have expanded our understanding of the mechanisms underlying osteoporosis, particularly the intricate regulatory networks involved in bone metabolism. A central player in these processes is ubiquitin-mediated proteasomal degradation, a crucial post-translational modification system that involves ubiquitin, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzymes, and the proteasome. Among the various E3 ligases, the NEDD4 family has emerged as a key regulator of both bone development and osteoporotic pathology. This review delineates the role of NEDD4 family in osteoporosis and identifies potential drug targets within these pathways, offering insights into novel therapeutic approaches for osteoporosis through targeted intervention.
Collapse
Affiliation(s)
- Heng Wu
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junhui Zuo
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yu Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hairui Li
- Department of Urology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Song Wang
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
46
|
Escuder-Rodríguez JJ, Rodríguez-Alonso A, Jove L, Quiroga M, Alfonsín G, Figueroa A. Beyond destruction: emerging roles of the E3 ubiquitin ligase Hakai. Cell Mol Biol Lett 2025; 30:9. [PMID: 39833727 PMCID: PMC11749156 DOI: 10.1186/s11658-025-00693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N6-methyladenosine (m6A) writer complex and its impact on the methylation of RNA. The involvement of Hakai in this mRNA modification process has renewed the relevance of this protein as an important contributor in cancer. Moreover, Hakai potential as a cancer biomarker and its prognostic value in malignant disease also emphasize its untapped potential in precision medicine, which would also be discussed in detail in our review. The development of the first small-molecule inhibitor that targets its atypical substrate binding domain is a promising step that could eventually lead to patient benefit, and we would cover its discovery and ongoing efforts toward its use in clinic.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Andrea Rodríguez-Alonso
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Lía Jove
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Macarena Quiroga
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Gloria Alfonsín
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain.
| |
Collapse
|
47
|
Shah S, Shi CM, Elgizawy KK, Yan WH, Wu G, Wang XP, Yang FL. E3 Siah ubiquitin ligase regulates dichotomous spermatogenesis in Sitotroga cerealella. Front Cell Dev Biol 2025; 12:1507725. [PMID: 39866841 PMCID: PMC11759277 DOI: 10.3389/fcell.2024.1507725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of ScE3 Siah in dichotomous spermatogenesis of adult Sitotroga cerealella. In S. cerealella E3 ligase Siah predominantly expressed in adult tissues. Knockdown of ScE3 Siah leads to disruptions in testes and sperm morphology, affecting the structure of eupyrene and apyrene sperm bundles and causing defective ultrastructure in eupyrene sperm. This disruption results in a reduction in the number of dichotomous sperms and significantly reduces their motility. Moreover, ScE3 Siah knockdown inhibits the transfer and motility of dichotomous sperm, impacting spermatophore formation in females and ultimately reducing egg production. Understanding the role of ScE3 Siah is not only crucial for comprehending the complex processes involved in dichotomous spermatogenesis and fertilization but also provides an avenue for sustainable pest control management.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chun-Mei Shi
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Egypt
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
48
|
Awan AB, Osman MJA, Khan OM. Ubiquitination Enzymes in Cancer, Cancer Immune Evasion, and Potential Therapeutic Opportunities. Cells 2025; 14:69. [PMID: 39851497 PMCID: PMC11763706 DOI: 10.3390/cells14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities. This comprehensive review delves into understanding the ubiquitin code, shedding light on its role in cancer cell biology and immune evasion. Furthermore, we highlighted recent advances in the field for targeting the UPS pathway members for effective therapeutic intervention against human cancers. We also discussed the recent update on small-molecule inhibitors and PROTACs and their progress in preclinical and clinical trials.
Collapse
Affiliation(s)
- Aiman B. Awan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| | - Maryiam Jama Ali Osman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
- Research Branch, Sidra Medicine, Doha P.O. Box 34110, Qatar
| | - Omar M. Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| |
Collapse
|
49
|
Wang D, Li K. Emerging Roles of TRIM56 in Antiviral Innate Immunity. Viruses 2025; 17:72. [PMID: 39861861 PMCID: PMC11768893 DOI: 10.3390/v17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics.
Collapse
Affiliation(s)
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
50
|
Harris TJ, Trader DJ. Exploration of degrons and their ability to mediate targeted protein degradation. RSC Med Chem 2025:d4md00787e. [PMID: 39867589 PMCID: PMC11758578 DOI: 10.1039/d4md00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Degrons are short amino acid sequences that can facilitate the degradation of protein substrates. They can be classified as either ubiquitin-dependent or -independent based on their interactions with the ubiquitin proteasome system (UPS). These amino acid sequences are often found in exposed regions of proteins serving as either a tethering point for an interaction with an E3 ligase or initiating signaling for the direct degradation of the protein. Recent advancements in the protein degradation field have shown the therapeutic potential of both classes of degrons through leveraging their degradative effects to engage specific protein targets. This review explores what targeted protein degradation applications degrons can be used in and how they have inspired new degrader technology to target a wide variety of protein substrates.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
- Department of Chemistry, University of California Irvine California 92617 USA
| |
Collapse
|