1
|
Toh HC, Yang MH, Wang HM, Hsieh CY, Chitapanarux I, Ho KF, Hong RL, Ang MK, Colevas AD, Sirachainan E, Lertbutsayanukul C, Ho GF, Nadler E, Algazi A, Lulla P, Wirth LJ, Wirasorn K, Liu YC, Ang SF, Low SHJ, Tho LM, Hasbullah HH, Brenner MK, Wang WW, Ong WS, Tan SH, Horak I, Ding C, Myo A, Samol J. Gemcitabine, carboplatin, and Epstein-Barr virus-specific autologous cytotoxic T lymphocytes for recurrent or metastatic nasopharyngeal carcinoma: VANCE, an international randomized phase III trial. Ann Oncol 2024; 35:1181-1190. [PMID: 39241963 DOI: 10.1016/j.annonc.2024.08.2344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus-specific cytotoxic T lymphocyte (EBV-CTL) is an autologous adoptive T-cell immunotherapy generated from the blood of individuals and manufactured without genetic modification. In a previous phase II trial of locally recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients, first-line gemcitabine and carboplatin (GC) and EBV-CTL combination demonstrated objective antitumor EBV-CTL activity and a favorable safety profile. The present study explored whether this combined first-line chemo-immunotherapy strategy would produce superior clinical efficacy and better quality of life compared with conventional chemotherapy treatment. PATIENTS AND METHODS This multicenter, randomized, phase III trial evaluated the efficacy and safety of GC followed by EBV-CTL versus GC alone as first-line treatment of R/M NPC patients. Thirty clinical sites in Singapore, Malaysia, Taiwan, Thailand, and the USA were included. Subjects were randomized to first-line GC (four cycles) and EBV-CTL (six cycles) or GC (six cycles) in a 1 : 1 ratio. The primary outcome was overall survival (OS) and secondary outcomes included progression-free survival, objective response rate, clinical benefit rate, quality of life, and safety. CLINICALTRIALS gov identifier: NCT02578641. RESULTS A total of 330 subjects with NPC were enrolled. Most subjects in both treatment arms received four or more cycles of chemotherapy and most subjects in the GC + EBV-CTL group received two or more infusions of EBV-CTL. The central Good Manufacturing Practices (GMP) facility produced sufficient EBV-CTL for 94% of GC + EBV-CTL subjects. The median OS was 25.0 months in the GC + EBV-CTL group and 24.9 months in the GC group (hazard ratio = 1.19; 95% confidence interval 0.91-1.56; P = 0.194). Only one subject experienced a grade 2 serious adverse event related to EBV-CTL. CONCLUSIONS GC + EBV-CTL in subjects with R/M NPC demonstrated a favorable safety profile but no overall improvement in OS versus chemotherapy. This is the largest adoptive T-cell therapy trial reported in solid tumors to date.
Collapse
Affiliation(s)
- H C Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| | - M-H Yang
- Department of Oncology, Taipei Veterans General Hospital, Taipei
| | - H-M Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan City
| | - C Y Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - I Chitapanarux
- Department of Radiology, Chiang Mai University, Chiang Mai, Thailand
| | - K F Ho
- Clinical Oncology Unit, Mount Miriam Cancer Hospital, Tanjung Bungah, Malaysia
| | - R-L Hong
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - M K Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - A D Colevas
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, USA
| | - E Sirachainan
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
| | - C Lertbutsayanukul
- Department of Radiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - G F Ho
- Department of Clinical Oncology, University of Malaya, Kuala Lumpur, Malaysia
| | - E Nadler
- Texas Oncology-Baylor Charles A. Sammons Cancer Centre, Dallas
| | - A Algazi
- Division of Hematology and Oncology, University of California, San Francisco
| | - P Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston
| | - L J Wirth
- Harvard Medical School, Massachusetts General Hospital, Boston, USA
| | - K Wirasorn
- Department of Medicine, Srinagarind Khon Kaen University Hospital, Khon Kaen, Thailand
| | - Y C Liu
- Department of Radiation-Oncology, Veterans General Hospital-Taichung, Taichung, Taiwan
| | - S F Ang
- Penang Adventist Hospital, Penang
| | - S H J Low
- Pantai Hospital Kuala Lumpur, Kuala Lumpur
| | | | | | - M K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston
| | - W-W Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - W S Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - S H Tan
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - I Horak
- Tessa Therapeutics Ltd, Singapore
| | - C Ding
- Tessa Therapeutics Ltd, Singapore
| | - A Myo
- Tessa Therapeutics Ltd, Singapore
| | - J Samol
- Department of Medical Oncology, Clinical Trials, CRIO, P.H. Feng Research Centre, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Singapore; Johns Hopkins University, Baltimore, USA
| |
Collapse
|
2
|
Wu HL, Weber WC, Waytashek CM, Boyle CD, Reed JS, Bateman KB, Fisher HK, Chen Y, Armantrout K, Swanson T, Shriver-Munsch C, Northrup M, Fischer M, Biswas S, Templon J, Panoskaltsis-Mortari A, Burwitz BJ, Johnson AL, Colgin L, Lewis AD, Smedley JV, Axthelm MK, Skalsky R, Meyers G, Maziarz RT, Mittra E, Berg M, Stanton JJ, Sacha JB. A model of lymphocryptovirus-associated post-transplant lymphoproliferative disorder in immunosuppressed Mauritian cynomolgus macaques. PLoS Pathog 2024; 20:e1012644. [PMID: 39527641 PMCID: PMC11581395 DOI: 10.1371/journal.ppat.1012644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/21/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Immunocompromised individuals are at risk for developing lymphocryptovirus-associated lymphoproliferative diseases, such as Epstein Barr virus (EBV)-associated B cell lymphomas and post-transplant lymphoproliferative disorder (PTLD). We previously reported development of cynomolgus lymphocryptovirus (CyLCV)-associated PTLD in Mauritian cynomolgus macaques (MCMs) undergoing hematopoietic stem cell transplantation (HSCT), which mirrored EBV-PTLD in transplant patients. Here, we sought to develop a MCM model of lymphocryptovirus-associated lymphoproliferative disease in immunosuppressed MCMs without HSCT. Five simian immunodeficiency virus (SIV)-infected, CD8α+ cell-depleted MCMs received an infusion of autologous B-lymphoblastoid cells transformed with CyLCV, followed by varying degrees of immunosuppression. Four of five infused macaques developed masses coincident with increasing CyLCV plasma viremia, and necropsies confirmed the presence of multicentric lymphomas, which most commonly manifested in lymph nodes, gastrointestinal tract, adrenal glands, and pancreas. Affected tissues harbored neoplastic lymphocytes double-positive for CD20 and CyLCV EBNA2 antigen, large frequencies of proliferating B cells, and high levels of cell-associated CyLCV DNA. In addition, longitudinal 18F-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) of one MCM successfully detected lymphoproliferative disease in the adrenal glands prior to clinical signs of disease. These data demonstrate successful induction of lymphocryptovirus-associated PTLD-like disease in 4 of 5 MCMs, and thus support the use of MCMs as a preclinical NHP model of EBV-associated lymphoproliferative disease that could be employed to test novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Helen L. Wu
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Whitney C. Weber
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Courtney M. Waytashek
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Carla D. Boyle
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Jason S. Reed
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Katherine B. Bateman
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Hannah K. Fisher
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Yan Chen
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Kimberly Armantrout
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Tonya Swanson
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Mina Northrup
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Miranda Fischer
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Sreya Biswas
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - John Templon
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota; Minneapolis, Minnesota, United States of America
| | - Benjamin J. Burwitz
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Amanda L. Johnson
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Lois Colgin
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Anne D. Lewis
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Rebecca Skalsky
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Gabrielle Meyers
- Blood and Marrow Transplant Program, Knight Cancer Institute; Oregon Health & Science University; Portland, Oregon, United States of America
| | - Richard T. Maziarz
- Blood and Marrow Transplant Program, Knight Cancer Institute; Oregon Health & Science University; Portland, Oregon, United States of America
| | - Erik Mittra
- Division of Nuclear Medicine and Molecular Imaging; Oregon Health & Science University; Portland, Oregon, United States of America
| | - Melissa Berg
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Jeffrey J. Stanton
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| | - Jonah B. Sacha
- Oregon National Primate Research Center; Oregon Health & Science University; Beaverton, Oregon, United States of America
| |
Collapse
|
3
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Edwards KR, Schmidt K, Homad LJ, Kher GM, Xu G, Rodrigues KA, Ben-Akiva E, Abbott J, Prlic M, Newell EW, De Rosa SC, Irvine DJ, Pancera M, McGuire AT. Vaccination with nanoparticles displaying gH/gL from Epstein-Barr virus elicits limited cross-protection against rhesus lymphocryptovirus. Cell Rep Med 2024; 5:101587. [PMID: 38781964 PMCID: PMC11228584 DOI: 10.1016/j.xcrm.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gargi M Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guoyue Xu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joe Abbott
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
O’Reilly RJ, Prockop S, Oved JH. Virus-specific T-cells from third party or transplant donors for treatment of EBV lymphoproliferative diseases arising post hematopoietic cell or solid organ transplantation. Front Immunol 2024; 14:1290059. [PMID: 38274824 PMCID: PMC10808771 DOI: 10.3389/fimmu.2023.1290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
EBV+ lymphomas constitute a significant cause of morbidity and mortality in recipients of allogeneic hematopoietic cell (HCT) and solid organ transplants (SOT). Phase I and II trials have shown that in HCT recipients, adoptive transfer of EBV-specific T-cells from the HCT donor can safely induce durable remissions of EBV+ lymphomas including 70->90% of patients who have failed to respond to treatment with Rituximab. More recently, EBV-specific T-cells generated from allogeneic 3rd party donors have also been shown to induce durable remission of EBV+ lymphomas in Rituximab refractory HCT and SOT recipients. In this review, we compare results of phase I and II trials of 3rd party and donor derived EBV-specific T-cells. We focus on the attributes and limitations of each product in terms of access, safety, responses achieved and durability. The limited data available regarding donor and host factors contributing to T cell persistence is also described. We examine factors contributing to treatment failures and approaches to prevent or salvage relapse. Lastly, we summarize strategies to further improve results for virus-specific immunotherapies for post-transplant EBV lymphomas.
Collapse
Affiliation(s)
- Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Susan Prockop
- Pediatric Stem Cell Transplantation, Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph H. Oved
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
6
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
7
|
Kim SJ, Kiser PK, Asfaha S, DeKoter RP, Dick FA. EZH2 inhibition stimulates repetitive element expression and viral mimicry in resting splenic B cells. EMBO J 2023; 42:e114462. [PMID: 37934086 PMCID: PMC10711652 DOI: 10.15252/embj.2023114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.
Collapse
Affiliation(s)
- Seung J Kim
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of BiochemistryWestern UniversityLondonONCanada
| | - Patti K Kiser
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Samuel Asfaha
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Department of MedicineWestern UniversityLondonONCanada
| | - Rodney P DeKoter
- Department of Microbiology & ImmunologyWestern UniversityLondonONCanada
| | - Frederick A Dick
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
8
|
Gerbitz A, Gary R, Aigner M, Moosmann A, Kremer A, Schmid C, Hirschbuehl K, Wagner E, Hauptrock B, Teschner D, Roesler W, Spriewald B, Tischer J, Moi S, Balzer H, Schaffer S, Bausenwein J, Wagner A, Schmidt F, Brestrich J, Ullrich B, Maas S, Herold S, Strobel J, Zimmermann R, Weisbach V, Hansmann L, Lammoglia-Cobo F, Remberger M, Stelljes M, Ayuk F, Zeiser R, Mackensen A. Prevention of CMV/EBV reactivation by double-specific T cells in patients after allogeneic stem cell transplantation: results from the randomized phase I/IIa MULTIVIR-01 study. Front Immunol 2023; 14:1251593. [PMID: 37965339 PMCID: PMC10642256 DOI: 10.3389/fimmu.2023.1251593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Allogeneic stem cell transplantation is used to cure hematologic malignancies or deficiencies of the hematopoietic system. It is associated with severe immunodeficiency of the host early after transplant and therefore early reactivation of latent herpesviruses such as CMV and EBV within the first 100 days are frequent. Small studies and case series indicated that application of herpes virus specific T cells can control and prevent disease in this patient population. Methods We report the results of a randomized controlled multi centre phase I/IIa study (MULTIVIR-01) using a newly developed T cell product with specificity for CMV and EBV derived from the allogeneic stem cell grafts used for transplantation. The study aimed at prevention and preemptive treatment of both viruses in patients after allogeneic stem cell transplantation targeting first infusion on day +30. Primary endpoints were acute transfusion reaction and acute-graft versus-host-disease after infusion of activated T cells. Results Thirty-three patients were screened and 9 patients were treated with a total of 25 doses of the T cell product. We show that central manufacturing can be achieved successfully under study conditions and the product can be applied without major side effects. Overall survival, transplant related mortality, cumulative incidence of graft versus host disease and number of severe adverse events were not different between treatment and control groups. Expansion of CMV/EBV specific T cells was observed in a fraction of patients, but overall there was no difference in virus reactivation. Discussion Our study results indicate peptide stimulated epitope specific T cells derived from stem cell grafts can be administered safely for prevention and preemptive treatment of reactivation without evidence for induction of acute graft versus host disease. Clinical trial registration https://clinicaltrials.gov, identifier NCT02227641.
Collapse
Affiliation(s)
- Armin Gerbitz
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
- Princess Margaret Cancer Centre, Division of Medical Oncology/Hematology, Toronto, ON, Canada
| | - Regina Gary
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Moosmann
- Department of Medicine 3, LMU University Hospital, Munich, Germany
- Helmholtz Center Munich, Institute of Virology, Munich, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Munich, Germany
| | - Anita Kremer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmid
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Klaus Hirschbuehl
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Eva Wagner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Beate Hauptrock
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Wolf Roesler
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Johanna Tischer
- Department of Medicine 3, LMU University Hospital, Munich, Germany
| | - Stephanie Moi
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Heidi Balzer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Judith Bausenwein
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anja Wagner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Franziska Schmidt
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Jens Brestrich
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Barbara Ullrich
- Medical Center for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Susanne Herold
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Fernanda Lammoglia-Cobo
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and Clinical Research and Development Unit (KFUE), Uppsala University Hospital, Uppsala, Sweden
| | - Matthias Stelljes
- Department of Hematology/Oncology, University Hospital Muenster, Muenster, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Robert Zeiser
- Department of Medicine 1, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Mackensen
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Dasari V, McNeil LK, Beckett K, Solomon M, Ambalathingal G, Thuy TL, Panikkar A, Smith C, Steinbuck MP, Jakubowski A, Seenappa LM, Palmer E, Zhang J, Haqq CM, DeMuth PC, Khanna R. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat Commun 2023; 14:4371. [PMID: 37553346 PMCID: PMC10409721 DOI: 10.1038/s41467-023-39770-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8+ T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice. Immunization including Amphiphile-CpG also induces high frequencies of polyfunctional gp350-specific CD4+ T cells and EBV-specific CD8+ T cells that are 2-fold greater than soluble CpG and are maintained for >7 months post immunization. This combination of broad humoral and cellular immunity against multiple viral determinants is likely to provide better protection against primary infection and control of latently infected B cells leading to protection against the development of EBV-associated diseases.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Kirrilee Beckett
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Matthew Solomon
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - George Ambalathingal
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - T Le Thuy
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Archana Panikkar
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Caitlyn Smith
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | | | - Jeff Zhang
- Elicio Therapeutics, Inc, Boston, MA, USA
| | | | | | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
11
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
12
|
Kuribayashi A, Kawashima S, Kayamori K, Sakamoto J, Tomisato H, Watanabe H, Kurabayashi T. Magnetic resonance imaging of methotrexate-related lymphoproliferative disorder with a chief complaint of oral symptoms. Oral Radiol 2023; 39:235-241. [PMID: 35689759 DOI: 10.1007/s11282-022-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine the magnetic resonance imaging (MRI) features of methotrexate-related lymphoproliferative disorder (MTX-LPD) in the oral cavity of a patient with a chief complaint of oral symptoms. METHODS We included six patients who visited our hospital between November 2014 and November 2019, histopathologically diagnosed with MTX-LPD. All images were examined using 3 T MRI and reviewed by two radiologists. RESULTS Masses were detected in five cases; all masses demonstrated signal hypointensity and homogeneous signal hyperintensity on T1- and T2-weighted images with fat suppression. Homogeneous enhancement with fat suppression was evident on post-contrast T1-weighted imaging. We performed dynamic contrast-enhanced MRI in three cases and observed early enhancement with a low washout ratio pattern in all cases. Four patients underwent diffusion-weighted MRI and revealed low mean apparent diffusion coefficient (ADC) of 0.57 (range 0.5-0.65) × 10-3 mm2/s. CONCLUSIONS We reported on the imaging characteristics of six rare cases of MTX-LPD in the oral cavity. Homogeneous hyperintensity on fat-suppressed T2-weighted images and low ADC values are possible features of MTX-LPD. Moreover, MTX-LPD can be differentiated from other carcinomas in the oral cavity.
Collapse
Affiliation(s)
- Ami Kuribayashi
- Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Sakurako Kawashima
- Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichiro Sakamoto
- Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroshi Tomisato
- Department of Oral Radiology, Dental Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Watanabe
- Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tohru Kurabayashi
- Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
13
|
Chiodo Ortiz A, Petrossian G, Addonizio K, Hsiao A, Koizumi N, Yu Y, Plews R, Conti D, Ortiz J. Short-term decreased post transplant lymphoproliferative disorder risk after kidney transplantation using two novel regimens. Transpl Immunol 2023; 76:101774. [PMID: 36528248 DOI: 10.1016/j.trim.2022.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Belatacept is employed alongside calcineurin inhibitor (CNI) therapy to prevent graft rejection in kidney transplant patients who are Epstein-Barr virus (EBV) seropositive. Preliminary data suggested that rates of post-transplant lymphoproliferative disorder (PTLD) were higher in individuals treated with belatacept compared to CNI therapy alone. METHODS The records of 354 adults who underwent kidney only transplantation from January 2015 through September 2021 at one medical center were evaluated. Patients underwent treatment with either low-doses of mycophenolate, tacrolimus and sirolimus (B0, n = 235) or low-doses of mycophenolate, tacrolimus and belatacept (B1, n = 119). All recipients underwent induction with antithymocyte globulin and a rapid glucocorticosteroid taper. Relevant donor and recipient information were analyzed and endpoints of PTLD were assessed. RESULTS There were no cases of PTLD in either cohort within the study period. Recipients in the belatacept cohort experienced lower estimated glomerular filtration rates at 12 months (B0: 67.48 vs. B1: 59.10, p = 0.0014). Graft failure at 12 (B0: 1.28% vs. B1: 0.84%, p = 1.0) and 24 months (B0:2.55% vs. B1: 0.84%, p = 0.431) were similar. There was no difference in rejection rates at 12 (B0: 1.27% vs. B1: 2.52%, p = 0.408) or 24 months (B0: 2.12% vs. B1: 2.52%, p = 1.000). Both groups had similar rates of malignancy, mortality and CMV/BK viremia. CONCLUSION Non-belatacept (MMF, tacrolimus and sirolimus) and belatacept-based (MMF, tacrolimus and belatacept) regimens do not appear to pose any increased risk of early onset PTLD. Both cohorts benefited from low rates of rejection, malignancy, mortality and graft failure. Recipients will continue to be monitored as PTLD can manifest as a long-term complication.
Collapse
Affiliation(s)
- A Chiodo Ortiz
- Albany Medical Center, Albany, NY, United States of America.
| | - G Petrossian
- Albany Medical Center, Albany, NY, United States of America
| | - K Addonizio
- Albany Medical Center, Albany, NY, United States of America
| | - A Hsiao
- Albany Medical Center, Albany, NY, United States of America
| | - N Koizumi
- George Mason University, Fairfax, VA, United States of America
| | - Y Yu
- George Mason University, Fairfax, VA, United States of America
| | - R Plews
- Division of Renal and Pancreatic Transplant Services, Albany Medical Center, Albany, NY, United States of America
| | - D Conti
- Division of Renal and Pancreatic Transplant Services, Albany Medical Center, Albany, NY, United States of America
| | - J Ortiz
- Division of Renal and Pancreatic Transplant Services, Albany Medical Center, Albany, NY, United States of America
| |
Collapse
|
14
|
Immune dysregulation and pathogenic pathways mediated by common infections in rheumatoid arthritis. Folia Microbiol (Praha) 2023; 68:325-335. [PMID: 36680729 DOI: 10.1007/s12223-023-01036-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is one of the world's most prevalent inflammatory autoimmune diseases, affecting between 0.4 and 1.3% of the population. The susceptibility to RA appears to be influenced by a complex interaction between a favorable genetic background and the existence of a specific immune reaction against a wide range of environmental variables. Among the known environmental variables, infections are believed to have a significant role in promoting the formation of autoimmune disorders, which are frequently caused by specific microorganisms. Infections have been linked to RA in recent medical studies. In this study, we selected the most prevalent infections associated with RA from the literature and described the data confirming their pathogenic role in RA. Our investigation included Mycobacterium, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Proteus mirabilis, Epstein-Barr virus, parvovirus, and Prevotella copri.
Collapse
|
15
|
Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, Li X, Li XY, Pang G, Dou X. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front Immunol 2023; 13:1079515. [PMID: 36713430 PMCID: PMC9875085 DOI: 10.3389/fimmu.2022.1079515] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Epstein-Barr virus (EBV) was the first tumor virus in humans. Nasopharyngeal carcinoma (NPC) accounts for approximately 60% of the 200,000 new tumor cases caused by EBV infection worldwide each year. NPC has an insidious onset and is highly malignant, with more than 70% of patients having intermediate to advanced disease at the time of initial diagnosis, and is strongly implicated in epithelial cancers as well as malignant lymphoid and natural killer/T cell lymphomas. Over 90% of patients with confirmed undifferentiated NPC are infected with EBV. In recent decades, much progress has been made in understanding the molecular mechanisms of NPC and developing therapeutic approaches. Radiotherapy and chemotherapy are the main treatment options for NPC; however, they have a limited efficacy in patients with locally advanced or distant metastatic tumors. Tumor immunotherapy, including vaccination, adoptive cell therapy, and immune checkpoint blockade, represents a promising therapeutic approach for NPC. Significant breakthroughs have recently been made in the application of immunotherapy for patients with recurrent or metastatic NPC (RM-NPC), indicating a broad prospect for NPC immunotherapy. Here, we review important research findings regarding immunotherapy for NPC patients and provide insights for future research.
Collapse
Affiliation(s)
- Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xingxing Chen
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Department of R&D, OriCell Therapeutics Co. Ltd, Pudong, Shanghai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Guofu Pang
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Xiaohui Dou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Health Management Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| |
Collapse
|
16
|
Lake CM, Breen JJ. Sequence similarity between SARS-CoV-2 nucleocapsid and multiple sclerosis-associated proteins provides insight into viral neuropathogenesis following infection. Sci Rep 2023; 13:389. [PMID: 36617594 PMCID: PMC9825799 DOI: 10.1038/s41598-022-27348-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
The novel coronavirus SARS-CoV-2 continues to cause death and disease throughout the world, underscoring the necessity of understanding the virus and host immune response. From the start of the pandemic, a prominent pattern of central nervous system (CNS) pathologies, including demyelination, has emerged, suggesting an underlying mechanism of viral mimicry to CNS proteins. We hypothesized that immunodominant epitopes of SARS-CoV-2 share homology with proteins associated with multiple sclerosis (MS). Using PEPMatch, a newly developed bioinformatics package which predicts peptide similarity within specific amino acid mismatching parameters consistent with published MHC binding capacity, we discovered that nucleocapsid protein shares significant overlap with 22 MS-associated proteins, including myelin proteolipid protein (PLP). Further computational evaluation demonstrated that this overlap may have critical implications for T cell responses in MS patients and is likely unique to SARS-CoV-2 among the major human coronaviruses. Our findings substantiate the hypothesis of viral molecular mimicry in the pathogenesis of MS and warrant further experimental exploration.
Collapse
Affiliation(s)
- Camille M Lake
- Office of Data Science and Emerging Technologies, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA.
| | - Joseph J Breen
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| |
Collapse
|
17
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
18
|
Lammoglia Cobo MF, Ritter J, Gary R, Seitz V, Mautner J, Aigner M, Völkl S, Schaffer S, Moi S, Seegebarth A, Bruns H, Rösler W, Amann K, Büttner-Herold M, Hennig S, Mackensen A, Hummel M, Moosmann A, Gerbitz A. Reconstitution of EBV-directed T cell immunity by adoptive transfer of peptide-stimulated T cells in a patient after allogeneic stem cell transplantation for AITL. PLoS Pathog 2022; 18:e1010206. [PMID: 35452490 PMCID: PMC9067708 DOI: 10.1371/journal.ppat.1010206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/04/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Reconstitution of the T cell repertoire after allogeneic stem cell transplantation is a long and often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent complication that may be treated by adoptive transfer of donor-derived EBV-specific T cells. We generated donor-derived EBV-specific T cells by stimulation with peptides representing defined epitopes covering multiple HLA restrictions. T cells were adoptively transferred to a patient who had developed persisting high titers of EBV after allogeneic stem cell transplantation for angioimmunoblastic T-cell lymphoma (AITL). T cell receptor beta (TCRβ) deep sequencing showed that the T cell repertoire of the patient early after transplantation (day 60) was strongly reduced and only very low numbers of EBV-specific T cells were detectable. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring of T cell clonotypes at a molecular level after adoptive transfer revealed that the dominant TCR sequences from peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clonotype repertoire in the host, with many of the EBV-specific TCRs present in the donor. This reconstituted repertoire was associated with immunological control of EBV and with lack of further AITL relapse. A characteristic feature of all herpesviruses is their persistence in the host’s body after primary infection. Hence, the host’s immune system is confronted with the problem to control these viruses life-long. When the immune system is severely compromised, for example after stem cell transplantation from a foreign (allogeneic) donor, these viruses can reappear, as they persist in the host’s body life-long after primary infection. Epstein-Barr virus (EBV) is a herpesvirus that can cause life-threatening complications after stem cell transplantation and only reinforcement of the host’s immune system can reestablish control over the virus. Here we show that ex vivo manufactured EBV-specific T cells can reestablish long-term control of EBV and that these cells persist in the host’s body over months. These results give us a better understanding of viral immune reconstitution post-transplant and of clinically-relevant T cell populations against EBV.
Collapse
Affiliation(s)
- María Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Ritter
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Regina Gary
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Volkhard Seitz
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- HS Diagnomics GmbH, Berlin, Germany
| | - Josef Mautner
- Department of Medicine III, LMU-Klinikum, Munich, Germany
- German Centre for Infection Research, Munich, Germany
| | - Michael Aigner
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stephanie Moi
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anke Seegebarth
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Wolf Rösler
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University of Erlangen, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, University of Erlangen, Erlangen, Germany
| | | | - Andreas Mackensen
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Hummel
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Moosmann
- Department of Medicine III, LMU-Klinikum, Munich, Germany
- German Centre for Infection Research, Munich, Germany
| | - Armin Gerbitz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Escalante GM, Mutsvunguma LZ, Muniraju M, Rodriguez E, Ogembo JG. Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Front Immunol 2022; 13:867918. [PMID: 35493498 PMCID: PMC9047024 DOI: 10.3389/fimmu.2022.867918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
BackgroundEpstein-Barr virus (EBV) is the causal agent of infectious mononucleosis and has been associated with various cancers and autoimmune diseases. Despite decades of research efforts to combat this major global health burden, there is no approved prophylactic vaccine against EBV. To facilitate the rational design and assessment of an effective vaccine, we systematically reviewed pre-clinical and clinical prophylactic EBV vaccine studies to determine the antigens, delivery platforms, and animal models used in these studies.MethodsWe searched Cochrane Library, ClinicalTrials.gov, Embase, PubMed, Scopus, Web of Science, WHO’s Global Index Medicus, and Google Scholar from inception to June 20, 2020, for EBV prophylactic vaccine studies focused on humoral immunity.ResultsThe search yielded 5,614 unique studies. 36 pre-clinical and 4 clinical studies were included in the analysis after screening against the exclusion criteria. In pre-clinical studies, gp350 was the most commonly used immunogen (33 studies), vaccines were most commonly delivered as monomeric proteins (12 studies), and mice were the most used animal model to test immunogenicity (15 studies). According to an adaptation of the CAMARADES checklist, 4 pre-clinical studies were rated as very high, 5 as high, 13 as moderate quality, 11 as poor, and 3 as very poor. In clinical studies, gp350 was the sole vaccine antigen, delivered in a vaccinia platform (1 study) or as a monomeric protein (3 studies). The present study was registered in PROSPERO (CRD42020198440).ConclusionsFour major obstacles have prevented the development of an effective prophylactic EBV vaccine: undefined correlates of immune protection, lack of knowledge regarding the ideal EBV antigen(s) for vaccination, lack of an appropriate animal model to test vaccine efficacy, and lack of knowledge regarding the ideal vaccine delivery platform. Our analysis supports a multivalent antigenic approach including two or more of the five main glycoproteins involved in viral entry (gp350, gB, gH/gL, gp42) and a multimeric approach to present these antigens. We anticipate that the application of two underused challenge models, rhesus macaques susceptible to rhesus lymphocryptovirus (an EBV homolog) and common marmosets, will permit the establishment of in vivo correlates of immune protection and attainment of more generalizable data.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198440, identifier PROSPERO I.D. CRD4202019844.
Collapse
|
20
|
Démoulins T, Baron ML, Gauchat D, Kettaf N, Reed SJ, Charpentier T, Kalinke U, Lamarre A, Ahmed R, Sékaly RP, Sarkar S, Kalia V. Induction of thymic atrophy and loss of thymic output by type-I interferons during chronic viral infection. Virology 2022; 567:77-86. [PMID: 35032866 DOI: 10.1016/j.virol.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023]
Abstract
Type-I interferon (IFN-I) signals exert a critical role in disease progression during viral infections. However, the immunomodulatory mechanisms by which IFN-I dictates disease outcomes remain to be fully defined. Here we report that IFN-I signals mediate thymic atrophy in viral infections, with more severe and prolonged loss of thymic output and unique kinetics and subtypes of IFN-α/β expression in chronic infection compared to acute infection. Loss of thymic output was linked to inhibition of early stages of thymopoiesis (DN1-DN2 transition, and DN3 proliferation) and pronounced apoptosis during the late DP stage. Notably, infection-associated thymic defects were largely abrogated upon ablation of IFNαβR and partially mitigated in the absence of CD8 T cells, thus implicating direct as well as indirect effects of IFN-I on thymocytes. These findings provide mechanistic underpinnings for immunotherapeutic strategies targeting IFN-1 signals to manipulate disease outcomes during chronic infections and cancers.
Collapse
Affiliation(s)
- Thomas Démoulins
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Dominique Gauchat
- Centre Hospitalier de l'Université de Montréal (CHUM), 1000, rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada
| | - Nadia Kettaf
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Saint-Luc, Montréal, QC, H2X 1P1, Canada
| | - Steven James Reed
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tania Charpentier
- Centre INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Alain Lamarre
- Centre INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Rafi Ahmed
- Department of Microbiology & Immunology, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology, Emory University Winship Cancer Center, Atlanta, GA, USA
| | - Surojit Sarkar
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, WA, 98195, USA.
| | - Vandana Kalia
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
21
|
Ishikawa Y, Yamada M, Wada N, Takahashi E, Imadome KI. Mucosal-associated invariant T cells are activated in an interleukin-18-dependent manner in Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Clin Exp Immunol 2022; 207:141-148. [PMID: 35380609 PMCID: PMC8982962 DOI: 10.1093/cei/uxab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a type of innate immune cells that protect against some infections. However, the involvement of MAIT cells in Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases (EBV-T/NK-LPD) is unclear. In this study, we found that MAIT cells were highly activated in the blood of patients with EBV-T/NK-LPD. MAIT cell activation levels correlated with disease severity and plasma IL-18 levels. Stimulation of healthy peripheral blood mononuclear cells with EBV resulted in activation of MAIT cells, and this activation level was enhanced by exogenous IL-18. MAIT cells stimulated by IL-18 might thus be involved in the immunopathogenesis of EBV-T/NK-LPD.
Collapse
Affiliation(s)
- Yuriko Ishikawa
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Correspondence: Yuriko Ishikawa, Department of Advanced Medicine for Infections, National Center for Child Health and Development (NCCHD), Tokyo, 157–8535, Japan.
| | - Masaki Yamada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Naomi Wada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Etsuko Takahashi
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| |
Collapse
|
22
|
HLA Expression in Relation to HLA Type in Classic Hodgkin Lymphoma Patients. Cancers (Basel) 2021; 13:cancers13225833. [PMID: 34830986 PMCID: PMC8616181 DOI: 10.3390/cancers13225833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Classic Hodgkin lymphoma (cHL) is a B-cell malignancy with involvement of Epstein–Barr virus (EBV) in about 30% of the European population. The risk to develop cHL is strongly linked to genetic variants in the human leukocyte antigen (HLA) genomic region and to certain HLA alleles. This may be caused by the function of HLA alleles, or by genetic linkage to non-HLA genes. HLA can present EBV-derived and tumour-cell specific antigens and this may lead to anti-tumour immune responses. However, the tumour cells downregulate HLA expression in a proportion of the cases, which may result in immune escape. In this study, we tested whether the loss of HLA expression is related to the presence of certain protective HLA alleles. We found that loss and retention of HLA expression is indeed associated with presence of known susceptibility HLA alleles. These findings suggest that HLA itself is involved in development of cHL. Abstract Several human leukocyte antigen (HLA) alleles are strongly associated with susceptibility to classic Hodgkin lymphoma (cHL), also in subgroups stratified for presence of the Epstein–Barr virus (EBV). We tested the hypothesis that the pressure on cHL tumour cells to lose HLA expression is associated with HLA susceptibility alleles. A meta-analysis was carried out to identify consistent protective and risk HLA alleles in a combined cohort of 839 cHL patients from the Netherlands and the United Kingdom. Tumour cell HLA expression was studied in 338 cHL cases from these two cohorts and correlated to the presence of specific susceptibility HLA alleles. Carriers of the HLA-DRB1*07 protective allele frequently lost HLA class II expression in cHL overall. Patients carrying the HLA-DRB1*15/16 (DR2) risk allele retained HLA class II expression in EBV− cHL and patients with the HLA-B*37 risk allele retained HLA class I expression more frequently than non-carriers in EBV+ cHL. The other susceptibility alleles showed no significant differences in expression. Thus, HLA expression by tumour cells is associated with a subset of the protective and risk alleles. This strongly suggests that HLA associations in cHL are related to peptide binding capacities of specific HLA alleles.
Collapse
|
23
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
24
|
Kaji D, Kusakabe M, Sakata-Yanagimoto M, Makishima K, Suehara Y, Hattori K, Ota Y, Mitsuki T, Yuasa M, Kageyama K, Taya Y, Nishida A, Ishiwata K, Takagi S, Yamamoto H, Asano-Mori Y, Ubara Y, Izutsu K, Uchida N, Wake A, Taniguchi S, Yamamoto G, Chiba S. Retrospective analyses of other iatrogenic immunodeficiency-associated lymphoproliferative disorders in patients with rheumatic diseases. Br J Haematol 2021; 195:585-594. [PMID: 34558064 PMCID: PMC9290981 DOI: 10.1111/bjh.17824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/24/2023]
Abstract
Other iatrogenic immunodeficiency‐associated lymphoproliferative disorders (OIIA‐LPDs) occur in patients receiving immunosuppressive drugs for autoimmune diseases; however, their clinicopathological and genetic features remain unknown. In the present study, we analysed 67 patients with OIIA‐LPDs, including 36 with diffuse large B‐cell lymphoma (DLBCL)‐type and 19 with Hodgkin lymphoma (HL)‐type. After discontinuation of immunosuppressive drugs, regression without relapse was achieved in 22 of 58 patients. Spontaneous regression was associated with Epstein–Barr virus positivity in DLBCL‐type (P = 0·013). The 2‐year overall survival and progression‐free survival (PFS) at a median follow‐up of 32·4 months were 92·7% and 72·1% respectively. Furthermore, a significant difference in the 2‐year PFS was seen between patients with DLBCL‐type and HL‐type OIIA‐LPDs (81·0% vs. 40·9% respectively, P = 0·021). In targeted sequencing of 47 genes in tumour‐derived DNA from 20 DLBCL‐type OIIA‐LPD samples, histone‐lysine N‐methyltransferase 2D (KMT2D; eight, 40%) and tumour necrosis factor receptor superfamily member 14 (TNFRSF14; six, 30%) were the most frequently mutated genes. TNF alpha‐induced protein 3 (TNFAIP3) mutations were present in four patients (20%) with DLBCL‐type OIIA‐LPD. Cases with DLBCL‐type OIIA‐LPD harbouring TNFAIP3 mutations had shorter PFS and required early initiation of first chemotherapy. There were no significant factors for spontaneous regression or response rates according to the presence of mutations. Overall, OIIA‐LPDs, especially DLBCL‐types, showed favourable prognoses.
Collapse
Affiliation(s)
- Daisuke Kaji
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Manabu Kusakabe
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kenichi Makishima
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Keiichiro Hattori
- Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takashi Mitsuki
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Kosei Kageyama
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Yuki Taya
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Pathology, Research Hospital, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | | | | | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| |
Collapse
|
25
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker L, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-Cell Profiling of the Antigen-Specific Response to BNT162b2 SARS-CoV-2 RNA Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.28.453981. [PMID: 34341788 PMCID: PMC8328055 DOI: 10.1101/2021.07.28.453981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA-based vaccines against SARS-CoV-2 are critical to limiting COVID-19 severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. We used single-cell technologies to identify and characterized antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 in longitudinal samples from a cohort of healthy donors. Mass cytometry and machine learning pinpointed a novel expanding, population of antigen-specific non-canonical memory CD4 + and CD8 + T cells. B cell sequencing suggested progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlated with eventual SARS-CoV-2 IgG and a donor lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms reveal an antigen-specific cellular basis of RNA vaccine-based immunity. ONE SENTENCE SUMMARY Single-cell profiling reveals the cellular basis of the antigen-specific response to the BNT162b2 SARS-CoV-2 RNA vaccine.
Collapse
|
26
|
Yasuda Y, Iwama S, Sugiyama D, Okuji T, Kobayashi T, Ito M, Okada N, Enomoto A, Ito S, Yan Y, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Goto M, Suga H, Banno R, Takahashi M, Nishikawa H, Arima H. CD4 + T cells are essential for the development of destructive thyroiditis induced by anti-PD-1 antibody in thyroglobulin-immunized mice. Sci Transl Med 2021; 13:13/593/eabb7495. [PMID: 33980577 DOI: 10.1126/scitranslmed.abb7495] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Immune-related adverse events induced by anti-programmed cell death-1 antibodies (PD-1-Ab), including destructive thyroiditis (thyroid-irAE), are thought to be caused by activated T cells. However, the T cell subsets that are directly responsible for damaging self-organs remain unclear. To clarify which T cell subsets are involved in the development of thyroid-irAE, a mouse model of thyroid-irAE was analyzed. PD-1-Ab administration 2.5 months after immunization with thyroglobulin caused destructive thyroiditis. Thyroiditis was completely prevented by previous depletion of CD4+ T cells and partially prevented by depleting CD8+ T cells. The frequencies of central and effector memory CD4+ T cell subsets and the secretion of interferon-γ after stimulation with thyroglobulin were increased in the cervical lymph nodes of mice with thyroid-irAE compared with controls. Histopathological analysis revealed infiltration of CD4+ T cells expressing granzyme B in thyroid glands and major histocompatibility complex class II expression on thyrocytes in mice with thyroid-irAE. Adoptive transfer of CD4+ T cells from cervical lymph nodes in mice with thyroid-irAE caused destruction of thyroid follicular architecture in the irradiated recipient mice. Flow cytometric analyses showed that the frequencies of central and effector memory CD4+ T cells expressing the cytotoxic marker CD27 were higher in peripheral blood mononuclear cells collected from patients with thyroid-irAE induced by PD-1-Ab versus those without. These data suggest a critical role for cytotoxic memory CD4+ T cells activated by PD-1-Ab in the pathogenesis of thyroid-irAE.
Collapse
Affiliation(s)
- Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takayuki Okuji
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masaaki Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norio Okada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yue Yan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
27
|
Sun C, Chen XC, Kang YF, Zeng MS. The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development. Front Immunol 2021; 12:677027. [PMID: 34168649 PMCID: PMC8218244 DOI: 10.3389/fimmu.2021.677027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Epstein–Barr virus (EBV) is a human herpesvirus that is common among the global population, causing an enormous disease burden. EBV can directly cause infectious mononucleosis and is also associated with various malignancies and autoimmune diseases. In order to prevent primary infection and subsequent chronic disease, efforts have been made to develop a prophylactic vaccine against EBV in recent years, but there is still no vaccine in clinical use. The outbreak of the COVID-19 pandemic and the global cooperation in vaccine development against SARS-CoV-2 provide insights for next-generation antiviral vaccine design and opportunities for developing an effective prophylactic EBV vaccine. With improvements in antigen selection, vaccine platforms, formulation and evaluation systems, novel vaccines against EBV are expected to elicit dual protection against infection of both B lymphocytes and epithelial cells. This would provide sustainable immunity against EBV-associated malignancies, finally enabling the control of worldwide EBV infection and management of EBV-associated diseases.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Fedyanina OS, Filippova AE, Demina OI, Zhuliabina OA, Tikhomirov DS, Filatov AV, Chebotareva TA, Kuznetsova SA. The Nature and Clinical Significance of Atypical Mononuclear Cells in Infectious Mononucleosis Caused by the Epstein-Barr Virus in Children. J Infect Dis 2021; 223:1699-1706. [PMID: 32959062 DOI: 10.1093/infdis/jiaa601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Atypical mononuclear cells (AM) appear in significant numbers in peripheral blood of patients with Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). We investigated the number and lineage-specific clusters of differentiation (CD) expression of atypical mononuclear cells in 110 children with IM using the anti-CD antibody microarray for panning leukocytes by their surface markers prior to morphology examination. The AM population consisted primarily of CD8+ T cells with a small fraction (0%-2% of all lymphocytes) of CD19+ B lymphocytes. AM amount in children with mononucleosis caused by primary EBV infection was significantly higher than for IM caused by EBV reactivation or other viruses and constituted 1%-53% of all peripheral blood mononuclear cells compared to 0%-11% and 0%-8%, respectively. Children failing to recover from classic IM associated with primary EBV infection within 6 months had significantly lower percentage of CD8+ AM compared to patients with normal recovery rate.
Collapse
Affiliation(s)
- Olga S Fedyanina
- Dmitry Rogachev National Research Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Centre for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow, Russia
| | - Anna E Filippova
- Dmitry Rogachev National Research Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga I Demina
- Moscow Children's Hospital named after Z. A. Bashlyaeva, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Olga A Zhuliabina
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Tatiana A Chebotareva
- Moscow Children's Hospital named after Z. A. Bashlyaeva, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sofya A Kuznetsova
- Dmitry Rogachev National Research Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Centre for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow, Russia
| |
Collapse
|
29
|
Ahmed EH, Brooks E, Sloan S, Schlotter S, Jeney F, Hale C, Mao C, Zhang X, McLaughlin E, Shindiapina P, Shire S, Das M, Prouty A, Lozanski G, Mamuye AT, Abebe T, Alinari L, Caligiuri MA, Baiocchi RA. Targeted Delivery of BZLF1 to DEC205 Drives EBV-Protective Immunity in a Spontaneous Model of EBV-Driven Lymphoproliferative Disease. Vaccines (Basel) 2021; 9:555. [PMID: 34073261 PMCID: PMC8228306 DOI: 10.3390/vaccines9060555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpes virus that infects over 90% of the world's population and is linked to development of cancer. In immune-competent individuals, EBV infection is mitigated by a highly efficient virus-specific memory T-cell response. Risk of EBV-driven cancers increases with immune suppression (IS). EBV-seronegative recipients of solid organ transplants are at high risk of developing post-transplant lymphoproliferative disease (PTLD) due to iatrogenic IS. While reducing the level of IS may improve EBV-specific immunity and regression of PTLD, patients are at high risk for allograft rejection and need for immune-chemotherapy. Strategies to prevent PTLD in this vulnerable patient population represents an unmet need. We have previously shown that BZLF1-specific cytotoxic T-cell (CTL) expansion following reduced IS correlated with immune-mediated PTLD regression and improved patient survival. We have developed a vaccine to bolster EBV-specific immunity to the BZLF1 protein and show that co-culture of dendritic cells (DCs) loaded with a αDEC205-BZLF1 fusion protein with peripheral blood mononuclear cells (PMBCs) leads to expansion and increased cytotoxic activity of central-effector memory CTLs against EBV-transformed B-cells. Human-murine chimeric Hu-PBL-SCID mice were vaccinated with DCs loaded with αDEC205-BZLF1 or control to assess prevention of fatal human EBV lymphoproliferative disease. Despite a profoundly immunosuppressive environment, vaccination with αDEC205-BZLF1 stimulated clonal expansion of antigen-specific T-cells that produced abundant IFNγ and significantly prolonged survival. These results support preclinical and clinical development of vaccine approaches using BZLF1 as an immunogen to harness adaptive cellular responses and prevent PTLD in vulnerable patient populations.
Collapse
Affiliation(s)
- Elshafa Hassan Ahmed
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Eric Brooks
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Shelby Sloan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Sarah Schlotter
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Frankie Jeney
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Claire Hale
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Charlene Mao
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Xiaoli Zhang
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; (X.Z.); (E.M.)
| | - Eric McLaughlin
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; (X.Z.); (E.M.)
| | - Polina Shindiapina
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Salma Shire
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA;
| | - Manjusri Das
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Alexander Prouty
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - Admasu T. Mamuye
- Department of Internal Medicine, Black Lion Hospital, Addis Ababa University, Addis Ababa 3614, Ethiopia;
| | - Tamrat Abebe
- Department of Microbiology, Black Lion Hospital, Addis Ababa University, Addis Ababa 3614, Ethiopia;
| | - Lapo Alinari
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Immunophenotypic characterization of TCR γδ T cells and MAIT cells in HIV-infected individuals developing Hodgkin's lymphoma. Infect Agent Cancer 2021; 16:24. [PMID: 33865435 PMCID: PMC8052713 DOI: 10.1186/s13027-021-00365-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite successful combined antiretroviral therapy (cART), the risk of non-AIDS defining cancers (NADCs) remains higher for HIV-infected individuals than the general population. The reason for this increase is highly disputed. Here, we hypothesized that T-cell receptor (TCR) γδ cells and/or mucosal-associated invariant T (MAIT) cells might be associated with the increased risk of NADCs. γδ T cells and MAIT cells both serve as a link between the adaptive and the innate immune system, and also to exert direct anti-viral and anti-tumor activity. Methods We performed a longitudinal phenotypic characterization of TCR γδ cells and MAIT cells in HIV-infected individuals developing Hodgkin’s lymphoma (HL), the most common type of NADCs. Cryopreserved PBMCs of HIV-infected individuals developing HL, matched HIV-infected controls without (w/o) HL and healthy controls were used for immunophenotyping by polychromatic flow cytometry, including markers for activation, exhaustion and chemokine receptors. Results We identified significant differences in the CD4+ T cell count between HIV-infected individuals developing HL and HIV-infected matched controls within 1 year before cancer diagnosis. We observed substantial differences in the cellular phenotype mainly between healthy controls and HIV infection irrespective of HL. A number of markers tended to be different in Vδ1 and MAIT cells in HIV+HL+ patients vs. HIV+ w/o HL patients; notably, we observed significant differences for the expression of CCR5, CCR6 and CD16 between these two groups of HIV+ patients. Conclusion TCR Vδ1 and MAIT cells in HIV-infected individuals developing HL show subtle phenotypical differences as compared to the ones in HIV-infected controls, which may go along with functional impairment and thereby may be less efficient in detecting and eliminating malignant cells. Further, our results support the potential of longitudinal CD4+ T cell count analysis for the identification of patients at higher risk to develop HL. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00365-4.
Collapse
|
31
|
Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020; 8:microorganisms8101459. [PMID: 32977590 PMCID: PMC7598258 DOI: 10.3390/microorganisms8101459] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.
Collapse
|
32
|
Compagno F, Basso S, Panigari A, Bagnarino J, Stoppini L, Maiello A, Mina T, Zelini P, Perotti C, Baldanti F, Zecca M, Comoli P. Management of PTLD After Hematopoietic Stem Cell Transplantation: Immunological Perspectives. Front Immunol 2020; 11:567020. [PMID: 33042147 PMCID: PMC7526064 DOI: 10.3389/fimmu.2020.567020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 01/07/2023] Open
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications of iatrogenic immune impairment after allogeneic hematopoietic stem cell transplantation (HSCT). In the pediatric setting, the majority of PTLDs are related to the Epstein-Barr virus (EBV) infection, and present as B-cell lymphoproliferations. Although considered rare events, PTLDs have been increasingly observed with the widening application of HSCT from alternative sources, including cord blood and HLA-haploidentical stem cell grafts, and the use of novel agents for the prevention and treatment of rejection and graft-vs.-host disease. The higher frequency initially paralleled a poor outcome, due to limited therapeutic options, and scarcity of controlled trials in a rare disease context. In the last 2 decades, insight into the relationship between EBV and the immune system, and advances in early diagnosis, monitoring and treatment have changed the approach to the management of PTLDs after HSCT, and significantly ameliorated the prognosis. In this review, we summarize literature on the impact of combined viro-immunologic assessment on PTLD management, describe the various strategies for PTLD prevention and preemptive/curative treatment, and discuss the potential of novel immune-based therapies in the containment of this malignant complication.
Collapse
Affiliation(s)
- Francesca Compagno
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Arianna Panigari
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Jessica Bagnarino
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Luca Stoppini
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Alessandra Maiello
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Tommaso Mina
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Cesare Perotti
- Immunohematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Virology Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
33
|
Identification of a tumor-specific allo-HLA-restricted γδTCR. Blood Adv 2020; 3:2870-2882. [PMID: 31585951 DOI: 10.1182/bloodadvances.2019032409] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022] Open
Abstract
γδT cells are key players in cancer immune surveillance because of their ability to recognize malignant transformed cells, which makes them promising therapeutic tools in the treatment of cancer. However, the biological mechanisms of how γδT-cell receptors (TCRs) interact with their ligands are poorly understood. Within this context, we describe the novel allo-HLA-restricted and CD8α-dependent Vγ5Vδ1TCR. In contrast to the previous assumption of the general allo-HLA reactivity of a minor fraction of γδTCRs, we show that classic anti-HLA-directed, γδTCR-mediated reactivity can selectively act on hematological and solid tumor cells, while not harming healthy tissues in vitro and in vivo. We identified the molecular interface with proximity to the peptide-binding groove of HLA-A*24:02 as the essential determinant for recognition and describe the critical role of CD8 as a coreceptor. We conclude that alloreactive γδT-cell repertoires provide therapeutic opportunities, either within the context of haplotransplantation or as individual γδTCRs for genetic engineering of tumor-reactive T cells.
Collapse
|
34
|
Rowntree LC, Nguyen THO, Farenc C, Halim H, Hensen L, Rossjohn J, Kotsimbos TC, Purcell AW, Kedzierska K, Gras S, Mifsud NA. A Shared TCR Bias toward an Immunogenic EBV Epitope Dominates in HLA-B*07:02–Expressing Individuals. THE JOURNAL OF IMMUNOLOGY 2020; 205:1524-1534. [DOI: 10.4049/jimmunol.2000249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022]
|
35
|
The Epstein-Barr Virus Major Tegument Protein BNRF1 Is a Common Target of Cytotoxic CD4 + T Cells. J Virol 2020; 94:JVI.00284-20. [PMID: 32461311 DOI: 10.1128/jvi.00284-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023] Open
Abstract
Cellular immunotherapy is a proven approach against Epstein-Barr virus (EBV)-driven lymphoproliferation in recipients of hematopoietic stem cells. Extending the applicability and improving the response rates of such therapy demands improving the knowledge base. We studied 23 healthy donors for specific CD4+ T cell responses against the viral tegument protein BNRF1 and found such T cells in all seropositive donors, establishing BNRF1 as an important immune target in EBV. We identified 18 novel immune epitopes from BNRF1, all of them generated by natural processing of the full-length protein from virus-transformed lymphoblastoid cell lines (LCL). BNRF1-specific CD4+ T cells were measured directly ex vivo by a cytokine-based method, thus providing a tool to study the interaction between immunity and infection in health and disease. T cells of the cytotoxic Th1 type inhibited the proliferation of autologous LCL as well as virus-driven transformation. We infer that they are important in limiting reactivations to subclinical levels during health and reducing virus propagation during disease. The information obtained from this work will feed into data sets that are indispensable in the design of patient-tailored immunotherapeutic approaches, thereby enabling the stride toward broader application of T cell therapy and improving clinical response rates.IMPORTANCE Epstein-Barr virus is carried by most humans and can cause life-threatening diseases. Virus-specific T cells have been used in different clinical settings with variable success rates. One way to improve immunotherapy is to better suit T cell generation protocols to viral targets available in different diseases. BNRF1 is present in viral particles and therefore likely available as a target for T cells in diseases with virus amplification. Here, we studied healthy Epstein-Barr virus (EBV) carriers for BNRF1 immunogenicity and report our results indicating BNRF1 to be a dominant target of the EBV-specific CD4+ T cell response. BNRF1-specific CD4+ T cells were found to be cytotoxic and capable of limiting EBV-driven B cell transformation in vitro The findings of this work contribute to forwarding our understanding of host-virus interactions during health and disease and are expected to find direct application in the generation of specific T cells for immunotherapy.
Collapse
|
36
|
Asad U, Warraich I, Idicula W. Infectious mononucleosis-related tonsillar hyperplasia mimicking T-cell lymphoma on histopathology: A rare case and review. ACTA OTO-LARYNGOLOGICA CASE REPORTS 2020. [DOI: 10.1080/23772484.2020.1735251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Usman Asad
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Irfan Warraich
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Winslo Idicula
- Department of Otolaryngology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
37
|
Lawler C, Simas JP, Stevenson PG. Vaccine protection against murid herpesvirus-4 is maintained when the priming virus lacks known latency genes. Immunol Cell Biol 2019; 98:67-78. [PMID: 31630452 DOI: 10.1111/imcb.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
γ-Herpesviruses establish latent infections of lymphocytes and drive their proliferation, causing cancers and motivating a search for vaccines. Effective vaccination against murid herpesvirus-4 (MuHV-4)-driven lymphoproliferation by latency-impaired mutant viruses suggests that lytic access to the latency reservoir is a viable target for control. However, the vaccines retained the immunogenic MuHV-4 M2 latency gene. Here, a strong reduction in challenge virus load was maintained when the challenge virus lacked the main latency-associated CD8+ T-cell epitope of M2, or when the vaccine virus lacked M2 entirely. This protection was maintained also when the vaccine virus lacked both episome maintenance and the genomic region encompassing M1, M2, M3, M4 and ORF4. Therefore, protection did not require immunity to known MuHV-4 latency genes. As the remaining vaccine virus genes have clear homologs in human γ-herpesviruses, this approach of deleting viral latency genes could also be applied to them, to generate safe and effective vaccines against human disease.
Collapse
Affiliation(s)
- Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Nakid-Cordero C, Arzouk N, Gauthier N, Tarantino N, Larsen M, Choquet S, Burrel S, Autran B, Vieillard V, Guihot A. Skewed T cell responses to Epstein-Barr virus in long-term asymptomatic kidney transplant recipients. PLoS One 2019; 14:e0224211. [PMID: 31639143 PMCID: PMC6804993 DOI: 10.1371/journal.pone.0224211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
Kidney transplant recipients (KTRs) abnormally replicate the Epstein Barr Virus (EBV). To better understand how long-term immunosuppression impacts the immune control of this EBV re-emergence, we systematically compared 10 clinically stable KTRs to 30 healthy controls (HCs). The EBV-specific T cell responses were determined in both groups by multiparameter flow cytometry with intra cellular cytokine staining (KTRs n = 10; HCs n = 15) and ELISpot-IFNγ assays (KTRs n = 7; HCs n = 7). The T/B/NK cell counts (KTRs n = 10; HCs n = 30) and the NK/T cell differentiation and activation phenotypes (KTRs n = 10; HCs n = 15/30) were also measured. We show that in KTRs, the Th1 effector CD4+ T cell responses against latent EBV proteins are weak (2/7 responders). Conversely, the frequencies total EBV-specific CD8+T cells are conserved in KTRs (n = 10) and span a wider range of EBNA-3A peptides (5/7responders) than in HCs (5/7responders). Those modifications of the EBV-specific T cell response were associated with a profound CD4+ T cell lymphopenia in KTRs compared to HCs, involving the naïve CD4+ T cell subset, and a persistent activation of highly-differentiated senescent CD8+ T cells. The proportion of total NK / CD8+ T cells expressing PD-1 was also increased in KTRs. Noteworthy, PD-1 expression on CD8+ T cells normalized with time after transplantation. In conclusion, we show modifications of the EBV-specific cellular immunity in long term transplant recipients. This may be the result of both persistent EBV antigenic stimulation and profound immunosuppression induced by anti-rejection treatments. These findings provide new insights into the immunopathology of EBV infection after renal transplantation.
Collapse
Affiliation(s)
- Cecilia Nakid-Cordero
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Nadia Arzouk
- Service de Néphrologie, Urologie et Transplantation Rénale, Hôpital Pitié Salpêtrière, Paris, France
| | - Nicolas Gauthier
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Nadine Tarantino
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Martin Larsen
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sylvain Choquet
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Service d’Hématologie, Hôpital Pitié Salpêtrière, Paris, France
| | - Sonia Burrel
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Service de Virologie, Hôpital Pitié Salpêtrière, Paris, France
| | - Brigitte Autran
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Vincent Vieillard
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Amélie Guihot
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
- Département d’Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
Crepeau R, Elengickal J, La Muraglia G, Ford M. Impact of selective CD28 blockade on virus-specific immunity to a murine Epstein-Barr virus homolog. Am J Transplant 2019; 19:2199-2209. [PMID: 30801917 PMCID: PMC6658342 DOI: 10.1111/ajt.15321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023]
Abstract
CTLA-4Ig (belatacept) blocks the CD80/CD86 ligands for both CD28 and CTLA-4; thus, in addition to the intended effect of blocking CD28-mediated costimulation, belatacept also has the unintended effect of blocking CTLA-4-mediated coinhibition. Recently, anti-CD28 domain antibodies (dAb) that selectively target CD28 while leaving CTLA-4 intact were shown to more effectively inhibit alloimmune responses and prolong graft survival. However, the impact of selective CD28 blockade on protective immunity has not been extensively investigated. Here, we sought to compare the impact of CTLA-4Ig vs anti-CD28dAb on CD8+ T cell immunity to a transplant-relevant pathogen, a murine homolog of Epstein-Barr virus. Mice were infected with murine gammaherpesvirus-68 (MHV) and treated with vehicle, CTLA-4Ig, or anti-CD28dAb. Although anti-CD28dAb resulted in a decrease in virus-specific CD8+ T cell numbers as compared to CTLA-4Ig, cytolytic function and the expression of markers of high-quality effectors were not different from CTLA-4Ig treated animals. Importantly, MHV-68 viral load was not different between the treatment groups. These results suggest that preserved CTLA-4 coinhibition limits MHV-specific CD8+ T cell accumulation, but the population that remains retains cytolytic function and migratory capacity and is not inferior in its ability to control viral burden relative to T cell responses in CTLA-4Ig-treated animals.
Collapse
Affiliation(s)
- R.L. Crepeau
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - J.A. Elengickal
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - G.M. La Muraglia
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - M.L. Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
40
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
41
|
Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol 2019; 72:651-658. [DOI: 10.1136/jclinpath-2019-205822] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human virus which infects almost all humans during their lifetime and following the acute phase, persists for the remainder of the life of the individual. EBV infects B lymphocytes leading to their immortalisation, with persistence of the EBV genome as an episome. In the latent phase, EBV is prevented from reactivating through efficient cytotoxic cellular immunity. EBV reactivates (lytic phase) under conditions of psychological stress with consequent weakening of cellular immunity, and EBV reactivation has been shown to occur in a subset of individuals with each of a variety of cancers, autoimmune diseases, the autoimmune-like disease, chronic fatigue syndrome/myalgic encephalitis and under other circumstances such as being an inpatient in an intensive care unit. Chronic EBV reactivation is an important mechanism in the pathogenesis of many such diseases, yet is rarely tested for in immunocompetent individuals. This review summarises the pathogenesis of EBV infection, EBV reactivation and its role in disease, and methods which may be used to detect it. Known inhibitors of EBV reactivation and replication are discussed, including drugs licensed for treatment of other herpesviruses, licensed or experimental drugs for various other indications, compounds at an early stage of drug development and nutritional constituents such as vitamins and dietary supplements.
Collapse
|
42
|
Charfi A, Mahfoudh N, Kamoun A, Frikha F, Dammak C, Gaddour L, Hakim F, Maalej L, Mallek B, Kammoun I, Bahloul Z, Makni H. Association of HLA Alleles with Primary Sjögren Syndrome in the South Tunisian Population. Med Princ Pract 2019; 29:32-38. [PMID: 31272097 PMCID: PMC7024883 DOI: 10.1159/000501896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/04/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE In order to investigate human leukocyte antigen (HLA) genes predisposing to primary Sjögren syndrome (pSS), we conducted an association study using HLA loci (A, B, and DRB1) and 9 polymorphic microsatellite markers spanning the HLA region in pSS patients as compared to healthy individuals. SUBJECTS AND METHODS Forty-four patients fitting the European criteria of pSS and 123 healthy controls were analyzed for their HLA class I and class II alleles. HLA class I typing was performed using a standard microlymphocytotoxicity method followed by PCR-SSP. HLA-DRB1 genotyping was performed using PCR-SSP. We studied the polymorphism of 9 microsatellite markers for both groups. Microsatellite genotyping was performed using the PCR fluorescent technique. RESULTS We observed a positive association between HLA-B15 and pSS in the Tunisian population (p = 0.004, OR 7.57). The comparison of the frequencies of DRB1 alleles in pSS patients and controls confirmed the association of the DRB1*03 allele with pSS (p = 0.02, OR 2.36). On the other hand, the association study of microsatellite markers showed that the a9 allele of D6S265 marker and the a20 of C1.2.C were found to be positively associated with pSS as compared to controls (p =0.0003, OR 10.29, and p =0.001, OR 4.79, respectively). Using the "Haplo.stats" software analysis, we found that the most associated region was located in the HLA class I region and limited by HLA-A and D6S265 loci (p = 0.00056). CONCLUSION The results of this study support the hypothesis of the existence of a susceptibility gene for pSS located in the HLA class I and III regions.
Collapse
Affiliation(s)
- Aida Charfi
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia,
| | - Nadia Mahfoudh
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Arwa Kamoun
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Feten Frikha
- Department of Internal Medicine, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Chifa Dammak
- Department of Internal Medicine, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Lilia Gaddour
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Feiza Hakim
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Leila Maalej
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Bakhta Mallek
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Ines Kammoun
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Zouhir Bahloul
- Department of Internal Medicine, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hafedh Makni
- Department of Histocompatibility, Hedi Chaker University Hospital, Sfax, Tunisia
| |
Collapse
|
43
|
de Mel S, Hue SSS, Jeyasekharan AD, Chng WJ, Ng SB. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 2019; 12:33. [PMID: 30935402 PMCID: PMC6444858 DOI: 10.1186/s13045-019-0716-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Health System, Singapore, Singapore.,Agency for Science Technology and Research Singapore, Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
44
|
Halec G, Waterboer T, Brenner N, Butt J, Hardy DW, D’Souza G, Wolinsky S, Macatangay BJ, Pawlita M, Detels R, Martínez-Maza O, Hussain SK. Serological Assessment of 18 Pathogens and Risk of AIDS-Associated Non-Hodgkin Lymphoma. J Acquir Immune Defic Syndr 2019; 80:e53-e63. [PMID: 30531297 PMCID: PMC6375787 DOI: 10.1097/qai.0000000000001916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND HIV infection is associated with increased susceptibility to common pathogens, which may trigger chronic antigenic stimulation and hyperactivation of B cells, events known to precede the development of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL). METHODS To explore whether cumulative exposure to infectious agents contributes to AIDS-NHL risk, we tested sera from 199 AIDS-NHL patients (pre-NHL, average lead time 3.9 years) and 199 matched HIV-infected controls from the Multicenter AIDS Cohort Study, for anti-IgG responses to 18 pathogens using multiplex serology. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression models. RESULTS We found no association between cumulative exposure to infectious agents and AIDS-NHL risk (OR 1.01, 95% CI: 0.91 to 1.12). However, seropositivity for trichodysplasia spinulosa polyomavirus (TSPyV), defined as presence of antibodies to TSPyV capsid protein VP1, was significantly associated with a 1.6-fold increase in AIDS-NHL risk (OR 1.62, 95% CI: 1.02 to 2.57). High Epstein-Barr virus (EBV) anti-VCA p18 antibody levels closer to the time of AIDS-NHL diagnosis (<4 years) were associated with a 2.6-fold increase in AIDS-NHL risk (OR 2.59, 95% CI: 1.17 to 5.74). In addition, high EBV anti-EBNA-1 and anti-ZEBRA antibody levels were associated with 2.1-fold (OR 0.47, 95% CI: 0.26 to 0.85) and 1.6-fold (OR 0.57, 95% CI: 0.35 to 0.93) decreased risk of AIDS-NHL, respectively. CONCLUSIONS Our results do not support the hypothesis that cumulative exposure to infectious agents contributes to AIDS-NHL development. However, the observed associations with respect to TSPyV seropositivity and EBV antigen antibody levels offer additional insights into the pathogenesis of AIDS-NHL.
Collapse
Affiliation(s)
- Gordana Halec
- University of California Los Angeles (UCLA) AIDS Institute and Department of Obstetrics and Gynecology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David W. Hardy
- Clinical Investigations, Whitman-Walker Health, Washington, DC
| | - Gypsyamber D’Souza
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Steven Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernard J. Macatangay
- Division of Infectious Diseases, Department of Medicine, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Pawlita
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roger Detels
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Otoniel Martínez-Maza
- University of California Los Angeles (UCLA) AIDS Institute and Department of Obstetrics and Gynecology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Shehnaz K. Hussain
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
45
|
Wilberger AC, Liang X. Primary Nonanaplastic Peripheral Natural Killer/T-Cell Lymphoma in Pediatric Patients-An Unusual Distribution Pattern of Subtypes. Pediatr Dev Pathol 2019; 22:128-136. [PMID: 30334665 DOI: 10.1177/1093526618807110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peripheral NK/T-cell lymphoma (PNKTCL) represents a group of uncommon diagnoses for children in Western countries, and studies have often necessitated multiple institutions to assemble enough cases. We retrospectively analyzed 11 cases of nonanaplastic PNKTCL in children over 19 years at our institution with comparison to several published large multi-institutional studies. Patients included 9 males and 2 females of white (5), Native American (3), and Hispanic (3) background with 6 cases of extranodal NK/T-cell lymphoma, nasal type (EN-NKTL, 54.6%), 3 cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS, 27.2%), and 2 cases of systemic Epstein-Barr virus (EBV)-positive T-cell lymphoma of childhood (18.2%). Compared to the literature, our institution exceeded in frequency of total nonanaplastic PNKTCL (4.8% vs 0.9%-1.6%) with lesser relative incidence of PTCL-NOS (27.2% vs 42.9%-66.7%) and greater relative incidence of EN-NKTL (54.6% of cases vs 12.5%-47.6%), which significantly exceeded the literature's rate for Western institutions (13.5%). Potential influencing factors include population structure approximating those of non-Western countries with high EN-NKTL prevalence and the predisposition for EBV infection in this demography. These data suggest an uneven distribution of nonanaplastic PNKTCL in Western countries, and differential diagnoses may differ depending on practice location and associated patient population.
Collapse
Affiliation(s)
- Adam C Wilberger
- 1 Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Xiayuan Liang
- 1 Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado.,2 Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
46
|
Barros MHM, Vera-Lozada G, Segges P, Hassan R, Niedobitek G. Revisiting the Tissue Microenvironment of Infectious Mononucleosis: Identification of EBV Infection in T Cells and Deep Characterization of Immune Profiles. Front Immunol 2019; 10:146. [PMID: 30842768 PMCID: PMC6391352 DOI: 10.3389/fimmu.2019.00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022] Open
Abstract
To aid understanding of primary EBV infection, we have performed an in depth analysis of EBV-infected cells and of local immune cells in tonsils from infectious mononucleosis (IM) patients. We show that EBV is present in approximately 50% of B-cells showing heterogeneous patterns of latent viral gene expression probably reflecting different stages of infection. While the vast majority of EBV+ cells are B-cells, around 9% express T-cell antigens, with a predominance of CD8+ over CD4+ cells. PD-L1 was expressed by a median of 14% of EBV+ cells. The numbers of EBER+PD-L1+ cells were directly correlated with the numbers of EBER+CD3+ and EBER+CD8+ cells suggesting a possible role for PD-L1 in EBV infection of T-cells. The microenvironment of IM tonsils was characterized by a predominance of M1-polarized macrophages over M2-polarized cells. However, at the T-cell level, a heterogeneous picture emerged with numerous Th1/cytotoxic cells accompanied and sometimes outnumbered by Th2/regulatory T-cells. Further, we observed a direct correlation between the numbers of Th2-like cells and EBV- B-cells. Also, a prevalence of cytotoxic T-cells over Th2-like cells was associated with an increased viral load. These observations point to contribution of B- and Th2-like cells to the control of primary EBV infection. 35% of CD8+ cells were differentiated CD8+TBET+ cells, frequently detected in post-capillary venules. An inverse correlation was observed between the numbers of CD8+TBET+ cells and viral load suggesting a pivotal role for these cells in the control of primary EBV infection. Our results provide the basis for a better understanding of immune reactions in EBV-associated tumors.
Collapse
Affiliation(s)
| | - Gabriela Vera-Lozada
- Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Priscilla Segges
- Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rocio Hassan
- Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gerald Niedobitek
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
- Institute for Pathology, Sana Klinikum Lichtenberg, Berlin, Germany
| |
Collapse
|
47
|
McLaughlin LP, Rouce R, Gottschalk S, Torrano V, Carrum G, Wu MF, Hoq F, Grilley B, Marcogliese AM, Hanley PJ, Gee AP, Brenner MK, Rooney CM, Heslop HE, Bollard CM. EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 2018; 132:2351-2361. [PMID: 30262660 PMCID: PMC6265652 DOI: 10.1182/blood-2018-07-863654] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/13/2018] [Indexed: 01/03/2023] Open
Abstract
Autologous T cells targeting Epstein-Barr virus (EBV) latent membrane proteins (LMPs) have shown safety and efficacy in the treatment of patients with type 2 latency EBV-associated lymphomas for whom standard therapies have failed, including high-dose chemotherapy followed by autologous stem-cell rescue. However, the safety and efficacy of allogeneic donor-derived LMP-specific T cells (LMP-Ts) have not been established for patients who have undergone allogeneic hematopoietic stem-cell transplantation (HSCT). Therefore, we evaluated the safety and efficacy of donor-derived LMP-Ts in 26 patients who had undergone allogeneic HSCT for EBV-associated natural killer/T-cell or B-cell lymphomas. Seven patients received LMP-Ts as therapy for active disease, and 19 were treated with adjuvant therapy for high-risk disease. There were no immediate infusion-related toxicities, and only 1 dose-limiting toxicity potentially related to T-cell infusion was seen. The 2-year overall survival (OS) was 68%. Additionally, patients who received T-cell therapy while in complete remission after allogeneic HSCT had a 78% OS at 2 years. Patients treated for B-cell disease (n = 10) had a 2-year OS of 80%. Patients with T-cell disease had a 2-year OS of 60%, which suggests an improvement compared with published posttransplantation 2-year OS rates of 30% to 50%. Hence, this study shows that donor-derived LMP-Ts are a safe and effective therapy to prevent relapse after transplantation in patients with B cell- or T cell-derived EBV-associated lymphoma or lymphoproliferative disorder and supports the infusion of LMP-Ts as adjuvant therapy to improve outcomes in the posttransplantation setting. These trials were registered at www.clinicaltrials.gov as #NCT00062868 and #NCT01956084.
Collapse
MESH Headings
- Adolescent
- Adult
- Child
- Child, Preschool
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/immunology
- Female
- Hematopoietic Stem Cell Transplantation/methods
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/isolation & purification
- Humans
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/virology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/therapy
- Lymphoma, T-Cell/virology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/prevention & control
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Homologous/methods
- Treatment Outcome
- Viral Matrix Proteins/immunology
- Young Adult
Collapse
Affiliation(s)
- Lauren P McLaughlin
- Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC
| | - Rayne Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Dan L. Duncan Comprehensive Cancer Center
- Department of Pediatrics
| | - Vicky Torrano
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Department of Immunology
| | | | - Fahmida Hoq
- Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC
| | - Bambi Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
| | | | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Dan L. Duncan Comprehensive Cancer Center
- Department of Pediatrics
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Dan L. Duncan Comprehensive Cancer Center
- Department of Medicine, and
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Dan L. Duncan Comprehensive Cancer Center
- Department of Pediatrics
- Department of Immunology
- Department of Virology, Baylor College of Medicine, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Dan L. Duncan Comprehensive Cancer Center
- Department of Medicine, and
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX; and
- Dan L. Duncan Comprehensive Cancer Center
- Department of Pediatrics
- Department of Immunology
- Department of Pathology
| |
Collapse
|
48
|
Cupit-Link MC, Nageswara Rao A, Warad DM, Rodriguez V, Khan S. EBV-PTLD, Adenovirus, and CMV in Pediatric Allogeneic Transplants With Alemtuzumab as Part of Pretransplant Conditioning: A Retrospective Single Center Study. J Pediatr Hematol Oncol 2018; 40:e473-e478. [PMID: 29620685 DOI: 10.1097/mph.0000000000001138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The risk of viral infections and reactivation occurring in the setting of pediatric allogeneic hematopoietic stem cell transplantation is a concern in the pediatric patient, especially with the use of Alemtuzumab (Campath) as a conditioning agent. The purpose of this study was to determine the incidence of Epstein-Barr virus posttransplant lymphoproliferative disorder (EBV-PTLD), cytomegalovirus (CMV), and adenovirus among pediatric recipients of alemtuzumab at our institution. We found that EBV-PTLD occurred in 2.1% of transplants (1 matched unrelated donor [MUD] recipient), CMV reactivation occurred in 12.5% of transplants (4 MUD and 2 matched related donor [MRD] recipients) with disseminated CMV in 2.1% of cases (1 MRD recipient), and adenovirus infection occurred in 8.3% of the total transplants (2 MUD and 2 MRD recipients). Alemtuzumab continues to be used as a method of graft-versus-host disease and graft failure prevention among pediatric recipients of hematopoietic stem cell transplantation and seems to be safer than previously reported. At our institution, alemtuzumab has not increased the risk for EBV-PTLD, CMV infection, or adenovirus.
Collapse
Affiliation(s)
| | | | - Deepti M Warad
- Division of Pediatric Hematology/Oncology, Mayo Clinic, Rochester, MN
| | | | - Shakila Khan
- Division of Pediatric Hematology/Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
49
|
McMichael AJ. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? Could a CD8 + T-Cell Vaccine Prevent Persistent HIV Infection? Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029124. [PMID: 29254977 DOI: 10.1101/cshperspect.a029124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vaccines that stimulate CD8+ T cells could clear early virus infection or control ongoing infection and prevent disease. This could be valuable to combat human immunodeficiency virus type 1 (HIV-1) where it has not yet been possible to generate broadly reacting neutralizing antibodies with a vaccine. However, HIV-1 vaccines aimed at stimulating CD8+ T cells have had no success. In contrast, a cytomegalovirus vectored simian immunodeficiency virus (SIV) vaccine enabled clearance of early SIV infection. This may open the door to the design of an effective HIV vaccine.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
50
|
Vrzalikova K, Sunmonu T, Reynolds G, Murray P. Contribution of Epstein⁻Barr Virus Latent Proteins to the Pathogenesis of Classical Hodgkin Lymphoma. Pathogens 2018; 7:pathogens7030059. [PMID: 29954084 PMCID: PMC6161176 DOI: 10.3390/pathogens7030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pathogenic viruses have evolved to manipulate the host cell utilising a variety of strategies including expression of viral proteins to hijack or mimic the activity of cellular functions. DNA tumour viruses often establish latent infection in which no new virions are produced, characterized by the expression of a restricted repertoire of so-called latent viral genes. These latent genes serve to remodel cellular functions to ensure survival of the virus within host cells, often for the lifetime of the infected individual. However, under certain circumstances, virus infection may contribute to transformation of the host cell; this event is not a usual outcome of infection. Here, we review how the Epstein–Barr virus (EBV), the prototypic oncogenic human virus, modulates host cell functions, with a focus on the role of the EBV latent genes in classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Katerina Vrzalikova
- Institute for Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Taofik Sunmonu
- Institute for Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Gary Reynolds
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Paul Murray
- Institute for Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic.
| |
Collapse
|