1
|
Liu Y, Zhao C, Liu J, Du Y. Design, synthesis, and biological evaluation of novel KRN7000 analogues using 5α-gem-difluorocarba-β-l-arabinopyranose. Carbohydr Res 2025; 552:109457. [PMID: 40081114 DOI: 10.1016/j.carres.2025.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Two novel KRN7000 analogues, where d-galactopyranosyl residue was replaced by 5α-gem-difluorocarba-β-l-arabinopyranose, were designed based on docking computation and energy decomposition analyses. The target compounds were synthesized employing the key steps of Ferrier's carbocyclic ring closure and gem-difluoride formation with d-galactose as starting material. The in vivo bioassay revealed that the designed glycolipids could stimulate iNKT cells to produce cytokines IFN-γ and IL-4. The introduced hydroxyl groups on glycolipid acyl chain provided extra CD1d substrate affinities, and thus favored to boost Th1-type cytokine secretion. When the ring oxygen was replaced by CF2 group on sugar unit, its TCR affinities were enhanced in contrast with KRN7000. The in vivo cytokine profiles induced by synthetic glycolipids were initially dominated by the binding ability of CD1/glycolipid, and then adjusted by affinity toward TCR in CD1/α-GalCer/TCR triplex structure. The current results could be helpful in designing of more efficient α-GalCer analogs.
Collapse
Affiliation(s)
- Yuanfang Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China
| |
Collapse
|
2
|
Nettere D, White S, Williams G, Jha S, Moody MA, Chan C, Ferrari G, Naggie S. Coinfection with HIV-1 skews iNKT cells toward TCR anergy and limited expansion potential in people with hepatitis C. Front Immunol 2025; 16:1469473. [PMID: 40330481 PMCID: PMC12052894 DOI: 10.3389/fimmu.2025.1469473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Hepatitis C virus (HCV) infection remains a leading cause of morbidity and mortality in people with human immunodeficiency virus (HIV). Liver fibrosis progression is more rapid in people with HIV/HCV coinfection compared to HCV monoinfection and the rate of resolution of liver fibrosis after HCV cure is unknown in people with HIV. Invariant natural killer T (iNKT) cells are enriched in the liver and play important roles in initiating immune responses to hepatotropic pathogens and promoting healing following injury. It was recently reported that the pro-healing CD4+ iNKT cells are preferentially infected and depleted in early HIV infection, but this effect on HCV-related liver disease outcomes is unclear. Methods Here we examined and compared peripheral blood iNKT cells from people with HIV/HCV coinfection and people with HIV and HCV monoinfection or no infection (controls). We evaluated the iNKT cells' expansion potential and phenotype using an unbiased Uniform Manifold Approximation and Projection (UMAP) and clustering based approach. Results We observed that circulating iNKT cells from people with HIV and HIV/HCV coinfection have impaired expansion to T-cell receptor (TCR) stimulation. We also observed an enrichment of the CD8+ and CD57+ iNKT subsets, which are thought to represent terminally differentiated iNKT cells. HCV monoinfection on the other hand minimally impacted iNKT phenotypes compared to controls. Discussion The changes observed in iNKT phenotype and proliferative ability in people with HIV/HCV coinfection suggest an impairment that may be contributing to the enhanced pathogenesis during coinfection and could inform novel therapeutic approaches.
Collapse
Affiliation(s)
- Danielle Nettere
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Scott White
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | | | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - M. Anthony Moody
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Cliburn Chan
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke University, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Susanna Naggie
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Ma Y, Hossen MM, Huang JJ, Yin Z, Du J, Ye Z, Zeng M, Huang Z. Growth arrest and DNA damage-inducible 45: a new player on inflammatory diseases. Front Immunol 2025; 16:1513069. [PMID: 40083548 PMCID: PMC11903704 DOI: 10.3389/fimmu.2025.1513069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) proteins are critical stress sensors rapidly induced in response to genotoxic/physiological stress and regulate many cellular functions. Even though the primary function of the proteins is to block the cell cycle, inhibit cell proliferation, promote cell apoptosis, and repair DNA damage to cope with the damage caused by internal and external stress on the body, evidence has shown that GADD45 also has the function to modulate innate and adaptive immunity and plays a broader role in inflammatory and autoimmune diseases. In this review, we focus on the immunomodulatory role of GADD45 in inflammatory and autoimmune diseases. First, we describe the regulatory factors that affect the expression of GADD45. Then, we introduce its immunoregulatory roles on immune cells and the critical signaling pathways mediated by GADD45. Finally, we discuss its immunomodulatory effects in various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yanmei Ma
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Md Munnaf Hossen
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Zhihua Yin
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhizhong Ye
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Miaoyu Zeng
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
4
|
Bao Y, Liu J, Li Z, Sun Y, Chen J, Ma Y, Li G, Wang T, Liu H, Zhang X, Yan R, Yao Z, Guo X, Fang R, Feng J, Xia W, Xiang AP, Chen X. Ex vivo-generated human CD1c + regulatory B cells by a chemically defined system suppress immune responses and alleviate graft-versus-host disease. Mol Ther 2024; 32:4372-4382. [PMID: 39489917 PMCID: PMC11638867 DOI: 10.1016/j.ymthe.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
IL-10+ regulatory B cells (Bregs) show great promise in treating graft-versus-host disease (GVHD), a life-threatening complication of post-hematopoietic stem cell transplantation. However, obtaining high-quality human IL-10+ Bregs in vitro remains a challenge due to the lack of unique specific markers and the triggering of pro-inflammatory cytokine expression. Here, by uncovering the critical signaling pathways in Breg induction by mesenchymal stromal cells (MSCs), we first established an efficient Breg induction system based on MSCs and GSK-3β blockage (CHIR-99021), which had a robust capacity to induce IL-10+ Bregs while suppressing tumor necrosis factor α (TNF-α) expression. Furthermore, these Breg populations could be identified and enriched by CD1c+. Mechanistically, MSCs induced the expansion of Bregs through the PKA-mediated phosphorylation of cAMP response element-binding protein (CREB). Thus, we developed a chemically defined inducing protocol by PKA-CREB agonist, instead of MSCs, which can also effectively induce CD1c+ Bregs with lower TNF-α expression. Importantly, induced CD1c+ Bregs suppressed the proliferation of peripheral blood mononuclear cells and the inflammatory cytokine secretion of T cells. When adoptively transferred into a humanized mouse model of GVHD, induced CD1c+ Bregs effectively alleviated GVHD. Overall, we established an efficient ex vivo induction system for human Bregs, which has implications for developing novel Bregs-based therapies for GVHD.
Collapse
Affiliation(s)
- Yingying Bao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China; Institute of Gene and Cell Therapy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jialing Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Zhishan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Yueming Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Junhua Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Rong Yan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Zhenxia Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Rui Fang
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Jianqi Feng
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Wenjie Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou 510095, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China.
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China.
| |
Collapse
|
5
|
Liang R, Shaker ER, Zhao M, King G, Moalli PA. Dysregulated inflammatory response to urogynecologic meshes in women with diabetes and its implications. Am J Obstet Gynecol 2024; 231:115.e1-115.e11. [PMID: 38408622 PMCID: PMC11194151 DOI: 10.1016/j.ajog.2024.02.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Diabetes is an independent risk factor for mesh complications in women undergoing mesh-augmented surgical repairs of stress urinary incontinence and/or pelvic organ prolapse. The underlying mechanism remains unclear. OBJECTIVE This study aimed to define the diabetes-associated alterations in the host inflammatory response to mesh and correlate them with perioperative glucose management. STUDY DESIGN Deidentified demographics and medical records of patients who underwent mesh removal and participated in a mesh biorepository study were reviewed (n=200). In patients with diagnosed diabetes (n=25), blood glucose management before initial mesh implantation and before and after mesh removal was assessed by blood glucose and hemoglobin A1c levels. Age- and body mass index-matched tissue samples excised from patients with and without diabetes were examined. Transcriptomic profiles of immune cell markers, immune mediators, key inflammatory regulators, cell senescence, and epigenetic enzymes were determined by multiplex transcriptomic assays (NanoString). Ratios of apoptotic cells to CD68+ macrophages were examined with immunofluorescence. Protein profiles of 12 molecules involved in apoptotic cell clearance were examined with a multiplex protein assay (Luminex). RESULTS Demographic and clinical characteristics, including duration between mesh implantation and removal, reason for removal, and type of mesh, etc., were comparable between patients with and without diabetes, except for 11.6% higher body mass index in the former (P=.005). In patients with diabetes, suboptimal management of blood glucose following mesh implantation was observed, with 59% of the patients having loosely or poorly controlled glucose before and after the mesh removal. Ongoing chronic inflammatory response was observed in the excised mesh-tissue complexes in both groups, whereas markers for M2 macrophages (Mrc1 [mannose receptor C-type 1]) and helper T cells (Cd4 [CD4 molecule]) were increasingly expressed in the diabetic vs nondiabetic group (P=.023 and .047, respectively). Furthermore, the gene expressions of proinflammatory Ccl24 (C-C motif chemokine ligand 24) and Ccl13 (C-C motif chemokine ligand 13) were upregulated by 1.5- and 1.8-fold (P=.035 and .027, respectively), whereas that of Il1a (interleukin 1 alpha) was paradoxically downregulated by 2.2-fold (P=.037) in the diabetic vs nondiabetic group. Interestingly, strong positive correlations were found between the expression of Ccl13, Setdb2 (SET domain bifurcated histone lysine methyltransferase 2), and M2 macrophage markers, and between the expression of Il1a, Fosl1 (activator protein-1 transcription factor subunit), and dendritic cell markers, suggesting the involvement of macrophages and dendritic cells in the diabetes-dysregulated proinflammatory response. Supportively, apoptotic cell clearance, which is an important function of macrophages, appeared to be impaired in the diabetic group, with a significantly increased protein level of CALR (calreticulin), an "eat-me" signal on the surface of apoptotic cells (P=.031), along with an increase of AXL (AXL receptor tyrosine kinase) (P=.030), which mediates apoptotic cell clearance. CONCLUSION Diabetes was associated with altered long-term inflammatory response in complicated mesh implantation, particularly involving innate immune cell dysfunction. Suboptimal blood glycemic control following mesh implantation may contribute to this immune dysregulation, necessitating further mechanistic studies.
Collapse
Affiliation(s)
- Rui Liang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA.
| | - Eric R Shaker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Muyun Zhao
- Magee-Womens Research Institute, Pittsburgh, PA
| | | | - Pamela A Moalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA
| |
Collapse
|
6
|
Abstract
Metabolites produced by commensal gut microbes impact host health through their recognition by the immune system and their influence on numerous metabolic pathways. Notably, the gut microbiota can both transform and synthesize lipids as well as break down dietary lipids to generate secondary metabolites with host modulatory properties. Although lipids have largely been consigned to structural roles, particularly in cell membranes, recent research has led to an increased appreciation of their signaling activities, with potential impacts on host health and physiology. This review focuses on studies that highlight the functions of bioactive lipids in mammalian physiology, with a special emphasis on immunity and metabolism.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
8
|
Rudolph M, Wang Y, Simolka T, Huc-Claustre E, Dai L, Grotenbreg G, Besra GS, Shevchenko A, Shevchenko A, Zeissig S. Sortase A-Cleavable CD1d Identifies Sphingomyelins as Major Class of CD1d-Associated Lipids. Front Immunol 2022; 13:897873. [PMID: 35874748 PMCID: PMC9301999 DOI: 10.3389/fimmu.2022.897873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
CD1d is an atypical MHC class I molecule which binds endogenous and exogenous lipids and can activate natural killer T (NKT) cells through the presentation of lipid antigens. CD1d surveys different cellular compartments including the secretory and the endolysosomal pathway and broadly binds lipids through its two hydrophobic pockets. Purification of the transmembrane protein CD1d for the analysis of bound lipids is technically challenging as the use of detergents releases CD1d-bound lipids. To address these challenges, we have developed a novel approach based on Sortase A-dependent enzymatic release of CD1d at the cell surface of live mammalian cells, which allows for single step release and affinity tagging of CD1d for shotgun lipidomics. Using this system, we demonstrate that CD1d carrying the Sortase A recognition motif shows unimpaired subcellular trafficking through the secretory and endolysosomal pathway and is able to load lipids in these compartments and present them to NKT cells. Comprehensive shotgun lipidomics demonstrated that the spectrum and abundance of CD1d-associated lipids is not representative of the total cellular lipidome but rather characterized by preferential binding to long chain sphingolipids and glycerophospholipids. As such, sphingomyelin species recently identified as critical negative regulators of NKT cell activation, represented the vast majority of endogenous CD1d-associated lipids. Moreover, we observed that inhibition of endolysosomal trafficking of CD1d surprisingly did not affect the spectrum of CD1d-bound lipids, suggesting that the majority of endogenous CD1d-associated lipids load onto CD1d in the secretory rather than the endolysosomal pathway. In conclusion, we present a novel system for the analysis of CD1d-bound lipids in mammalian cells and provide new insight into the spectrum of CD1d-associated lipids, with important functional implications for NKT cell activation.
Collapse
Affiliation(s)
- Maren Rudolph
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Yuting Wang
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Theresa Simolka
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Emilie Huc-Claustre
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Lingyun Dai
- Department of Geriatrics, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, China
| | | | | | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- *Correspondence: Sebastian Zeissig,
| |
Collapse
|
9
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Schmitz I. Gadd45 Proteins in Immunity 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:69-86. [DOI: 10.1007/978-3-030-94804-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Giorello MB, Matas A, Marenco P, Davies KM, Borzone FR, Calcagno MDL, García-Rivello H, Wernicke A, Martinez LM, Labovsky V, Chasseing NA. CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients. Breast Cancer 2021; 28:1328-1339. [PMID: 34240315 DOI: 10.1007/s12282-021-01270-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Dendritic cells (DCs) are the most potent antigen-presenting cells that play a major role in initiating the antitumor immune response in different types of cancer. However, the prognostic significance of the accumulation of these cells in human early breast tumors is not totally clear. The aim of this study is to evaluate the prognostic relevance of CD1a( +) and CD83( +) dendritic cells in early breast cancer patients. METHODS We conducted immunohistochemical assays to determine the number of stromal CD1a( +) and CD83( +) DCs in primary tumors from early invasive ductal breast cancer patients, and analyzed their association with clinico-pathological characteristics. RESULTS Patients with high CD1a( +) DC number had lower risk of bone metastatic occurrence, as well as, longer disease-free survival (DFS), bone metastasis-free survival (BMFS) and overall survival (OS). Moreover, CD1a( +) DC number was an independent prognostic factor for BMFS and OS. In contrast, we found that patients with high number of CD83( +) DCs had lower risk of mix (bone and visceral)-metastatic occurrence. Likewise, these patients presented better prognosis with longer DFS, mix-MFS and OS. Furthermore, CD83( +) DC number was an independent prognostic factor for DFS and OS. CONCLUSION The quantification of the stromal infiltration of DCs expressing CD1a or CD83 in early invasive breast cancer patients serves to indicate the prognostic risk of developing metastasis in a specific site.
Collapse
Affiliation(s)
- María Belén Giorello
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina
| | - Ayelén Matas
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina
| | - Pablo Marenco
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina
| | - Kevin Mauro Davies
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina
| | - María de Luján Calcagno
- Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires, CP 1113, Buenos Aires, Argentina
| | - Hernán García-Rivello
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina
| | - Alejandra Wernicke
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Vivian Labovsky
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina.
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Consonni M, Garavaglia C, Grilli A, de Lalla C, Mancino A, Mori L, De Libero G, Montagna D, Casucci M, Serafini M, Bonini C, Häussinger D, Ciceri F, Bernardi M, Mastaglio S, Bicciato S, Dellabona P, Casorati G. Human T cells engineered with a leukemia lipid-specific TCR enables donor-unrestricted recognition of CD1c-expressing leukemia. Nat Commun 2021; 12:4844. [PMID: 34381053 PMCID: PMC8358059 DOI: 10.1038/s41467-021-25223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemia relapsing after chemotherapy plus allogeneic hematopoietic stem cell transplantation can be treated with donor-derived T cells, but this is hampered by the need for donor/recipient MHC-matching and often results in graft-versus-host disease, prompting the search for new donor-unrestricted strategies targeting malignant cells. Leukemia blasts express CD1c antigen-presenting molecules, which are identical in all individuals and expressed only by mature leukocytes, and are recognized by T cell clones specific for the CD1c-restricted leukemia-associated methyl-lysophosphatidic acid (mLPA) lipid antigen. Here, we show that human T cells engineered to express an mLPA-specific TCR, target diverse CD1c-expressing leukemia blasts in vitro and significantly delay the progression of three models of leukemia xenograft in NSG mice, an effect that is boosted by mLPA-cellular immunization. These results highlight a strategy to redirect T cells against leukemia via transfer of a lipid-specific TCR that could be used across MHC barriers with reduced risk of graft-versus-host disease. Leukaemia therapy may benefit from the use of antigens that are less restricted to individual donors. Here the authors engineered T cells with a TCR specific for a CD1c restricted lipid leukaemia antigen and show that they can protect against disease progression in mouse leukaemia xenograft models.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Alessandra Mancino
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital, Basel, Switzerland
| | - Daniela Montagna
- Foundation IRCCS Policlinico San Matteo; Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Serafini
- M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel Häussinger
- NMR-Laboratory, Department of Chemistry, University of Basel, Basel, Switzerland
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
| |
Collapse
|
13
|
Lee W, Mun S, Choi SY, Oh DY, Park YS, Han K. Comparative Analysis for Genetic Characterization in Korean Native Jeju Horse. Animals (Basel) 2021; 11:ani11071924. [PMID: 34203473 PMCID: PMC8300358 DOI: 10.3390/ani11071924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In modern times, horse breeds, mostly in horse racing, are the Thoroughbred varieties obtained by breeding three Godolphin Arabians with British mares in England. Especially in Jeju Island, Korea, Jeju horses have been introduced from Mongolia since the 13th century. They have contributed a lot to the agricultural community, but their population has been rapidly decreasing due to rapid agricultural industrialization. Therefore, we sympathize with Jeju horse-specific genetic variation and compare and analyze evolutionary correlations by utilizing Whole Genome Sequencing analysis to evaluate the genetic diversity of Jeju horses and preserve genetic information. We explored Jeju horse-specific genetic differences through a comparative analysis of large-capacity genomic data between the public database and a Thoroughbred variety. In order to adapt to the barren external environment, it is predicted that Jeju horses have experienced strong positive selection in the direction of accumulating many genetic variations, enough to cause functional differences in the eqCD1a6 gene to have an efficient immune function. In addition, we further validate the Jeju horse-specific single nucleotide polymorphisms in the aqCD1a6 gene by employing the digital PCR method, a diagnostic technique for genetic variations. Abstract The Jeju horse is a native Korean species that has been breeding on Jeju Island since the 13th century. Their shape has a distinct appearance from the representative species, Thoroughbred. Here, we performed a comparison of the Jeju horse and Thoroughbred horse for the identification of genome-wide structure variation by using the next-generation sequencing (NGS) technique. We generated an average of 95.59 Gb of the DNA sequence, resulting in an average of 33.74 X sequence coverage from five Jeju horses. In addition, reads obtained from WGRS data almost covered the horse reference genome (mapped reads 98.4%). Based on our results, we identified 1,244,064 single nucleotide polymorphisms (SNPs), 113,498 genomic insertions, and 114,751 deletions through bioinformatics analysis. Interestingly, the results of the WGRS comparison indicated that the eqCD1a6 gene contains signatures of positive natural selection in Jeju horses. The eqCD1a6 gene is known to be involved in immunity. The eqCD1a6 gene of Jeju horses commonly contained 296 variants (275 SNPs and 21 INDELs) that were compared with its counterpart of two Thoroughbred horses. In addition, we used LOAA, digital PCR, to confirm the possibility of developing a molecular marker for species identification using variant sites. As a result, it was possible to confirm the result of the molecular marker with high accuracy. Nevertheless, eqCD1a6 was shown to be functionally intact. Taken together, we have found significant genomic variation in these two different horse species.
Collapse
Affiliation(s)
- Wooseok Lee
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea; (W.L.); (S.M.)
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea; (W.L.); (S.M.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Song-Yi Choi
- Department of Pathology, Colleage of Medicine, Chungnam National University, Daejeon 34134, Korea;
| | - Dong-Yep Oh
- Livestock Research Institute, Gyeongsangbuk-Do, Yeongju 36052, Korea;
| | - Yong-Soo Park
- Department of Equine Industry, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea
- Correspondence: (Y.-S.P.); (K.H.); Tel.: +82-41-550-1298 (Y.-S.P. & K.H.)
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea; (W.L.); (S.M.)
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Correspondence: (Y.-S.P.); (K.H.); Tel.: +82-41-550-1298 (Y.-S.P. & K.H.)
| |
Collapse
|
14
|
Current Perspectives on the Use of off the Shelf CAR-T/NK Cells for the Treatment of Cancer. Cancers (Basel) 2021; 13:cancers13081926. [PMID: 33923528 PMCID: PMC8074108 DOI: 10.3390/cancers13081926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CAR T cells are a type of immunotherapy whereby a patient’s own cells are genetically modified to recognise and kill the patient’s own cancer cells. Currently, each patient has CAR T cells made from their own blood cells. This type of therapy has had a big impact on the treatment of blood cancers, however making an individual treatment from each patient is expensive and labour intensive. This review discusses the potential of making CAR T cells more widely available by producing them in large numbers from healthy donors. Abstract CAR T cells have revolutionised the treatment of haematological malignancies. Despite this, several obstacles still prohibit their widespread use and efficacy. One of these barriers is the use of autologous T cells as the carrier of the CAR. The individual production of CAR T cells results in large variation in the product, greater wait times for treatment and higher costs. To overcome this several novel approaches have emerged that utilise allogeneic cells, so called “off the shelf” CAR T cells. In this Review, we describe the different approaches that have been used to produce allogeneic CAR T to date, as well as their current pre-clinical and clinical progress.
Collapse
|
15
|
Burger F, Miteva K, Baptista D, Roth A, Fraga-Silva RA, Martel C, Stergiopulos N, Mach F, Brandt KJ. Follicular regulatory helper T cells control the response of regulatory B cells to a high-cholesterol diet. Cardiovasc Res 2021; 117:743-755. [PMID: 32219371 PMCID: PMC7898950 DOI: 10.1093/cvr/cvaa069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/14/2019] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS B cell functions in the process of atherogenesis have been investigated but several aspects remain to be clarified. METHODS AND RESULTS In this study, we show that follicular regulatory helper T cells (TFR) control regulatory B cell (BREG) populations in Apoe-/- mice models on a high-cholesterol diet (HCD). Feeding mice with HCD resulted in up-regulation of TFR and BREG cell populations, causing the suppression of proatherogenic follicular helper T cell (TFH) response. TFH cell modulation is correlated with the growth of atherosclerotic plaque size in thoracoabdominal aortas and aortic root plaques, suggesting that TFR cells are atheroprotective. During adoptive transfer experiments, TFR cells transferred into HCD mice decreased TFH cell populations, atherosclerotic plaque size, while BREG cell population and lymphangiogenesis are significantly increased. CONCLUSION Our results demonstrate that, through different strategies, both TFR and TFH cells modulate anti- and pro-atherosclerotic immune processes in an Apoe-/- mice model since TFR cells are able to regulate both TFH and BREG cell populations as well as lymphangiogenesis and lipoprotein metabolism.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/transplantation
- Cell Differentiation
- Cells, Cultured
- Cholesterol, Dietary
- Diet, High-Fat
- Disease Models, Animal
- Lymphangiogenesis
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Phenotype
- Plaque, Atherosclerotic
- T Follicular Helper Cells/immunology
- T Follicular Helper Cells/metabolism
- T Follicular Helper Cells/transplantation
- Mice
Collapse
Affiliation(s)
- Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute Research Center, Université de Montréal, 5000, Belanger St, Room S5100, Montreal, Quebec, Canada
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
16
|
Animal models for human group 1 CD1 protein function. Mol Immunol 2020; 130:159-163. [PMID: 33384157 DOI: 10.1016/j.molimm.2020.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
Abstract
The CD1 antigen presenting system is evolutionary conserved and found in mammals, birds and reptiles. Humans express five isoforms, of which CD1a, CD1b and CD1c represent the group 1 CD1-molecules. They are recognized by T cells that express diverse αβ-T cell receptors. Investigation of the role of group 1 CD1 function has been hampered by the fact that CD1a, CD1b and CD1c are not expressed by mice. However, other animals, such as guinea pigs or cattle, serve as alternative models and have established basic aspects of CD1-dependent, antimicrobial immune functions. Group 1 CD1 transgenic mouse models became available about ten years ago. In a series of seminal studies these mouse models coined the mechanistical understanding of the role of the corresponding CD1 restricted T cell responses. This review gives a short overview of available animal studies and the lessons that have been and still can be learned.
Collapse
|
17
|
Kusaka H, Kita S, Tadokoro T, Yoshida K, Kasai Y, Niiyama H, Fujimoto Y, Hanashima S, Murata M, Sugiyama S, Ose T, Kuroki K, Maenaka K. Efficient preparation of human and mouse CD1d proteins using silkworm baculovirus expression system. Protein Expr Purif 2020; 172:105631. [PMID: 32213313 DOI: 10.1016/j.pep.2020.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
CD1d is a major histocompatibility complex (MHC) class I-like glycoprotein and binds to glycolipid antigens that are recognized by natural killer T (NKT) cells. To date, our understanding of the structural basis for glycolipid binding and receptor recognition of CD1d is still limited. Here, we established a preparation method for the ectodomain of human and mouse CD1d using a silkworm-baculovirus expression system. The co-expression of human and mouse CD1d and β2-microglobulin (β2m) in the silkworm-baculovirus system was successful, but the yield of human CD1d was low. A construct of human CD1d fused with β2m via a flexible GS linker as a single polypeptide was prepared to improve protein yield. The production of this single-chained complex was higher (50 μg/larva) than that of the co-expression complex. Furthermore, differential scanning calorimetry revealed that the linker made the CD1d complex more stable and homogenous. These results suggest that the silkworm-baculovirus expression system is useful for structural and biophysical studies of CD1d in several aspects including low cost, easy handling, biohazard-free, rapid, and high yielding.
Collapse
Affiliation(s)
- Hiroki Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kouki Yoshida
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshiyuki Kasai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Harumi Niiyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shigeru Sugiyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Faculty of Science & Technology, Kochi University, Kochi, 780-8520, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
18
|
Garcia-Vilanova A, Chan J, Torrelles JB. Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Front Immunol 2019; 10:2909. [PMID: 31921168 PMCID: PMC6930167 DOI: 10.3389/fimmu.2019.02909] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis cell envelope has been evolving over time to make the bacterium transmissible and adaptable to the human host. In this context, the M. tuberculosis cell envelope contains a peripheral barrier full of lipids, some of them unique, which confer M. tuberculosis with a unique shield against the different host environments that the bacterium will encounter at the different stages of infection. This lipid barrier is mainly composed of glycolipids that can be characterized by three different subsets: trehalose-containing, mannose-containing, and 6-deoxy-pyranose-containing glycolipids. In this review, we explore the roles of these cell envelope glycolipids in M. tuberculosis virulence and pathogenesis, drug resistance, and further, how these glycolipids may dictate the M. tuberculosis cell envelope evolution from ancient to modern strains. Finally, we address how these M. tuberculosis cell envelope glycolipids are impacted by the host lung alveolar environment, their role in vaccination and masking host immunity, and subsequently the impact of these glycolipids in shaping how M. tuberculosis interacts with host cells, manipulating their immune response to favor the establishment of an infection.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John Chan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Jordi B. Torrelles
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
19
|
Invariant NKT Cells and Rheumatic Disease: Focus on Primary Sjogren Syndrome. Int J Mol Sci 2019; 20:ijms20215435. [PMID: 31683641 PMCID: PMC6862604 DOI: 10.3390/ijms20215435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Primary Sjogren syndrome (pSS) is a complex autoimmune disease mainly affecting salivary and lacrimal glands. Several factors contribute to pSS pathogenesis; in particular, innate immunity seems to play a key role in disease etiology. Invariant natural killer (NK) T cells (iNKT) are a T-cell subset able to recognize glycolipid antigens. Their function remains unclear, but studies have pointed out their ability to modulate the immune system through the promotion of specific cytokine milieu. In this review, we discussed the possible role of iNKT in pSS development, as well as their implications as future markers of disease activity.
Collapse
|
20
|
Correia-Neves M, Sundling C, Cooper A, Källenius G. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front Immunol 2019; 10:1968. [PMID: 31572351 PMCID: PMC6749014 DOI: 10.3389/fimmu.2019.01968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Glycolipids of the cell wall of Mycobacterium tuberculosis (Mtb) are important immunomodulators in tuberculosis. In particular, lipoarabinomannan (LAM) has a profound effect on the innate immune response. LAM and its structural variants can be recognized by and activate human CD1b-restricted T cells, and emerging evidence indicates that B cells and antibodies against LAM can modulate the immune response to Mtb. Anti-LAM antibodies are induced during Mtb infection and after bacille Calmette-Guerin (BCG) vaccination, and monoclonal antibodies against LAM have been shown to confer protection by passive administration in mice and guinea pigs. In this review, we describe the immune response against LAM and the potential use of the mannose-capped arabinan moiety of LAM in the construction of vaccine candidates against tuberculosis.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cooper
- Leicester Tuberculosis Research Group (LTBRG), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Jaramillo-Valverde L, Levano KS, Villanueva I, Hidalgo M, Cornejo M, Mazzetti P, Cornejo-Olivas M, Sanchez C, Poterico JA, Valdivia-Silva J, Guio H. Guillain-Barre syndrome outbreak in Peru: Association with polymorphisms in IL-17, ICAM1, and CD1. Mol Genet Genomic Med 2019; 7:e00960. [PMID: 31464097 PMCID: PMC6785440 DOI: 10.1002/mgg3.960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/08/2019] [Indexed: 11/07/2022] Open
Abstract
Background Guillain–Barre Syndrome (GBS) is considered a complex disorder with significant environmental effect and genetic susceptibility. Genetic polymorphisms in CD1E, CD1A, IL‐17, and/or ICAM1 had been proposed as susceptibility genetic variants for GBS mainly in Caucasian population. This study explores the association between selected polymorphisms in these genes and GBS susceptibility in confirmed GBS cases reported in mestizo population from northern Peru during the most recent GBS outbreak of May 2018. Methods A total of nine nonrelated cases and 11 controls were sequenced for the polymorphic regions of CD1A, CD1E, IL‐17, and ICAM1. Results We found a significant protective association between heterozygous GA genotype in ICAM1 (241Gly/Arg) and GBS (p < .047). IL‐17 was monomorphic in both controls and patients. No significant differences were found in the frequency of SNPs in CD1A and CD1E between the group with GBS patients and healthy controls. Conclusion ICAM1 polymorphisms might be considered as potential genetic markers of GBS susceptibility. Further studies with larger sample size will be required to validate these findings.
Collapse
Affiliation(s)
- Luis Jaramillo-Valverde
- INBIOMEDIC Research and Technological Center, Lima, Peru.,ALBIOTEC, Lima, Peru.,School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kelly S Levano
- INBIOMEDIC Research and Technological Center, Lima, Peru.,ALBIOTEC, Lima, Peru
| | | | | | | | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.,School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cesar Sanchez
- INBIOMEDIC Research and Technological Center, Lima, Peru
| | - Julio A Poterico
- Servicio de Genética, Instituto Nacional de Salud del Niño San Borja (INSN-SB), Lima, Peru
| | - Julio Valdivia-Silva
- Department of Bioengineering and Chemical Engineering, Universidad de Ingenieria y Tecnologia - UTEC, Lima, Peru
| | - Heinner Guio
- INBIOMEDIC Research and Technological Center, Lima, Peru.,Universidad Científica del Sur, Lima, Peru.,Universidad de Huánuco, Huánuco, Peru
| |
Collapse
|
22
|
Banach M, Robert J. Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer. Immunol Invest 2019; 48:737-758. [PMID: 31223047 DOI: 10.1080/08820139.2019.1631341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancers impose a significant health and economic burden. By harnessing the immune system, current immunotherapies have revolutionized the treatment against human cancers and potentially offer a long-term cure. Among others, innate-like T (iT) cells, including natural killer T cells, are promising candidates for immunotherapies. Unlike conventional T cells, iT cells regulate multiple immune processes and express an invariant T cell receptor that is shared among different individuals. However, the conditions that activate the pro- and antitumor functions of iT cells are partially understood. These gaps in knowledge hamper the use of iT cell in clinics. It might be beneficial to examine the roles of iT cells in an alternative animal model - the amphibian Xenopus whose immune system shares many similarities to that of mammals. Here, we review the iT cell biology in the context of mammalian cancers and discuss the challenges currently found in the field. Next, we introduce the advantages of Xenopus as a model to investigate the role of iT cells and interacting major histocompatibility complex (MHC) class I-like molecules in tumor immunity. In Xenopus, 2 specific iT cell subsets, Vα6 and Vα22 iT cells, recognize and fight tumor cells. Furthermore, our recent data reveal the complex functions of the Xenopus MHC class I-like (XNC) gene XNC10 in tumor immune responses. By utilizing reverse genetics, transgenesis, and MHC tetramers, we have a unique opportunity to uncover the relevance of XNC genes and iT cell in Xenopus tumor immunity.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Immunology & Microbiology, University of Colorado School of Medicine , Aurora , CO , USA.,Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| | - Jacques Robert
- Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
23
|
Yang G, Artiaga BL, Lomelino CL, Jayaprakash AD, Sachidanandam R, Mckenna R, Driver JP. Next Generation Sequencing of the Pig αβ TCR Repertoire Identifies the Porcine Invariant NKT Cell Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1981-1991. [PMID: 30777925 PMCID: PMC6606045 DOI: 10.4049/jimmunol.1801171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Swine represent the only livestock with an established invariant NKT (iNKT) cell-CD1d system. In this study, we exploited the fact that pig iNKT cells can be purified using a mouse CD1d tetramer reagent to establish their TCR repertoire by next generation sequencing. CD1d tetramer-positive pig cells predominantly expressed an invariant Vα-Jα rearrangement, without nontemplate nucleotide diversity, homologous to the Vα24-Jα18 and Vα14-Jα18 rearrangements of human and murine iNKT cells. The coexpressed β-chain used a Vβ segment homologous to the semivariant Vβ11 and Vβ8.2 segments of human and murine iNKT cell receptors. Molecular modeling found that contacts within CD1d and CDR1α that underlie fine specificity differences between mouse and human iNKT cells are conserved between pigs and humans, indicating that the response of porcine and human iNKT cells to CD1d-restricted Ags may be similar. Accordingly, pigs, which are an important species for diverse fields of biomedical research, may be useful for developing human-based iNKT cell therapies for cancer, infectious diseases, and other disorders. Our study also sequenced the expressed TCR repertoire of conventional porcine αβ T cells, which identified 48 Vα, 50 Jα, 18 Vβ, and 18 Jβ sequences, most of which correspond to human gene segments. These findings provide information on the αβ TCR usage of pigs, which is understudied and deserves further attention.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Bianca L Artiaga
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | | | - Ravi Sachidanandam
- Girihlet Inc., Oakland, CA 94609; and
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Mckenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611;
| |
Collapse
|
24
|
Wu J, Gong RL, Hu QF, Chen XT, Zhao W, Chen TX. Immunoregulatory effect of human β-defensin 1 on neonatal cord blood monocyte-derived dendritic cells and T cells. Mol Immunol 2019; 109:99-107. [PMID: 30921683 DOI: 10.1016/j.molimm.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
The relationship between breastfeeding and infant health has been well elucidated in past decades. Our previous study has shown that human β-defensin 1 (hBD-1) in human breast milk plays a protective role in reducing the incidence of upper respiratory infection in infants younger than 6 months. In the present study, we aim to reveal the mechanism underlying the protective role of hBD-1 by focusing on its immunoregulatory function in neonates. Cord blood (CB) from newborns' umbilical cords, which can simulate many of the neonatal symptoms, was used to study the immunomodulatory role of hBD-1 in neonates in vitro. Our results showed that hBD-1 promotes the GM-CSF- and IL-4-driven differentiation of neonatal umbilical CB monocytes to immature dendritic cells (DCs) and the final maturation of CB monocyte-derived DCs (moDCs) induced by LPS but not inflammatory cytokine production. In addition, hBD-1 inhibits apoptosis in neonatal moDCs through CCR6, which might be a possible mechanism of the hBD-1-induced phenotypes in moDCs. Furthermore, we found that hBD-1 promotes the proliferation and activation, but not the maturation, of neonatal CB CD4 + T cells. These results extend the immunoregulatory effects of hBD-1 and provide a potential mechanism for the protective role of hBD-1 in early infants, which will inform the development of infant nutrition, novel vaccines and anti-infective strategies in the future.
Collapse
Affiliation(s)
- Jing Wu
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ruo-Lan Gong
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qing-Feng Hu
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xu-Ting Chen
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Zhao
- Division of Allergy and Immunology, Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tong-Xin Chen
- Department of Rheumatology/Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
25
|
He P, Zhao C, Lu J, Zhang Y, Fang M, Du Y. Synthesis of 5-Thio-α-GalCer Analogues with Fluorinated Acyl Chain on Lipid Residue and Their Biological Evaluation. ACS Med Chem Lett 2019; 10:221-225. [PMID: 30783507 DOI: 10.1021/acsmedchemlett.8b00640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subclass of T cells that initiates the secretion of T helper 1 and 2 cytokines after recognizing CD1d protein presented glycolipid antigens. In this Letter, we designed and synthesized a novel series of CD1d ligand α-galactosylceramides (α-GalCers) in which the acyl chain backbone of the lipid was incorporated with fluorine atoms. The in vivo evaluation of immunostimulatory activities revealed that the synthesized α-5-thio-galactopyranosyl-N-perfluorooctanoyl phytosphingosine exhibited a remarkable potency toward selectively enhancing TH1 cytokine production with the IFN γ/IL-4 ratio of 9/1, while its perfluorotetradecanoyl counterpart showed TH2 profile with an IFN γ/IL-4 ratio of 0.59/1. The analogues synthesized here would be used as probes to study lipid-protein interactions in α-GalCer/CD1d complexes.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Chuanfang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
26
|
Rizvi ZA, Puri N, Saxena RK. Evidence of CD1d pathway of lipid antigen presentation in mouse primary lung epithelial cells and its up-regulation upon Mycobacterium bovis BCG infection. PLoS One 2018; 13:e0210116. [PMID: 30596774 PMCID: PMC6312317 DOI: 10.1371/journal.pone.0210116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Presentation of a prototype lipid antigen α-Galactosylceramide (αGC) was examined on primary epithelial cells derived from mouse lungs and on bronchoalveolar lavage (BAL) cells that essentially comprise alveolar macrophages. Presence of CD1d molecules coupled to αGC was demonstrated on both types of cells pre-treated with αGC, suggesting that both cell types are equipped to present lipid antigens. Internalization of Mycobacterium bovis Bacillus Calmette–Guérin (BCG: a prototype pathogen), a pre-requisite to the processing and presentation of protein as well as lipid antigens, was clearly demonstrated in primary lung epithelial (PLE) cells as well as BAL cells. Both PLE and BAL cells expressed CD1d molecule and a significant up-regulation of its expression occurred upon infection of these cells with BCG. Besides CD1d, the expression of other important molecules that participate in lipid antigen presentation pathway (i.e. microsomal triglyceride transfer protein (MTTP), scavenger receptor B1 (SR-B1) and Saposin) was also significantly upregulated in PLE and BAL cells upon BCG infection. In situ up-regulation of CD1d expression on lung epithelial cells was also demonstrated in the lungs of mice exposed intra-tracheally to BCG. Taken together these results suggest that lung epithelial cells may have the ability to present lipid antigens and this pathway seems to get significantly upregulated in response to BCG infection.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- * E-mail:
| | - Rajiv K. Saxena
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| |
Collapse
|
27
|
Wanjalla CN, McDonnell WJ, Koethe JR. Adipose Tissue T Cells in HIV/SIV Infection. Front Immunol 2018; 9:2730. [PMID: 30559739 PMCID: PMC6286992 DOI: 10.3389/fimmu.2018.02730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue comprises one of the largest organs in the body and performs diverse functions including energy storage and release, regulation of appetite and other neuroendocrine signaling, and modulation of immuity, among others. Adipocytes reside in a complex compartment where antigen, antigen presenting cells, innate immune cells, and adaptive immune cells interact locally and exert systemic effects on inflammation, circulating immune cell profiles, and metabolic homeostasis. T lymphocytes are a major component of the adipose tissue milieu which are altered in disease states such as obesity and human immunodeficiency virus (HIV) infection. While obesity, HIV infection, and simian immunodeficiency virus (SIV; a non-human primate virus similar to HIV) infection are accompanied by enrichment of CD8+ T cells in the adipose tissue, major phenotypic differences in CD4+ T cells and other immune cell populations distinguish HIV/SIV infection from obesity. Furthermore, DNA and RNA species of HIV and SIV can be detected in the stromal vascular fraction of visceral and subcutaneous adipose tissue, and replication-competent HIV resides in local CD4+ T cells. Here, we review studies of adipose tissue CD4+ and CD8+ T cell populations in HIV and SIV, and contrast the findings with those reported in obesity.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
29
|
Regulation of Humoral Immunity by CD1d-Restricted Natural Killer T Cells. Immunology 2018. [DOI: 10.1016/b978-0-12-809819-6.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
CD1d-Restricted Natural Killer T Cells Are Preserved in Indian Long-Term Nonprogressors. J Acquir Immune Defic Syndr 2017. [PMID: 28650939 DOI: 10.1097/qai.0000000000001322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells act as a bridge between innate and adaptive immune responses. Limited information is available regarding the role of NKT cells in the HIV disease progression especially HIV-1 C infection. METHODOLOGY NKT cells were characterized for their frequency and the activation, aging, exhaustion status, and their proliferation ability in 32 long-term nonprogressors (LTNPs), 40 progressors, 18 patients before and after suppressive combination antiretroviral therapy (cART) along with 35 HIV-1-negative subjects using multicolor flow cytometry. RESULTS The frequencies of total NKT cells and their subpopulation were significantly higher in LTNPs as compared with those obtained in progressors (P < 0.0001) and were significantly associated with higher CD4 counts and with lower plasma viral loads. The percentage of activated, aged, and exhausted NKT cells were significantly lower in LTNPs as compared with the progressors and inversely correlated with CD4 count and positively with plasma viral loads. The NKT cells from the LTNPs showed higher proliferation ability. The frequency and proliferation ability of the NKT cells were partially restored after 12 months of suppressive cART but still lower than the levels in LTNPs. The degree of restoration after cART was similar in both CD4 and CD4 NKT cells. CONCLUSION The findings demonstrate significant association of preserved NKT cells with the nonprogressive HIV infection and also showed that exhausted NKT cells are associated with disease progression. Further characterization of their functionality and assessment of sustenance in HIV infection will help to understand the HIV pathogenesis and to develop immune therapies.
Collapse
|
31
|
Fujii SI, Shimizu K. Exploiting Antitumor Immunotherapeutic Novel Strategies by Deciphering the Cross Talk between Invariant NKT Cells and Dendritic Cells. Front Immunol 2017; 8:886. [PMID: 28824620 PMCID: PMC5535079 DOI: 10.3389/fimmu.2017.00886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/11/2017] [Indexed: 01/04/2023] Open
Abstract
Immune checkpoint blockade therapy has prevailed for several types of cancer; however, its effectiveness as a single therapy is still limited. In principle, dendritic cells (DCs) should be able to control the post-therapy immune response, in particular since they can link the two major arms of the immune system: innate and adaptive immunity. Therefore, DCs would be a logical and ideal target for the development of immunotherapies. Since DCs are not activated in the steady state, an adjuvant to convert their function from tolerogenic to immunogenic would be desirable. Upon ligand activation, invariant natural killer T (iNKT) cells simultaneously activate NK cells and also energize the DCs, resulting in their full maturation. To utilize such iNKT-licensed "fully" matured DCs as adjuvants, mechanisms of both intercellular communication between DC subsets and iNKT cells and intracellular molecular signaling in DCs have to be clarified and optimized. To generate both innate and adaptive immunity against cancer, a variety of strategies with the potential to target iNKT-licensed DCs in situ have been studied. The benchmark of success in these studies, each with distinct approaches, will be the development of functional NK cells and cytotoxic T cells (CTLs) as well as generation of long-term, memory CTL. In this review, we provide a framework for NKT-mediated immunotherapy through selective DC targeting in situ, describe progress in the design of licensed therapies for iNKT cell targeting of DCs, and highlight the challenge to provide maximal benefit to patients.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
32
|
Popovic ZV, Rabionet M, Jennemann R, Krunic D, Sandhoff R, Gröne HJ, Porubsky S. Glucosylceramide Synthase Is Involved in Development of Invariant Natural Killer T Cells. Front Immunol 2017; 8:848. [PMID: 28785267 PMCID: PMC5519558 DOI: 10.3389/fimmu.2017.00848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a unique population of CD1d-restricted T lymphocytes expressing an invariant T cell receptor encoded by Vα14-Jα18 and Vα24-Jα18 gene segments in mice and humans, respectively. Recognition of CD1d-loaded endogenous lipid antigen(s) on CD4/CD8-double positive (DP) thymocytes is essential for the development of iNKT cells. The lipid repertoire of DP thymocytes and the identity of the decisive endogenous lipid ligands have not yet been fully elucidated. Glycosphingolipids (GSL) were implicated to serve as endogenous ligands. However, further in vivo investigations were hampered by early embryonal lethality of mice deficient for the key GSL-synthesizing enzyme glucosylceramide (GlcCer) synthase [GlcCer synthase (GCS), EC 2.4.1.80]. We have now analyzed the GSL composition of DP thymocytes and shown that GlcCer represented the sole neutral GSL and the acidic fraction was composed of gangliosides. Furthermore, we report on a mouse model that by combination of Vav-promoter-driven iCre and floxed GCS alleles (VavCreGCSf/f) enabled an efficient depletion of GCS-derived GSL very early in the T cell development, reaching a reduction by 99.6% in DP thymocytes. Although the general T cell population remained unaffected by this depletion, iNKT cells were reduced by approximately 50% in thymus, spleen, and liver and showed a reduced proliferation and an increased apoptosis rate. The Vβ-chains repertoire and development of iNKT cells remained unaltered. The GSL-depletion neither interfered with expression of CD1d, SLAM, and Ly108 molecules nor impeded the antigen presentation on DP thymocytes. These results indicate that GlcCer-derived GSL, in particular GlcCer, contribute to the homeostatic development of iNKT cells.
Collapse
Affiliation(s)
- Zoran V Popovic
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mariona Rabionet
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Roger Sandhoff
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Porubsky
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
33
|
Vartabedian VF, Savage PB, Teyton L. The processing and presentation of lipids and glycolipids to the immune system. Immunol Rev 2017; 272:109-19. [PMID: 27319346 DOI: 10.1111/imr.12431] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The recognition of CD1-lipid complexes by T cells was discovered 20 years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen-binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation.
Collapse
Affiliation(s)
- Vincent F Vartabedian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
34
|
Harnessing the CD1 restricted T cell response for leukemia adoptive immunotherapy. Cytokine Growth Factor Rev 2017; 36:117-123. [PMID: 28712863 DOI: 10.1016/j.cytogfr.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Disease recurrence following chemotherapy and allogeneic hematopoietic cell transplantation is the major unmet clinical need of acute leukemia. Adoptive cell therapy (ACT) with allogeneic T lymphocytes can control recurrences at the cost of inducing detrimental GVHD. Targeting T cell recognition on leukemia cells is therefore needed to overcome the problem and ensure safe and durable disease remission. In this review, we discuss adoptive cells therapy based on CD1-restricted T cells specific for tumor associated self-lipid antigens. CD1 molecules are identical in every individual and expressed essentially on mature hematopoietic cells and leukemia blasts, but not by parenchymatous cells, while lipid antigens are enriched in malignant cells and unlike to mutate upon immune-mediated selective pressure. Redirecting T cells against self-lipids presented by CD1 molecules can thus provide an appealing cell therapy strategy for acute leukemia that is patient-unrestricted and can minimize risks for GVHD, implying potential prognostic improvement for this cancer.
Collapse
|
35
|
Mason EF, Pozdnyakova O, Li B, Dudley G, Dorfman DM. Flow Cytometric Patterns of CD200 and CD1d Expression Distinguish CD10-Negative, CD5-Negative Mature B-Cell Lymphoproliferative Disorders. Am J Clin Pathol 2017; 148:33-41. [PMID: 28575142 DOI: 10.1093/ajcp/aqx041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The importance of distinguishing mature B-cell lymphoproliferative disorders (B-LPDs) is highlighted by the distinct treatments used for and varying prognoses seen in association with these different diseases. Immunophenotyping allows for accurate and efficient differentiation of many B-LPDs. Recently, we showed that CD200 is highly expressed in hairy cell leukemia (HCL) but not in marginal zone lymphoma (MZL), lymphoplasmacytic lymphoma (LPL), or hairy cell leukemia-variant (HCL-v). Here, we assessed the usefulness of a flow cytometric panel combining CD200 and CD1d with CD25, CD103, and CD11c to distinguish CD10-, CD5- B-LPDs. METHODS We analyzed the expression of CD200 and CD1d by flow cytometric analysis in 79 cases of CD10-, CD5- mature B-LPDs. RESULTS Distinct patterns of CD200 and CD1d expression were seen in the examined B-LPDs. HCL showed bright positivity for CD200 along with positive staining for CD1d, whereas HCL-v showed low levels of expression for both markers. LPL demonstrated positive staining for CD200 in combination with dim to negative staining for CD1d. In contrast, MZL was commonly positive for CD1d and negative for CD200. CONCLUSIONS Flow cytometric analysis of CD200 and CD1d, along with CD25, CD103, and CD11c, can aid in the diagnosis of CD10-, CD5- mature B-LPDs.
Collapse
Affiliation(s)
- Emily F Mason
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Betty Li
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Graham Dudley
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy. J Immunol Res 2017; 2017:6305439. [PMID: 28676864 PMCID: PMC5476886 DOI: 10.1155/2017/6305439] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury caused by ischemia and subsequent reperfusion is associated with a high rate of mortality and morbidity. Ischemia/reperfusion injury in kidney transplantation causes delayed graft function and is associated with more frequent episodes of acute rejection and progression to chronic allograft nephropathy. Alloantigen-independent inflammation is an important process, participating in pathogenesis of injurious response, caused by ischemia and reperfusion. This innate immune response is characterized by the activity of classical cells belonging to the immune system, such as neutrophils, macrophages, dendritic cells, lymphocytes, and also tubular epithelial cells and endothelial cells. These immune cells not only participate in inflammation after ischemia exerting detrimental influence but also play a protective role in the healing response from ischemia/reperfusion injury. Delineating of complex mechanisms of their actions could be fruitful in future prevention and treatment of ischemia/reperfusion injury. Among numerous so far conducted experiments, observed immunomodulatory role of adenosine and adenosine receptor agonists in complex interactions of dendritic cells, natural killer T cells, and T regulatory cells is emphasized as promising in the treatment of kidney ischemia/reperfusion injury. Potential pharmacological approaches which decrease NF-κB activity and antagonize mechanisms downstream of activated Toll-like receptors are discussed.
Collapse
|
37
|
Jurewicz A, Domowicz M, Galazka G, Raine CS, Selmaj K. Multiple sclerosis: Presence of serum antibodies to lipids and predominance of cholesterol recognition. J Neurosci Res 2017; 95:1984-1992. [DOI: 10.1002/jnr.24062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Jurewicz
- Department of Neurology; Medical University of Lodz; Lodz Poland
| | | | - Grazyna Galazka
- Department of Neurology; Medical University of Lodz; Lodz Poland
| | - Cedric S. Raine
- Department of Pathology; Albert Einstein College of Medicine; New York USA
| | - Krzysztof Selmaj
- Department of Neurology; Medical University of Lodz; Lodz Poland
| |
Collapse
|
38
|
Das I, Padhi A, Mukherjee S, Dash DP, Kar S, Sonawane A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. NANOTECHNOLOGY 2017; 28:165101. [PMID: 28206982 DOI: 10.1088/1361-6528/aa60fd] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.
Collapse
Affiliation(s)
- Ishani Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | | | | | | | | |
Collapse
|
39
|
Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 2017; 8:407. [PMID: 28424703 PMCID: PMC5380737 DOI: 10.3389/fimmu.2017.00407] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Jain VK, Ramapanicker R. Diastereoselective synthesis of D-threo-sphinganine, L-erythro-sphinganine and (−)-spisulosine through asymmetric α-hydroxylation of a higher homologue of Garner's aldehyde. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Echeverri Tirado LC, Yassin LM. B cells interactions in lipid immune responses: implications in atherosclerotic disease. Lipids Health Dis 2017; 16:30. [PMID: 28166809 PMCID: PMC5295187 DOI: 10.1186/s12944-016-0390-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is considered as an inflammatory and chronic disorder with an important immunologic component, which underlies the majority of cardiovascular diseases; condition that belongs to a group of noncommunicable diseases that to date and despite of prevention and treatment approaches, they remain as the main cause of death worldwide, with 17.5 million of deaths every year. The impact of lipids in human health and disease is taking center stage in research, due to lipotoxicity explained by elevated concentration of circulating lipids, in addition to altered adipose tissue metabolism, and aberrant intracellular signaling. Immune response and metabolic regulation are highly integrated systems and the proper function of each one is dependent on the other. B lymphocytes express a variety of receptors that can recognize foreign, endogenous or modified self-antigens, among them oxidized low density lipoproteins, which are the main antigens in atherosclerosis. Mechanisms of B cells to recognize, remove and present lipids are not completely clear. However, it has been reported that B cell can recognize/remove lipids through a range of receptors, such as LDLR, CD1d, FcR and SR, which might have an atheroprotector or proatherogenic role during the course of atherosclerotic disease. Pertinent literature related to these receptors was examined to inform the present conclusions.
Collapse
Affiliation(s)
| | - Lina M Yassin
- Facultad de Medicina, Universidad CES, Calle 10 A Nro. 22-04, Medellín, Colombia.
| |
Collapse
|
42
|
Schjaerff M, Keller SM, Affolter VK, Kristensen AT, Moore PF. Cellular endocytic compartment localization of expressed canine CD1 molecules. Vet Immunol Immunopathol 2016; 182:11-21. [PMID: 27863541 DOI: 10.1016/j.vetimm.2016.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 08/03/2016] [Accepted: 08/31/2016] [Indexed: 11/27/2022]
Abstract
CD1 molecules are glycoproteins present primarily on dendritic cells (DCs), which recognize and present a variety of foreign- and self-lipid antigens to T-cells. Humans have five different CD1 isoforms that survey distinct cellular compartments allowing for recognition of a large repertoire of lipids. The canine CD1 family consists of seven functional CD1 molecules (canine CD1a2, CD1a6, CD1a8, CD1a9, CD1b, CD1c and CD1e) and one presumed non-functional isoform (canine CD1d) due to a disrupted gene structure. The aim of this study was to describe in vitro steady-state localization ptterns of canine CD1 isoforms and their correlation with endocytic organelles. GFP-fused canine CD1 293T cell transfectants were stained with markers for early endocytic compartments (EEA-1) and late endocytic/lysosomal compartments (LAMP-1), respectively, and analyzed by confocal microscopy. Canine CD1a molecules localized to the plasma membrane and partially to the early endocytic compartment, but not to late endosomes or lysosomes. In contrast, canine CD1b was highly associated with late endosomal/lysosomal compartments and showed a predominant intracellular expression pattern. Canine CD1c protein expression localized more promiscuously to both the early endosomal compartments and the late endosomal/lysosomal compartments. The canine CD1e molecule showed a strictly intracellular expression with a partial overlap with late endosomal/lysosomal compartments. Lastly, canine CD1d was expressed abnormally showing only a diminished GFP expression. In conclusion, canine CD1 transfectants show distinct localization patterns that are similar to human CD1 proteins with the exception of the canine CD1d isoform, which most likely is non-functional. These findings imply that canine CD1 localization overall resembles human CD1 trafficking patterns. This knowledge is important for the understanding of lipid antigen-receptor immunity in the dog.
Collapse
Affiliation(s)
- Mette Schjaerff
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA; Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, 1870 Frederiksberg, Denmark
| | - Stefan M Keller
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Verena K Affolter
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Annemarie T Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, 1870 Frederiksberg, Denmark
| | - Peter F Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA.
| |
Collapse
|
43
|
Shen Y, Hu W, Wei Y, Feng Z, Yang Q. Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells. Vet Microbiol 2016; 198:1-8. [PMID: 28061998 DOI: 10.1016/j.vetmic.2016.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Mycoplasma hyopneumoniae (Mhp) is the primary etiological agent responsible for swine enzootic pneumonia (EP), a disease that cause tremendous economic losses all over the swine industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium. DCs uptake and present antigens to T cells, to initiate protective immune responses or generate immune-mediated pathology in different infections. In this study, we investigated the changes in the different DCs subpopulations, T cells and SIgA positive cells counts in porcine nasal cavity after long time Mhp infection. We further evaluated the role of porcine DCs in Mhp exposure. Our results showed that the number of SLA-II-DR+SWC3a+DCs, SLA-II-DR+CD11b+ DCs, T cells, SIgA positive cells in nasal cavity were decreased after Mhp 28 days infection in vivo experiment. The antigen presenting ability of DCs were inhibited by Mhp exposure. DCs couldn't activate T-cell proliferation by down-regulating the antigen presenting molecule CD1a expression and promoting high level of IL-10 production. Further more, the expression levels of IL-12 and IFN-γ in DCs were decreased, suggesting that DCs favour for Th2 immune response development after Mhp exposure in vitro. Taken together, Mhp infection impairs the immune function which allows the persistence of Mhp and cause predispose pigs to secondary infections. The decline of DCs presentation ability is the reason why dysfunction and persistence in Mhp infection. These findings are benefit for exploring the pathogenic mechanisms of Mhp in pigs.
Collapse
Affiliation(s)
- Yumeng Shen
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Weiwei Hu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing 210014, PR China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing 210014, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
44
|
Passos LSA, Villani FNA, Magalhães LMD, Gollob KJ, Antonelli LRDV, Nunes MCP, Dutra WO. Blocking of CD1d Decreases Trypanosoma cruzi-Induced Activation of CD4-CD8- T Cells and Modulates the Inflammatory Response in Patients With Chagas Heart Disease. J Infect Dis 2016; 214:935-44. [PMID: 27368347 DOI: 10.1093/infdis/jiw266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
The control of inflammatory responses to prevent the deadly cardiac pathology in human Chagas disease is a desirable and currently unattained goal. Double-negative (DN) T cells are important sources of inflammatory and antiinflammatory cytokines in patients with Chagas heart disease and those with the indeterminate clinical form of Chagas disease, respectively. Given the importance of DN T cells in immunoregulatory processes and their potential as targets for controlling inflammation-induced pathology, we studied the involvement of CD1 molecules in the activation and functional profile of Trypanosoma cruzi-specific DN T cells. We observed that parasite stimulation significantly increased the expression of CD1a, CD1b, CD1c, and CD1d by CD14(+) cells from patients with Chagas disease. Importantly, among the analyzed molecules, only CD1d expression showed an association with the activation of DN T cells, as well as with worse ventricular function in patients with Chagas disease. Blocking of CD1d-mediated antigen presentation led to a clear reduction of DN T-cell activation and a decrease in the expression of interferon γ (IFN-γ) by DN T cells. Thus, our results showed that antigen presentation via CD1d is associated with activation of DN T cells in Chagas disease and that CD1d blocking leads to downregulation of IFN-γ by DN T cells from patients with Chagas heart disease, which may be a potential target for preventing progression of inflammation-mediated dilated cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | - Kenneth J Gollob
- Brazilian Research Institute for Scientific Advancement Instituto Nacional de Ciência e Tecnologia Doenças Tropicais Nucleo de Ensino e Pesquisa, Instituto Mario Penna
| | | | | | - Walderez Ornelas Dutra
- Department of Morphology Parasitology Graduate Program, Institute of Biological Sciences Instituto Nacional de Ciência e Tecnologia Doenças Tropicais
| |
Collapse
|
45
|
Are Cutaneous Reactions to Fly Larvae Mediated by CD4+, TIA+ NK1.1 T Cells? J Cutan Med Surg 2016. [DOI: 10.1177/120347540100500506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Although there have been reports of fly larvae in wounds and as isolated primary infestations, there have been only rare reports documenting reactions to the larvae within the skin in humans and animals. There have been no reports documenting the histopathologic and immunohistochemical characteristics of the inflammatory infiltrate. Objective: We present a patient who developed local pruritus, erythema, and swelling approximately three weeks after infestation by a fly larva within the scalp. Histopathologically the biopsy site showed a mixed infiltrate containing lymphoid cells and numerous eosinophils. Immunohistochemical stains showed predominantly CD4+ T cells expressing an αβ T-cell receptor (TCR) of which approximately 30% coexpressed T-cell intracellular antigen (TIA) and CD56. In addition, there were approximately 5% of these CD4+ T cells which coexpressed CD30. Conclusions: Histopathologic and immunohistochemical findings are consistent with an effector cell population of cytotoxic CD4+ T cells that produce a T-helper 2 cytokine pattern. The phenotype of this subset of T cells is unique and among its characteristics is that antigens—usually nonprotein antigens—are presented to these CD4+, TIA+ natural killer (NK)1.1T cells by CD1d molecules.
Collapse
|
46
|
Rogers SL, Kaufman J. Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems. Immunogenetics 2016; 68:499-513. [PMID: 27457887 PMCID: PMC5002281 DOI: 10.1007/s00251-016-0938-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
CD1 genes encode cell surface molecules that present lipid antigens to various kinds of T lymphocytes of the immune system. The structures of CD1 genes and molecules are like the major histocompatibility complex (MHC) class I system, the loading of antigen and the tissue distribution for CD1 molecules are like those in the class II system, and phylogenetic analyses place CD1 between class I and class II sequences, altogether leading to the notion that CD1 is a third ancient system of antigen presentation molecules. However, thus far, CD1 genes have only been described in mammals, birds and reptiles, leaving major questions as to their origin and evolution. In this review, we recount a little history of the field so far and then consider what has been learned about the structure and functional attributes of CD1 genes and molecules in marsupials, birds and reptiles. We describe the central conundrum of CD1 evolution, the genomic location of CD1 genes in the MHC and/or MHC paralogous regions in different animals, considering the three models of evolutionary history that have been proposed. We describe the natural killer (NK) receptors NKR-P1 and ligands, also found in different genomic locations for different animals. We discuss the consequence of these three models, one of which includes the repudiation of a guiding principle for the last 20 years, that two rounds of genome-wide duplication at the base of the vertebrates provided the extra MHC genes necessary for the emergence of adaptive immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Sally L Rogers
- Department of Biosciences, University of Gloucestershire, Cheltenham, GL50 4AZ, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|
47
|
Felley L, Gumperz JE. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood? Immunogenetics 2016; 68:611-22. [PMID: 27393663 DOI: 10.1007/s00251-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023]
Abstract
The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets-CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells-may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the "lipidome," these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.
Collapse
Affiliation(s)
- Laura Felley
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Hussien Y, Sanna A, Söderström M, Link H, Huang YM. Multiple sclerosis: expression of C D1a and production of IL-12 p70 and IFN-γ by blood mononuclear cells in patients on combination therapy with IFN-β and glatiramer acetate compared to monotherapy with IFN-β. Mult Scler 2016; 10:16-25. [PMID: 14760948 DOI: 10.1191/1352458504ms979oa] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Current therapy of multiple sclerosis (MS) with interferon-beta (IFN-b) or glatiramer acetate (GA) has modest effects on the course of MS. Both compounds affect several immune variables, like expression of cell surface molecules and cytokine levels. Here we compared untreated MS, therapy with IFN-b alone and combined with GA, and healthy controls (HC), regarding expression on HLA -DR+ blood mononuclear cells (MNC) of C D1a that is a cell surface molecule with capacity to present glycolipids to T cells, and of C D80 and C D86 which are costimulatory molecules that activate Th1 and Th2 responses. C ytokine production by MNC was also measured. Flow cytometry and ELISA were used. C ross-sectional comparisons revealed that untreated MS patients had higher C D1a+ HLA -DR+ MNC and lower IL-10 production compared to patients treated with IFN-b or IFN-b+G A or HC. Untreated MS patients also had higher spontaneous IFN-g and IL-12p70 production compared to MS patients treated with IFN-b+G A or HC, but not when compared to MS patients on monotherapy with IFN-b. Low C D1a+ HLA -DR+ MNC and low spontaneous production of IL-12p70 and IFN-g were more pronounced in patients treated with IFN-b+G A than with IFN-b alone. In order to clarify whether these changes reflect disease activity or treatment effects, we performed a follow up study. Nineteen MS patients with disease progression, despite monotherapy with IFN-b for more than one year, were re-examined after one to three and four to six months of treatment with IFN-b+G A. This combination therapy was associated with normalization of C D1a+ HLA -DR+ MNC, IL-12p70 and IFN-g. It remains to be shown whether these immunological changes imply a clinical benefit. Follow up studies of immune variables versus clinical effects during combined therapy of MS with IFN-b+G A are ongoing.
Collapse
Affiliation(s)
- Yassir Hussien
- Neurotec Department, Division of Neuroimmunology, Karolinska Institute, Alfred Nobels Alle 10, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
49
|
Aureli A, Oumhani K, Del Beato T, El Aouad R, Piancatelli D. CD1A, D and E gene polymorphisms in a North African population from Morocco. Hum Immunol 2016; 77:566-70. [PMID: 27156638 DOI: 10.1016/j.humimm.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
CD1 molecules are specialized in capturing and presenting lipids and glycolipids to distinct subsets of T and NKT cells. Glycolipid presentation could play a significant role in the immune response against microbial infections. There are five closely linked CD1 genes in humans, named CD1A, B, C, D, and E, which all show a limited polymorphism. In this study, exon 2 polymorphisms of CD1A, CD1D and CD1E were investigated and allele, genotype and haplotype frequencies of these loci were reported in a Moroccan population. A comparison with allele, genotype and haplotype frequencies observed in other geographic areas was also performed. Results confirmed the presence of ethnic differences in CD1 polymorphism, mainly in CD1D (in this population two additional CD1D variant alleles, CD1D(∗)03 and CD1D(∗)04, were described) and E genes. These data could be useful to evaluate a possible pathogenetic role of CD1 in diseases. Increasing the knowledge in this field may offer possibilities for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, UOS L'Aquila, Italy
| | - Khadija Oumhani
- Laboratoire d'Immunologie, Institut National D'Hygiene, Rabat, Morocco
| | | | - Rajae El Aouad
- Hassan II Academy of Science and Technology, Rabat, Morocco
| | | |
Collapse
|
50
|
Camilloni C, Sala BM, Sormanni P, Porcari R, Corazza A, De Rosa M, Zanini S, Barbiroli A, Esposito G, Bolognesi M, Bellotti V, Vendruscolo M, Ricagno S. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Sci Rep 2016; 6:25559. [PMID: 27150430 PMCID: PMC4858664 DOI: 10.1038/srep25559] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 01/27/2023] Open
Abstract
A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | - Alessandra Corazza
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Matteo De Rosa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Zanini
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gennaro Esposito
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy.,Science and Math Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.,CIMAINA and CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | | | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|