1
|
Spiller PF, Morgan HJN, Navegantes LCC, Machado BH, da Silva MP, Moraes DJA. Short-term sustained hypoxia distinctly affects subpopulations of carotid body glomus cells from rats. Am J Physiol Cell Physiol 2025; 328:C1346-C1365. [PMID: 40094217 DOI: 10.1152/ajpcell.00967.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
The main O2 arterial chemoreceptors are the carotid bodies (CBs), which mediate hyperventilation in response to short-term sustained hypoxia (SH). CBs contain glomus cells expressing K+ channels, which are inhibited by hypoxia, leading to neurotransmitter release. ATP released by CBs and type II cells has been considered essential for chemosensory processing under physiological and pathophysiological conditions. Although the systemic effects of chronic activation of CBs by SH are well known, the early (first 24 h) cellular and molecular mechanisms in CBs as well as the effects of short-term SH on populations of glomus cells are still poorly understood. Here, we show that SH (10% O2 for 24 h) depolarizes the membrane potential of one population of glomus cells, mediated by increases in inward current, but does not affect the ATP release by CBs. In addition, SH promotes a reduction in their maximum outward current, mediated by voltage-gated K+ channels. SH also affected sensitivity to acute hypoxia in one glomus cell subpopulation. As for the content of mitochondrial proteins, we observed increases in the citrate synthase, Tom-20, and succinate dehydrogenase (mitochondrial complex II) per cell of CBs after SH. Our results demonstrate important cellular and molecular mechanisms of plasticity in CBs from rats after only 24 h of SH, which may contribute to the generation of cardiovascular and ventilatory adjustments observed in this experimental model.NEW & NOTEWORTHY Our study revealed two subpopulations of glomus cells of carotid bodies (CBs) with specific electrophysiological properties, which were differentially affected by short-term sustained hypoxia (SH; 10% O2 for 24 h). Our experiments showed that SH also affected the sensitivity to acute hypoxia of these glomus cell subpopulations differently. Our molecular analyses allowed us to identify important adaptations in the content of CB mitochondrial proteins that participate in the Krebs cycle and form the electron transport chain.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique J N Morgan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Rajput I, Rajendran VM, Nickerson AJ, Lodge JPA, Sandle GI. Somatostatin peptides prevent increased human colonic epithelial permeability induced by hypoxia. Am J Physiol Gastrointest Liver Physiol 2024; 327:G701-G710. [PMID: 39226584 PMCID: PMC11559641 DOI: 10.1152/ajpgi.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Mesenteric ischemia increases gut permeability and bacterial translocation. In human colon, chemical hypoxia induced by 2,4-dinitrophenol (DNP) activates basolateral intermediate conductance K+ (IK) channels (designated KCa3.1 or KCNN4) and increases paracellular shunt conductance/permeability (GS), but whether this leads to increased macromolecule permeability is unclear. Somatostatin (SOM) inhibits IK channels and prevents hypoxia-induced increases in GS. Thus, we examined whether octreotide (OCT), a synthetic SOM analog, prevents hypoxia-induced increases GS in human colon and hypoxia-induced increases in total epithelial conductance (GT) and permeability to FITC-dextran 4000 (FITC) in rat colon. The effects of serosal SOM and OCT on increases in GS induced by 100 µM DNP were compared in isolated human colon. The effects of OCT on DNP-induced increases in GT and transepithelial FITC movement were evaluated in isolated rat distal colon. GS in DNP-treated human colon was 52% greater than in controls (P = 0.003). GS was similar when 2 µM SOM was added after or before DNP treatment, in both cases being less (P < 0.05) than with DNP alone. OCT (0.2 µM) was equally effective preventing hypoxia-induced increases in GS, whether added after or before DNP treatment. In rat distal colon, DNP significantly increased GT by 18% (P = 0.016) and mucosa-to-serosa FITC movement by 43% (P = 0.01), and 0.2 µM OCT pretreatment completely prevented these changes. We conclude that OCT prevents hypoxia-induced increases in paracellular/macromolecule permeability and speculate that it may limit ischemia-induced gut hyperpermeability during abdominal surgery, thereby reducing bacterial/bacterial toxin translocation and sepsis.NEW & NOTEWORTHY Somatostatin (SOM, 2 µM) and octreotide (OCT, 0.2 µM, a long-acting synthetic analog of SOM) were equally effective in preventing chemical hypoxia-induced increases in paracellular shunt permeability/conductance in isolated human colon. In rat distal colon, chemical hypoxia significantly increased total epithelial conductance and transepithelial movement of FITC-dextran 4000, changes completely prevented by 0.2 µM OCT. OCT may prevent or limit gut ischemia during abdominal surgery, thereby decreasing the risk of bacterial/bacterial toxin translocation and sepsis.
Collapse
Affiliation(s)
- Ibrahim Rajput
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Andrew J Nickerson
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - J Peter A Lodge
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Geoffrey I Sandle
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
3
|
Poore CP, Yang J, Wei S, Fhu CK, Bichler Z, Wang J, Soong TW, Liao P. Enhanced isradipine sensitivity in vascular smooth muscle cells due to hypoxia-induced Ca v1.2 splicing and RbFox1/Fox2 downregulation. FEBS J 2024; 291:4265-4285. [PMID: 38794806 DOI: 10.1111/febs.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Calcium influx via the L-type voltage-gated Cav1.2 calcium channel in smooth muscle cells regulates vascular contraction. Calcium channel blockers (CCBs) are widely used to treat hypertension by inhibiting Cav1.2 channels. Using the vascular smooth muscle cell line, A7r5 and primary culture of cerebral vascular smooth muscle cells, we found that the expression and function of Cav1.2 channels are downregulated during hypoxia. Furthermore, hypoxia induces structural changes in Cav1.2 channels via alternative splicing. The expression of exon 9* is upregulated, whereas exon 33 is downregulated. Such structural alterations of Cav1.2 channels are caused by the decreased expression of RNA-binding proteins RNA-binding protein fox-1 homolog 1 and 2 (RbFox1 and RbFox2). Overexpression of RbFox1 and RbFox2 prevents hypoxia-induced exon 9* inclusion and exon 33 exclusion. Importantly, such structural alterations of the Cav1.2 channel partly contribute to the enhanced sensitivity of Cav1.2 to isradipine (a CCB) under hypoxia. Overexpression of RbFox1 and RbFox2 successfully reduces isradipine sensitivity in hypoxic smooth muscle cells. Our results suggest a new strategy to manage ischemic diseases such as stroke and myocardial infarction.
Collapse
MESH Headings
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Alternative Splicing
- Down-Regulation
- Rats
- Cell Hypoxia/genetics
- Exons/genetics
- Mice
- Calcium Channel Blockers/pharmacology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shunhui Wei
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Chee Kong Fhu
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Zoë Bichler
- Neurobehavioural Phenotyping Core, Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| |
Collapse
|
4
|
Soor D, Tigert LR, Khodikian E, Bozai A, Yoon GR, Porteus CS. Changes in gill neuroepithelial cells and morphology of threespine stickleback (Gasterosteus aculeatus) to hypoxia and simulated ocean acidification. J Comp Physiol B 2024; 194:765-777. [PMID: 39085643 DOI: 10.1007/s00360-024-01575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Coastal marine environments are characterized by daily, seasonal and long-term changes in both O2 and CO2, driven by local biotic and abiotic factors. The neuroepithelial cells (NECs) of fish are thought to be the putative chemoreceptors for sensing oxygen and CO2, and, thus, NECs play a key role in detecting these environmental changes. However, the role of NECs as chemosensors in marine fish remains largely understudied. In this study, the NECs of marine threespine sticklebacks (Gasterosteus aculeatus) were characterized using immunohistochemistry. We then determined if there were changes in NEC size and density, and in gill morphology in response to either mild (10 kPa) or moderate (6.8 kPa) hypoxia and two levels of elevated CO2 (1,500 and 3,000 µatm). We found that the NECs of stickleback contained synaptic vesicles and were innervated, and were 50-300% larger and 2 to 4 times more abundant than in other similar sized freshwater fishes. NEC size and density were largely unaffected by exposure to hypoxia, but there was a 50% decrease in interlamellar cell mass (ILCM) in response to mild and moderate hypoxia. NECs increased in size, but not abundance in response to elevated CO2. Moreover, fish exposed to moderate or elevated CO2 had 53-78% larger ILCMs compared to control fish. Our results demonstrated that adult marine sticklebacks have NECs that can respond to environmentally relevant pCO2 and likely hypoxia, which highlights the importance of NECs in marine fishes under the heterogeneity of environmental conditions in coastal areas.
Collapse
Affiliation(s)
- Deep Soor
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Liam R Tigert
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Elissa Khodikian
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Arsheen Bozai
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Lopez-Tello J, Kiu R, Schofield Z, Zhang CXW, van Sinderen D, Le Gall G, Hall LJ, Sferruzzi-Perri AN. Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Mol Metab 2024; 88:102004. [PMID: 39127167 PMCID: PMC11401360 DOI: 10.1016/j.molmet.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Faculty of Medicine. Autonomous University of Madrid, Spain.
| | - Raymond Kiu
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Zoe Schofield
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cindy X W Zhang
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Lindsay J Hall
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Chowdhury M, Das PK. Hypoxia: Intriguing Feature in Cancer Cell Biology. ChemMedChem 2024; 19:e202300551. [PMID: 38328976 DOI: 10.1002/cmdc.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Hypoxia, a key aspect of the tumor microenvironment, plays a vital role in cell proliferation, angiogenesis, metabolism, and the immune response within tumors. These factors collectively promote tumor advancement, aggressiveness, metastasis and result in a poor prognosis. Hypoxia inducible factor 1α (HIF-1α), activated under low oxygen conditions, mediates many of these effects by altering drug target expression, metabolic regulation, and oxygen consumption. These changes promote cancer cell growth and survival. Hypoxic tumor cells develop aggressive traits and resistance to chemotherapy and radiotherapy, leading to increased mortality. Targeting hypoxic tumor offers a potential solution to overcome the challenges posed by tumor heterogeneity and can be used in designing diagnostic and therapeutic nanocarriers for various solid cancers. This concept provides an overview of the intricate relationship between hypoxia and the tumor microenvironment, highlighting its potential as a promising tool for cancer therapies. The article explores the development of hypoxia in cancer cells and its role in cancer progression, along with the latest advancements in hypoxia-triggered cancer treatment.
Collapse
Affiliation(s)
- Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
7
|
Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem Sci 2023; 14:12098-12120. [PMID: 37969593 PMCID: PMC10631261 DOI: 10.1039/d3sc04253g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-β-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Ryan Z R Teo
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama 2630-Sugitani 930-0194 Toyama Japan
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Amelia Brasnett
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
8
|
Ullah K, Ai L, Humayun Z, Wu R. Targeting Endothelial HIF2α/ARNT Expression for Ischemic Heart Disease Therapy. BIOLOGY 2023; 12:995. [PMID: 37508425 PMCID: PMC10376750 DOI: 10.3390/biology12070995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Ischemic heart disease (IHD) is a major cause of mortality and morbidity worldwide, with novel therapeutic strategies urgently needed. Endothelial dysfunction is a hallmark of IHD, contributing to its development and progression. Hypoxia-inducible factors (HIFs) are transcription factors activated in response to low oxygen levels, playing crucial roles in various pathophysiological processes related to cardiovascular diseases. Among the HIF isoforms, HIF2α is predominantly expressed in cardiac vascular endothelial cells and has a key role in cardiovascular diseases. HIFβ, also known as ARNT, is the obligate binding partner of HIFα subunits and is necessary for HIFα's transcriptional activity. ARNT itself plays an essential role in the development of the cardiovascular system, regulating angiogenesis, limiting inflammatory cytokine production, and protecting against cardiomyopathy. This review provides an overview of the current understanding of HIF2α and ARNT signaling in endothelial cell function and dysfunction and their involvement in IHD pathogenesis. We highlight their roles in inflammation and maintaining the integrity of the endothelial barrier, as well as their potential as therapeutic targets for IHD.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lizhuo Ai
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zainab Humayun
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Wang Z, Zheng Y, Zhao X, Xu X, Xu Z, Cui C. Molecular Phylogeny and Evolution of the Tuerkayana (Decapoda: Brachyura: Gecarcinidae) Genus Based on Whole Mitochondrial Genome Sequences. BIOLOGY 2023; 12:974. [PMID: 37508404 PMCID: PMC10376310 DOI: 10.3390/biology12070974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Tuerkayana is of particular interest because it has been separated, in recent years, from Cardisoma and Discoplax but studies of its taxonomic status, especially from a whole mitochondrial genome perspective, have been lacking. In this study, the mitogenomes of four species (Tuerkayana magnum, Tuerkayana rotundum, Tuerkayana hirtipes, and Tuerkayana celeste) of Tuerkayana are sequenced and contrasted with other species in Brachyura for the first time. The phylogenetic tree of Brachyura, which includes 206 crab species (189 species of Brachyuran and 17 Anomura species) with a complete mitogenome, was constructed to evaluate the phylogenetic position of Tuerkayana and Gecarcinidae within Brachyuran, and explore the monophyly of Gecarcinidae. Furthermore, two single gene trees based on cox1 and 16SrRNA separately within interspecies of Gecarcinidae were reconstructed, providing molecular evidence for Tuerkayana and further clarifying the division of genera in Gecarcinidae. Based on the mitogenome dataset of 206 crabs, the branch-site model was utilized to explore selective pressure in individual codons with CodeML. The strong selective pressure shown in nad6 indicates that it may have played a significant role in the evolution of Gecarcinidae.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Yuqing Zheng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Xinyue Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Xinyi Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Zhiwen Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
| | - Chong Cui
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
11
|
Core-shell oxygen-releasing fibers for annulus fibrosus repair in the intervertebral disc of rats. Mater Today Bio 2023; 18:100535. [PMID: 36654965 PMCID: PMC9841168 DOI: 10.1016/j.mtbio.2022.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The repair of annulus fibrosus (AF) defect after discectomy in the intervertebral disc (IVD) has presented a challenge over the past decade. Hostile microenvironments in the IVD, including, compression and hypoxia, are critical issues that require special attention. Till date, little information is available on potential strategies to cope with the hypoxia dilemma in AF defect sites. In this study, perfluorotributylamine (PFTBA) core-shell fibers were fabricated by coaxial electrospinning to construct oxygen-releasing scaffold for promoting endogenous repair in the AF after discectomy. We demonstrated that PFTBA fibers (10% chitosan, chitosan: PCL, 1:6) could release oxygen for up to 144 h. The oxygen released from PFTBA fibers was found to protect annulus fibrosus stem cells (AFSCs) from hypoxia-induced apoptosis. In addition, the PFTBA fibers were able to promote proliferation, migration and extracellular matrix (ECM) production in AFSCs under hypoxia, highlighting their therapeutic potential in AF defect repair. Subsequent in vivo studies demonstrated that oxygen-supplying fibers were capable of ameliorating disc degeneration after discectomy, which was evidenced by improved disc height and morphological integrity in rats with the oxygen-releasing scaffolds. Further transcriptome analysis indicated that differential expression genes (DEGs) were enriched in "oxygen transport" and "angiogenesis", which likely contributed to their beneficial effect on endogenous AF regeneration. In summary, the oxygen-releasing scaffold provides novel insights into the oxygen regulation by bioactive materials and raises the therapeutic possibility of oxygen supply strategies for defect repair in AF, as well as other aerobic tissues.
Collapse
|
12
|
Lazarov NE, Atanasova DY. Mechanisms of Chemosensory Transduction in the Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:49-62. [PMID: 37946077 DOI: 10.1007/978-3-031-44757-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
13
|
Colinas O, Moreno-Domínguez A, Ortega-Sáenz P, López-Barneo J. Constitutive Expression of Hif2α Confers Acute O 2 Sensitivity to Carotid Body Glomus Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:153-162. [PMID: 37322346 DOI: 10.1007/978-3-031-32371-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Acute oxygen (O2) sensing and adaptation to hypoxia are essential for physiological homeostasis. The prototypical acute O2 sensing organ is the carotid body, which contains chemosensory glomus cells expressing O2-sensitive K+ channels. Inhibition of these channels during hypoxia leads to cell depolarization, transmitter release, and activation of afferent sensory fibers terminating in the brain stem respiratory and autonomic centers. Focusing on recent data, here we discuss the special sensitivity of glomus cell mitochondria to changes in O2 tension due to Hif2α-dependent expression of several atypical mitochondrial electron transport chain subunits and enzymes. These are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. We report that ablation of Epas1 (the gene coding Hif2α) causes a selective downregulation of the atypical mitochondrial genes and a strong inhibition of glomus cell acute responsiveness to hypoxia. Our observations indicate that Hif2α expression is required for the characteristic metabolic profile of glomus cells and provide a mechanistic explanation for the acute O2 regulation of breathing.
Collapse
Affiliation(s)
- Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
14
|
Pardal R. The Adult Carotid Body: A Germinal Niche at the Service of Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:13-22. [PMID: 37322331 DOI: 10.1007/978-3-031-32371-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The carotid body is the most relevant oxygen sensor in mammalian organisms. This organ helps to detect acute changes in PO2, but it is also crucial for the organismal adaptation to a maintained hypoxemia. Profound angiogenic and neurogenic processes take place in the carotid body to facilitate this adaptation process. We have described a plethora of multipotent stem cells and restricted progenitors, from both vascular and neuronal lineages, existing in the quiescent normoxic carotid body, ready to contribute to organ growth and adaptation upon the arrival of the hypoxic stimulus. Our deep understanding of the functioning of this stunning germinal niche will very likely facilitate the management and treatment of an important group of diseases that course with carotid body over-activation and malfunction.
Collapse
Affiliation(s)
- Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
15
|
Wen B, Zhang W, Zhang Y, Lei H, Cao Y, Li W, Wang W. Self-Effected Allosteric Coupling and Cooperativity in Hypoxic Response Regulation with Disordered Proteins. J Phys Chem Lett 2022; 13:9201-9209. [PMID: 36170455 DOI: 10.1021/acs.jpclett.2c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypersensitive regulation of cellular hypoxic response relies on cooperative displacement of one disordered protein (HIF-1α) by another disordered protein (CITED2) from the target in a negative feedback loop. Considering the weak intramolecule coupling in disordered proteins, the molecular mechanism of high cooperativity in the molecular displacement event remains elusive. Herein, we show that disordered proteins utilize a "self-effected allostery" mechanism to achieve high binding cooperativity. Different from the conventional allostery mechanisms shown by many structured or disordered proteins, this mechanism utilizes one part of the disordered protein as the effector to trigger the allosteric coupling and enhance the binding of the remaining part of the same disordered protein, contributing to high cooperativity of the displacement event. The conserved charge motif of CITED2 is the key determinant of the molecular displacement event by serving as the effector of allosteric coupling. Such self-effected allostery provides an efficient strategy to achieve high cooperativity in the molecular events involving disordered proteins.
Collapse
Affiliation(s)
- Bin Wen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yangyang Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
How the Potassium Channel Response of T Lymphocytes to the Tumor Microenvironment Shapes Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14153564. [PMID: 35892822 PMCID: PMC9330401 DOI: 10.3390/cancers14153564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.
Collapse
|
17
|
ROS and cGMP signaling modulate persistent escape from hypoxia in Caenorhabditis elegans. PLoS Biol 2022; 20:e3001684. [PMID: 35727855 PMCID: PMC9249223 DOI: 10.1371/journal.pbio.3001684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans. The ability to detect and respond to acute oxygen shortages is indispensable to aerobic life, but the molecular mechanisms underlying this capacity are poorly understood. This study reveals that high levels of cGMP and reactive oxygen species (ROS) prevent the nematode Caenorhabditis elegans from escaping hypoxia.
Collapse
|
18
|
He J, Yu Y, Li ZM, Liu ZX, Weng SP, Guo CJ, He JG. Hypoxia triggers the outbreak of infectious spleen and kidney necrosis virus disease through viral hypoxia response elements. Virulence 2022; 13:714-726. [PMID: 35465839 PMCID: PMC9045828 DOI: 10.1080/21505594.2022.2065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypoxia frequently occurs in aquatic environments, especially in aquaculture areas. However, research on the relationship between hypoxic aquatic environments with viral diseases outbreak is limited, and its underlying mechanisms remain elusive. Herein, we demonstrated that hypoxia directly triggers the outbreak of infectious spleen and kidney necrosis virus (ISKNV) disease. Hypoxia or activated hypoxia-inducible factor (HIF) pathway could remarkably increase the levels of viral genomic DNA, titers, and gene expression, indicating that ISKNV can response to hypoxia and HIF pathway. To reveal the mechanism of ISKNV respond to HIF pathway, we identified the viral hypoxia response elements (HREs) in ISKNV genome. Fifteen viral HREs were identified, and four related viral genes responded to the HIF pathway, in which the hre-orf077r promoter remarkably responded to the HIF pathway. The level of orf077r mRNA dramatically increased after the infected cells were treated with dimethyloxalylglycine (DMOG) or the infected cells/fish subjected to hypoxic conditions, and overexpressed orf077r could remarkably increase the ISKNV replication. These finding shows that hypoxic aquatic environments induce the expression of viral genes through the viral HREs to promote ISKNV replication, indicating that viral HREs might be important biomarkers for the evaluation of the sensitivity of aquatic animal viral response to hypoxia stress. Furthermore, the frequencies of viral HREs in 43 species aquatic viral genomes from 16 families were predicted and the results indicate that some aquatic animal viruses, such as Picornavirdea, Dicistronviridae, and Herpesviridae, may have a high risk to outbreak when the aquatic environment encounters hypoxic stress.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Xuan Liu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Shao-Ping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
19
|
Maina JN, Icardo JM, Zaccone G, Aragona M, Lauriano ER, Alesci A, Albano M, Guerrera MC, Germana A, Fernandes JMO, Kiron V, Capillo G. Immunohistochemical and ultrastructural study of the immune cell system and epithelial surfaces of the respiratory organs in the bimodally-breathing African sharptooth catfish (Clarias gariepinus Burchell, 1822). Anat Rec (Hoboken) 2022; 305:3212-3229. [PMID: 35142056 DOI: 10.1002/ar.24896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Ach, represents the old neurotransmitter in central and peripheral nervous system. Its muscarinic and nicotinic receptors (mAChRs and nAChRs) constitute an independent cholinergic system that is found in immune cells and playsa key role in regulation of the immune function and cytokine production. Gas exchanging surfaces of the gills and air-breathing organs (ABOs) of the sharptooth catfish Clarias gariepinus were investigated using ultrastructural and confocal immunofluorescence techniques. This study was predominantly focused on the structure of the immune cell types, the expression of their neurotransmitters, including the antimicrobial peptide piscidin 1, and the functional significance of respiratory gas exchange epithelia. A network of immune cells (monocytes, eosinophils, and mast cells) was observed in the gill and theABO epithelia. Eosinophils containing 5HT immunoreactivity were seen in close association with mast cells expressing acetylcholine (Ach), 5HT, nNOS and piscidin 1. A rich and dense cholinergic innervation dispersing across the islet capillaries of the gas exchange barrier, and the localization of Ach in the squamous pavement cells covering the capillaries, were evidenced byVAChT antibodies.We report for the first time that piscidin 1(Pis 1) positive mast cells interact with Pis 1 positive nerves found in the epithelia of the respiratory organs.Pis 1 immunoreactivity was also observed in the covering respiratory epithelium of the ABOs and associated with a role in local mucosal immune defense . The above results anticipate future studies on the neuro-immune interactions at mucosal barrier surfaces, like the gill and the skin of fish, areas densely populated by different immune cells and sensory nerves that constantly sense and adapt to tissue-specific environmental challenges. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John Ndegwa Maina
- Department of Zoology, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | - Antonino Germana
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Gioele Capillo
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy.,Institute for Marine Biological Resources and Biotechnology (IRBIM) , National Research Council (CNR), Section of Messina, Messina, Italy
| |
Collapse
|
20
|
Klein SG, Alsolami SM, Arossa S, Ramos-Mandujano G, Parry AJ, Steckbauer A, Duarte CM, Li M. In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture. Commun Biol 2022; 5:119. [PMID: 35136190 PMCID: PMC8826360 DOI: 10.1038/s42003-022-03065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian cell cultures are a keystone resource in biomedical research, but the results of published experiments often suffer from reproducibility challenges. This has led to a focus on the influence of cell culture conditions on cellular responses and reproducibility of experimental findings. Here, we perform frequent in situ monitoring of dissolved O2 and CO2 with optical sensor spots and contemporaneous evaluation of cell proliferation and medium pH in standard batch cultures of three widely used human somatic and pluripotent stem cell lines. We collate data from the literature to demonstrate that standard cell cultures consistently exhibit environmental instability, indicating that this may be a pervasive issue affecting experimental findings. Our results show that in vitro cell cultures consistently undergo large departures of environmental parameters during standard batch culture. These findings should catalyze further efforts to increase the relevance of experimental results to the in vivo physiology and enhance reproducibility.
Collapse
Affiliation(s)
- Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Samhan M Alsolami
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Silvia Arossa
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Anieka J Parry
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alexandra Steckbauer
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Mo Li
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
21
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
22
|
Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK. Front Physiol 2022; 12:780206. [PMID: 35002762 PMCID: PMC8727448 DOI: 10.3389/fphys.2021.780206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1–β4), γ (γ1–γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
Collapse
Affiliation(s)
- Sara V Ochoa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Liliana Otero
- Center of Dental Research Dentistry Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Fernando Hinostroza
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Facultad de Ciencias de la Salud, Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
23
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
24
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
25
|
Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:103-123. [PMID: 35965023 PMCID: PMC9906984 DOI: 10.1016/b978-0-323-91534-2.00009-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter reviews cardiorespiratory adaptations to chronic hypoxia (CH) experienced at high altitude and cardiorespiratory pathologies elicited by chronic intermittent hypoxia (CIH) occurring with obstructive sleep apnea (OSA). Short-term CH increases breathing (ventilatory acclimatization to hypoxia) and blood pressure (BP) through carotid body (CB) chemo reflex. Hyperplasia of glomus cells, alterations in ion channels, and recruitment of additional excitatory molecules are implicated in the heightened CB chemo reflex by CH. Transcriptional activation of hypoxia-inducible factors (HIF-1 and 2) is a major molecular mechanism underlying respiratory adaptations to short-term CH. High-altitude natives experiencing long-term CH exhibit blunted hypoxic ventilatory response (HVR) and reduced BP due to desensitization of CB response to hypoxia and impaired processing of CB sensory information at the central nervous system. Ventilatory changes evoked by long-term CH are not readily reversed after return to sea level. OSA patients and rodents subjected to CIH exhibit heightened CB chemo reflex, increased hypoxic ventilatory response, and hypertension. Increased generation of reactive oxygen species (ROS) is a major cellular mechanism underlying CIH-induced enhanced CB chemo reflex and the ensuing cardiorespiratory pathologies. ROS generation by CIH is mediated by nontranscriptional, disrupted HIF-1 and HIF-2-dependent transcriptions as well as epigenetic mechanisms.
Collapse
|
26
|
Abstract
Oxygen (O2) is essential for life and therefore the supply of sufficient O2 to the tissues is a major physiological challenge. In mammals, a deficit of O2 (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O2 by the lungs and its distribution throughout the body. The prototypical acute O2-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O2-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O2 sensing and signaling. We focus on recent data supporting a "mitochondria-to-membrane signaling" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O2-sensing and signaling role in a wide variety of cells is also discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
27
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
28
|
Arias-Reyes C, Laouafa S, Zubieta-DeUrioste N, Joseph V, Bairam A, Schneider Gasser EM, Soliz J. Erythropoietin Produces a Dual Effect on Carotid Body Chemoreception in Male Rats. Front Pharmacol 2021; 12:727326. [PMID: 34594222 PMCID: PMC8476757 DOI: 10.3389/fphar.2021.727326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated "en bloc" carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO's action.
Collapse
Affiliation(s)
- Christian Arias-Reyes
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Sofien Laouafa
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | | | - Vincent Joseph
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Aida Bairam
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Jorge Soliz
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada.,High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia
| |
Collapse
|
29
|
Knoepp F, Wahl J, Andersson A, Kraut S, Sommer N, Weissmann N, Ramser K. A Microfluidic System for Simultaneous Raman Spectroscopy, Patch-Clamp Electrophysiology, and Live-Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia. SMALL METHODS 2021; 5:e2100470. [PMID: 34927935 DOI: 10.1002/smtd.202100470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Indexed: 06/14/2023]
Abstract
The ability to sense changes in oxygen availability is fundamentally important for the survival of all aerobic organisms. However, cellular oxygen sensing mechanisms and pathologies remain incompletely understood and studies of acute oxygen sensing, in particular, have produced inconsistent results. Current methods cannot simultaneously measure the key cellular events in acute hypoxia (i.e., changes in redox state, electrophysiological properties, and mechanical responses) at controlled partial pressures of oxygen (pO2 ). The lack of such a comprehensive method essentially contributes to the discrepancies in the field. A sealed microfluidic system that combines i) Raman spectroscopy, ii) patch-clamp electrophysiology, and iii) live-cell imaging under precisely controlled pO2 have therefore been developed. Merging these modalities allows label-free and simultaneous observation of oxygen-dependent alterations in multiple cellular redox couples, membrane potential, and cellular contraction. This technique is adaptable to any cell type and allows in-depth insight into acute oxygen sensing processes underlying various physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Fenja Knoepp
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Joel Wahl
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| | - Anders Andersson
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Kerstin Ramser
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
30
|
Ullah K, Wu R. Hypoxia-Inducible Factor Regulates Endothelial Metabolism in Cardiovascular Disease. Front Physiol 2021; 12:670653. [PMID: 34290616 PMCID: PMC8287728 DOI: 10.3389/fphys.2021.670653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) form a physical barrier between the lumens and vascular walls of arteries, veins, capillaries, and lymph vessels; thus, they regulate the extravasation of nutrients and oxygen from the circulation into the perivascular space and participate in mechanisms that maintain cardiovascular homeostasis and promote tissue growth and repair. Notably, their role in tissue repair is facilitated, at least in part, by their dependence on glycolysis for energy production, which enables them to resist hypoxic damage and promote angiogenesis in ischemic regions. ECs are also equipped with a network of oxygen-sensitive molecules that collectively activate the response to hypoxic injury, and the master regulators of the hypoxia response pathway are hypoxia-inducible factors (HIFs). HIFs reinforce the glycolytic dependence of ECs under hypoxic conditions, but whether HIF activity attenuates or exacerbates the progression and severity of cardiovascular dysfunction varies depending on the disease setting. This review summarizes how HIF regulates the metabolic and angiogenic activity of ECs under both normal and hypoxic conditions and in a variety of diseases that are associated with cardiovascular complications.
Collapse
Affiliation(s)
- Karim Ullah
- Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rongxue Wu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Fachi JL, Pral LP, Dos Santos JAC, Codo AC, de Oliveira S, Felipe JS, Zambom FFF, Câmara NOS, Vieira PMMM, Colonna M, Vinolo MAR. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. Mucosal Immunol 2021; 14:828-841. [PMID: 33446906 PMCID: PMC8221997 DOI: 10.1038/s41385-020-00371-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) have a prominent role in the maintenance of intestine mucosa homeostasis. The hypoxia-inducible factor (HIF) is an important modulator of immune cell activation and a key mechanism for cellular adaptation to oxygen deprivation. However, its role on ILC3 is not well known. In this study, we investigated how a hypoxic environment modulates ILC3 response and the subsequent participation of HIF-1 signaling in this process. We found increased proliferation and activation of intestinal ILC3 at low oxygen levels, a response that was phenocopied when HIF-1α was chemically stabilized and was reversed when HIF-1 was blocked. The increased activation of ILC3 relied on a HIF-1α-dependent transcriptional program, but not on mTOR-signaling or a switch to glycolysis. HIF-1α deficiency in RORyt compartment resulted in impaired IL-17 and IL-22 production by ILC3 in vivo, which reflected in a lower expression of their target genes in the intestinal epithelium and an increased susceptibility to Clostridiodes difficile infection. Taken together, our results show that HIF-1α activation in intestinal ILC3 is relevant for their functions in steady state and infectious conditions.
Collapse
Affiliation(s)
- J L Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - L P Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - J A C Dos Santos
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - A C Codo
- Laboratory of Immunometabolism, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - S de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - J S Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - F F F Zambom
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - N O S Câmara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - P M M M Vieira
- Laboratory of Immunometabolism, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Campinas, Brazil
- Obesity and Comorbolities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - M Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - M A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
- Experimental Medicine Research Cluster, Campinas, Brazil.
- Obesity and Comorbolities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
32
|
Barranco R, Bonsignore A, Ventura F. Immunohistochemistry in postmortem diagnosis of acute cerebral hypoxia and ischemia: A systematic review. Medicine (Baltimore) 2021; 100:e26486. [PMID: 34160462 PMCID: PMC8238305 DOI: 10.1097/md.0000000000026486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND : Discovery of evidence of acute brain ischemia or hypoxia and its differentiation from agonal hypoxia represents a task of interest but extremely difficult in forensic neuropathology. Generally, more than 50% of forensic autopsies indicate evidence of brain induced functional arrest of the organ system, which can be the result of a hypoxic/ischemic brain event. Even if the brain is the target organ of hypoxic/ischemic damage, at present, there are no specific neuropathological (macroscopic and histological) findings of hypoxic damage (such as in drowning, hanging, intoxication with carbon monoxide) or acute ischemia. In fact, the first histological signs appear after at least 4 to 6 hours. Numerous authors have pointed out how an immunohistochemical analysis could help diagnose acute cerebral hypoxia/ischemia.Data sources: This review was based on articles published in PubMed and Scopus databases in the past 25 years, with the following keywords "immunohistochemical markers," "acute cerebral ischemia," "ischemic or hypoxic brain damage," and "acute cerebral hypoxia". OBJECTIVES : Original articles and reviews on this topic were selected. The purpose of this review is to analyze and summarize the markers studied so far and to consider the limits of immunohistochemistry that exist to date in this specific field of forensic pathology. RESULTS : We identified 13 markers that had been examined (in previous studies) for this purpose. In our opinion, it is difficult to identify reliable and confirmed biomarkers from multiple studies in order to support a postmortem diagnosis of acute cerebral hypoxia/ischemia. Microtubule-associated protein 2 (MAP2) is the most researched marker in the literature and the results obtained have proven to be quite useful. CONCLUSION Immunohistochemistry has provided interesting and promising results, but further studies are needed in order to confirm and apply them in standard forensic practice.
Collapse
|
33
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
34
|
Application of Selenium Nanoparticles on Sperm Quantity Indicators in Wistar Rat. Nephrourol Mon 2021. [DOI: 10.5812/numonthly.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Antioxidant enzymes and selenium in semen plasma have vital effects on reducing lipid peroxidation of spermatozoid membrane in elderly organisms by preventing the destructive effects of reactive oxygen species. Therefore, the use of antioxidants and selenium is essential for normal testicular function and spermatogenesis. Methods: In this experimental study, 44 male Wistar rats aged 2.5 months (young) and 44 male Winstar rats aged 11 months (old) were separated into 4 groups of control, placebo, experimental 1 (0.2 mg/kg BW), and experimental 2 (0.4 mg/kg BW). Rats encountered weekly surgery after a week of receiving different treatments. Resection of their testes was used for histological studies. Results: The number of spermatocytes, spermatid, and spermatozoa in young and old rats increased during the study period. In young rats, the highest number of these cells remarked in the third and fourth weeks of the experiment using selenium nanoparticles (ranged from 165.3 to 285.3 × 106). For old rates, the highest number of the abovementioned cells observed in the second week of the experiment (ranged from 143.3 to 146.7 × 106). Variables of treatment, week, and age presented significant effects on the number of testicular germ cells. Also, applied treatments had no significant effect on the sperm quality characteristics of rats. The number of Sertoli and Leydig cells did not show a significant difference compared to the control group. The results showed a positive and highly significant correlation between spermatozoid, spermatocytes, and spermatocytes. The findings also indicated the same genetic and environmental effects on the traits. Therefore, any spermatocyte shift will have a direct influence on the spermatozoid. Conclusions: This study demonstrated that using selenium nanoparticles in young and old age groups in rats could improve testicular germ cells, especially in the old group. Therefore, with growing age and decreasing sperm quality, selenium nanoparticles can be used due to their positive effect on sperm parameters and their low health risk.
Collapse
|
35
|
Melatonin Alleviates Hypoxia-Induced Apoptosis of Granulosa Cells by Reducing ROS and Activating MTNR1B-PKA-Caspase8/9 Pathway. Antioxidants (Basel) 2021; 10:antiox10020184. [PMID: 33525391 PMCID: PMC7911142 DOI: 10.3390/antiox10020184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
In mammalian ovaries, the avascular environment within follicular cavity is supposed to cause hypoxic status in granulosa cells (GCs), leading to apoptotic cell death accompanied by cumulative reactive oxygen species (ROS) production. Melatonin (N-acetyl-5-methoxytryptamine, MT), a broad-spectrum antioxidant that exists in porcine follicle fluid, was suggested to maintain GCs survival under stress conditions. In this study, using the established hypoxic model (1% O2) of cultured porcine GCs, we explored the effect of MT on GCs apoptosis. The results showed that MT restored cell viability and reduced the apoptosis of GCs during hypoxia exposure. In addition, GCs treated with MT exhibited decreased ROS levels and increased expression of antioxidant enzymes including heme oxygenase-1 (HO-1), glutathione S-transferase (GST), superoxide dismutase 1 (SOD1), and catalase (CAT) upon hypoxia incubation. Moreover, the hypoxia-induced expression of cleaved caspase 3, 8, and 9 was significantly inhibited after MT treatment. In contrast, blocking melatonin receptor 2 (MTNR1B) with a competitive antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT) diminished the inhibitory effects of MT on caspase 3 activation. By detecting levels of protein kinase (PKA), a downstream kinase of MTNR1B, we further confirmed the involvement of MT–MTNR1B signaling in mediating GCs protection during hypoxia stress. Together, the present data provide mechanistic evidence suggesting the role of MT in defending GCs from hypoxia-induced apoptosis.
Collapse
|
36
|
Alderdice R, Suggett DJ, Cárdenas A, Hughes DJ, Kühl M, Pernice M, Voolstra CR. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. GLOBAL CHANGE BIOLOGY 2021; 27:312-326. [PMID: 33197302 DOI: 10.1111/gcb.15436] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Exposure of marine life to low oxygen is accelerating worldwide via climate change and localized pollution. Mass coral bleaching and mortality have recently occurred where reefs have experienced chronic low oxygen events. However, the mechanistic basis of tolerance to oxygen levels inadequate to sustain normal functioning (i.e. hypoxia) and whether it contributes to bleaching susceptibility, remain unknown. We therefore experimentally exposed colonies of the environmentally resilient Acropora tenuis, a common reef-building coral from the Great Barrier Reef, to deoxygenation-reoxygenation stress that was aligned to their natural night-day light cycle. Specifically, the treatment involved removing the 'night-time O2 buffer' to challenge the inherent hypoxia thresholds. RNA-Seq analysis revealed that coral possess a complete and active hypoxia-inducible factor (HIF)-mediated hypoxia response system (HRS) homologous to other metazoans. As expected, A. tenuis exhibited bleaching resistance and showed a strong inducibility of HIF target genes in response to deoxygenation stress. We applied this same approach in parallel to a colony of Acropora selago, known to be environmnetally susceptible, which conversely exhibited a bleaching phenotype response. This phenotypic divergence of A. selago was accompanied by contrasting gene expression profiles indicative of varied effectiveness of their HIF-HRS. Based on our RNA-Seq analysis, we propose (a) that the HIF-HRS is central for corals to manage deoxygenation stress and (b) that key genes of this system (and the wider gene network) may contribute to variation in coral bleaching susceptibility. Our analysis suggests that heat shock protein (hsp) 70 and 90 are important for low oxygen stress tolerance and further highlights how hsp90 expression might also affect the inducibility of coral HIF-HRS in overcoming a metabolic crisis under deoxygenation stress. We propose that differences in coral HIF-HRS could be central in regulating sensitivity to other climate change stressors-notably thermal stress-that commonly drive bleaching.
Collapse
Affiliation(s)
- Rachel Alderdice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Michael Kühl
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathieu Pernice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
37
|
Neurotransmitter Modulation of Carotid Body Germinal Niche. Int J Mol Sci 2020; 21:ijms21218231. [PMID: 33153142 PMCID: PMC7662800 DOI: 10.3390/ijms21218231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O2-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O2-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.
Collapse
|
38
|
Solari KA, Hadly EA. Experimental study of hypoxia-induced changes in gene expression in an Asian pika, Ochotona dauurica. PLoS One 2020; 15:e0240435. [PMID: 33044983 PMCID: PMC7549823 DOI: 10.1371/journal.pone.0240435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/27/2020] [Indexed: 01/09/2023] Open
Abstract
Acclimation to environmental changes driven by alterations in gene expression will serve as an important response for some species facing rapid Anthropogenic climate change. Pikas, genus Ochotona, are particularly vulnerable to climate change and current trends suggest that only the highest, coldest elevations within their ranges may remain suitable habitat for these species. In this study we aimed to assess the role of changes in gene expression in potentially facilitating elevational movements in pikas by measuring gene expression in the only known captive pika population, Ochotona dauurica, in response to hypoxic conditions. Using a controlled experiment, we exposed four male pikas to oxygen concentrations characteristic of sea-level, 2,000 m, and 4,000 m for 5 days each. Using blood samples collected after each treatment, we used RNAseq to determine if candidate pathways were undergoing significant changes in gene expression at different levels of oxygen (~100%, ~77%, and ~61% of sea-level oxygen concentrations). Gene set enrichment analyses showed that gene sets associated with the oxidative phosphorylation pathway and electron transport chain were significantly enriched for up-regulated genes in the 4,000 m samples compared to samples from the same individuals at lower-elevation conditions. Up-regulation of these pathways is consistent with known mechanisms of oxygen compensation. Our results suggest that these pikas have the acclimation capacity to tolerate oxygen concentrations characteristic of any elevation within their species range and that gene expression can be changed in a matter of days to accommodate drastically different oxygen concentrations. Thus, rapid and radical elevational movements that may be required of some pika species to avoid warmer temperatures in the Anthropocene will likely not be limited by hypoxic stress.
Collapse
Affiliation(s)
- Katherine A. Solari
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program for Conservation Genomics, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program for Conservation Genomics, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- Center for Innovation in Global Health, Stanford University, Stanford, California, United States of America
| |
Collapse
|
39
|
Mukherjee S, Sikdar SK. Intracellular activation of full-length human TREK-1 channel by hypoxia, high lactate, and low pH denotes polymodal integration by ischemic factors. Pflugers Arch 2020; 473:167-183. [PMID: 33025137 DOI: 10.1007/s00424-020-02471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
TREK-1, a two-pore domain potassium channel, responds to ischemic levels of intracellular lactate and acidic pH to provide neuroprotection. There are two splice variants of hTREK1: the shorter splice variant having a shorter N-terminus compared with the full-length hTREK1 with similar C-terminus sequence that is widely expressed in the brain. The shorter variant was reported to be irresponsive to hypoxia-a condition attributed to ischemia, which has put the neuroprotective role of hTREK-1 channel into question. Since interaction between N- and C-terminus of different ion channels shapes their gating, we re-examined the sensitivity of the full-length as well as the shorter hTREK-1 channel to intracellular hypoxia along with lactate. Single-channel data obtained from the excised inside-out patches of the full-length channel expressed in HEK293 cells indicated an increase in activity as opposed to a decrease in activity in the shorter isoform. However, both the isoforms showed an increase in activity under combined hypoxia, 20mM lactate, and low pH 6 condition, albeit with subtle differences in their individual actions, confirming the neuroprotective role played by hTREK-1 irrespective of the differences in the N-terminus among the splice variants. Furthermore, E321A mutant that disrupts the interaction of the C-terminus with the membrane showed a decrease in activity with hypoxia indicating the importance of the C-terminus in the hypoxic response of the full-length hTREK-1. We propose an increase in activity of both the splice variants of hTREK-1 in combined hypoxia, high lactate, and low pH conditions typically associated with ischemia provides neuroprotection.
Collapse
Affiliation(s)
- Sourajit Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
40
|
Ashokkumar P, Adarsh N, Klymchenko AS. Ratiometric Nanoparticle Probe Based on FRET-Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002494. [PMID: 32583632 DOI: 10.1002/smll.202002494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Luminescent oxygen probes enable direct imaging of hypoxic conditions in cells and tissues, which are associated with a variety of diseases, including cancer. Here, a nanoparticle probe that addresses key challenges in the field is developed, it: i) strongly amplifies room temperature phosphorescence of encapsulated oxygen-sensitive dyes; ii) provides ratiometric response to oxygen; and iii) solves the fundamental problem of phototoxicity of phosphorescent sensors. The nanoprobe is based on 40 nm polymeric nanoparticles, encapsulating ≈2000 blue-emitting cyanine dyes with fluorinated tetraphenylborate counterions, which are as bright as 70 quantum dots (QD525). It functions as a light-harvesting nanoantenna that undergoes efficient Förster resonance energy transfer to ≈20 phosphorescent oxygen-sensitive platinum octaethylporphyrin (PtOEP) acceptor dyes. The obtained nanoprobe emits stable blue fluorescence and oxygen-sensitive red phosphorescence, providing ratiometric response to dissolved oxygen. The light harvesting leads to ≈60-fold phosphorescence amplification and makes the single nanoprobe particle as bright as ≈1200 PtOEP dyes. This high brightness enables oxygen detection at a single-particle level and in cells at ultra-low nanoprobe concentration with no sign of phototoxicity, in contrast to PtOEP dye. The developed nanoprobe is successfully applied to the imaging of a microfluidics-generated oxygen gradient in cancer cells. It constitutes a promising tool for bioimaging of hypoxia.
Collapse
Affiliation(s)
- Pichandi Ashokkumar
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Nagappanpillai Adarsh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
| |
Collapse
|
41
|
Dias VS, Hallman GJ, Martínez-Barrera OY, Hurtado NV, Cardoso AAS, Parker AG, Caravantes LA, Rivera C, Araújo AS, Maxwell F, Cáceres-Barrios CE, Vreysen MJB, Myers SW. Modified Atmosphere Does Not Reduce the Efficacy of Phytosanitary Irradiation Doses Recommended for Tephritid Fruit Flies. INSECTS 2020; 11:insects11060371. [PMID: 32549285 PMCID: PMC7348963 DOI: 10.3390/insects11060371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
Phytosanitary irradiation (PI) has been successfully used to disinfest fresh commodities and facilitate international agricultural trade. Critical aspects that may reduce PI efficacy must be considered to ensure the consistency and effectiveness of approved treatment schedules. One factor that can potentially reduce PI efficacy is irradiation under low oxygen conditions. This factor is particularly important because storage and packaging of horticultural commodities under low oxygen levels constitute practices widely used to preserve their quality and extend their shelf life. Hence, international organizations and regulatory agencies have considered the uncertainties regarding the efficacy of PI doses for insects infesting fresh commodities stored under low oxygen levels as a rationale for restricting PI application under modified atmosphere. Our research examines the extent to which low oxygen treatments can reduce the efficacy of phytosanitary irradiation for tephritids naturally infesting fruits. The effects of normoxia (21% O2), hypoxia (~5% O2), and severe hypoxia (< 0.5% O2) on radiation sensitivity of third instars of Anastrepha fraterculus (sensu lato), A. ludens (Loew), Bactrocera dorsalis (Hendel), and Ceratitis capitata (Wiedemann) were evaluated and compared at several gamma radiation doses. Our findings suggest that, compared to normoxia, hypoxic and severe-hypoxic conditioning before and during irradiation can increase adult emergence and contribute to advancement of larval development of tephritid fruit flies only at low radiation doses that are not used as phytosanitary treatments. With phytosanitary irradiation doses approved internationally for several tephritids, low oxygen treatments applied before and during irradiation did not increase the emergence rates of any fruit fly species evaluated, and all treated insects died as coarctate larvae. Thus, the findings of our research support a re-evaluation of restrictions related to phytosanitary irradiation application under modified atmospheres targeting tephritid fruit flies.
Collapse
Affiliation(s)
- Vanessa S. Dias
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
- Correspondence: (V.S.D.); (G.J.H.)
| | - Guy J. Hallman
- Phytosanitation, 3917 Estancia Drive, Oceanside, CA 92058, USA
- Correspondence: (V.S.D.); (G.J.H.)
| | - Olga Y. Martínez-Barrera
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Nick V. Hurtado
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Amanda A. S. Cardoso
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Luis A. Caravantes
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Camilo Rivera
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Alexandre S. Araújo
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Florence Maxwell
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Carlos E. Cáceres-Barrios
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramer Strasse 5, 1400 Vienna, Austria; (O.Y.M.-B.); (N.V.H.); (A.A.S.C.); (A.G.P.); (L.A.C.); (C.R.); (A.S.A.); (F.M.); (C.E.C.-B.); (M.J.B.V.)
| | - Scott W. Myers
- USDA, APHIS, PPQ, Science and Technology, Otis Laboratory 1398 W. Truck Rd., Buzzards Bay, MA 02542, USA;
| |
Collapse
|
42
|
Nguyen DAT, Boswell-Ruys CL, McCaughey EJ, Gandevia SC, Hudson AL, Butler JE. Absence of inspiratory premotor potentials during quiet breathing in cervical spinal cord injury. J Appl Physiol (1985) 2020; 128:660-666. [PMID: 32078470 DOI: 10.1152/japplphysiol.00831.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A premotor potential, or Bereitschaftspotential (BP), is a low-amplitude negativity in the electroencephalographic activity (EEG) of the sensorimotor cortex. It begins ~1 s prior to the onset of inspiration in the averaged EEG. Although normally absent during quiet breathing in healthy, younger people, inspiration-related BPs are present in people with respiratory disease and healthy, older people, indicating a cortical contribution to quiet breathing. People with tetraplegia have weak respiratory muscles and increased neural drive during quiet breathing, indicated by increased inspiratory muscle activity. Therefore, we hypothesized that BPs would be present during quiet breathing in people with tetraplegia. EEG was recorded in 17 people with chronic tetraplegia (14M, 3 female; 22-51 yr; C3-C7, American Spinal Injury Association Impairment Scale A-D; >1 yr postinjury). They had reduced lung function and respiratory muscle weakness [FEV1: 54 ± 19% predicted, FVC: 59 ± 22% predicted and MIP: 56 ± 24% predicted (mean ± SD)]. Participants performed quiet breathing and voluntary self-paced sniffs (positive control condition). A minimum of 250 EEG epochs during quiet breathing and 60 epochs during sniffs, time-locked to the onset of inspiration, were averaged to determine the presence of BPs at Cz, FCz, C3, and C4. Fifteen participants (88%) had a BP for the sniffs. Of these 15 participants, only one (7%) had a BP in quiet breathing, a rate similar to that reported during quiet breathing in young able-bodied participants (12%). The findings suggest that, as in young able-bodied people, a cortical contribution to quiet breathing is absent in people with tetraplegia despite higher neural drive.NEW & NOTEWORTHY People with tetraplegia have weak respiratory muscles, increased neural drive during quiet breathing, and a high incidence of sleep-disordered breathing. Using electroencephalographic recordings, we show that inspiratory premotor potentials are absent in people with chronic tetraplegia during quiet breathing. This suggests that cortical activity is not present during resting ventilation in people with tetraplegia who are awake and breathing independently.
Collapse
Affiliation(s)
- David A T Nguyen
- Neuroscience Research Australia, New South Wales, Australia.,University of New South Wales, New South Wales, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, New South Wales, Australia.,University of New South Wales, New South Wales, Australia.,Prince of Wales Hospital, New South Wales, Australia
| | - Euan James McCaughey
- Neuroscience Research Australia, New South Wales, Australia.,University of New South Wales, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, New South Wales, Australia.,University of New South Wales, New South Wales, Australia.,Prince of Wales Hospital, New South Wales, Australia
| | - Anna L Hudson
- Neuroscience Research Australia, New South Wales, Australia.,University of New South Wales, New South Wales, Australia
| | - Jane E Butler
- Neuroscience Research Australia, New South Wales, Australia.,University of New South Wales, New South Wales, Australia.,Prince of Wales Hospital, New South Wales, Australia
| |
Collapse
|
43
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
44
|
Moreno-Domínguez A, Ortega-Sáenz P, Gao L, Colinas O, García-Flores P, Bonilla-Henao V, Aragonés J, Hüttemann M, Grossman LI, Weissmann N, Sommer N, López-Barneo J. Acute O 2 sensing through HIF2α-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Sci Signal 2020; 13:scisignal.aay9452. [PMID: 31848220 DOI: 10.1126/scisignal.aay9452] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute cardiorespiratory responses to O2 deficiency are essential for physiological homeostasis. The prototypical acute O2-sensing organ is the carotid body, which contains glomus cells expressing K+ channels whose inhibition by hypoxia leads to transmitter release and activation of nerve fibers terminating in the brainstem respiratory center. The mechanism by which changes in O2 tension modulate ion channels has remained elusive. Glomus cells express genes encoding HIF2α (Epas1) and atypical mitochondrial subunits at high levels, and mitochondrial NADH and reactive oxygen species (ROS) accumulation during hypoxia provides the signal that regulates ion channels. We report that inactivation of Epas1 in adult mice resulted in selective abolition of glomus cell responsiveness to acute hypoxia and the hypoxic ventilatory response. Epas1 deficiency led to the decreased expression of atypical mitochondrial subunits in the carotid body, and genetic deletion of Cox4i2 mimicked the defective hypoxic responses of Epas1-null mice. These findings provide a mechanistic explanation for the acute O2 regulation of breathing, reveal an unanticipated role of HIF2α, and link acute and chronic adaptive responses to hypoxia.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Victoria Bonilla-Henao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid 28009, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid 28009, Spain
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen 35392, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen 35392, Germany
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain. .,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| |
Collapse
|
45
|
Domene C, Jorgensen C, Schofield CJ. Mechanism of Molecular Oxygen Diffusion in a Hypoxia-Sensing Prolyl Hydroxylase Using Multiscale Simulation. J Am Chem Soc 2020; 142:2253-2263. [DOI: 10.1021/jacs.9b09236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmen Domene
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Britannia House, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
- Department of Chemistry, University of Bath, Claverton Down Bath BA2 7AY, United Kingdom
| | - Christian Jorgensen
- Department of Chemistry, Britannia House, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
46
|
Andreyeva AY, Soldatov AA, Krivchenko AI, Mindukshev IV, Gambaryan S. Hemoglobin deoxygenation and methemoglobinemia prevent regulatory volume decrease in crucian carp (Carassius carassius) red blood cells. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1933-1940. [PMID: 31396800 DOI: 10.1007/s10695-019-00689-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Fish red blood cells (RBCs) exhibit an oxygen-dependent regulatory volume decrease (RVD) in hypoosmotic environment. In higher vertebrates, membrane-associated hemoglobin is involved in the regulation of osmotic ion movements across the cellular membrane. However, whether the hemoglobin conformational state plays a role in the regulation of osmotic responses in fish red blood cells is still not fully understood. We found that changes in hemoglobin conformation influence the pattern of the regulatory volume decrease in Carassius carassius red blood cells. In oxygenated cells (96.4 ± 3.7% oxygenated hemoglobin), the volume recovery was completed within 125 min. Deoxygenation of hemoglobin (96.5 ± 2.7% of deoxygenated hemoglobin) inhibited the volume decrease in hyposmotically swollen red blood cells. Reoxygenation restored regulatory volume decrease in cells within 5 min. Induced methemoglobinemia (48.4 ± 1.8% of methemoglobin and 41.3 ± 2.3% of deoxygenated hemoglobin) blocked the process of volume recovery and significantly decreased osmotic stability of red blood cells.
Collapse
Affiliation(s)
- A Y Andreyeva
- The A.O. Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Lenninsky ave, 14, Moscow, Russia, 119991.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St. Petersburg, Russia, 194223.
| | - A A Soldatov
- The A.O. Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Lenninsky ave, 14, Moscow, Russia, 119991
| | - A I Krivchenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St. Petersburg, Russia, 194223
| | - I V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St. Petersburg, Russia, 194223
| | - S Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St. Petersburg, Russia, 194223
- Department of Cytology and Histology, St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, Russia, 199034
| |
Collapse
|
47
|
Chemoreceptors as a key to understanding carcinogenesis process. Semin Cancer Biol 2019; 60:362-364. [PMID: 31622661 DOI: 10.1016/j.semcancer.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
The tissue organization field theory (TOFT) presented completely new, different from the previous one, perspective of research on neoplasm processes. It implicates that secretory neuroepithelial-like cells (NECs), putative chemoreceptors are probably responsible for the control of squamous epithelial cells proliferation in the digestive tract during hypoxia in gut breathing fish (GBF). On the other hand, chemoreceptors dysfunction can lead to uncontrolled proliferation and risk of cancer development in mammals, including humans. The studies on NECs like cells (signal capturing and transduction) may be crucial for understanding the processes of controlling the proliferation of squamous epithelial cells in the digestive tract of GBF fish during hypoxia states. This knowledge can contribute to the explanation of cancer processes.
Collapse
|
48
|
Castro-Balado A, Mondelo-García C, González-Barcia M, Zarra-Ferro I, Otero-Espinar FJ, Ruibal-Morell Á, Aguiar-Fernández P, Fernández-Ferreiro A. Ocular Biodistribution Studies using Molecular Imaging. Pharmaceutics 2019; 11:pharmaceutics11050237. [PMID: 31100961 PMCID: PMC6572242 DOI: 10.3390/pharmaceutics11050237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Classical methodologies used in ocular pharmacokinetics studies have difficulties to obtain information about topical and intraocular distribution and clearance of drugs and formulations. This is associated with multiple factors related to ophthalmic physiology, as well as the complexity and invasiveness intrinsic to the sampling. Molecular imaging is a new diagnostic discipline for in vivo imaging, which is emerging and spreading rapidly. Recent developments in molecular imaging techniques, such as positron emission tomography (PET), single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), allow obtaining reliable pharmacokinetic data, which can be translated into improving the permanence of the ophthalmic drugs in its action site, leading to dosage optimisation. They can be used to study either topical or intraocular administration. With these techniques it is possible to obtain real-time visualisation, localisation, characterisation and quantification of the compounds after their administration, all in a reliable, safe and non-invasive way. None of these novel techniques presents simultaneously high sensitivity and specificity, but it is possible to study biological procedures with the information provided when the techniques are combined. With the results obtained, it is possible to assume that molecular imaging techniques are postulated as a resource with great potential for the research and development of new drugs and ophthalmic delivery systems.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Cristina Mondelo-García
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Miguel González-Barcia
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Irene Zarra-Ferro
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain.
| | - Álvaro Ruibal-Morell
- Nuclear Medicine Department, University Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
- Molecular Imaging Group. Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Pablo Aguiar-Fernández
- Nuclear Medicine Department, University Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
- Molecular Imaging Group. Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
50
|
O'Brien KA, Pollock RD, Stroud M, Lambert RJ, Kumar A, Atkinson RA, Green DA, Anton-Solanas A, Edwards LM, Harridge SDR. Human physiological and metabolic responses to an attempted winter crossing of Antarctica: the effects of prolonged hypobaric hypoxia. Physiol Rep 2019. [PMID: 29521037 PMCID: PMC5843758 DOI: 10.14814/phy2.13613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An insufficient supply of oxygen to the tissues (hypoxia), as is experienced upon high‐altitude exposure, elicits physiological acclimatization mechanisms alongside metabolic remodeling. Details of the integrative adaptive processes in response to chronic hypobaric hypoxic exposure remain to be sufficiently investigated. In this small applied field study, subjects (n = 5, male, age 28–54 years) undertook a 40 week Antarctica expedition in the winter months, which included 24 weeks residing above 2500 m. Measurements taken pre‐ and postexpedition revealed alterations to glucose and fatty acid resonances within the serum metabolic profile, a 7.8 (±3.6)% increase in respiratory exchange ratio measured during incremental exercise (area under curve, P > 0.01, mean ± SD) and a 2.1(±0.8) % decrease in fat tissue (P < 0.05) postexpedition. This was accompanied by an 11.6 (±1.9) % increase (P > 0.001) in VO2 max corrected to % lean mass postexpedition. In addition, spine bone mineral density and lung function measures were identified as novel parameters of interest. This study provides, an in‐depth characterization of the responses to chronic hypobaric hypoxic exposure in one of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Katie A O'Brien
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ross D Pollock
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Mike Stroud
- Biomedical Research Centre in Nutrition, Southampton University Hospitals Trust, Southampton, United Kingdom
| | - Rob J Lambert
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Alex Kumar
- Department of Medicine and Physiology, Fribourg, Switzerland.,Department of Primary Care & Public Health Sciences, King's College London, London, United Kingdom
| | - Robert A Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London Guy's Campus London, London, United Kingdom
| | - David A Green
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom.,KBRwyle, European Astronaut Centre, European Space Agency, Linder Höhe, Cologne, Germany
| | | | - Lindsay M Edwards
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom.,Respiratory Data Sciences Group, Respiratory TAU, GlaxosmithKline Medicines Research, Stevenage, United Kingdom
| | - Steve D R Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| |
Collapse
|