1
|
Elad A, Moalem B, Sender D, Bardugo A, Kim KS, Arad Y, Benhayon H, Gal Etzyoni A, Greenstein N, Halfon A, Knapp S, Malis M, Peck B, Samuel I, Kupietzky A, Daher S, Forkosh E, Hakimian D, Hershcovici T, Ilani N, Katz L, Rottenstreich M, Vainer E, Ishay Y, Zlotnick E, Nasereddin A, Shiff I, Benson A, Grinbaum R, Mishra S, Kotler S, Samuelson LC, Sandoval DA, Ben-Haroush Schyr R, Ben-Zvi D. Sleeve gastrectomy reveals the plasticity of the human gastric epithelium. Nat Commun 2025; 16:869. [PMID: 39833151 PMCID: PMC11747362 DOI: 10.1038/s41467-025-56135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Gastrin is secreted following a rise in gastric pH, leading to gastric acid secretion. Sleeve gastrectomy (SG), a bariatric surgery where 80% of the gastric corpus is excised, presents a challenge for gastric pH homeostasis. Using histology, and single-cell RNA sequencing of the gastric epithelium in 12 women, we observed that SG is associated with an increase in a sub-population of acid-secreting parietal cells that overexpress respiratory enzymes and an increase in histamine-secreting enterochromaffin-like cells (ECLs). ECLs of SG-operated patients overexpressed genes coding for biosynthesis of neuropeptides and serotonin. Mathematical modeling showed that pH homeostasis by gastrin is analogous to non-linear proportional and integral control, that drives adaptation of the epithelium to acid-secretion demand. Quantitative model predictions were validated in patients. The results demonstrate human gastric epithelium remodeling following SG at the molecular and cellular levels, and more generally how trophic hormones enable robust adaptation of tissue function to meet physiological demand.
Collapse
Affiliation(s)
- Amit Elad
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Botros Moalem
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Sender
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aya Bardugo
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem and Medical Corps, Israel Defence Forces, Jerusalem, Israel
| | - Ki-Suk Kim
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem and Medical Corps, Israel Defence Forces, Jerusalem, Israel
| | - Haya Benhayon
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet Gal Etzyoni
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Aviv Halfon
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sarah Knapp
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michelle Malis
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bailey Peck
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Itia Samuel
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amram Kupietzky
- Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saleh Daher
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Forkosh
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Hakimian
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tiberiu Hershcovici
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadav Ilani
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Katz
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moshe Rottenstreich
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elez Vainer
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Ishay
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eitan Zlotnick
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Nasereddin
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idid Shiff
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel Benson
- Institute of Gastroenterology and Liver Disease, Hadassah University Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Grinbaum
- Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Shlomi Kotler
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Hebrew University Center for Computational Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Woodward SE, Neufeld LMP, Peña-Díaz J, Feng W, Serapio-Palacios A, Tarrant I, Deng W, Finlay BB. Both pathogen and host dynamically adapt pH responses along the intestinal tract during enteric bacterial infection. PLoS Biol 2024; 22:e3002761. [PMID: 39146372 PMCID: PMC11349234 DOI: 10.1371/journal.pbio.3002761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/27/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Enteric pathogens navigate distinct regional microenvironments within the intestine that cue important adaptive behaviors. We investigated the response of Citrobacter rodentium, a model of human pathogenic Escherichia coli infection in mice, to regional gastrointestinal pH. We found that small intestinal pH (4.4-4.8) triggered virulence gene expression and altered cell morphology, supporting initial intestinal attachment, while higher pH, representative of C. rodentium's replicative niches further along the murine intestine, supported pathogen growth. Gastric pH, a key barrier to intestinal colonization, caused significant accumulation of intra-bacterial reactive oxygen species (ROS), inhibiting growth of C. rodentium and related human pathogens. Within-host adaptation increased gastric acid survival, which may be due to a robust acid tolerance response (ATR) induced at colonic pH. However, the intestinal environment changes throughout the course of infection. We found that murine gastric pH decreases postinfection, corresponding to increased serum gastrin levels and altered host expression of acid secretion-related genes. Similar responses following Salmonella infection may indicate a protective host response to limit further pathogen ingestion. Together, we highlight interlinked bacterial and host adaptive pH responses as an important component of host-pathogen coevolution.
Collapse
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Laurel M. P. Neufeld
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Jorge Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Wenny Feng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Isabel Tarrant
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Kiernan DP, O'Doherty JV, Connolly KR, Ryan M, Sweeney T. Exploring the Differential Expression of a Set of Key Genes Involved in the Regulation and Functioning of the Stomach in the Post-Weaned Pig. Vet Sci 2023; 10:473. [PMID: 37505877 PMCID: PMC10386345 DOI: 10.3390/vetsci10070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Despite playing a key role in digestion, there is only a broad characterization of the spatiotemporal development of the three glandular regions of the stomach (cardiac, fundic and pyloric) in the weaned pig. Hence, the objective of this experiment was to explore the differential expression (DE) of a panel of key genes within the three glandular regions of the stomach. Eight pigs were sacrificed at d 8 post-weaning, and three mucosal samples were collected from each stomach's glandular regions. The expression of a panel of genes were measured using QPCR. The true cardiac gland region was characterized by increased expression of PIGR, OLFM4, CXCL8 and MUC2 relative to the two other regions (p < 0.05). The fundic gland region was characterized by increased expression of ATP4A, CLIC6, KCNQ1, HRH2, AQP4, HDC, CCKBR, CHIA, PGA5, GHRL and MBOAT4 compared to the two other regions (p < 0.05). The pyloric gland region was characterized by exclusive expression of GAST (p < 0.05). A transition region between the cardiac and fundic region (cardiac-to-oxyntic transition) was observed with a gene expression signature that resembles a cross of the signatures found in the two regions. In conclusion, unique gene expression signatures were identifiable in each of the glandular regions, with a cardiac-to-oxyntic transition region clearly identifiable in the post-weaned pigs' stomachs.
Collapse
Affiliation(s)
- Dillon P Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Marion Ryan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| |
Collapse
|
4
|
Patel A, Marquez-Gomez PL, Torp LR, Gao L, Peralta-Yahya P. Insight into the Mode of Action of 8-Hydroxyquinoline-Based Blockers on the Histamine Receptor 2. BIOSENSORS 2023; 13:571. [PMID: 37366936 PMCID: PMC10295836 DOI: 10.3390/bios13060571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Histamine receptor 2 (HRH2) blockers are used to treat peptic ulcers and gastric reflux. Chlorquinaldol and chloroxine, which contain an 8-hydroxyquinoline (8HQ) core, have recently been identified as blocking HRH2. To gain insight into the mode of action of 8HQ-based blockers, here, we leverage an HRH2-based sensor in yeast to evaluate the role of key residues in the HRH2 active site on histamine and 8HQ-based blocker binding. We find that the HRH2 mutations D98A, F254A, Y182A, and Y250A render the receptor inactive in the presence of histamine, while HRH2:D186A and HRH2:T190A retain residual activity. Based on molecular docking studies, this outcome correlates with the ability of the pharmacologically relevant histamine tautomers to interact with D98 via the charged amine. Docking studies also suggest that, unlike established HRH2 blockers that interact with both ends of the HRH2 binding site, 8HQ-based blockers interact with only one end, either the end framed by D98/Y250 or T190/D186. Experimentally, we find that chlorquinaldol and chloroxine still inactivate HRH2:D186A by shifting their engagement from D98 to Y250 in the case of chlorquinaldol and D186 to Y182 in the case of chloroxine. Importantly, the tyrosine interactions are supported by the intramolecular hydrogen bonding of the 8HQ-based blockers. The insight gained in this work will aid in the development of improved HRH2 therapeutics. More generally, this work demonstrates that Gprotein-coupled receptor (GPCR)-based sensors in yeast can help elucidate the mode of action of novel ligands for GPCRs, a family of receptors that bind 30% of FDA therapeutics.
Collapse
Affiliation(s)
- Amisha Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Paola L Marquez-Gomez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lily R Torp
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lily Gao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pamela Peralta-Yahya
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Aberrant Methylation of Somatostatin Receptor 2 Gene Is Initiated in Aged Gastric Mucosa Infected with Helicobacter pylori and Consequential Gene Silencing Is Associated with Establishment of Inflammatory Microenvironment In Vitro Study. Cancers (Basel) 2022; 14:cancers14246183. [PMID: 36551669 PMCID: PMC9777158 DOI: 10.3390/cancers14246183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The loss-of-function variants are thought to be associated with inflammation in the stomach. We here aimed to evaluate the extent and role of methylation at the SSTR2 promoter in inflammation and gastric tumor formation. A whole-genome bisulfite sequencing analysis revealed that the SSTR2 promoter was significantly hypermethylated in gastric tumors, dysplasia, and intestinal metaplasia compared to non-tumor tissues from patients with gastric cancer. Using public data, we confirmed SSTR2 promoter methylation in primary gastric tumors and intestinal metaplasia, and even aged gastric mucosae infected with Helicobacter pylori, suggesting that aberrant methylation is initiated in normal gastric mucosa. The loss-of-function of SSTR2 in SNU638 cell-induced cell proliferation in vitro, while stable transfection of SSTR2 in AGS and MKN74 cells inhibited cell proliferation and tumorigenesis in vitro and in vivo. As revealed by a comparison of target genes differentially expressed in these cells with hallmark molecular signatures, inflammation-related pathways were distinctly induced in SSTR2-KO SNU638 cell. By contrast, inflammation-related pathways were inhibited in AGS and MKN74 cells ectopically expressing SSTR2. Collectively, we propose that SSTR2 silencing upon promoter methylation is initiated in aged gastric mucosae infected with H. pylori and promotes the establishment of an inflammatory microenvironment via the intrinsic pathway. These findings provide novel insights into the initiation of gastric carcinogenesis.
Collapse
|
6
|
Marquez-Gomez PL, Kruyer NS, Eisen SL, Torp LR, Howie RL, Jones EV, France S, Peralta-Yahya P. Discovery of 8-Hydroxyquinoline as a Histamine Receptor 2 Blocker Scaffold. ACS Synth Biol 2022; 11:2820-2828. [PMID: 35930594 PMCID: PMC9396701 DOI: 10.1021/acssynbio.2c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Histamine receptor 2 (HRH2) activation in
the stomach
results in gastric acid secretion, and HRH2 blockers are
used for the treatment of peptidic ulcers and acid reflux. Over-the-counter
HRH2 blockers carry a five-membered aromatic heterocycle,
with two of them additionally carrying a tertiary amine that decomposes
to N-nitrosodimethylamine, a human carcinogen. To discover a novel
HRH2 blocker scaffold to serve in the development of next-generation
HRH2 blockers, we developed an HRH2-based sensor
in yeast by linking human HRH2 activation to cell luminescence.
We used the HRH2-based sensor to screen a 403-member anti-infection
chemical library and identified three HRH2 blockers, chlorquinaldol,
chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline
scaffold, which is not found among known HRH2 antagonists.
Critically, we validate their HRH2-blocking ability in
mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure–activity
data point toward these blockers acting as competitive antagonists.
Chloroxine and broxyquinoline are antimicrobials that can be found
in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together,
this work demonstrates the utility of GPCR-based sensors for rapid
drug discovery applications, identifies a novel HRH2 blocker
scaffold, and provides further evidence that antimicrobials not only
target the human microbiota but also the human host.
Collapse
Affiliation(s)
- Paola L Marquez-Gomez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas S Kruyer
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sara L Eisen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lily R Torp
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rebecca L Howie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elizabeth V Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Mazzoni M, Lattanzio G, Bonaldo A, Tagliavia C, Parma L, Busti S, Gatta PP, Bernardi N, Clavenzani P. Effect of Essential Oils on the Oxyntopeptic Cells and Somatostatin and Ghrelin Immunoreactive Cells in the European Sea Bass ( Dicentrarchus labrax) Gastric Mucosa. Animals (Basel) 2021; 11:3401. [PMID: 34944178 PMCID: PMC8697999 DOI: 10.3390/ani11123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The current work was designed to assess the effect of feed supplemented with essential oils (EOs) on the histological features in sea bass's gastric mucosa. Fish were fed three diets: control diet (CTR), HERBAL MIX® made with natural EOs (N-EOs), or HERBAL MIX® made with artificial EOs obtained by synthesis (S-EOs) during a 117-day feeding trial. Thereafter, the oxyntopeptic cells (OPs) and the ghrelin (GHR) and somatostatin (SOM) enteroendocrine cells (EECs) in the gastric mucosa were evaluated. The Na+K+-ATPase antibody was used to label OPs, while, for the EECs, anti-SOM and anti-GHR antibody were used. The highest density of OP immunoreactive (IR) area was in the CTR group (0.66 mm2 ± 0.1). The OP-IR area was reduced in the N-EO diet group (0.22 mm2 ± 1; CTR vs. N-EOs, p < 0.005), while in the S-EO diet group (0.39 mm2 ± 1) a trend was observed. We observed an increase of the number of SOM-IR cells in the N-EO diet (15.6 ± 4.2) compared to that in the CTR (11.8 ± 3.7) (N-EOs vs. CTR; p < 0.05), but not in the S-EOs diet. These observations will provide a basis to advance current knowledge on the anatomy and digestive physiology of this species in relation to pro-heath feeds.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | | | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| |
Collapse
|
8
|
Molecular mechanisms of Wischnewski spot development on gastric mucosa in fatal hypothermia: an experimental study in rats. Sci Rep 2020; 10:1877. [PMID: 32024924 PMCID: PMC7002760 DOI: 10.1038/s41598-020-58894-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2020] [Indexed: 02/02/2023] Open
Abstract
Numerous dark-brown-coloured small spots called “Wischnewski spots” are often observed in the gastric mucosa in the patients dying of hypothermia, but the molecular mechanisms through which they develop remain unclear. We hypothesised that hypothermia may activate the secretion of gastric acid and pepsin, leading to the development of the spots. To investigate this, we performed experiments using organotypic rat gastric tissue slices cultured at 37 °C (control) or 32 °C (cold). Cold loading for 6 h lowered the extracellular pH in the culture medium. The mRNA expression of gastrin, which regulates gastric acid secretion, increased after cold loading for 3 h. Cold loading increased the expression of gastric H+,K+-ATPase pump protein in the apical canalicular membrane and resulted in dynamic morphological changes in parietal cells. Cold loading resulted in an increased abundance of pepsin C protein and an elevated mRNA expression of its precursor progastricsin. Collectively, our findings clarified that cold stress induces acidification by activating gastric H+,K+-ATPase pumps and promoting pepsin C release through inducing progastricsin expression on the gastric mucosa, leading to tiny haemorrhages or erosions of the gastric mucosa that manifest as Wischnewski spots in fatal hypothermia.
Collapse
|
9
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Al Menhali A, Keeley TM, Demitrack ES, Samuelson LC. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 2017; 312:G649-G657. [PMID: 28408643 PMCID: PMC5495916 DOI: 10.1152/ajpgi.00366.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of PthlhLacZ/+ knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and show that gastrin induces PTHLH expression via transcription activation and mRNA stabilization. Our findings suggest that PTHLH is a gastrin-regulated growth factor that might contribute to gastric epithelial cell homeostasis.
Collapse
Affiliation(s)
- Asma Al Menhali
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elise S. Demitrack
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Sakai H, Fujii T, Takeguchi N. Proton-Potassium (H+/K+) ATPases: Properties and Roles in Health and Diseases. Met Ions Life Sci 2016; 16:459-83. [DOI: 10.1007/978-3-319-21756-7_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Kumar JD, Steele I, Moore AR, Murugesan SV, Rakonczay Z, Venglovecz V, Pritchard DM, Dimaline R, Tiszlavicz L, Varro A, Dockray GJ. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2015; 309:G78-86. [PMID: 25977510 PMCID: PMC4504956 DOI: 10.1152/ajpgi.00084.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/06/2015] [Indexed: 01/31/2023]
Abstract
The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling.
Collapse
Affiliation(s)
- J. Dinesh Kumar
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Islay Steele
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Andrew R. Moore
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Senthil V. Murugesan
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Zoltan Rakonczay
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Viktoria Venglovecz
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - D. Mark Pritchard
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Rodney Dimaline
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | | | - Andrea Varro
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Graham J. Dockray
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| |
Collapse
|
13
|
Ameer OZ, Salman IM, Quek KJ, Asmawi MZ. Loranthus ferrugineus: a Mistletoe from Traditional Uses to Laboratory Bench. J Pharmacopuncture 2015; 18:7-18. [PMID: 25830054 PMCID: PMC4379471 DOI: 10.3831/kpi.2015.18.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022] Open
Abstract
Objectives: Loranthus ferrugineus (L. ferrugineus) from Loranthaceae, a mistletoe, is a medicinal herb used for a variety of human ailments. Traditionally, decoctions of this parasitic shrub have been mainly used to treat high blood pressure (BP) and gastrointestinal complaints; usage which is supported by experimental based pharmacological investigations. Nonetheless, there is still limited data available evaluating this plant’s traditions, and few studies have been scientifically translated toward evidence based phytomedicine. We therefore provide a concise review of the currently available L. ferrugineus literature and discuss potential directions for future areas of investigation. Methods: We surveyed available literature covering ethnopharmacological usage of L. ferrugineus and discussed relevant findings, including important future directions and shortcomings for the medicinal values of this parasitic shrub. Results: Evidence based pharmacological approaches significantly covered the medicinal application of L. ferrugineus for hypertension and gastrointestinal complaint management, with a particular focus on the active hydrophilic extract of this herb. Conclusion: Understanding the sites of action of this plant and its beneficial effects will provide justification for its use in old traditional treatments, and potentially lead to the development of therapies. Other medicinal applicative areas of this parasitic shrub, such as wound healing, gerontological effects, and antiviral and anticancer activities, are yet to be researched.
Collapse
Affiliation(s)
- Omar Z Ameer
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia ; Department of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim M Salman
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia ; Department of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ko Jin Quek
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Mohd Z Asmawi
- Department of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
14
|
Bessho Y, Iwakoshi-Ukena E, Tachibana T, Maejima S, Taniuchi S, Masuda K, Shikano K, Kondo K, Furumitsu M, Ukena K. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain. Neurosci Lett 2014; 578:106-10. [DOI: 10.1016/j.neulet.2014.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/17/2014] [Accepted: 06/13/2014] [Indexed: 11/30/2022]
|
15
|
Márquez L, Fuentes J. In vitro characterization of acid secretion in the gilthead sea bream (Sparus aurata) stomach. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:52-8. [PMID: 24126049 DOI: 10.1016/j.cbpa.2013.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 01/19/2023]
Abstract
The gastric acid secretion of juvenile Sparus aurata was characterized in Ussing chambers; secretion rates were determined by a pH-stat method at pH5.50 and bioelectrical parameters were measured in current-clamped tissues. The basal secretion equaled to 535±87nmol·cm(-2)·h(-1). Serosal carbachol 100μM produced an increase (ΔJH(+)) of 725±133nmol·cm(-2)·h(-1) from basal secretion, this effect being inhibited by mucosal omeprazole 100μM. Basal secretion was also sensitive to the combination of serosal forskolin (FK) 10μM+serosal isobutylmethylxanthine (IBMX) 100μM (ΔJH(+)=793±239nmol·cm(-2)·h(-1)); this effect was insensitive to mucosal omeprazole 100mM but inhibited by mucosal bafilomycin A1 100nM. The effect of carbachol proceeded within a few minutes (<10min), whereas the effect of FK+IBMX was gradual, taking 40min to reach the maximum. The addition of mucosal gadolinium (Gd(3+)) 100μM, a potent calcium-sensing receptor (CaR) agonist, stimulated the basal secretion (ΔJH(+)=340±81nmol·cm(-2)·h(-1)). The present results indicate that the acid secretion mechanism in the sea bream stomach is regulated by muscarinic and CaR-like receptors, cAMP is implicated in the signal transduction, and at least two proton pumps, a HK-ATPase and a V-ATPase contribute to acid secretion.
Collapse
Affiliation(s)
- Lorenzo Márquez
- Núcleo de Investigación en Producción Alimentaria/Escuela de Acuicultura, Facultad de Recursos Naturales, Universidad Católica de Temuco, Avda. Rudecindo Ortega 02950, PO Box 15-D, Temuco, Chile.
| | | |
Collapse
|
16
|
Suissa Y, Magenheim J, Stolovich-Rain M, Hija A, Collombat P, Mansouri A, Sussel L, Sosa-Pineda B, McCracken K, Wells JM, Heller RS, Dor Y, Glaser B. Gastrin: a distinct fate of neurogenin3 positive progenitor cells in the embryonic pancreas. PLoS One 2013; 8:e70397. [PMID: 23940571 PMCID: PMC3734289 DOI: 10.1371/journal.pone.0070397] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023] Open
Abstract
Neurogenin3(+) (Ngn3(+)) progenitor cells in the developing pancreas give rise to five endocrine cell types secreting insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. Gastrin is a hormone produced primarily by G-cells in the stomach, where it functions to stimulate acid secretion by gastric parietal cells. Gastrin is expressed in the embryonic pancreas and is common in islet cell tumors, but the lineage and regulators of pancreatic gastrin(+) cells are not known. We report that gastrin is abundantly expressed in the embryonic pancreas and disappears soon after birth. Some gastrin(+) cells in the developing pancreas co-express glucagon, ghrelin or pancreatic polypeptide, but many gastrin(+) cells do not express any other islet hormone. Pancreatic gastrin(+) cells express the transcription factors Nkx6.1, Nkx2.2 and low levels of Pdx1, and derive from Ngn3(+) endocrine progenitor cells as shown by genetic lineage tracing. Using mice deficient for key transcription factors we show that gastrin expression depends on Ngn3, Nkx2.2, NeuroD1 and Arx, but not Pax4 or Pax6. Finally, gastrin expression is induced upon differentiation of human embryonic stem cells to pancreatic endocrine cells expressing insulin. Thus, gastrin(+) cells are a distinct endocrine cell type in the pancreas and an alternative fate of Ngn3+ cells.
Collapse
Affiliation(s)
- Yaron Suissa
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ayat Hija
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Patrick Collombat
- Department of Diabetes Genetics, Inserm, Nice, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kyle McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - R. Scott Heller
- Histology and Delivery Department, Novo Nordisk, Måløv, Denmark
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail: (BG); (YD)
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (BG); (YD)
| |
Collapse
|
17
|
Affiliation(s)
- John G. Forte
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| | - Lixin Zhu
- Department of Pediatrics, Digestive Disease and Nutrition Center, The State University of New York, Buffalo, New York 14214;
| |
Collapse
|
18
|
Weis VG, Goldenring JR. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer 2010; 12:189-97. [PMID: 20047123 PMCID: PMC4502916 DOI: 10.1007/s10120-009-0527-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 10/11/2009] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the second leading cause of cancer-related death worldwide, but the details of gastric carcinogenesis remain unclear. In humans, two preneoplastic metaplasias are associated with the precancerous stomach: intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM). While mouse models of Helicobacter sp. infection have not shown intestinal metaplasia, a number of mouse models lead to the evolution of SPEM. In this review, we summarize increasing data that indicates that SPEM arises in the setting of parietal cell loss, either following acute druginduced oxyntic atrophy or in chronic oxyntic atrophy associated with H. felis infection. Importantly, recent investigations support the origin of SPEM through transdifferentiation from mature chief cells following parietal cell loss. Novel biomarkers of SPEM, such as HE4, hold promise as specific markers of the metaplastic process distinct from normal gastric lineages. Staining with HE4 in humans and other studies in gerbils suggest that SPEM arises initially in the human stomach following parietal cell loss and then further evolves into intestinal metaplasia, likely in association with chronic inflammation. Further studies are needed to broaden our knowledge of metaplasia and early cancer-specific biomarkers that could give insights into both lineage derivation and preneoplasia detection.
Collapse
Affiliation(s)
- Victoria G. Weis
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R. Goldenring
- Nashville Department of Veterans Affairs Medical Center, Nashville, TN, USA
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
19
|
Abstract
The parietal cell is responsible for secreting concentrated hydrochloric acid into the gastric lumen. To fulfill this task, it is equipped with a broad variety of functionally coupled apical and basolateral ion transport proteins. The concerted scientific effort over the last years by a variety of researchers has provided us with the molecular identity of many of these transport mechanisms, thereby contributing to the clarification of persistent controversies in the field. This article will briefly review the current model of parietal cell physiology and ion transport in particular and will update the existing models of apical and basolateral transport in the parietal cell.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - Michael Murek
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - John P. Geibel
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Goldenring JR, Nam KT. Oxyntic atrophy, metaplasia, and gastric cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:117-31. [PMID: 21075342 PMCID: PMC4502917 DOI: 10.1016/b978-0-12-381280-3.00005-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric carcinogenesis involves the loss of parietal cells (oxyntic atrophy) and subsequent replacement of the normal gastric lineages with metaplastic cells. In humans, two metaplastic lineages develop as sequelae of chronic Helicobacter pylori infection: intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM). Mouse models of both chronic Helicobacter infection and acute pharmacological oxyntic atrophy have led to the discovery that SPEM arises from transdifferentiation of mature chief cells. The presence of inflammation promotes the expansion of SPEM in mice. Furthermore, studies in Mongolian gerbils as well as increasing evidence from human studies indicate that SPEM likely represents a precursor for the development of intestinal metaplasia. These findings suggest that loss of parietal cells, augmented by chronic inflammation, leads to a cascade of metaplastic events. Identification of specific biomarkers for SPEM and intestinal metaplasia hold promise for providing both early detection of preneoplasia and information on prognostic outcome following curative resection.
Collapse
Affiliation(s)
- James R Goldenring
- Nashville Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
21
|
Jansen IDC, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, Schoenmaker T, Ravesloot JH, van Borren MMGJ, van Eijden TM, Bronckers ALJJ, Kellokumpu S, Medina JF, Everts V, Oude Elferink RPJ. Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J 2009; 23:3470-81. [PMID: 19564250 DOI: 10.1096/fj.08-122598] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular acidification by osteoclasts is essential to bone resorption. During proton pumping, intracellular pH (pH(i)) is thought to be kept at a near-neutral level by chloride/bicarbonate exchange. Here we show that the Na(+)-independent chloride/bicarbonate anion exchanger 2 (Ae2) is relevant for this process in the osteoclasts from the long bones of Ae2(a,b)(-/-) mice (deficient in the main isoforms Ae2a, Ae2b(1), and Ae2b(2)). Although the long bones of these mice had normal numbers of multinucleated osteoclasts, these cells lacked a ruffled border and displayed impaired bone resorption activity, resulting in an osteopetrotic phenotype of long bones. Moreover, in vitro osteoclastogenesis assays using long-bone marrow cells from Ae2(a,b)(-/-) mice suggested a role for Ae2 in osteoclast formation, as fusion of preosteoclasts for the generation of active multinucleated osteoclasts was found to be slightly delayed. In contrast to the abnormalities observed in the long bones, the skull of Ae2(a,b)(-/-) mice showed no alterations, indicating that calvaria osteoclasts may display normal resorptive activity. Microfluorimetric analysis of osteoclasts from normal mice showed that, in addition to Ae2 activity, calvaria osteoclasts--but not long-bone osteoclasts--possess a sodium-dependent bicarbonate transporting activity. Possibly, this might compensate for the absence of Ae2 in calvaria osteoclasts of Ae2(a,b)(-/-) mice.
Collapse
Affiliation(s)
- Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam, van der Boechorststraat 7, Amsterdam, Netherlands 1081 BT.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Capoccia BJ, Huh WJ, Mills JC. How form follows functional genomics: gene expression profiling gastric epithelial cells with a particular discourse on the parietal cell. Physiol Genomics 2009; 37:67-78. [PMID: 19208773 DOI: 10.1152/physiolgenomics.90408.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular composition and morphology of the stomach epithelium have been described in detail; however, the molecular mechanisms that regulate the differentiation of the various cell lineages as well as the function of mature gastric cells are far less clear. Recently, dissection of the molecular anatomy of the stomach has been boosted by the advent of functional genomics, which allows investigators to determine patterns of gene expression across virtually the entire cellular transcriptome. In this review, we discuss the impact of functional genomic studies on the understanding of gastric epithelial physiology. We show how functional genomic studies have uncovered genes that are useful as new cell lineage-specific markers of differentiation and provide new insights into cell physiology. For example, vascular endothelial growth factor B (Vegfb) has been identified as a parietal cell-specific marker that may allow parietal cells to regulate the mucosal vascular network. We also discuss how functional genomics has identified aberrantly expressed genes in disease states. Human epididymis 4 (HE4), for example, was recently identified as a metaplasia-induced gene product in mice based on microarray analysis. Finally, we will examine how analysis of higher-order patterns of gene expression can go beyond simply identifying individual genes to show how cells work as integrated systems. Specifically, we show how application of a Gene Ontology (GO) analysis of gene expression patterns from multiple tissues identifies the gastric parietal cell as an outlier, unlike other differentiated cell lineages in the stomach or elsewhere in the body.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
23
|
Jain RN, Al-Menhali AA, Keeley TM, Ren J, El-Zaatari M, Chen X, Merchant JL, Ross TS, Chew CS, Samuelson LC. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J Clin Invest 2008; 118:2459-70. [PMID: 18535670 DOI: 10.1172/jci33569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 04/30/2008] [Indexed: 11/17/2022] Open
Abstract
Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the gastric epithelium in Hip1r-deficient mice. Electron microscopy revealed abnormal apical canalicular membranes and loss of tubulovesicles in mutant parietal cells, suggesting that Hip1r is necessary for the normal trafficking of these secretory membranes. Accordingly, acid secretory dynamics were altered in mutant parietal cells, with enhanced activation and acid trapping, as measured in isolated gastric glands. At the whole-organ level, gastric acidity was reduced in Hip1r-deficient mice, and the gastric mucosa was grossly transformed, with fewer parietal cells due to enhanced apoptotic cell death and glandular hypertrophy associated with cellular transformation. Hip1r-deficient mice had increased expression of the gastric growth factor gastrin, and mice mutant for both gastrin and Hip1r exhibited normalization of both proliferation and gland height. Taken together, these studies demonstrate that Hip1r plays a significant role in gastric physiology, mucosal architecture, and secretory membrane dynamics in parietal cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hsu SJ, Patel A, Larsen PD, Bohmann DJ, Bauer RJ, Ma JK, Masat L, Roell M, Babuka SJ, Hansen RK, White M, Haak-Frendscho M. Development of XPA067.06, a potent high affinity human anti-gastrin monoclonal antibody. Biochem Pharmacol 2008; 76:340-52. [DOI: 10.1016/j.bcp.2008.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
|
25
|
Ordoñez GR, Hillier LW, Warren WC, Grützner F, López-Otín C, Puente XS. Loss of genes implicated in gastric function during platypus evolution. Genome Biol 2008; 9:R81. [PMID: 18482448 PMCID: PMC2441467 DOI: 10.1186/gb-2008-9-5-r81] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 04/04/2008] [Accepted: 05/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The duck-billed platypus (Ornithorhynchus anatinus) belongs to the mammalian subclass Prototheria, which diverged from the Theria line early in mammalian evolution. The platypus genome sequence provides a unique opportunity to illuminate some aspects of the biology and evolution of these animals. RESULTS We show that several genes implicated in food digestion in the stomach have been deleted or inactivated in platypus. Comparison with other vertebrate genomes revealed that the main genes implicated in the formation and activity of gastric juice have been lost in platypus. These include the aspartyl proteases pepsinogen A and pepsinogens B/C, the hydrochloric acid secretion stimulatory hormone gastrin, and the alpha subunit of the gastric H+/K+-ATPase. Other genes implicated in gastric functions, such as the beta subunit of the H+/K+-ATPase and the aspartyl protease cathepsin E, have been inactivated because of the acquisition of loss-of-function mutations. All of these genes are highly conserved in vertebrates, reflecting a unique pattern of evolution in the platypus genome not previously seen in other mammalian genomes. CONCLUSION The observed loss of genes involved in gastric functions might be responsible for the anatomical and physiological differences in gastrointestinal tract between monotremes and other vertebrates, including small size, lack of glands, and high pH of the monotreme stomach. This study contributes to a better understanding of the mechanisms that underlie the evolution of the platypus genome, might extend the less-is-more evolutionary model to monotremes, and provides novel insights into the importance of gene loss events during mammalian evolution.
Collapse
Affiliation(s)
- Gonzalo R Ordoñez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, C/Fernando Bongera s/n, 33006 Oviedo, Spain
| | - LaDeana W Hillier
- Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA
| | - Frank Grützner
- Discipline of Genetics, School of Molecular & Biomedical Science, The University of Adelaide, 5005 South Australia, Adelaide, Australia
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, C/Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, C/Fernando Bongera s/n, 33006 Oviedo, Spain
| |
Collapse
|
26
|
Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N, Nanthakumar N, Walkley SU, Pickel J, Slaugenhaupt SA. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 2007; 81:1070-83. [PMID: 17924347 DOI: 10.1086/521954] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 07/27/2007] [Indexed: 11/04/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene, which encodes the 65-kDa protein mucolipin-1. The most common clinical features of patients with MLIV include severe mental retardation, delayed motor milestones, ophthalmologic abnormalities, constitutive achlorhydria, and elevated plasma gastrin levels. Here, we describe the first murine model for MLIV, which accurately replicates the phenotype of patients with MLIV. The Mcoln1(-/-) mice present with numerous dense inclusion bodies in all cell types in brain and particularly in neurons, elevated plasma gastrin, vacuolization in parietal cells, and retinal degeneration. Neurobehavioral assessments, including analysis of gait and clasping, confirm the presence of a neurological defect. Gait deficits progress to complete hind-limb paralysis and death at age ~8 mo. The Mcoln1(-/-) mice are born in Mendelian ratios, and both male and female Mcoln1(-/-) mice are fertile and can breed to produce progeny. The creation of the first murine model for human MLIV provides an excellent system for elucidating disease pathogenesis. In addition, this model provides an invaluable resource for testing treatment strategies and potential therapies aimed at preventing or ameliorating the abnormal lysosomal storage in this devastating neurological disorder.
Collapse
Affiliation(s)
- Bhuvarahamurthy Venugopal
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kosiek O, Busque SM, Föller M, Shcheynikov N, Kirchhoff P, Bleich M, Muallem S, Geibel JP. SLC26A7 can function as a chloride-loading mechanism in parietal cells. Pflugers Arch 2007; 454:989-98. [PMID: 17404755 DOI: 10.1007/s00424-007-0254-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 01/23/2023]
Abstract
To date three potential candidates for parietal cell basolateral Cl(-) entry have been described: the highly 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive Cl(-)/HCO(3)(-) exchanger AE2, the HCO(3)(-) and lowly DIDS-sensitive SLC26A7 protein, and the Na(+)-2Cl(-)K(+) cotransporter (NKCC1). In this study we investigate the contribution of these pathways to secretagogue stimulated acid secretion. Individually hand-dissected rat gastric glands were microfluorimetrically monitored for Cl(-) influx and pH(i) changes. Transporter activity was determined by varying ion content and through the use of pharmacological inhibitors. Expression of SLC26A7 in rat parietal cells was shown by immunohistochemistry and Western blot. SLC26A7 was inhibited by 5-Nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB) (100 microM) in the Xenopus laevis oocyte expression system. Cl(-) influx in parietal cells was enhanced by histamine, depended partially on endogenous HCO(3)(-) synthesis and completely on extracellular Na(+). Removal and subsequent readdition of Cl(-) revealed a low and a high DIDS-sensitive HCO(3)(-) extrusion system contributing to Cl(-) uptake. At acidic pH(i), however, H(+) extrusion via the H(+),K(+)-ATPase depending on Cl(-) uptake was abolished only in the presence of 100 microM (NPPB) and at high (250 microM) DIDS concentration. There was no effect of the NKCC inhibitor bumetanide on stimulated H(+) extrusion. These results would be compatible with SLC26A7 as a Cl(-) uptake system under histamine stimulation.
Collapse
Affiliation(s)
- Ortrud Kosiek
- Department of Surgery, Yale University School of Medicine, BML 265, 310 Cedar Street, New Haven, CT, 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Furuta K, Nakayama K, Sugimoto Y, Ichikawa A, Tanaka S. Activation of histidine decarboxylase through post-translational cleavage by caspase-9 in a mouse mastocytoma P-815. J Biol Chem 2007; 282:13438-46. [PMID: 17360717 DOI: 10.1074/jbc.m609943200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine synthesis in mammals. Although accumulating evidence has indicated the post-translational processing of HDC, it remains unknown what kinds of proteases are involved. We investigated the processing of HDC in a mouse mastocytoma, P-815, using a lentiviral expression system. HDC was expressed as a 74-kDa precursor form, which is cleaved to yield the 55- and 60-kDa forms upon treatment with butyrate. Alanine-scanning mutations revealed that two tandem aspartate residues (Asp(517)-Asp(518), Asp(550)-Asp(551)) are critical for the processing. Treatment with butyrate caused an increase in the enzyme activity of the cells expressing the wild type HDC, but not in the cells expressing the processing-incompetent mutant. An increase in histamine synthesis by butyrate was accompanied by formation of the 55- and 60-kDa form of HDC. In addition, the in vitro translated 74-kDa form of HDC was found to undergo a limited cleavage by purified human caspase-9, whereas the alanine-substituted mutants were not. Processing and enzymatic activation of HDC in P-815 cells was enhanced in the presence of a Zn(2+) chelator, TPEN. Although treatment with butyrate and TPEN drastically augmented the protease activity of caspase-3, and -9, no apoptotic cell death was observed. Both enzymatic activation and processing of HDC were completely suppressed by a pan-caspase inhibitor, partially but significantly by a specific inhibitor for caspase-9, but not by a caspase-3 inhibitor. These results suggest that, in P-815 cells, histamine synthesis is augmented through the post-translational cleavage of HDC, which is mediated by caspase-9.
Collapse
Affiliation(s)
- Kazuyuki Furuta
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
29
|
Sugiura SH, Roy PK, Ferraris RP. Dietary acidification enhances phosphorus digestibility but decreases H+/K+-ATPase expression in rainbow trout. ACTA ACUST UNITED AC 2006; 209:3719-28. [PMID: 16985189 DOI: 10.1242/jeb.02436] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxynticopeptic cells of fish stomach are thought to secrete less acid than the specialized parietal cells of mammalian stomach. Gastric acidity, however, has not been directly compared between fish and mammals. We therefore fed rainbow trout and rats the same meal, and found that the lowest postprandial pH of trout stomach was 2.7, which was only transiently sustained for 1 h, whereas that of rat stomach was 1.3, which was sustained for 3 h. Postprandial pH of the small intestine was slightly higher in trout (approximately 8.0) than in rats (approximately 7.6), but pH of the large intestine was similar (approximately 8.0). Addition of acids to fish feeds, in an attempt to aid the weak acidity of fish stomach, has been known to improve phosphorus digestibility, but its physiological effect on fish stomach is not known. Exogenous acids did improve phosphorus digestibility but also decreased steady-state mRNA expression of trout H(+)/K(+)-ATPase (ATP4A, the proton pump) as well as Na(+)/bicarbonate cotransporter (NBC), and had no effect on gastrin-like mRNA and somastostatin (SST) mRNA abundance. Gastrin-like mRNA and SST-2 mRNA were equally distributed between corpus and antrum. ATP4A mRNA and NBC mRNA were in the corpus, whereas SST-1 mRNA was in the antrum. Trout gastrin-like EST had modest homology to halibut and pufferfish gastrin, whereas trout ATP4A mRNA had > or = 95% amino acid homology with mammalian, Xenopus and flounder ATP4A. Although ATP4A seems highly conserved among vertebrates, gastric acidity is much less in trout than in rats, explaining the low digestibility of bone phosphorus, abundant in fish diets. Dietary acidification does not reduce acidity enough to markedly improve phosphorus digestibility, perhaps because exogenous acids may inhibit endogenous acid production.
Collapse
Affiliation(s)
- Shozo H Sugiura
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
30
|
Jain RN, Samuelson LC. Differentiation of the gastric mucosa. II. Role of gastrin in gastric epithelial cell proliferation and maturation. Am J Physiol Gastrointest Liver Physiol 2006; 291:G762-5. [PMID: 17030897 DOI: 10.1152/ajpgi.00172.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrin is the principal hormonal inducer of gastric acid secretion. The cellular targets for gastrin in the stomach are the acid-secreting parietal cell and histamine-producing enterochromaffin-like (ECL) cell. Gastrin is also a growth factor, with hypergastrinemia resulting in increased proliferation of gastric progenitor cells and a thickened mucosa. This review presents insights into gastrin function revealed by genetically engineered mouse models, demonstrating a new role for gastrin in the maturation of parietal and ECL cells. Thus, gastrin regulates many aspects of gastric physiology, with tight regulation of gastrin levels required to maintain balanced growth and function of gastric epithelial cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|
31
|
Recalde S, Muruzábal F, Looije N, Kunne C, Burrell MA, Sáez E, Martínez-Ansó E, Salas JT, Mardones P, Prieto J, Medina JF, Elferink RPJO. Inefficient chronic activation of parietal cells in Ae2a,b(-/-) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:165-76. [PMID: 16816370 PMCID: PMC1698767 DOI: 10.2353/ajpath.2006.051096] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In parietal cells, basolateral Ae2 Cl(-)/HCO(3)(-) exchanger (Slc4a2) appears to compensate for luminal H(+) pumping while providing Cl(-) for apical secretion. In mouse and rat, mRNA variants Ae2a, Ae2b1, Ae2b2, and Ae2c2 are all found in most tissues (although the latter at very low levels), whereas Ae2c1 is restricted to the stomach. We studied the acid secretory function of gastric mucosa in mice with targeted disruption of Ae2a, Ae2b1, and Ae2b2 (but not Ae2c) isoforms. In the oxyntic mucosa of Ae2(a,b)(-/-) mice, total Ae2 protein was nearly undetectable, indicating low gastric expression of the Ae2c isoforms. In Ae2(a,b)(-/-) mice basal acid secretion was normal, whereas carbachol/histamine-stimulated acid secretion was impaired by 70%. These animals showed increased serum gastrin levels and hyperplasia of G cells. Immunohistochemistry and electron microscopy revealed baseline activation of parietal cells with fusion of intracellular H(+)/K(+)-ATPase-containing vesicles with the apical membrane and degenerative changes (but not substantial apoptosis) in a subpopulation of these cells. Increased expression of proliferating cell nuclear antigen in the oxyntic glands suggested enhanced Ae2(a,b)(-/-) parietal cell turnover. These data reveal a critical role of Ae2a-Ae2b1-Ae2b2 isoforms in stimulated gastric acid secretion whereas residual Ae2c isoforms could account to a limited extent for basal acid secretion.
Collapse
Affiliation(s)
- Sergio Recalde
- Laboratory of Experimental Hepatology, Academic Medical Center Liver Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lopez-Diaz L, Hinkle KL, Jain RN, Zavros Y, Brunkan CS, Keeley T, Eaton KA, Merchant JL, Chew CS, Samuelson LC. Parietal cell hyperstimulation and autoimmune gastritis in cholera toxin transgenic mice. Am J Physiol Gastrointest Liver Physiol 2006; 290:G970-9. [PMID: 16399875 DOI: 10.1152/ajpgi.00461.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.
Collapse
Affiliation(s)
- Lymari Lopez-Diaz
- Department of Molecular and Integrative Physiology, University of Michigan, 7761 Medical Science II Building, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jain RN, Brunkan CS, Chew CS, Samuelson LC. Gene expression profiling of gastrin target genes in parietal cells. Physiol Genomics 2005; 24:124-32. [PMID: 16278279 DOI: 10.1152/physiolgenomics.00133.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies demonstrated that mice with a null mutation in the gene encoding the hormone gastrin have impaired gastric acid secretion. Hence, the aim of this study was to evaluate changes in the acid-secreting parietal cell in gastrin-deficient (GAS-KO) mice. Analysis of several transcripts encoding parietal cell proteins involved in gastric acid secretion showed reduced abundance in the GAS-KO stomach, including H+,K+-ATPase alpha- and beta-subunits, KCNQ1 potassium channel, aquaporin-4 water channel, and creatine kinase B, which were reversed by gastrin infusion for 1 wk. Although mRNA and protein levels of LIM and SH3 domain-containing protein-1 (LASP-1) were not greatly changed in the mutant, there was a marked reduction in phosphorylation, consistent with its proposed role as a cAMP signal adaptor protein associated with acid secretion. A more comprehensive analysis of parietal cell gene expression in GAS-KO mice was performed using the Affymetrix U74AV2 chip with RNA from parietal cells purified by flow cytometry to >90%. Comparison of gene expression in GAS-KO and wild-type mice identified 47 transcripts that differed by greater than or equal to twofold, suggesting that gastrin affects parietal cell gene expression in a specific manner. The differentially expressed genes included several genes in signaling pathways, with a substantial number (20%) known to be target genes for Wnt and Myc.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
34
|
Hagedorn A, Germann PG, Junker-Walker U, Tomovic A, Seewald W, Polkinghorne A, Pospischil A. Immunohistochemical study about the Flt-1/VEGFR1 expression in the gastrointestinal tract of mouse, rat, dog, swine and monkey. ACTA ACUST UNITED AC 2005; 57:149-59. [PMID: 16325525 DOI: 10.1016/j.etp.2005.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/28/2005] [Indexed: 12/15/2022]
Abstract
Fms-like tyrosine kinase 1 (Flt-1) performs a subordinate effector role in mesenchymal angiogenesis and potentially serves an equally important functional role as a self-contained receptor in epithelial cells. In both endothelial cells and epithelial cells, Flt-1/vascular endothelial growth factor receptor 1 (VEGFR1) downstream signalling is involved in regulating cellular processes such as cytoskeletal changes and cellular survival protection. Cellular renewal of the gastrointestinal mucosa is based on these processes and might involve Flt-1/VEGFR1 pathway activities; the molecular mechanisms regulating these cellular dynamics remain unclear. This study was performed to investigate the presence and distribution of Flt-1/VEGFR1 in epithelial cells of the gastrointestinal tract by immunohistochemistry (IHC). Gastrointestinal tissues were taken from eight anatomical sites from mouse, rat, dog, swine and monkey. Present results revealed a cytosolic Flt-1/VEGFR1 staining pattern in mucosal epithelial cells for all investigated species. Non-epithelial structures also displayed a distinct Flt-1/VEGFR1 positivity and included vascular smooth muscle walls, enteric smooth muscle layers, the enteric nervous system and capillary endothelial cells. Diverse intensities of the Flt-1/VEGFR1 binding reaction within each species were observed in the intestinal mucosa with a strong immunoreaction in enterocytes and with a low protein expression in the ileum in most species. Crypt cells in the large intestine were mostly negative for Flt-1/VEGFR1. A peculiar and mainly intranuclear antibody binding reaction was found in Brunner's gland epithelial cells of mouse and rat whereas Brunner's glands of dog, swine and monkey remained completely negative. These results indicate a potential involvement of Flt-1/VEGFR1 in normal restitution of gastrointestinal structures in the species studied. Additionally, intranuclear Flt-1/VEGFR1 antibody binding in Brunner's glands of rodents may suggest a nuclear translocation of the transmembrane VEGFR1 which has not previously been described.
Collapse
Affiliation(s)
- A Hagedorn
- Department of Pathology, Novartis Pharma AG, MUT-2881.4.07, 4002 Basle, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In this article, key concepts in gastric anatomy and physiology are reviewed. Attention is given to historical development of concepts of acid secretion, to the role of stomach in digestion, and to the mechanisms that protect gastric mucosa from acid and hostile luminal conditions. Evolving ideas that may influence understand-ing of the physiologic consequences of emerging therapeutics, and procedures that target anatomy or function of the stomach are also reviewed.
Collapse
Affiliation(s)
- David I Soybel
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street Boston, MA 02115, USA.
| |
Collapse
|
36
|
McDaniel N, Pace AJ, Spiegel S, Engelhardt R, Koller BH, Seidler U, Lytle C. Role of Na-K-2Cl cotransporter-1 in gastric secretion of nonacidic fluid and pepsinogen. Am J Physiol Gastrointest Liver Physiol 2005; 289:G550-60. [PMID: 16093421 DOI: 10.1152/ajpgi.00095.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na-K-2Cl cotransporter-1 (NKCC) has been detected at exceptionally high levels in the gastric mucosa of several species, prompting speculation that it plays important roles in gastric secretion. To investigate this possibility, we 1) immunolocalized NKCC protein in the mouse gastric mucosa, 2) compared the volume and composition of gastric fluid from NKCC-deficient mice and their normal littermates, and 3) measured acid secretion and electrogenic ion transport by chambered mouse gastric mucosa. NKCC was localized to the basolateral margin of parietal cells, mucous neck cells, and antral base cells. In NKCC-deficient mice, gastric secretions of Na+, K+, Cl-, fluid, and pepsinogen were markedly impaired, whereas secretion of acid was normal. After stimulation with forskolin or 8-bromo-cAMP, chambered corpus mucosa vigorously secreted acid, and this was accompanied by an increase in transmucosal electrical current. Inhibition of NKCC with bumetanide reduced current to resting levels but had no effect on acid output. Although prominent pathways for basolateral Cl- uptake (NKCC) and apical Cl- exit [cystic fibrosis transmembrane conductance regulator (CFTR)] were found in antral base cells, no impairment in gastric secretion was detected in CFTR-deficient mice. Our results establish that NKCC contributes importantly to secretions of Na+, K+, Cl-, fluid, and pepsinogen by the gastric mucosa through a process that is electrogenic in character and independent of acid secretion. The probable source of the NKCC-dependent nonacidic electrogenic fluid secretion is the parietal cell. The observed dependence of pepsinogen secretion on NKCC supports the concept that a nonacidic secretory stream elaborated from parietal cells facilitates flushing of the proenzyme from the gastric gland lumen.
Collapse
Affiliation(s)
- Nichole McDaniel
- Div. of Biomedical Sciences, 2226 Webber Hall, Univ. of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen D, Friis-Hansen L, Håkanson R, Zhao CM. Genetic dissection of the signaling pathways that control gastric acid secretion. Inflammopharmacology 2005; 13:201-7. [PMID: 16259739 DOI: 10.1163/156856005774423872] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gastric acid secretion is regulated by endocrine, paracrine and neurocrine signals via at least three pathways, the gastrin-histamine pathway, the CCK-somatostatin pathway and the neural pathway. Genetically-engineered mice, subjected to targeted gene disruption (i.e., knockout mice), have been used to dissect the signaling pathways that are responsible for the complexity of the regulation of acid secretion in vivo. Both gastrin knockout and gastrin/CCK2 receptor knockout mice displayed greatly impaired acid secretion, presumably because of the loss of the gastrin-histamine pathway. Gastrin/CCK double-knockout mice had a relatively high percentage of active parietal cells with a maintained ability to respond with copious acid secretion to pylorus ligation-evoked vagal stimulation and to a histamine challenge. The low acid secretion in gastrin knockout mice and gastrin/CCK2 receptor knockout mice and the restoration of acid secretion in gastrin/CCK double-knockout mice suggest that CCK plays an important role as inhibitor of the parietal cells via the CCK-somatostatin pathway by stimulating the CCK1 receptor of the D cell. In the absence of both the gastrin-histamine and the CCK-somatostatin pathway (as in gastrin/CCK2 receptor double-knockout mice), the control of acid secretion is probably taken over by neural pathways, explaining the high acid output. The observations illustrate the complexity and plasticity of the acid regulatory mechanisms. It seems that one pathway may be suppressed or allowed to dominate over the others depending on the circumstances.
Collapse
Affiliation(s)
- Duan Chen
- Department of Surgery, University Hospital Trondheim, Olav Kyrres gate 17, 7006 Trondheim, Norway.
| | | | | | | |
Collapse
|
38
|
Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1199-207. [PMID: 15691866 DOI: 10.1152/ajpgi.00514.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscarinic acetylcholine receptors play an important role in the regulation of gastric acid secretion stimulated by acetylcholine; nonetheless, the precise role of each receptor subtype (M(1)-M(5)) remains unclear. This study examined the involvement of M(1), M(3), and M(5) receptors in cholinergic regulation of acid secretion using muscarinic receptor knockout (KO) mice. Gastric acid secretion was measured in both mice subjected to acute gastric fistula production under urethane anesthesia and conscious mice that had previously undergone pylorus ligation. M(3) KO mice exhibited impaired gastric acid secretion in response to carbachol. Unexpectedly, M(1) KO mice exhibited normal intragastric pH, serum gastrin and mucosal histamine levels, and gastric acid secretion stimulated by carbachol, histamine, and gastrin. Pirenzepine, known as an M(1)-receptor antagonist, inhibited carbachol-stimulated gastric acid secretion in a dose-dependent manner in M(1) KO mice as well as in wild-type (WT) mice, suggesting that the inhibitory effect of pirenzepine on gastric acid secretion is independent of M(1)-receptor antagonism. Notably, M(5) KO mice exhibited both significantly lower carbachol-stimulated gastric acid secretion and histamine-secretory responses to carbachol compared with WT mice. RT-PCR analysis revealed M(5)-mRNA expression in the stomach, but not in either the fundic or antral mucosa. Consequently, cholinergic stimulation of gastric acid secretion is clearly mediated by M(3) (on parietal cells) and M(5) receptors (conceivably in the submucosal plexus), but not M(1) receptors.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Female
- Gastric Acid/metabolism
- Male
- Mice
- Mice, Knockout
- Muscarinic Antagonists/pharmacology
- Pirenzepine/pharmacology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M1/biosynthesis
- Receptor, Muscarinic M1/genetics
- Receptor, Muscarinic M1/physiology
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptor, Muscarinic M5/biosynthesis
- Receptor, Muscarinic M5/genetics
- Receptor, Muscarinic M5/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Stomach/physiology
Collapse
Affiliation(s)
- Takeshi Aihara
- Dept. of Applied Pharmacology, Kyoto Pharmaceutical Univ., Misasagi, Yamashina, Kyoto 607-8414 Japan
| | | | | | | | | |
Collapse
|
39
|
Padol IT, Hunt RH. Host-specific differences in the physiology of acid secretion related to prostaglandins may play a role in gastric inflammation and injury. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1110-7. [PMID: 15677554 DOI: 10.1152/ajpgi.00364.2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Immune mediators are involved in strain-specific manifestations of Helicobacter pylori infection, and the type of immune response is associated with production of PGE(2), which in turn influences gastric acid secretion. Acid secretion plays a pivotal role, not only in the pattern of H. pylori-induced gastritis and its consequences, but also in nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathies. Mice and their transgenic modifications are widely used in Helicobacter and eicosanoid research. Using [(14)C]aminopyrine accumulation and pylorus ligation, we aimed to study acid secretion in gastric gland preparations from the commonly used strains of BALB/c and C57BL/6 mice. We found that PGE(2) does not inhibit acid secretion in gastric glands from C57BL/6 mice, in contrast to the expected antisecretory effect of PGE(2) observed in BALB/c mice. In BALB/c mice the effect of histamine and carbachol was reduced by PGE(2), whereas in C57BL/6 mice dose-response curves to these secretagogues were not affected. EP(3) receptors are not involved in acid secretion in C57BL/6 mice, as confirmed by significantly lower expression of mRNA for the EP(3) receptor. These contrary findings are important to the interpretation of the antisecretory role of eicosanoids in BALB/c and C57BL/6 mouse strains and the involvement of prostanoids in the etiology of Helicobacter-induced inflammation and NSAID-induced gastropathies. We propose that the lack of antisecretory effect of PGE(2) observed in C57BL/6 mice could reflect the extent of Helicobacter-induced inflammation and status of acid secretion in response to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ireneusz T Padol
- Div. of Gastroenterology, McMaster Univ., Health Sciences Centre, Rm. 4W8A, 1200 Main St. West, Hamilton, ON, Canada L8N 3Z5
| | | |
Collapse
|
40
|
Demir Y, Nadaroğlu H, Demir N. Effects of omeprazole, famotidine, and ranitidine on the enzyme activities of carbonic anhydrase from bovine stomach in vitro and rat erythrocytes in vivo. Biol Pharm Bull 2005; 27:1730-4. [PMID: 15516714 DOI: 10.1248/bpb.27.1730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the effects of omeprazole, famotidine, and ranitidine on bovine stomach carbonic anhydrase (EC 4.2.1.1.) isoenzymes have been investigated in vitro. Bovine stomach carbonic anhydrase (CA) was purified from four different cell localisations of bovine stomach using affinity chromatography by Sepharose 4B-L-tyrosine sulphanilamide. The inhibition or activation effects of three different medical drugs on CA isoenzymes were determined using esterase activity and the CO(2)-hydratase method by plotting activity % vs. [medical drug]. The K(i) values for omeprazole, famotidine, and ranitidine were determined in all localization CA, respectively. The I(50) values of the drugs exhibiting an inhibition effect were found by means of these graphs. It was observed that omeprazole, famotidine, and ranitidine showed inhibition of bovine stomach CA activity. In addition, in vivo studies were performed for these medical drugs in Sprague-Dawley rats. It was demonstrated that CA in erythrocytes was significantly inhibited by these drugs to 3 h.
Collapse
Affiliation(s)
- Yaşar Demir
- Department of Chemistry, Faculty of Education, Atatürk University, Turkey.
| | | | | |
Collapse
|
41
|
Moya-Garcia AA, Medina MA, Sánchez-Jiménez F. Mammalian histidine decarboxylase: from structure to function. Bioessays 2005; 27:57-63. [PMID: 15612036 DOI: 10.1002/bies.20174] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histamine is a multifunctional biogenic amine with relevant roles in intercellular communication, inflammatory processes and highly prevalent pathologies. Histamine biosynthesis depends on a single decarboxylation step, carried out by a PLP-dependent histidine decarboxylase activity (EC 4.1.1.22), an enzyme that still remains to be fully characterized. Nevertheless, during the last few years, important advances have been made in this field, including the generation and validation of the first three-dimensional model of the enzyme, which allows us to revisit previous results and conclusions. This essay provides a comprehensive review of the current knowledge of the structural and functional characteristics of mammalian histidine decarboxylase.
Collapse
Affiliation(s)
- Aurelio A Moya-Garcia
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | | | | |
Collapse
|
42
|
Kaur S, Norkina O, Ziemer D, Samuelson LC, De Lisle RC. Acidic duodenal pH alters gene expression in the cystic fibrosis mouse pancreas. Am J Physiol Gastrointest Liver Physiol 2004; 287:G480-90. [PMID: 15064229 DOI: 10.1152/ajpgi.00035.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The duodenum is abnormally acidic in cystic fibrosis (CF) due to decreased bicarbonate ion secretion that is dependent on the CF gene product CFTR. In the CFTR null mouse, the acidic duodenum results in increased signaling from the intestine to the exocrine pancreas in an attempt to stimulate pancreatic bicarbonate ion secretion. Excess stimulation is proposed to add to the stress/inflammation of the pancreas in CF. DNA microarray analysis of the CF mouse revealed altered pancreatic gene expression characteristic of stress/inflammation. When the duodenal pH was corrected genetically (crossing CFTR null with gastrin null mice) or pharmacologically (use of the proton pump inhibitor omeprazole), expression levels of genes measured by quantitative RT-PCR were significantly normalized. It is concluded that the acidic duodenal pH in CF contributes to the stress on the exocrine pancreas and that normalizing duodenal pH reduces this stress.
Collapse
Affiliation(s)
- Simran Kaur
- Dept. of Anatomy and Cell Biology, Univ. of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
43
|
Aihara T, Fujishita T, Kanatani K, Furutani K, Nakamura E, Taketo MM, Matsui M, Chen D, Okabe S. Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology 2003; 125:1774-84. [PMID: 14724830 DOI: 10.1053/j.gastro.2003.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The physiologic significance of the M(3) muscarinic receptor is unclear due to an absence of specific ligand. In the present study, M(3) receptor knockout (KO) mice were used to elucidate the role of M(3) receptors in gastric acid secretion and gastric mucosal integrity. METHODS M(3) KO versus wild-type mice aged 1 month to 2 years were included. Gastric acid secretion was assessed by both direct intragastric pH measurement and pylorus ligation. Serum gastrin and gastric mucosal histamine levels were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. Morphologic analysis was performed by both immunohistochemistry and transmission electron microscopy. RESULTS Fasted M(3) KO mice exhibited higher intragastric pH, lower acid output after pylorus ligation, a lower proportion of active parietal cells, and higher serum gastrin levels than fasted wild-type mice. Acid secretion in response to carbachol, histamine, gastrin 17, and 2-deoxy-D-glucose was impaired in the mutant mice. Although carbachol was still able to cause approximately 30% acid output in M(3) KO mice, the acid secretion was inhibited by pirenzepine or famotidine. Despite remarkable hypergastrinemia in M(3) KO mice, there were no trophic responses in the oxyntic mucosa with respect to the mucosal thickness, proliferation rate, and numbers of parietal and enterochromaffin-like cells. Cholecystokinin type 2 receptor antagonist YM022 was without the effect in M(3) KO mice. CONCLUSIONS The present study shows that M(3) receptors are essential for basal acid secretion, a fully acid secretory response to histamine and gastrin, and the trophic responses of oxyntic mucosa to gastrin.
Collapse
Affiliation(s)
- Takeshi Aihara
- Departmentof Applied Pharmacology, Kyoto Pharmaceutical University, Yamashina, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|