1
|
Guzmán MDPR, Díaz IFC, Molina LXZ. "Reflexions on the role, diversity, conservation and management of the genetic microbial resources in Agriculture". CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100365. [PMID: 40104552 PMCID: PMC11914766 DOI: 10.1016/j.crmicr.2025.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
•Soil and its microbial communities play a pivotal role in nutrient cycling, plant growth, and overall ecosystem health.•Over time, the co-evolution of plant-microbe relationships has fostered an interdependence that is central to the microbial loop, significantly contributing to ecosystem functionality.•The ecological and biological dimensions of food production necessitate the adoption of sustainable practices that preserve microbial diversity and promote a holistic management approach to enhance agricultural productivity.•Co-occurrence analysis synthesizes insights across the sections and validates the discussed topics, reinforcing the need for comprehensive scientific understanding to guide effective agricultural practices and policy-making.
Collapse
Affiliation(s)
| | - Ismael Fernando Chávez Díaz
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Jalisco, México
| | - Lily Xochilt Zelaya Molina
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Jalisco, México
| |
Collapse
|
2
|
Cohen C, Gauci FX, Noblin X, Galiana E, Attard A, Thomen P. Kinetics of zoospores approaching a root using a microfluidic device. Phys Rev E 2025; 111:024411. [PMID: 40103171 DOI: 10.1103/physreve.111.024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025]
Abstract
Phytophthora species are plant pathogens that cause considerable damage to agrosystems and ecosystems, and have a major impact on the economy. Infection occurs when their biflagellate zoospores move and reach a root on which they aggregate. However, the communication between the plant and the zoospores and how this communication modifies the behavior of the swimming zoospores is not fully understood. Here we use a microfluidic device incorporating a growing Arabidopsis thaliana root to study the real-time kinetics of Phytophthora parasitica zoospores approaching the root and accumulating (or aggregating) around a specific area called the elongation zone. We show that zoospore kinetics are modified only below a distance of a few hundred microns from the aggregation center, with a decrease in velocity coupled to an increase in the number of turns taken. Furthermore, we show that the rate of aggregation is constant throughout a one-hour experiment, and is dependent on zoospore density. This rate is consistent with the fact that zoospores randomly encounter the region close to the elongation zone, a result compatible with an absence of attraction beyond a few hundred microns. Finally, we show that in our configuration, this absence of attraction can be explained by a residual flow responsible for limiting the diffusion of the signal supposedly emitted by the root to a boundary layer of a few hundred microns.
Collapse
Affiliation(s)
- C Cohen
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| | - F X Gauci
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| | - X Noblin
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| | - E Galiana
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, (ISA), 06903 Sophia-Antipolis, France
| | - A Attard
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, (ISA), 06903 Sophia-Antipolis, France
| | - P Thomen
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| |
Collapse
|
3
|
Huang Y, Zhai L, Chai X, Liu Y, Lv J, Pi Y, Gao B, Wang X, Wu T, Zhang X, Han Z, Wang Y. Bacillus B2 promotes root growth and enhances phosphorus absorption in apple rootstocks by affecting MhMYB15. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1880-1899. [PMID: 38924231 DOI: 10.1111/tpj.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Due to the chelation of phosphorus in the soil, it becomes unavailable for plant growth and development. The mechanisms by which phosphorus-solubilizing bacteria activate immobilized phosphorus to promote the growth and development of woody plants, as well as the intrinsic molecular mechanisms, are not clear. Through the analysis of microbial communities in the rhizosphere 16S V3-V4 and a homologous gene encoding microbial alkaline phosphomonoesterase (phoD) in phosphate-efficient (PE) and phosphate-inefficient apple rootstocks, it was found that PE significantly enriched beneficial rhizobacteria. The best phosphorus-solubilizing bacteria, Bacillus sp. strain 7DB1 (B2), was isolated, purified, and identified from the rhizosphere soil of PE rootstocks. Incubating with Bacillus B2 into the rhizosphere of apple rootstocks significantly increased the soluble phosphorus and flavonoid content in the rhizosphere soil. Simultaneously, this process stimulates the root development of the rootstocks and enhances plant phosphorus uptake. After root transcriptome sequencing, candidate transcription factor MhMYB15, responsive to Bacillus B2, was identified through heatmap and co-expression network analysis. Yeast one-hybrid, electrophoretic mobility shift assay, and LUC assay confirmed that MhMYB15 can directly bind to the promoter regions of downstream functional genes, including chalcone synthase MhCHS2 and phosphate transporter MhPHT1;15. Transgenic experiments with MhMYB15 revealed that RNAi-MhMYB15 silenced lines failed to induce an increase in flavonoid content and phosphorus levels in the roots under the treatment of Bacillus B2, and plant growth was slower than the control. In conclusion, MhMYB15 actively responds to Bacillus B2, regulating the accumulation of flavonoids and the uptake of phosphorus, thereby influencing plant growth and development.
Collapse
Affiliation(s)
- Yimei Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Yao Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ying Pi
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Beibei Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| |
Collapse
|
4
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Pyatina SA, Shishatskaya EI, Dorokhin AS, Menzyanova NG. Border cell population size and oxidative stress in the root apex of Triticum aestivum seedlings exposed to fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25600-25615. [PMID: 38478309 DOI: 10.1007/s11356-024-32840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Fungicides reduce the risk of mycopathologies and reduce the content of mycotoxins in commercial grain. The effect of fungicides on the structural and functional status of the root system of grain crops has not been studied enough. In this regard, we studied the phytocytotoxic effects tebuconazole (TEB) and epoxiconazole (EPO) and azoxystrobin (AZO) in the roots of Triticum aestivum seedlings in hydroponic culture. In the presence of EPO and AZO (but not TEB) inhibition of the root growth was accompanied by a dose-dependent increase in the content of malondialdehyde, carbonylated proteins, and proline in roots. TEB was characterized by a dose-dependent decrease in the total amount of border cells (BCs) and the protein content in root extracellular trap (RET). For EPO and AZO, the dose curves of changes in the total number of BCs were bell-shaped. AZO did not affect the protein content in RET. The protein content in RET significantly decreased by 3 times for an EPO concentration of 1 µg/mL. The obtained results reveal that the BC-RET system is one of the functional targets of fungicides in the root system of wheat seedlings. Studied fungicides induce oxidative stress and structural and functional alterations in the BC-RET system that can affect their toxicity to the root system of crops.
Collapse
Affiliation(s)
| | - Ekaterina Igorevna Shishatskaya
- Siberian Federal University, 79 Svobodnyi Av, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | | | | |
Collapse
|
6
|
Shirakawa M, Matsushita N, Fukuda K. Visualization of root extracellular traps in an ectomycorrhizal woody plant (Pinus densiflora) and their interactions with root-associated bacteria. PLANTA 2023; 258:112. [PMID: 37935872 PMCID: PMC10630192 DOI: 10.1007/s00425-023-04274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
MAIN CONCLUSION Extracellular traps in the primary root of Pinus densiflora contribute to root-associated bacterial colonization. Trapped rhizobacteria induce the production of reactive oxygen species in root-associated, cap-derived cells. Ectomycorrhizal (ECM) woody plants, such as members of Pinaceae and Fagaceae, can acquire resistance to biotic and abiotic stresses through the formation of mycorrhiza with ECM fungi. However, germinated tree seedlings do not have mycorrhizae and it takes several weeks for ectomycorrhizae to form on their root tips. Therefore, to confer protection during the early growth stage, bare primary roots require defense mechanisms other than mycorrhization. Here, we attempted to visualize root extracellular traps (RETs), an innate root defense mechanism, in the primary root of Pinus densiflora and investigate the interactions with root-associated bacteria isolated from ECM and fine non-mycorrhizal roots. Histological and histochemical imaging and colony-forming unit assays demonstrated that RETs in P. densiflora, mainly consisting of root-associated, cap-derived cells (AC-DCs) and large amounts of root mucilage, promote bacterial colonization in the rhizosphere, despite also having bactericidal activity via extracellular DNA. Four rhizobacterial strains retarded the mycelial growth of a pathogenic strain belonging to the Fusarium oxysporum species complex in dual culture assay. They also induced the production of reactive oxygen species (ROS) from host tree AC-DCs without being excluded from the rhizosphere of P. densiflora. Applying three Paraburkholderia strains, especially PM O-EM8 and PF T-NM22, showed significant differences in the ROS levels from the control group. These results reveal the indirect contributions of rhizobacteria to host root defense and suggest that root-associated bacteria could be a component of RETs as a first line of defense against root pathogens in the early growth stage of ECM woody plants.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
7
|
Busont O, Durambur G, Bernard S, Plasson C, Joudiou C, Baude L, Chefdor F, Depierreux C, Héricourt F, Larcher M, Malik S, Boulogne I, Driouich A, Carpin S, Lamblin F. Black Poplar (Populus nigra L.) Root Extracellular Trap, Structural and Molecular Remodeling in Response to Osmotic Stress. Cells 2023; 12:cells12060858. [PMID: 36980198 PMCID: PMC10047092 DOI: 10.3390/cells12060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The root extracellular trap (RET) consists of root-associated, cap-derived cells (root AC-DCs) and their mucilaginous secretions, and forms a structure around the root tip that protects against biotic and abiotic stresses. However, there is little information concerning the changes undergone by the RET during droughts, especially for tree species. Morphological and immunocytochemical approaches were used to study the RET of black poplar (Populus nigra L.) seedlings grown in vitro under optimal conditions (on agar-gelled medium) or when polyethylene glycol-mediated (PEG6000—infused agar-gelled medium) was used to mimic drought conditions through osmotic stress. Under optimal conditions, the root cap released three populations of individual AC-DC morphotypes, with a very low proportion of spherical morphotypes, and equivalent proportions of intermediate and elongated morphotypes. Immunolabeling experiments using anti-glycan antibodies specific to cell wall polysaccharide and arabinogalactan protein (AGP) epitopes revealed the presence of homogalacturonan (HG), galactan chains of rhamnogalacturonan-I (RG-I), and AGPs in root AC-DC cell walls. The data also showed the presence of xylogalacturonan (XGA), xylan, AGPs, and low levels of arabinans in the mucilage. The findings also showed that under osmotic stress conditions, both the number of AC-DCs (spherical and intermediate morphotypes) and the total quantity of mucilage per root tip increased, whereas the mucilage was devoid of the epitopes associated with the polysaccharides RG-I, XGA, xylan, and AGPs. Osmotic stress also led to reduced root growth and increased root expression of the P5CS2 gene, which is involved in proline biosynthesis and cellular osmolarity maintenance (or preservation) in aerial parts. Together, our findings show that the RET is a dynamic structure that undergoes pronounced structural and molecular remodeling, which might contribute to the survival of the root tip under osmotic conditions.
Collapse
Affiliation(s)
- Océane Busont
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Gaëlle Durambur
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sophie Bernard
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
- INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, University of Rouen Normandie, F-76000 Rouen, France
| | - Carole Plasson
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Camille Joudiou
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Laura Baude
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Françoise Chefdor
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Christiane Depierreux
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Mélanie Larcher
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Sonia Malik
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Isabelle Boulogne
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Azeddine Driouich
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
- Correspondence: ; Tel.: +33-(0)2-3841-7127
| |
Collapse
|
8
|
Fortier M, Lemaitre V, Gaudry A, Pawlak B, Driouich A, Follet-Gueye ML, Vicré M. A fine-tuned defense at the pea root caps: Involvement of border cells and arabinogalactan proteins against soilborne diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1132132. [PMID: 36844081 PMCID: PMC9947496 DOI: 10.3389/fpls.2023.1132132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.
Collapse
|
9
|
Pankievicz VCS, Delaux PM, Infante V, Hirsch HH, Rajasekar S, Zamora P, Jayaraman D, Calderon CI, Bennett A, Ané JM. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. FRONTIERS IN PLANT SCIENCE 2022; 13:977056. [PMID: 36275546 PMCID: PMC9583020 DOI: 10.3389/fpls.2022.977056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exploring natural diversity for biological nitrogen fixation in maize and its progenitors is a promising approach to reducing our dependence on synthetic fertilizer and enhancing the sustainability of our cropping systems. We have shown previously that maize accessions from the Sierra Mixe can support a nitrogen-fixing community in the mucilage produced by their abundant aerial roots and obtain a significant fraction of their nitrogen from the air through these associations. In this study, we demonstrate that mucilage production depends on root cap and border cells sensing water, as observed in underground roots. The diameter of aerial roots correlates with the volume of mucilage produced and the nitrogenase activity supported by each root. Young aerial roots produce more mucilage than older ones, probably due to their root cap's integrity and their ability to produce border cells. Transcriptome analysis on aerial roots at two different growth stages before and after mucilage production confirmed the expression of genes involved in polysaccharide synthesis and degradation. Genes related to nitrogen uptake and assimilation were up-regulated upon water exposure. Altogether, our findings suggest that in addition to the number of nodes with aerial roots reported previously, the diameter of aerial roots and abundance of border cells, polysaccharide synthesis and degradation, and nitrogen uptake are critical factors to ensure efficient nitrogen fixation in maize aerial roots.
Collapse
Affiliation(s)
| | - Pierre-Marc Delaux
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Valentina Infante
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Hayley H. Hirsch
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Shanmugam Rajasekar
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Pablo Zamora
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Dhileepkumar Jayaraman
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jean-Michel Ané
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Elicitation of Roots and AC-DC with PEP-13 Peptide Shows Differential Defense Responses in Multi-Omics. Cells 2022; 11:cells11162605. [PMID: 36010682 PMCID: PMC9406913 DOI: 10.3390/cells11162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
The root extracellular trap (RET) has emerged as a specialized compartment consisting of root AC-DC and mucilage. However, the RET’s contribution to plant defense is still poorly understood. While the roles of polysaccharides and glycoproteins secreted by root AC-DC have started to be elucidated, how the low-molecular-weight exudates of the RET contribute to root defense is poorly known. In order to better understand the RET and its defense response, the transcriptomes, proteomes and metabolomes of roots, root AC-DC and mucilage of soybean (Glycine max (L.) Merr, var. Castetis) upon elicitation with the peptide PEP-13 were investigated. This peptide is derived from the pathogenic oomycete Phytophthora sojae. In this study, the root and the RET responses to elicitation were dissected and sequenced using transcriptional, proteomic and metabolomic approaches. The major finding is increased synthesis and secretion of specialized metabolites upon induced defense activation following PEP-13 peptide elicitation. This study provides novel findings related to the pivotal role of the root extracellular trap in root defense.
Collapse
|
11
|
Durr J, Reyt G, Spaepen S, Hilton S, Meehan C, Qi W, Kamiya T, Flis P, Dickinson HG, Feher A, Shivshankar U, Pavagadhi S, Swarup S, Salt D, Bending GD, Gutierrez-Marcos J. A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. PLANT & CELL PHYSIOLOGY 2021; 62:248-261. [PMID: 33475132 PMCID: PMC8112839 DOI: 10.1093/pcp/pcaa170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Casparian strip (CS) constitutes a physical diffusion barrier to water and nutrients in plant roots, which is formed by the polar deposition of lignin polymer in the endodermis tissue. The precise pattern of lignin deposition is determined by the scaffolding activity of membrane-bound Casparian Strip domain proteins (CASPs), but little is known of the mechanism(s) directing this process. Here, we demonstrate that Endodermis-specific Receptor-like Kinase 1 (ERK1) and, to a lesser extent, ROP Binding Kinase1 (RBK1) are also involved in regulating CS formation, with the former playing an essential role in lignin deposition as well as in the localization of CASP1. We show that ERK1 is localized to the cytoplasm and nucleus of the endodermis and that together with the circadian clock regulator, Time for Coffee (TIC), forms part of a novel signaling pathway necessary for correct CS organization and suberization of the endodermis, with their single or combined loss of function resulting in altered root microbiome composition. In addition, we found that other mutants displaying defects in suberin deposition at the CS also display altered root exudates and microbiome composition. Thus, our work reveals a complex network of signaling factors operating within the root endodermis that establish both the CS diffusion barrier and influence the microbial composition of the rhizosphere.
Collapse
Affiliation(s)
- Julius Durr
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Guilhem Reyt
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Stijn Spaepen
- Department of Plant Microbe Interactions & Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, K�ln 50829, Germany
- Centre for Microbial and Plant Genetics, Leuven Institute for Beer Research, University of Leuven, Gaston Geenslaan 1 B-3001, Belgium
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Cathal Meehan
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Wu Qi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Paulina Flis
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hugh G Dickinson
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Attila Feher
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesv�ri krt. 62, Szeged H-6726, Hungary
| | - Umashankar Shivshankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shruti Pavagadhi
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - David Salt
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
12
|
Tian T, Reverdy A, She Q, Sun B, Chai Y. The role of rhizodeposits in shaping rhizomicrobiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:160-172. [PMID: 31858707 DOI: 10.1111/1758-2229.12816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
Rhizomicrobiome, the communities of microorganisms surrounding the root of the plant, plays a vital role in promoting plant growth and health. The composition of rhizomicrobiome is dynamic both temporally and spatially, and is influenced greatly by the plant host and environmental factors. One of the key influencing factors is rhizodeposits, composed of root-released tissue cells, exudates, lysates, volatile compounds, etc. Rhizodeposits are rich in carbon and nitrogen elements, and able to select and fuel the growth of rhizomicrobiome. In this minireview, we overview the generation, composition and dynamics of rhizodeposits, and discuss recent work describing the general and specific impacts of rhizodeposits on rhizomicrobiome. We focus further on root exudates, the most dynamic component of rhizodeposits, and review recent progresses about the influence of specific root exudates in promoting bacterial root colonization, inducing biofilm development, acting as plant defence and shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Tao Tian
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Alicyn Reverdy
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Qianxuan She
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Bingbing Sun
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Kumar N, Iyer-Pascuzzi AS. Shedding the Last Layer: Mechanisms of Root Cap Cell Release. PLANTS 2020; 9:plants9030308. [PMID: 32121604 PMCID: PMC7154840 DOI: 10.3390/plants9030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due to constant root cap cell turnover, in which the last layer of the root cap is released, and new root cap cells are produced. Cells in the last root cap layer are known as border cells or border-like cells, and have important functions in root protection against bacterial and fungal pathogens. Despite the importance of root cap cell release to root health and plant growth, the mechanisms regulating this phenomenon are not well understood. Recent work identified several factors including transcription factors, auxin, and small peptides with roles in the production and release of root cap cells. Here, we review the involvement of the known players in root cap cell release, compare the release of border-like cells and border cells, and discuss the importance of root cap cell release to root health and survival.
Collapse
|
14
|
Zaharescu DG, Burghelea CI, Dontsova K, Presler JK, Hunt EA, Domanik KJ, Amistadi MK, Sandhaus S, Munoz EN, Gaddis EE, Galey M, Vaquera-Ibarra MO, Palacios-Menendez MA, Castrejón-Martinez R, Roldán-Nicolau EC, Li K, Maier RM, Reinhard CT, Chorover J. Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering. Sci Rep 2019; 9:15006. [PMID: 31628373 PMCID: PMC6800431 DOI: 10.1038/s41598-019-51274-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023] Open
Abstract
Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.
Collapse
Affiliation(s)
- Dragos G Zaharescu
- Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Alternative Earths Team, NASA Astrobiology Institute, University of California, Riverside, CA, USA.
- Biosphere 2, The University of Arizona, Tucson, AZ, USA.
| | | | - Katerina Dontsova
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | | - Edward A Hunt
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
| | - Kenneth J Domanik
- Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ, USA
| | - Mary K Amistadi
- Arizona Laboratory for Emerging Contaminants, The University of Arizona, Tucson, AZ, USA
| | - Shana Sandhaus
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Honor's College, The University of Arizona, Tucson, AZ, USA
| | - Elise N Munoz
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Honor's College, The University of Arizona, Tucson, AZ, USA
| | - Emily E Gaddis
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Williams College, Williamstown, MA, USA
| | - Miranda Galey
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Biology Department, The University of Minnesota, Duluth, MN, USA
| | - María O Vaquera-Ibarra
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- University of the Americas Puebla, Puebla, Mexico
| | | | - Ricardo Castrejón-Martinez
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- National Autonomous University of Mexico, Mexico City, Mexico
| | - Estefanía C Roldán-Nicolau
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- National Autonomous University of Mexico, Mexico City, Mexico
| | - Kexin Li
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - Christopher T Reinhard
- Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Alternative Earths Team, NASA Astrobiology Institute, University of California, Riverside, CA, USA
| | - Jon Chorover
- Biosphere 2, The University of Arizona, Tucson, AZ, USA
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Driouich A, Smith C, Ropitaux M, Chambard M, Boulogne I, Bernard S, Follet-Gueye ML, Vicré M, Moore J. Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol Rev Camb Philos Soc 2019; 94:1685-1700. [PMID: 31134732 DOI: 10.1111/brv.12522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
The root cap releases cells that produce massive amounts of mucilage containing polysaccharides, proteoglycans, extracellular DNA (exDNA) and a variety of antimicrobial compounds. The released cells - known as border cells or border-like cells - and mucilage secretions form networks that are defined as root extracellular traps (RETs). RETs are important players in root immunity. In animals, phagocytes are some of the most abundant white blood cells in circulation and are very important for immunity. These cells combat pathogens through multiple defence mechanisms, including the release of exDNA-containing extracellular traps (ETs). Traps of neutrophil origin are abbreviated herein as NETs. Similar to phagocytes, plant root cap-originating cells actively contribute to frontline defence against pathogens. RETs and NETs are thus components of the plant and animal immune systems, respectively, that exhibit similar compositional and functional properties. Herein, we describe and discuss the formation, molecular composition and functional similarities of these similar but different extracellular traps.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Matieland, 7602, South Africa
| | - Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie Chambard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - John Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
16
|
Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains. PLANTS 2019; 8:plants8050120. [PMID: 31075893 PMCID: PMC6571900 DOI: 10.3390/plants8050120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are increasingly used in crops worldwide. While selected PGPR strains can reproducibly promote plant growth under controlled greenhouse conditions, their efficacy in the field is often more variable. Our overall aim was to determine if pectin or orange peel (OP) amendments to Bacillus velezensis (Bv) PGPR strains could increase soybean growth and nodulation by Bradyrhizobium japonicum in greenhouse and field experiments to reduce variability. The treatments included untreated soybean seeds planted in field soil that contained Bv PGPR strains and non-inoculated controls with and without 0.1% (w/v) pectin or (1 or 10 mg/200 μL) orange peel (OP) amendment. In greenhouse and field tests, 35 and 55 days after planting (DAP), the plants were removed from pots, washed, and analyzed for treatment effects. In greenhouse trials, the rhizobial inoculant was not added with Bv strains and pectin or OP amendment, but in the field trial, a commercial B. japonicum inoculant was used with Bv strains and pectin amendment. In the greenhouse tests, soybean seeds inoculated with Bv AP193 and pectin had significantly increased soybean shoot length, dry weight, and nodulation by indigenous Bradyrhizobium compared to AP193 without pectin. In the field trial, pectin with Bv AP193 significantly increased the shoot length, dry weight, and nodulation of a commercial Bradyrhizobium japonicum compared to Bv AP193 without pectin. In greenhouse tests, OP amendment with AP193 at 10 mg significantly increased the dry weight of shoots and roots compared to AP193 without OP amendment. The results demonstrate that pectin-rich amendments can enhance Bv-mediated soybean growth promotion and nodulation by indigenous and inoculated B. japonicum.
Collapse
|
17
|
Huskey DA, Curlango‐Rivera G, Hawes MC. Use of rhodizonic acid for rapid detection of root border cell trapping of lead and reversal of trapping with DNase. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01240. [PMID: 31024783 PMCID: PMC6476171 DOI: 10.1002/aps3.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Lead (Pb) is a contaminant whose removal from soil remains a challenge. In a previous study, border cells released from root tips were found to trap Pb, alter its chemistry, and prevent root uptake. Rhodizonic acid (RA) is a forensic tool used to reveal gunshot residue, and also to detect Pb within plant tissues. Here we report preliminary observations to assess the potential application of RA in exploring the dynamics of Pb accumulation at the root tip surface. METHODS AND RESULTS Corn root tips were immersed in Pb solution, stained with RA, and observed microscopically. Pb trapping by border cells was evident within minutes. The role of extracellular DNA was revealed when addition of nucleases resulted in dispersal of RA-stained Pb particles. CONCLUSIONS RA is an efficient tool to monitor Pb-root interactions. Trapping by border cells may control Pb levels and chemistry at the root tip surface. Understanding how plants influence Pb distribution in soil may facilitate its remediation.
Collapse
Affiliation(s)
- David A. Huskey
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Gilberto Curlango‐Rivera
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Martha C. Hawes
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| |
Collapse
|
18
|
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01448-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Functions of Flavonoids in Plant⁻Nematode Interactions. PLANTS 2018; 7:plants7040085. [PMID: 30326617 PMCID: PMC6313853 DOI: 10.3390/plants7040085] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 11/21/2022]
Abstract
Most land plants can become infected by plant parasitic nematodes in the field. Plant parasitic nematodes can be free-living or endoparasitic, and they usually infect plant roots. Most damaging are endoparasites, which form feeding sites inside plant roots that damage the root system and redirect nutrients towards the parasite. This process involves developmental changes to the root in parallel with the induction of defense responses. Plant flavonoids are secondary metabolites that have roles in both root development and plant defense responses against a range of microorganisms. Here, we review our current knowledge of the roles of flavonoids in the interactions between plants and plant parasitic nematodes. Flavonoids are induced during nematode infection in plant roots, and more highly so in resistant compared with susceptible plant cultivars, but many of their functions remain unclear. Flavonoids have been shown to alter feeding site development to some extent, but so far have not been found to be essential for root–parasite interactions. However, they likely contribute to chemotactic attraction or repulsion of nematodes towards or away from roots and might help in the general plant defense against nematodes. Certain flavonoids have also been associated with functions in nematode reproduction, although the mechanism remains unknown. Much remains to be examined in this area, especially under field conditions.
Collapse
|
20
|
Yuan J, Raza W, Shen Q. Root Exudates Dominate the Colonization of Pathogen and Plant Growth-Promoting Rhizobacteria. SOIL BIOLOGY 2018. [DOI: 10.1007/978-3-319-75910-4_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Wen F, Curlango-Rivera G, Huskey DA, Xiong Z, Hawes MC. Visualization of extracellular DNA released during border cell separation from the root cap. AMERICAN JOURNAL OF BOTANY 2017; 104:970-978. [PMID: 28710125 DOI: 10.3732/ajb.1700142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Root border cells are programmed to separate from the root cap as it penetrates the soil environment, where the cells actively secrete >100 extracellular proteins into the surrounding mucilage. The detached cells function in defense of the root tip by an extracellular trapping process that also requires DNA, as in mammalian white blood cells. Trapping in animals and plants is reversed by treatment with DNase, which results in increased infection. The goal of this study was to evaluate the role of DNA in the structural integrity of extracellular structures released as border cells disperse from the root tip upon contact with water. METHODS DNA stains including crystal violet, toluidine blue, Hoechst 33342, DAPI, and SYTOX green were added to root tips to visualize the extracellular mucilage as it absorbed water and border cell populations dispersed. DNase I was used to assess structural changes occurring when extracellular DNA was degraded. KEY RESULTS Complex masses associated with living border cells were immediately evident in response to each stain, including those that are specific for DNA. Treating with DNase I dramatically altered the appearance of the extracellular structures and their association with border cells. No extracellular DNA was found in association with border cells killed by freezing or high-speed centrifugation. This observation is consistent with the hypothesis that, as with border cell extracellular proteins, DNA is secreted by living cells. CONCLUSION DNA is an integral component of border cell extracellular traps.
Collapse
Affiliation(s)
- Fushi Wen
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | - Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | - David A Huskey
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | - Zhongguo Xiong
- School of Plant Sciences, Marley Building 541H, University of Arizona, Tucson, Arizona 85721, USA
| | - Martha C Hawes
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
- School of Plant Sciences, Marley Building 541H, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
22
|
Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules below-ground: the role of specialized metabolites in the rhizosphere. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:788-807. [PMID: 28333395 DOI: 10.1111/tpj.13543] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/18/2023]
Abstract
Soil communities are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in below-ground interactions. While plants are known to release an extremely high portion of the fixated carbon to the soil, less information is known about the composition and role of C-containing compounds in the rhizosphere, in particular those involved in chemical communication. Specialized metabolites (or secondary metabolites) produced by plants and their associated microbes have a critical role in various biological activities that modulate the behavior of neighboring organisms. Thus, elucidating the chemical composition and function of specialized metabolites in the rhizosphere is a key element in understanding interactions in this below-ground environment. Here, we review key classes of specialized metabolites that occur as mostly non-volatile compounds in root exudates or are emitted as volatile organic compounds (VOCs). The role of these metabolites in below-ground interactions and response to nutrient deficiency, as well as their tissue and cell type-specific biosynthesis and release are discussed in detail.
Collapse
Affiliation(s)
- Hassan Massalha
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Elisa Korenblum
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
23
|
Weiller F, Moore JP, Young P, Driouich A, Vivier MA. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides. ANNALS OF BOTANY 2017; 119:803-813. [PMID: 27481828 PMCID: PMC5379576 DOI: 10.1093/aob/mcw141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection.
Collapse
Affiliation(s)
- Florent Weiller
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - John P. Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Philip Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
24
|
Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong Z. Root Border Cells and Their Role in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:143-161. [PMID: 27215971 DOI: 10.1146/annurev-phyto-080615-100140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.
Collapse
Affiliation(s)
- Martha Hawes
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - B Gillian Turgeon
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14853;
| | - Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - David A Huskey
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Zhongguo Xiong
- School of Plant Science, Bio5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
25
|
Tran TM, MacIntyre A, Hawes M, Allen C. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum. PLoS Pathog 2016; 12:e1005686. [PMID: 27336156 PMCID: PMC4919084 DOI: 10.1371/journal.ppat.1005686] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.
Collapse
Affiliation(s)
- Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Martha Hawes
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Peng C, Wang Y, Sun L, Xu C, Zhang L, Shi J. Distribution and Speciation of Cu in the Root Border Cells of Rice by STXM Combined with NEXAFS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:408-414. [PMID: 26679325 DOI: 10.1007/s00128-015-1716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Root border cells (RBCs) serve plants in their initial line of defense against stress from the presence of heavy metals in the soil. In this research, light microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) combined with near edge X-ray absorption fine structure spectroscopy (NEXAFS) with a nanoscale spatial resolution were used to investigate the effects of copper (Cu) upon the RBCs, as well as its distribution and speciation within the RBCs of rice (Oryza sativa L.) under aeroponic culture. The results indicated that with increasing exposure time and concentration, the attached RBCs were surrounded by a thick mucilage layer which changed in form from an ellipse into a strip in response to Cu ion stress. Copper was present as Cu(II), which accumulated not only in the cell wall but also in the cytoplasm. To our knowledge, this is the first time that STXM has been used in combination with NEXAFS to provide new insight into the distribution and speciation of metal elements in isolated plant cells.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN, Li W, Tang Y, Sumner LW. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. PLANT PHYSIOLOGY 2015; 167:1699-716. [PMID: 25667316 PMCID: PMC4378151 DOI: 10.1104/pp.114.253054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.
Collapse
Affiliation(s)
- Bonnie S Watson
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Mohamed F Bedair
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Ewa Urbanczyk-Wochniak
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - David V Huhman
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Dong Sik Yang
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Stacy N Allen
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Wensheng Li
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Yuhong Tang
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| |
Collapse
|
29
|
Liu W, Wang S, Sun H, Zuo Q, Lai Y, Hou J. Impact of nanometer hydroxyapatite on seed germination and root border cell characteristics. RSC Adv 2015. [DOI: 10.1039/c5ra13187a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanometer hydroxyapatite is beneficial to cucumber seeds and seedlings at concentrations less than 2000 mg L−1.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Shutao Wang
- Land and Resources College
- Agricultural University of Hebei Province
- Baoding 071000
- China
| | - Hanwen Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Qingqing Zuo
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Ying Lai
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Juan Hou
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
- China
| |
Collapse
|
30
|
Lynch JP, Chimungu JG, Brown KM. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6155-66. [PMID: 24759880 DOI: 10.1093/jxb/eru162] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex ('cortical burden') improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root cortical aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root architecture and other aspects of the root phenotype. This complexity calls for structural-functional plant modelling and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of crop breeding targets.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, Penn State University, University Park, PA 16802, USA
| | - Joseph G Chimungu
- Department of Plant Science, Penn State University, University Park, PA 16802, USA
| | - Kathleen M Brown
- Department of Plant Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Yan Z, Bo C, Shibin G, Tingzhao R. Biological Characters of Root Border Cells Development in Maize (Zea mays). ACTA ACUST UNITED AC 2014. [DOI: 10.3923/biotech.2014.89.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Cai M, Wang N, Xing C, Wang F, Wu K, Du X. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8924-33. [PMID: 23749363 DOI: 10.1007/s11356-013-1815-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/08/2013] [Indexed: 05/25/2023]
Abstract
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.
Collapse
Affiliation(s)
- Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
33
|
Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC. Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. AMERICAN JOURNAL OF BOTANY 2013; 100:1706-1712. [PMID: 23942085 DOI: 10.3732/ajb.1200607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Border cells, which separate from the root cap, can comprise >90% of carbon-based exudates released into the rhizosphere, but may not provide a general source of nutrients for soil microorganisms. Instead, this population of specialized cells appears to function in defense of the root tip by an extracellular trapping process similar to that of mammalian white blood cells. Border cell production is tightly regulated, and direct tests of their impact on crop production have been hindered by lack of intraspecies variation. • METHODS Border cell number, viability, and clumping were compared among 22 cotton cultivars. Slime layer "extracellular trap" production by border cells in response to copper chloride, an elicitor of plant defenses, was compared in two cultivars with divergent border cell production. Trapping of bacteria by border cells in these lines also was measured. • KEY RESULTS Emerging roots of some cultivars produced more than 20000 border cells per root, a 100% increase over previously reported values for this species. No differences in border cell morphology, viability, or clumping were found. Copper chloride-induced extracellular trap formation by border cells from a cultivar that produced 27921 ± 2111 cells per root was similar to that of cells from a cultivar with 10002 ± 614 cells, but bacterial trapping was reduced. • CONCLUSIONS Intraspecific variation in border cell production provides a tool to measure their impact on plant development in the laboratory, greenhouse, and field. Further research is needed to determine the basis for this variation, and its impact on rhizosphere community structure.
Collapse
Affiliation(s)
- Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nguema-Ona E, Vicré-Gibouin M, Cannesan MA, Driouich A. Arabinogalactan proteins in root-microbe interactions. TRENDS IN PLANT SCIENCE 2013; 18:440-9. [PMID: 23623239 DOI: 10.1016/j.tplants.2013.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 05/20/2023]
Abstract
Arabinogalactan proteins (AGPs) are among the most intriguing sets of macromolecules, specific to plants, structurally complex, and found abundantly in all plant organs including roots, as well as in root exudates. AGPs have been implicated in several fundamental plant processes such as development and reproduction. Recently, they have emerged as interesting actors of root-microbe interactions in the rhizosphere. Indeed, recent findings indicate that AGPs play key roles at various levels of interaction between roots and soil-borne microbes, either beneficial or pathogenic. Therefore, the focus of this review is the role of AGPs in the interactions between root cells and microbes. Understanding this facet of AGP function will undoubtedly improve plant health and crop protection.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plate-forme d'Imagerie Cellulaire (PRIMACEN) et Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | | | | | | |
Collapse
|
35
|
Curlango-Rivera G, Pew T, VanEtten HD, Zhongguo X, Yu N, Hawes MC. Measuring root disease suppression in response to a compost water extract. PHYTOPATHOLOGY 2013; 103:255-60. [PMID: 23402629 DOI: 10.1094/phyto-06-12-0145-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Commercial application of compost to prevent plant disease is hindered by variable performance. Here, we describe the use of a growth pouch assay to measure impact of a compost water extract (CWE) on root infection under controlled conditions. Most pea roots (≥95%) inoculated with Fusarium solani or Phoma pinodella spores rapidly develop a single local lesion in the region of elongation. In the presence of CWE, infection of pea roots grown in pouches was reduced by 93 to 100%. CWE used as a drench on pea seedlings grown in sand also resulted in 100% protection but, in a heavy clay soil, infection was reduced by <50%. CWE filtered to remove microorganisms did not inhibit frequency of F. solani infection, and resulted in increased local lesion development on individual roots. CWE inhibited mycelial growth of both pea- and cucumber-infecting isolates of F. solani in culture but exerted <40% protection against cucumber root infection. CWE treatment of pea but not cucumber was associated with retention of a sheath of border cells interspersed with bacteria covering the region of elongation. Growth pouch assays may provide a system to monitor effects of specific compost mixtures on root-rhizosphere interactions, and to identify variables influencing disease control.
Collapse
|
36
|
Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 2013; 39:283-97. [PMID: 23397456 DOI: 10.1007/s10886-013-0248-5] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.
Collapse
|
37
|
Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3429-44. [PMID: 22213816 DOI: 10.1093/jxb/err430] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.
Collapse
Affiliation(s)
- Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Canberra, ACT 0200, Australia
| | | |
Collapse
|
38
|
Takehisa H, Sato Y, Igarashi M, Abiko T, Antonio BA, Kamatsuki K, Minami H, Namiki N, Inukai Y, Nakazono M, Nagamura Y. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:126-40. [PMID: 21895812 DOI: 10.1111/j.1365-313x.2011.04777.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.
Collapse
Affiliation(s)
- Hinako Takehisa
- Genome Resource Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Endo I, Tange T, Osawa H. A cell-type-specific defect in border cell formation in the Acacia mangium root cap developing an extraordinary sheath of sloughed-off cells. ANNALS OF BOTANY 2011; 108:279-90. [PMID: 21712296 PMCID: PMC3143049 DOI: 10.1093/aob/mcr139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/15/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes. METHODS The spatio-temporal detachment of border cells in the leguminous tree Acacia mangium was investigated by using light and fluorescent microscopy with fluorescein diacetate, and their number and structural connectivity compared with that in soybean (Glycine max). KEY RESULTS Border-like cells with a sheet structure peeled bilaterally from the lateral root cap of A. mangium. Hydroponic root elongation partially facilitated acropetal peeling of border-like cells, which accumulate as a sheath that covers the 0- to 4-mm tip within 1 week. Although root elongation under friction caused basipetal peeling, lateral root caps were minimally trimmed as compared with hydroponic roots. In the meantime, A. mangium columella caps simultaneously released single border cells with a number similar to those in soybean. CONCLUSIONS These results suggest that cell type-specific inhibitory factors induce a distinct defective phenotype in single border-cell formation in A. mangium lateral root caps.
Collapse
Affiliation(s)
| | | | - Hiroki Osawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
41
|
Cai MZ, Wang FM, Li RF, Zhang SN, Wang N, Xu GD. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings. J Inorg Biochem 2011; 105:966-71. [PMID: 21549660 DOI: 10.1016/j.jinorgbio.2011.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 03/26/2011] [Accepted: 04/06/2011] [Indexed: 11/24/2022]
Abstract
Root border cells (RBCs) and their secreted mucilage are suggested to participate in the resistance against toxic metal cations, including aluminum (Al), in the rhizosphere. However, the mechanisms by which the individual cell populations respond to Al and their role in Al resistance still remain unclear. In this research, the response and tolerance of RBCs to Al toxicity were investigated in the root tips of two soybean cultivars [Zhechun No. 2 (Al-tolerant cultivar) and Huachun No. 18 (Al-sensitive cultivar)]. Al inhibited root elongation and increased pectin methylesterase (PME) activity in the root tip. Removal of RBCs from the root tips resulted in a more severe inhibition of root elongation, especially in Huachun No. 18. Increasing Al levels and treatment time decreased the relative percent viability of RBCs in situ and in vitro in both soybean cultivars. Al application significantly increased mucilage layer thickness around the detached RBCs of both cultivars. Additionally, a significantly higher relative percent cell viability of attached and detached RBCs and thicker mucilage layers were observed in Zhechun No. 2. The higher viability of attached and detached RBCs, as well as the thickening of the mucilage layer in separated RBCs, suggest that RBCs play an important role in protecting root apices from Al toxicity.
Collapse
Affiliation(s)
- Miao-Zhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|
42
|
Hawes MC, Curlango-Rivera G, Wen F, White GJ, Vanetten HD, Xiong Z. Extracellular DNA: the tip of root defenses? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:741-5. [PMID: 21497709 DOI: 10.1016/j.plantsci.2011.02.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 05/22/2023]
Abstract
This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.
Collapse
Affiliation(s)
- Martha C Hawes
- Department of Soil, Water and Environmental Science, University of Arizona, Fourth Street, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Rost TL. The organization of roots of dicotyledonous plants and the positions of control points. ANNALS OF BOTANY 2011; 107:1213-22. [PMID: 21118839 PMCID: PMC3091796 DOI: 10.1093/aob/mcq229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/08/2010] [Accepted: 10/21/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND The structure of roots has been studied for many years, but despite their importance to the growth and well-being of plants, most researchers tend to ignore them. This is unfortunate, because their simple body plan makes it possible to study complex developmental pathways without the complications sometimes found in the shoot. In this illustrated essay, my objective is to describe the body plan of the root and the root apical meristem (RAM) and point out the control points where differentiation and cell cycle decisions are made. Hopefully this outline will assist plant biologists in identifying the structural context for their observations. SCOPE AND CONCLUSIONS This short paper outlines the types of RAM, i.e. basic-open, intermediate-open and closed, shows how they are similar and different, and makes the point that the structure and shape of the RAM are not static, but changes in shape, size and organization occur depending on root growth rate and development stage. RAMs with a closed organization lose their outer root cap layers in sheets of dead cells, while those with an open organization release living border cells from the outer surfaces of the root cap. This observation suggests a possible difference in the mechanisms whereby roots with different RAM types communicate with soil-borne micro-organisms. The root body is organized in cylinders, sectors (xylem and phloem in the vascular cylinder), cell files, packets and modules, and individual cells. The differentiation in these root development units is regulated at control points where genetic regulation is needed, and the location of these tissue-specific control points can be modulated as a function of root growth rate. In Arabidopsis thaliana the epidermis and peripheral root cap develop through a highly regulated series of steps starting with a periclinal division of an initial cell, the root cap/protoderm (RCP) initial. The derivative cells from the RCP initial divide into two cells, the inner cell divides again to renew the RCP and the other cell divides through four cycles to form 16 epidermal cells in a packet; the outer cell divides through four cycles to form the 16 cells making up the peripheral root cap packet. Together, the epidermal packet and the peripheral root cap packet make up a module of cells which are clonally related.
Collapse
Affiliation(s)
- Thomas L Rost
- Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Shinano T, Komatsu S, Yoshimura T, Tokutake S, Kong FJ, Watanabe T, Wasaki J, Osaki M. Proteomic analysis of secreted proteins from aseptically grown rice. PHYTOCHEMISTRY 2011; 72:312-20. [PMID: 21255809 DOI: 10.1016/j.phytochem.2010.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 05/18/2023]
Abstract
Plants are known to secrete a variety of compounds into the rhizosphere. These compounds are thought to play important roles in the regulation of soil chemical properties and soil microorganisms. To determine the composition of proteins secreted from rice roots, aseptic hydro culture was performed, and the collected proteins were analyzed. Over 100 proteins were identified; most were identified using the rice database (RAP-DB), and about 60% of the identified proteins were suspected to have a signal peptide. Functional categorization suggested that most were secondary metabolism- and defense-related proteins. Pathogenesis- and stress-related proteins were the major proteins found in the bathing solution under aseptic conditions. Thus, we propose that rice plants constitutively secrete a large variety of proteins to protect their roots against abiotic and/or biotic stresses in the environment.
Collapse
Affiliation(s)
- T Shinano
- National Agriculture and Food Research Organization, National Agricultural Research Center for Hokkaido Region, 1-Hitsujigaoka, Toyohira-ku, Sapporo 062-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Osawa H, Endo I, Hara Y, Matsushima Y, Tange T. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree. PLANT PHYSIOLOGY 2011; 155:433-46. [PMID: 21045123 PMCID: PMC3075795 DOI: 10.1104/pp.110.166967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/26/2010] [Indexed: 05/22/2023]
Abstract
Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree.
Collapse
Affiliation(s)
- Hiroki Osawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Two essential functions are associated with the root tip: first of all, it ensures a sustained growth of the root system thanks to its role in protecting the stem cell zone responsible for cell division and differentiation. In addition, it is capable of detecting environmental changes at the root cap level, and this property provides a crucial advantage considering that this tissue is located at the forefront of soil exploration. Using results obtained mainly with the plant model Arabidopsis, we summarize the description of the structure of root cap and the known molecular mechanisms regulating its functioning. We briefly review the various responses of the root cap related to the interaction between the plant and its environment, such as phototropism, gravitropism, hydrotropism, mineral composition of the soil and protection against pathogens.
Collapse
Affiliation(s)
- Carole Arnaud
- UMR 6191 CEA, Centre National de la Recherche Scientifique, laboratoire de biologie du développement des plantes, université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|
47
|
Paschke M, Horiuchi J, Vivanco J, Perry L, Alford É. Chemical Signals in the Rhizosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420005585.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
48
|
Wen F, White GJ, VanEtten HD, Xiong Z, Hawes MC. Extracellular DNA is required for root tip resistance to fungal infection. PLANT PHYSIOLOGY 2009; 151:820-9. [PMID: 19700564 PMCID: PMC2754639 DOI: 10.1104/pp.109.142067] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/12/2009] [Indexed: 05/18/2023]
Abstract
Plant defense involves a complex array of biochemical interactions, many of which occur in the extracellular environment. The apical 1- to 2-mm root tip housing apical and root cap meristems is resistant to infection by most pathogens, so growth and gravity sensing often proceed normally even when other sites on the root are invaded. The mechanism of this resistance is unknown but appears to involve a mucilaginous matrix or "slime" composed of proteins, polysaccharides, and detached living cells called "border cells." Here, we report that extracellular DNA (exDNA) is a component of root cap slime and that exDNA degradation during inoculation by a fungal pathogen results in loss of root tip resistance to infection. Most root tips (>95%) escape infection even when immersed in inoculum from the root-rotting pathogen Nectria haematococca. By contrast, 100% of inoculated root tips treated with DNase I developed necrosis. Treatment with BAL31, an exonuclease that digests DNA more slowly than DNase I, also resulted in increased root tip infection, but the onset of infection was delayed. Control root tips or fungal spores treated with nuclease alone exhibited normal morphology and growth. Pea (Pisum sativum) root tips incubated with [(32)P]dCTP during a 1-h period when no cell death occurs yielded root cap slime containing (32)P-labeled exDNA. Our results suggest that exDNA is a previously unrecognized component of plant defense, an observation that is in accordance with the recent discovery that exDNA from white blood cells plays a key role in the vertebrate immune response against microbial pathogens.
Collapse
Affiliation(s)
- Fushi Wen
- Department of Plant Sciences, Division of Plant Pathology and Microbiology, University of Arizona, Tucson, Arizona 85713, USA
| | | | | | | | | |
Collapse
|
49
|
De Hoff PL, Brill LM, Hirsch AM. Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 2009; 282:1-15. [PMID: 19488786 PMCID: PMC2695554 DOI: 10.1007/s00438-009-0460-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 05/10/2009] [Indexed: 12/12/2022]
Abstract
Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.
Collapse
Affiliation(s)
- Peter L De Hoff
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
50
|
Abstract
Root-secreted chemicals mediate multi-partite interactions in the rhizosphere, where plant roots continually respond to and alter their immediate environment. Increasing evidence suggests that root exudates initiate and modulate dialogue between roots and soil microbes. For example, root exudates serve as signals that initiate symbiosis with rhizobia and mycorrhizal fungi. In addition, root exudates maintain and support a highly specific diversity of microbes in the rhizosphere of a given particular plant species, thus suggesting a close evolutionary link. In this review, we focus mainly on compiling the information available on the regulation and mechanisms of root exudation processes, and provide some ideas related to the evolutionary role of root exudates in shaping soil microbial communities.
Collapse
Affiliation(s)
- Dayakar V Badri
- Centre for Rhizosphere Biology and Department of Horticulture and LA, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|