1
|
J LAA, Pa P, Seng CY, Rhee JH, Lee SE. Protein nanocages: A new frontier in mucosal vaccine delivery and immune activation. Hum Vaccin Immunother 2025; 21:2492906. [PMID: 40353600 PMCID: PMC12077460 DOI: 10.1080/21645515.2025.2492906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/15/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Mucosal infectious diseases represent a significant global health burden, impacting millions of people worldwide through pathogens that invade the respiratory, gastrointestinal, and urogenital tracts. Mucosal vaccines provide a promising strategy to combat these diseases by preventing pathogens from entering through the portals as well as within the systemic response compartment. However, challenges such as antigen instability, inefficient delivery, suboptimal immune activation, and the complex biology of mucosal barriers hinder their development. These limitations require integrating specialized adjuvants and delivery systems. Protein nanocages, self-assembling nanoscale structures that can be engineered, may provide an innovative solution for co-delivering antigens and adjuvants. With their remarkable stability, biocompatibility, and design versatility, protein nanocages can potentially overcome existing challenges in mucosal vaccine delivery and enhance protective immune responses. This review highlights the potential of protein nanocages to revolutionize mucosal vaccine development by addressing these challenges.
Collapse
Affiliation(s)
- Lavanya Agnes Angalene J
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Paopachapich Pa
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Chheng Y Seng
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Joon Haeng Rhee
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
| | - Shee Eun Lee
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Hsu CY, Jasim SA, Rasool KH, H M, Kaur J, Jabir MS, Alhajlah S, Kumar A, Jawad SF, Husseen B. Divergent functions of TLRs in gastrointestinal (GI) cancer: Overview of their diagnostic, prognostic and therapeutic value. Semin Oncol 2025; 52:152344. [PMID: 40347779 DOI: 10.1016/j.seminoncol.2025.152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 05/14/2025]
Abstract
The relationship between the innate immune signal and the start of the adaptive immune response is the central idea of this theory. By controlling the inflammatory and tissue-repair reactions to damage, the Toll-like receptors (TLRs), as a family of PRRs, have attracted increasing attention for its function in protecting the host against infection and preserving tissue homeostasis. Microbial infection, damage, inflammation, and tissue healing have all been linked to the development of malignancies, especially gastrointestinal (GI) cancers. Recently, increased studies on TLR recognition and binding, as well as their ligands, have significantly advanced our knowledge of the various TLR signaling pathways and offered therapy options for GI malignancies. Upon activation by pathogen-associated or damage-associated molecular patterns (DAMPs and PAMPs), TLRs trigger key pathways like NF-κB, MAPK, and IRF. NF-κB activation promotes inflammation, cell survival, and proliferation, often contributing to tumor growth, metastasis, and therapy resistance. MAPK pathways similarly drive uncontrolled cell growth and invasion, while IRF pathways modulate interferon production, yielding both anti-tumor and protumor effects. The resulting chronic inflammatory environment within tumors can foster progression, yet TLR activation can also stimulate beneficial anti-tumor immune responses. However, the functions of TLR expression in GI cancers and their diagnostic and prognostic along with therapeutic value have not yet entirely been elucidated. Understanding how TLR activation contributes to anti-cancer immunity against GI malignancies may hasten immunotherapy developments and increase patient survival.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Khetam Habeeb Rasool
- Department of Biology, College of Science, University of Mustansiriyah, Mustansiriyah, Iraq
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Jaswinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Mohali, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Anbar, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia; Centre for Research Impact & Outcome, Chitkara University, Rajpura, Punjab, India; Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Arnhold J. Oxidant-Based Cytotoxic Agents During Aging: From Disturbed Energy Metabolism to Chronic Inflammation and Disease Progression. Biomolecules 2025; 15:547. [PMID: 40305309 PMCID: PMC12025200 DOI: 10.3390/biom15040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
In humans, aging is an inevitable consequence of diminished growth processes after reaching maturity. The high order of biomolecules in cells and tissues is continuously disturbed by numerous physical and chemical destructive impacts. Host-derived oxidant-based cytotoxic agents (reactive species, transition free metal ions, and free heme) contribute considerably to this damage. These agents are under the control of immediately acting antagonizing principles, which are important to ensure cell and tissue homeostasis. In this review, I apply the concept of host-derived cytotoxic agents and their interplay with antagonizing principles to the aging process. During aging, energy metabolism and the supply of tissues with dioxygen and nutrients are increasingly disturbed. In addition, a chronic inflammatory state develops, a condition known as inflammaging. The balance between oxidant-based cytotoxic agents and protective mechanisms is analyzed depending on age-based physiological alterations in ATP production. Disturbances in this balance are associated with the development of age-related diseases and comorbidities. An enhanced production of reactive species from dysfunctional mitochondria, alterations in cellular redox homeostasis, and adaptations to hypoxia are highlighted. Examples of how disturbances between oxidant-based cytotoxic agents and antagonizing principles contribute to the pathogenesis of diseases in persons of advanced age are given.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
4
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Wijesundara YH, Arora N, Ehrman RN, Howlett TS, Weyman TM, Trashi I, Trashi O, Kumari S, Diwakara SD, Tang W, Senarathna MC, Drewniak KH, Wang Z, Smaldone RA, Gassensmith JJ. A Self-Adjuvanting Large Pore 2D Covalent Organic Framework as a Vaccine Platform. Angew Chem Int Ed Engl 2025; 64:e202413020. [PMID: 39621809 DOI: 10.1002/anie.202413020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Vaccines are one of the greatest human achievements in public health, as they help prevent the spread of diseases, reduce illness and death rates, saving thousands of lives with few side effects. Traditional vaccine development is centered around using live attenuated or inactivated pathogens, which is expensive and has resulted in vaccine-associated illnesses. Advancements have led to the development of safer subunit vaccines, which contain recombinant proteins isolated from pathogens. Their short half-life and small size make most subunit vaccines less immunogenic. Here, we introduce a large pore 2D covalent organic framework (COF), PyCOFamide, as a promising solution for an effective subunit platform. Our study demonstrates that simple adsorption of a model antigen, ovalbumin (OVA), onto PyCOFamide (OVA@COF) significantly enhances humoral and cell-mediated immune response compared to free OVA. OVA@COF exhibited heightened immune cell activation and acts as an antigen reservoir, facilitating antigen-presenting cell trafficking to the draining lymph nodes, amplifying the humoral immune response. Additionally, the breakdown of the COF releases monomers that adjuvant the activation of immune cells vital to creating strong immunity. This platform offers a potential avenue for safer, more effective subunit vaccines.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Niyati Arora
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Thomas Sinclair Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Trevor M Weyman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Shashini D Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Wendy Tang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Milinda C Senarathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Katarzyna H Drewniak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ziqi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| |
Collapse
|
6
|
Radziszewski M, Galus R, Łuszczyński K, Winiarski S, Wąsowski D, Malejczyk J, Włodarski P, Ścieżyńska A. The RAGE Pathway in Skin Pathology Development: A Comprehensive Review of Its Role and Therapeutic Potential. Int J Mol Sci 2024; 25:13570. [PMID: 39769332 PMCID: PMC11676465 DOI: 10.3390/ijms252413570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored. This review synthesizes current findings on RAGE's involvement in the pathophysiology of skin diseases, including conditions such as psoriasis, atopic dermatitis, and lichen planus, focusing on its roles in inflammatory signaling, tissue remodeling, and skin cancer progression. Additionally, it examines RAGE-modulating treatments investigated in dermatological contexts, highlighting their potential as therapeutic options. Given RAGE's significance in a variety of skin conditions, further research into its mediated pathways may uncover new opportunities for targeted interventions in skin-specific RAGE signaling.
Collapse
Affiliation(s)
- Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| | - Sebastian Winiarski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Dariusz Wąsowski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Paweł Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
7
|
Ibeanu GC, Rowaiye AB, Okoli JC, Eze DU. Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery. Immunotargets Ther 2024; 13:749-774. [PMID: 39698218 PMCID: PMC11652712 DOI: 10.2147/itt.s486731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with numerous risk factors contributing to its development. Recent research has illuminated the significant role of the gut microbiota in CRC pathogenesis, identifying various microbial antigens as potential targets for vaccine development. Aim This review aimed at exploring the potential sources of microbial antigens that could be harnessed to create effective CRC vaccines and understand the role of microbiome-CRC interactions in carcinogenesis. Methods A comprehensive search of original research and review articles on the pathological links between key microbial candidates, particularly those more prevalent in CRC tissues, was conducted. This involved extensive use of the PubMed and Medline databases, as well as the Google Scholar search engine, utilizing pertinent keywords. A total of one hundred and forty-three relevant articles in English, mostly published between 2018 and 2024, were selected. Results Numerous microbes, particularly bacteria and viruses, are significantly overrepresented in CRC tissues and have been shown to promote tumorigenesis by inducing inflammation and modulating the immune system. This makes them promising candidates for antigens in the development of CRC vaccines. Conclusion The selection of microbial antigens focuses on their capacity to trigger a strong immune response and their link to tumor presence and progression. Identifying and validating these antigens through preclinical testing is essential in developing a CRC vaccine.
Collapse
Affiliation(s)
- Gordon C Ibeanu
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Adekunle B Rowaiye
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
- Department of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joy C Okoli
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Daniel U Eze
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
8
|
Imana ZN, Tseng JC, Yang JX, Liu YL, Lin PY, Huang MH, Chen L, Luo Y, Wang CC, Yu GY, Chuang TH. Cooperative tumor inhibition by CpG-oligodeoxynucleotide and cyclic dinucleotide in head and neck cancer involves T helper cytokine and macrophage phenotype reprogramming. Biomed Pharmacother 2024; 181:117692. [PMID: 39561589 DOI: 10.1016/j.biopha.2024.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Head and neck cancer ranks as the sixth most common cancer worldwide, highlighting the critical need for the development of new therapies to enhance treatment efficacy. The activation of innate immune receptors given their potent immune stimulatory properties aid in the eradication of cancer cells. In this study, we investigated the immune mechanism and anti-tumor function of a Toll-like receptor 9 (TLR9) agonist, CpG-oligodeoxynucleotide-2722 (CpG-2722), in combination with cyclic dinucleotides, which are agonists of stimulator of interferon genes (STING). Our results revealed that CpG-2722 stimulation increased the expression of Th1 pro-inflammatory cytokines. Stimulation by STING agonists exhibited lower expression of Th1 cytokines but higher expression of Th2 cytokines compared to CpG-2722. However, the combination of these two agonists significantly enhanced Th1 cytokines while reducing Th2 cytokines. Moreover, in vivo experiment showed that both CpG-2722 and 2'3'-c-di-AMP suppressed head and neck tumor growth, with their combination proving more effective than the use of these agonists alone. The combined treatment cooperatively promoted the production of Th1 cytokines and type I interferons, while suppressing Th2 cytokines in the tumors as observed in vitro. Additionally, it led to the accumulation of M1 macrophages, dendritic cells, and T cells, shaping a favorable tumor microenvironment for T cell-mediated tumor killing. The anti-tumor activity of the CpG-2722 and 2'3'-c-di-AMP combination depends on the macrophage presence but does not directly activate M1 macrophage polarization, instead working through a reprogrammed cytokine profile. Furthermore, this combination shows a cooperative anti-tumor activity with anti-PD-1 in treating head and neck tumors. Overall, these findings highlight a Th response and macrophage phenotype reprograming involved functional mechanism underlying the cooperative activity of the combination of TLR9 and STING agonists in the immunotherapy of head and neck cancer.
Collapse
Affiliation(s)
- Zaida Nur Imana
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Yen Lin
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| | - Tsung-Hsien Chuang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
9
|
Song Q, Xu Y, Zhang M, Wu L, Liu S, Lv Y, Hu T, Zhao J, Zhang X, Xu X, Li Q, Zhou M, Zhang X, Lu P, Yu G, Zhao C, Yang J. A β-1,3/1,6-glucan enhances anti-tumor effects of PD1 antibody by reprogramming tumor microenvironment. Int J Biol Macromol 2024; 279:134660. [PMID: 39134196 DOI: 10.1016/j.ijbiomac.2024.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024]
Abstract
Checkpoint blockades have emerged as a frontline approach in cancer management, designed to enhance the adaptive immune response against tumors. However, its clinical efficacy is limited to a narrow range of tumor types, which necessitates the exploration of novel strategies that target another main branch of the immune system. One such potential strategy is the therapeutic modulation of pattern recognition receptors (PRRs) pathways in innate immune cells, which have shown promise in tumor eradication. Previously, a β-1,3/1,6-glucan with high purity from Durvillaea antarctica (BG136) was reported by our group to exhibit pan-antitumor effects. In the current study, we systemically studied the antitumor activity of BG136 in combination with anti-PD1 antibody in MC38 syngeneic tumor model in vivo. Integrated transcriptomic and metabolomic analyses suggested that BG136 enhanced the antitumor immunity of anti-PD1 antibody by reprogramming the tumor microenvironment to become more proinflammatory. In addition, an increase in innate and adaptive immune cell infiltration and activation, enhanced lipid metabolism, and a decrease in ascorbate and aldarate metabolism were also found. These findings provide mechanistic insights that support the potent antitumor efficacy of BG136 when combined with immune checkpoint inhibitor antibodies.
Collapse
Affiliation(s)
- Qiaoling Song
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Yuting Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghui Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lijuan Wu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Shan Liu
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Jun Zhao
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xiaonan Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Quancai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Peizhe Lu
- Department of Neuroscience, University of Michigan, Ann Arbor, MI 48103, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China.
| |
Collapse
|
10
|
Verma S, Ghatak A. Involvement of E3 Ubiquitin Ligases in Viral Infections of the Human Host. Viral Immunol 2024; 37:419-431. [PMID: 39469796 DOI: 10.1089/vim.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Viral infections are one of the principal causes of global primary health crises, with increased rate of infection and mortality demonstrated by the newer progeny of viruses. Viral invasion of the host involves utilization of various cellular machinery. Ubiquitination is one of a few central regulatory systems used by viruses for establishment of the infections in the host. Members of the ubiquitination system are involved in carrying out proteasomal degradation or functional modification of proteins in numerous cellular processes. E3 ubiquitin ligases play a major role in this system through recognition and recruitment of protein substrates and catalyzing the transfer of ubiquitin to these substrates. The versatility of ubiquitin ligases frequently makes them useful tools for the viruses, for either utilizing or degrading other cellular machineries, for carrying out their multiplication or inactivating the defensive strategies of the host. Therefore, these ligases are important targets for aiming at major pathways causing viral protein degradation or functional modification of the infection process. In this review, we have discussed the role and mechanism of different types of ubiquitin ligases in the context of infections of mainly human viruses, highlighting the viral proteins directly interacting with the ligases. Knowledge about these direct interactions is central in understanding the ubiquitin-dependent processes. This comprehensive account may also be beneficial for pharmaceutical exploration of E3 ligase-based broad-spectrum antiviral treatment.
Collapse
Affiliation(s)
- Suchanda Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Archana Ghatak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
11
|
Ivanov J, Tenchov R, Ralhan K, Iyer KA, Agarwal S, Zhou QA. In Silico Insights: QSAR Modeling of TBK1 Kinase Inhibitors for Enhanced Drug Discovery. J Chem Inf Model 2024; 64:7488-7502. [PMID: 39289178 PMCID: PMC11480986 DOI: 10.1021/acs.jcim.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein kinase. It plays a crucial role in various cellular processes, including the innate immune response to viruses, cell proliferation, apoptosis, autophagy, and antitumor immunity. Dysregulation of TBK1 activity can lead to autoimmune diseases, neurodegenerative disorders, and cancer. Due to its central role in these critical pathways, TBK1 is a significant focus of research for therapeutic drug development. In this paper, we explore data from the CAS Content Collection regarding TBK1 and its implication in a large assortment of diseases and disorders. With the demand for developing efficient TBK1 inhibitors being outlined, we focus on utilizing a machine learning approach for developing predictive models for TBK1 inhibition, derived from the fragment-functional analysis descriptors. Using the extensive CAS Content Collection, we assembled a training set of TBK1 inhibitors with experimentally measured IC50 values. We explored several machine learning techniques combined with various molecular descriptors to derive and select the best TBK1 inhibitor QSAR models. Certain significant structural alerts that potentially contribute to inhibition of TBK1 are outlined and discussed. The merit of the article stems from identifying the most adequate TBK1 QSAR models and subsequent successful development of advanced positive training data to facilitate and enhance drug discovery for an important therapeutic target such as TBK1 inhibitors, based on an extensive, wide-ranging set of scientific information provided by the CAS Content Collection.
Collapse
Affiliation(s)
- Julian
M. Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | | | | |
Collapse
|
12
|
Tian Y, Zhang H, Ge L, Wang Z, Wang P, Xiong S, Wang X, Hu Y. Toll-like Receptor Expression in Pelodiscus sinensis Reveals Differential Responses after Aeromonas hydrophila Infection. Genes (Basel) 2024; 15:1230. [PMID: 39336821 PMCID: PMC11431187 DOI: 10.3390/genes15091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Toll-like receptor (TLR), as an important pattern recognition receptor, is a bridge between non-specific immunity and specific immunity, and plays a vital role in the disease resistance of aquatic animals. However, the function of TLR in Pelodiscus sinensis is still unclear. Methods and Results: The sequence characteristics and homology of three TLRs (PsTLR2, PsTLR3 and PsTLR5) were determined in this investigation. Their annotation and orthologies were supported by phylogenetic analysis, functional domain prediction, and sequence similarity analysis. qPCR showed that the identified TLRs were expressed in all tissues, among the high expression of PsTLR5 in the brain and liver and the high expression of PsTLR2 and PsTLR3 in the liver. PsTLR2 mRNA expression increased 6.7-fold in the liver 12 h after Aeromonas hydrophila infection, while the mRNA expression of PsTLR3 was down-regulated by 0.29 times in liver and 0.31 times in spleen. The mRNA expression of PsTLR5 was significantly up-regulated in four immune tissues, and it was up-regulated by 122.8 times in the spleen after 72 h infection. Finally, the recombinant proteins of extracellular LRR domains of these three TLRs were obtained by prokaryotic expression technology, and the binding tests were performed to discover their ability of binding pathogenic microorganisms. Microbial binding test showed that rPsTLR2, rPsTLR3 and rPsTLR5 can combine A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus agalactiae and Candida albicans, while rPsTLR3 can bind A. hydrophila, E. tarda, V. parahaemolyticus and C. albicans. Conclusions: Our findings suggested that TLRs may be crucial to turtles' innate immune response against microbes.
Collapse
Affiliation(s)
- Yu Tian
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Hui Zhang
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Lingrui Ge
- Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Zi’ao Wang
- Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Pei Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Shuting Xiong
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Xiaoqing Wang
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Yazhou Hu
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| |
Collapse
|
13
|
Park JE, Yun JH, Lee W, Lee JS. C-ter100 peptide derived from Vibrio vEP-45 protease acts as a pathogen-associated molecular pattern to induce inflammation and innate immunity. PLoS Pathog 2024; 20:e1012474. [PMID: 39186780 PMCID: PMC11379387 DOI: 10.1371/journal.ppat.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/06/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
The bacterium Vibrio vulnificus causes fatal septicemia in humans. Previously, we reported that an extracellular metalloprotease, vEP-45, secreted by V. vulnificus, undergoes self-proteolysis to generate a 34 kDa protease (vEP-34) by losing its C-terminal domain to produce the C-ter100 peptide. Moreover, we revealed that vEP-45 and vEP-34 proteases induce blood coagulation and activate the kallikrein/kinin system. However, the role of the C-ter100 peptide fragment released from vEP-45 in inducing inflammation is still unclear. Here, we elucidate, for the first time, the effects of C-ter100 on inducing inflammation and activating host innate immunity. Our results showed that C-ter100 could activate NF-κB by binding to the receptor TLR4, thereby promoting the secretion of inflammatory cytokines and molecules, such as TNF-α and nitric oxide (NO). Furthermore, C-ter100 could prime and activate the NLRP3 inflammasome (NLRP3, ASC, and caspase 1), causing IL-1β secretion. In mice, C-ter100 induced the recruitment of immune cells, such as neutrophils and monocytes, along with histamine release into the plasma. Furthermore, the inflammatory response induced by C-ter100 could be effectively neutralized by an anti-C-ter100 monoclonal antibody (C-ter100Mab). These results demonstrate that C-ter100 can be a pathogen-associated molecular pattern (PAMP) that activates an innate immune response during Vibrio infection and could be a target for the development of antibiotics.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Ou G, Liu J, Zou R, Gu Y, Niu S, Yin J, Yuan J, Qu Z, Yang Y, Liu Y. The dynamic molecular characteristics of neutrophils are associated with disease progression in dengue patients. J Med Virol 2024; 96:e29729. [PMID: 38860590 DOI: 10.1002/jmv.29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Dengue, the most prevalent mosquito-borne disease worldwide, poses a significant health burden. This study integrates clinical data and transcriptomic datasets from different phases of dengue to investigate distinctive and shared cellular and molecular features. Clinical data from 29 dengue patients were collected and analyzed alongside a public transcriptomic data set (GSE28405) to perform differential gene expression analysis, functional enrichment, immune landscape assessment, and development of machine learning model. Neutropenia was observed in 54.79% of dengue patients, particularly during the defervescence phase (65.79%) in clinical cohorts. Bioinformatics analyses corroborated a significant reduction in neutrophil immune infiltration in dengue patients. Receiver operating characteristic curve analysis demonstrated that dynamic changes in neutrophil infiltration levels could predict disease progression, especially during the defervescence phase, with the area under the curve of 0.96. Three neutrophil-associated biomarkers-DHRS12, Transforming growth factor alpha, and ZDHHC19-were identified as promising for diagnosing and predicting dengue progression. In addition, the activation of neutrophil extracellular traps was significantly enhanced and linked to FcγR-mediated signaling pathways and Toll-like receptor signaling pathways. Neutrophil activation and depletion play a critical role in dengue's immune response. The identified biomarkers and their associated pathways offer potential for improved diagnosis and understanding of dengue pathogenesis and progression.
Collapse
Affiliation(s)
- Guanyong Ou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Gu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Juzhen Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhijun Qu
- Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Canas JJ, Arregui SW, Zhang S, Knox T, Calvert C, Saxena V, Schwaderer AL, Hains DS. DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection. Life Sci Alliance 2024; 7:e202302462. [PMID: 38580392 PMCID: PMC10997819 DOI: 10.26508/lsa.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.
Collapse
Affiliation(s)
- Jorge J Canas
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel W Arregui
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Knox
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christi Calvert
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay Saxena
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Hains
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Saleemi MA, Zhang Y, Zhang G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024; 13:441. [PMID: 38921739 PMCID: PMC11206999 DOI: 10.3390/pathogens13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vaccinations are vital as they protect us from various illness-causing agents. Despite all the advancements in vaccine-related research, developing improved and safer vaccines against devastating infectious diseases including Ebola, tuberculosis and acquired immune deficiency syndrome (AIDS) remains a significant challenge. In addition, some of the current human vaccines can cause adverse reactions in some individuals, which limits their use for massive vaccination program. Therefore, it is necessary to design optimal vaccine candidates that can elicit appropriate immune responses but do not induce side effects. Subunit vaccines are relatively safe for the vaccination of humans, but they are unable to trigger an optimal protective immune response without an adjuvant. Although different types of adjuvants have been used for the formulation of vaccines to fight pathogens that have high antigenic diversity, due to the toxicity and safety issues associated with human-specific adjuvants, there are only a few adjuvants that have been approved for the formulation of human vaccines. Recently, nanoparticles (NPs) have gain specific attention and are commonly used as adjuvants for vaccine development as well as for drug delivery due to their excellent immune modulation properties. This review will focus on the current state of adjuvants in vaccine development, the mechanisms of human-compatible adjuvants and future research directions. We hope this review will provide valuable information to discovery novel adjuvants and drug delivery systems for developing novel vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, College of Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.A.S.); (Y.Z.)
| |
Collapse
|
17
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Pan Y, Fu Q, Li Y, Yang J, Cheng K. Discovery of an ellipticine derivative as TLR3 inhibitor against influenza A virus and SARS-CoV-2. Bioorg Med Chem Lett 2024; 101:129672. [PMID: 38387691 DOI: 10.1016/j.bmcl.2024.129672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Influenza and COVID-19 continue to pose global threats to public health. Classic antiviral drugs have certain limitations, coupled with frequent viral mutations leading to many drugs being ineffective, the development of new antiviral drugs is urgent. Meanwhile, the invasion of influenza virus can cause an immune response, and an excessive immune response can generate a large number of inflammatory storms, leading to tissue damage. Toll-like receptor 3 (TLR3) recognizes virus dsRNA to ignite the innate immune response, and inhibit TLR3 can block the excess immune response and protect the host tissues. Taking TLR3 as the target, SMU-CX1 was obtained as the specific TLR3 inhibitor by high-throughput screening of 15,700 compounds with IC50 value of 0.11 µM. Its anti-influenza A virus activity with IC50 ranged from 0.14 to 0.33 µM against multiple subtypes of influenza A virus and also showed promising anti-SARS-CoV-2 activity with IC50 at 0.43 µM. Primary antiviral mechanism study indicated that SMU-CX1 significantly inhibited PB2 and NP protein of viruses, it can also inhibit inflammatory factors in host cells including IFN-β, IP-10 and CCL-5. In conclusion, this study demonstrates the potential of SMU-CX1 in inhibiting IAV and SARS-CoV-2 activity, thereby offering a novel approach for designing antiviral drugs against highly pathogenic viruses.
Collapse
Affiliation(s)
- Yue Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yinyan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
21
|
Suprewicz Ł, Zakrzewska M, Okła S, Głuszek K, Sadzyńska A, Deptuła P, Fiedoruk K, Bucki R. Extracellular vimentin as a modulator of the immune response and an important player during infectious diseases. Immunol Cell Biol 2024; 102:167-178. [PMID: 38211939 DOI: 10.1111/imcb.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Vimentin, an intermediate filament protein primarily recognized for its intracellular role in maintaining cellular structure, has recently garnered increased attention and emerged as a pivotal extracellular player in immune regulation and host-pathogen interactions. While the functions of extracellular vimentin were initially overshadowed by its cytoskeletal role, accumulating evidence now highlights its significance in diverse physiological and pathological events. This review explores the multifaceted role of extracellular vimentin in modulating immune responses and orchestrating interactions between host cells and pathogens. It delves into the mechanisms underlying vimentin's release into the extracellular milieu, elucidating its unconventional secretion pathways and identifying critical molecular triggers. In addition, the future perspectives of using extracellular vimentin in diagnostics and as a target protein in the treatment of diseases are discussed.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Alicja Sadzyńska
- State Higher Vocational School of Prof. Edward F. Szczepanik in Suwałki, Suwałki, Poland
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
22
|
Asiedu K, Tummanapalli SS, Alotaibi S, Wang LL, Dhanapalaratnam R, Kwai N, Poynten A, Markoulli M, Krishnan AV. Impact of SGLT2 Inhibitors on Corneal Nerve Morphology and Dendritic Cell Density in Type 2 Diabetes. Ocul Immunol Inflamm 2024; 32:234-241. [PMID: 37801679 DOI: 10.1080/09273948.2023.2263789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE This study aims to determine the effects of SGLT2 inhibitors on corneal dendritic cell density and corneal nerve measures in type 2 diabetes. METHODS Corneal dendritic cell densities and nerve parameters were measured in people with type 2 diabetes treated with SGLT2 inhibitors (T2DM-SGLT2i) [n = 23] and those not treated with SGLT2 inhibitors (T2DM-no SGLT2i) [n = 23], along with 24 age and sex-matched healthy controls. RESULTS There was a reduction in all corneal nerve parameters in type 2 diabetes groups compared to healthy controls (All parameters: p < 0.05). No significant differences in corneal nerve parameters were observed between T2DM-SGLT2i and T2DM-no SGLT2i groups (All parameters: p > 0.05). Central corneal dendritic cells were significantly reduced [mature (p = 0.03), immature (p = 0.06) and total (p = 0.002)] in the T2DM-SGLT2i group compared to the T2DM-no SGLT2i group. Significantly, higher mature (p = 0.04), immature (p = 0.004), total (p = 0.002) dendritic cell densities in the T2DM-no SGLT2i group were observed compared to the healthy controls. In the inferior whorl, no significant difference in immature (p = 0.27) and total dendritic cell densities (p = 0.16) between T2DM-SGLT2i and T2DM-no SGLT2i were observed except mature dendritic cell density (p = 0.018). No differences in total dendritic cell density were observed in the central (p > 0.09) and inferior whorl (p = 0.88) between T2DM-SGLT2i and healthy controls. CONCLUSION The present study showed a reduced dendritic cell density in people with type 2 diabetes taking SGLT2 inhibitors compared to those not taking these medications.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | | | - Sultan Alotaibi
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Leiao Leon Wang
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | | | - Natalie Kwai
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
23
|
Kim ME, Lee JS. Molecular Foundations of Inflammatory Diseases: Insights into Inflammation and Inflammasomes. Curr Issues Mol Biol 2024; 46:469-484. [PMID: 38248332 PMCID: PMC10813887 DOI: 10.3390/cimb46010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammatory diseases are a global health problem affecting millions of people with a wide range of conditions. These diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), osteoarthritis (OA), gout, and diabetes, impose a significant burden on patients and healthcare systems. A complicated interaction between genetic variables, environmental stimuli, and dysregulated immune responses shows the complex biological foundation of various diseases. This review focuses on the molecular mechanisms underlying inflammatory diseases, including the function of inflammasomes and inflammation. We investigate the impact of environmental and genetic factors on the progression of inflammatory diseases, explore the connection between inflammation and inflammasome activation, and examine the incidence of various inflammatory diseases in relation to inflammasomes.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
24
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
25
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
26
|
Parmaksız S, Pekcan M, Özkul A, Türkmen E, Rivero-Arredondo V, Ontiveros-Padilla L, Forbes N, Perrie Y, López-Macías C, Şenel S. In vivo evaluation of new adjuvant systems based on combination of Salmonella Typhi porins with particulate systems: Liposomes versus polymeric particles. Int J Pharm 2023; 648:123568. [PMID: 37925042 DOI: 10.1016/j.ijpharm.2023.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Subunit vaccines that have weak immunogenic activity require adjuvant systems for enhancedcellular and long-acting humoral immune responses. Both lipid-based and polymeric-based particulate adjuvants have been widely investigated to induce the desired immune responses against the subunit vaccines. The adjuvant efficacy of these particulate adjuvants depends upon their physicochemical properties such as particle size, surface charge, shape and their composition. Previously, we showed in vitro effect of adjuvant systems based on combination of chitosan and Salmonella Typhi porins in microparticle or nanoparticle form, which were spherical with positive surface charge. In the present study, we have further developed an adjuvant system based on combination of porins with liposomes (cationic and neutral) and investigated the adjuvant effect of both the liposomal and polymeric systems in BALB/c mice using a model antigen, ovalbumin. Humoral immune responses were determined following priming and booster dose at 15-day intervals. In overall, IgM and IgG levels were induced in the presence of both the liposomal and polymeric adjuvant systems indicating the positive impact of combination with porins. The highest IgM levels were obtained on Day 8, and liposomal adjuvant systems were found to elicit significantly higher IgM levels compared to polymeric systems. IgG levels were increased significantly after booster, particularly more profound with the micro-sized polymeric system when compared to cationic liposomal system with nano-size. Our results demonstrated that the developed particulate systems are promising both as an adjuvant and delivery system, providing enhanced immune responses against subunit antigens, and have the potential for long-term protection.
Collapse
Affiliation(s)
- Selin Parmaksız
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Mert Pekcan
- Ankara University, Faculty of Veterinary Medicine, Department of Biochemistry, 06110 Ankara, Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara University, 06110 Ankara, Turkey
| | - Ece Türkmen
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Vanessa Rivero-Arredondo
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Ontiveros-Padilla
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Neil Forbes
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Yvonne Perrie
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
27
|
Bobrovskikh AV, Zubairova US, Doroshkov AV. Fishing Innate Immune System Properties through the Transcriptomic Single-Cell Data of Teleostei. BIOLOGY 2023; 12:1516. [PMID: 38132342 PMCID: PMC10740722 DOI: 10.3390/biology12121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The innate immune system is the first line of defense in multicellular organisms. Danio rerio is widely considered a promising model for IIS-related research, with the most amount of scRNAseq data available among Teleostei. We summarized the scRNAseq and spatial transcriptomics experiments related to the IIS for zebrafish and other Teleostei from the GEO NCBI and the Single-Cell Expression Atlas. We found a considerable number of scRNAseq experiments at different stages of zebrafish development in organs such as the kidney, liver, stomach, heart, and brain. These datasets could be further used to conduct large-scale meta-analyses and to compare the IIS of zebrafish with the mammalian one. However, only a small number of scRNAseq datasets are available for other fish (turbot, salmon, cavefish, and dark sleeper). Since fish biology is very diverse, it would be a major mistake to use zebrafish alone in fish immunology studies. In particular, there is a special need for new scRNAseq experiments involving nonmodel Teleostei, e.g., long-lived species, cancer-resistant fish, and various fish ecotypes.
Collapse
Affiliation(s)
- Aleksandr V. Bobrovskikh
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Ulyana S. Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey V. Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
28
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
29
|
Moni SS, Abdelwahab SI, Jabeen A, Elmobark ME, Aqaili D, Ghoal G, Oraibi B, Farasani AM, Jerah AA, Alnajai MMA, Mohammad Alowayni AMH. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023; 11:1704. [PMID: 38006036 PMCID: PMC10674458 DOI: 10.3390/vaccines11111704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccination is a groundbreaking approach in preventing and controlling infectious diseases. However, the effectiveness of vaccines can be greatly enhanced by the inclusion of adjuvants, which are substances that potentiate and modulate the immune response. This review is based on extensive searches in reputable databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. The goal of this review is to provide a thorough analysis of the advances in the field of adjuvant research, to trace the evolution, and to understand the effects of the various adjuvants. Historically, alum was the pioneer in the field of adjuvants because it was the first to be approved for use in humans. It served as the foundation for subsequent research and innovation in the field. As science progressed, research shifted to identifying and exploiting the potential of newer adjuvants. One important area of interest is nano formulations. These advanced adjuvants have special properties that can be tailored to enhance the immune response to vaccines. The transition from traditional alum-based adjuvants to nano formulations is indicative of the dynamism and potential of vaccine research. Innovations in adjuvant research, particularly the development of nano formulations, are a promising step toward improving vaccine efficacy and safety. These advances have the potential to redefine the boundaries of vaccination and potentially expand the range of diseases that can be addressed with this approach. There is an optimistic view of the future in which improved vaccine formulations will contribute significantly to improving global health outcomes.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | | | - Aamena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Duaa Aqaili
- Physiology Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Gassem Ghoal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Bassem Oraibi
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia (B.O.)
| | | | - Ahmed Ali Jerah
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahdi Mohammed A. Alnajai
- General Directorate of Health Services and University Hospital, Jazan University, Jazan 45142, Saudi Arabia;
| | | |
Collapse
|
30
|
Richter P, Macovei LA, Mihai IR, Cardoneanu A, Burlui MA, Rezus E. Cytokines in Systemic Lupus Erythematosus-Focus on TNF-α and IL-17. Int J Mol Sci 2023; 24:14413. [PMID: 37833861 PMCID: PMC10572174 DOI: 10.3390/ijms241914413] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder known for its complex pathogenesis, in which cytokines play an essential role. It seems that the modulation of these cytokines may impact disease progression, being considered potential biomarkers. Thus, TNF (tumor necrosis factor)-α and IL (interleukin)-17 are molecules of great interest in SLE. TNF-α plays a dual role in SLE, with both immunosuppressive and proinflammatory functions. The role of IL-17 is clearly described in the pathogenesis of SLE, having a close association with IL-23 in stimulating the inflammatory response and consecutive tissue destruction. It appears that patients with elevated levels of these cytokines are associated with high disease activity expressed by the SLE disease activity index (SLEDAI) score, although some studies do not confirm this association. However, TNF-α and IL-17 are found in increased titers in lupus patients compared to the general population. Whether inhibition of these cytokines would lead to effective treatment is under discussion. In the case of anti-TNF-α therapies in SLE, the possibility of ATIL (anti-TNF-induced lupus) is a serious concern that limits their use. The use of anti-IL-17 therapies in SLE is a promising option, but not yet approved. Future studies of these cytokines in large cohorts will provide valuable information for the management of SLE.
Collapse
Affiliation(s)
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.R.); (I.R.M.); (A.C.); (M.A.B.); (E.R.)
| | | | | | | | | |
Collapse
|
31
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
32
|
Grogg J, Vernet R, Charrier E, Urwyler M, Von Rohr O, Saingier V, Courtout F, Lathuiliere A, Gaudenzio N, Engel A, Mach N. Engineering a versatile and retrievable cell macroencapsulation device for the delivery of therapeutic proteins. iScience 2023; 26:107372. [PMID: 37539029 PMCID: PMC10393802 DOI: 10.1016/j.isci.2023.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Encapsulated cell therapy holds a great potential to deliver sustained levels of highly potent therapeutic proteins to patients and improve chronic disease management. A versatile encapsulation device that is biocompatible, scalable, and easy to administer, retrieve, or replace has yet to be validated for clinical applications. Here, we report on a cargo-agnostic, macroencapsulation device with optimized features for protein delivery. It is compatible with adherent and suspension cells, and can be administered and retrieved without burdensome surgical procedures. We characterized its biocompatibility and showed that different cell lines producing different therapeutic proteins can be combined in the device. We demonstrated the ability of cytokine-secreting cells encapsulated in our device and implanted in human skin to mobilize and activate antigen-presenting cells, which could potentially serve as an effective adjuvant strategy in cancer immunization therapies. We believe that our device may contribute to cell therapies for cancer, metabolic disorders, and protein-deficient diseases.
Collapse
Affiliation(s)
- Julien Grogg
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Remi Vernet
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Emily Charrier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Muriel Urwyler
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Olivier Von Rohr
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Valentin Saingier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Fabien Courtout
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Department of Rehabilitation and Geriatrics, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Adrien Engel
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Nicolas Mach
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Chowdhury MAR, An J, Jeong S. The Pleiotropic Face of CREB Family Transcription Factors. Mol Cells 2023; 46:399-413. [PMID: 37013623 PMCID: PMC10336275 DOI: 10.14348/molcells.2023.2193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 04/05/2023] Open
Abstract
cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Md. Arifur Rahman Chowdhury
- Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Jungeun An
- Division of Life Sciences (Life Sciences Major), Jeonbuk National University, Jeonju 54896, Korea
| | - Sangyun Jeong
- Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
34
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
35
|
Damania B, Dittmer DP. Today's Kaposi sarcoma is not the same as it was 40 years ago, or is it? J Med Virol 2023; 95:e28773. [PMID: 37212317 PMCID: PMC10266714 DOI: 10.1002/jmv.28773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
This review will provide an overview of the notion that Kaposi sarcoma (KS) is a disease that manifests under diverse and divergent circumstances. We begin with a historical introduction of KS and KS-associated herpesvirus (KSHV), highlight the diversity of clinical presentations of KS, summarize what we know about the cell of origin for this tumor, explore KSHV viral load as a potential biomarker for acute KSHV infections and KS-associated complications, and discuss immune modulators that impact KSHV infection, KSHV persistence, and KS disease.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| |
Collapse
|
36
|
Firoz A, Malik A, Ali HM, Akhter Y, Manavalan B, Kim CB. PRR-HyPred: A two-layer hybrid framework to predict pattern recognition receptors and their families by employing sequence encoded optimal features. Int J Biol Macromol 2023; 234:123622. [PMID: 36773859 DOI: 10.1016/j.ijbiomac.2023.123622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Pattern recognition receptors (PRRs) recognize distinct features on the surface of pathogens or damaged cells and play key roles in the innate immune system. PRRs are divided into various families, including Toll-like receptors, retinoic acid-inducible gene-I-like receptors, nucleotide oligomerization domain-like receptors, and C-type lectin receptors. As these are implicated in host health and several diseases, their accurate identification is indispensable for their functional characterization and targeted therapeutic approaches. Here, we construct PRR-HyPred, a novel two-layer hybrid framework in which the first layer predicts whether a given sequence is PRR or non-PRR using a support vector machine, and in the second, the predicted PRR sequence is assigned to a specific family using a random forest-based classifier. Based on a 10-fold cross-validation test, PRR-HyPred achieved 83.4 % accuracy in the first layer and 95 % in the second, with Matthew's correlation coefficient values of 0.639 and 0.816, respectively. This is the first study that can simultaneously predict and classify PRRs into specific families. PRR-HyPred is available as a web portal at https://procarb.org/PRRHyPred/. We hope that it could be a valuable tool for the large-scale prediction and classification of PRRs and subsequently facilitate future studies.
Collapse
Affiliation(s)
- Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Republic of Korea.
| | - Hani Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
37
|
Li S, Zhang MY, Yuan J, Zhang YX. Nano-vaccines for gene delivery against HIV-1 infection. Expert Rev Vaccines 2023; 22:315-326. [PMID: 36945780 DOI: 10.1080/14760584.2023.2193266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Over the last four decades, human immunodeficiency virus type 1 (HIV-1) infection has been a major public health concern. It is acknowledged that an effective vaccine remains the best hope for eliminating the HIV-1 pandemic. The prophylaxis of HIV-1 infection remains a central theme because of the absence of an available HIV-1 vaccine. The incapability of conventional delivery strategies to induce potent immunity is a crucial task to overcome and ultimately lead to a major obstacle in HIV-1 vaccine research. AREAS COVERED The literature search was conducted in the following databases: PubMed, Web of Science, and Embase. Nano-platforms based vaccines have proven prophylaxis of various diseases for effectively activating the immune system. Nano-vaccines, including non-viral and viral vectored nano-vaccines, are in a position to improve the effectiveness of HIV-1 antigen delivery and enhance the innate and adaptive immune responses against HIV-1. Compared to traditional vaccination strategies, genetic immunization can elicit a long-term immune response to provide protective immunity for HIV-1 prevention. EXPERT OPINION The research progress on nano-vaccines for gene delivery against HIV-1 was discussed. The vaccine strategies based on nano-platforms that are being applied to stimulate effective HIV-1-specific cellular and humoral immune responses were particularly emphasized.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jie Yuan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
38
|
Rolfo C, Giovannetti E, Martinez P, McCue S, Naing A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis Oncol 2023; 7:26. [PMID: 36890302 PMCID: PMC9995514 DOI: 10.1038/s41698-023-00364-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Toll-like receptors (TLRs), which serve as a bridge between innate and adaptive immunity, may be viable treatment targets. TLRs are the first line of defense against microbes and activate signaling cascades that induce immune and inflammatory responses. Patients with "hot" versus "cold" tumors may respond more favorably to immune checkpoint inhibition, and through their downstream effects, TLR agonists have the potential to convert "cold tumors" into "hot tumors" making TLRs in combination with immune checkpoint inhibitors, potential targets for cancer therapies. Imiquimod is a topical TLR7 agonist, approved by the FDA for antiviral and skin cancer treatments. Other TLR adjuvants are used in several vaccines including Nu Thrax, Heplisav, T-VEC, and Cervarix. Many TLR agonists are currently in development as both monotherapy and in combination with immune checkpoint inhibitors. In this review, we describe the TLR agonists that are being evaluated clinically as new therapies for solid tumors.
Collapse
Affiliation(s)
- Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA.
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | | | | | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
40
|
Artykbaeva GM, Saatov TS. Relationship between severe acute respiratory syndrome coronavirus 2 and diabetes mellitus (review). DIABETES MELLITUS 2023. [DOI: 10.14341/dm12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Infections caused by SARE-CoV-2 are complicated with the concurrent pathologies, to name hypertension, diabetes mellitus and cardiovascular diseases. High level of glucose in blood weakens the immunity and increase the SARS-CoV-2 replication. Diabetes mellitus aggravates the COVID-19 outcome. The intrusion of SARS-CoV-2 into a host-cell occurs by means of its association with the angiotensin-converting enzyme-2 (ACE 2). Stimulating immune responses the COVID-19 infection causes the cytokine storm, and may result in the lethal outcome in the diabetics.Recent laboratory studies demonstrated that the type1 and type2 diabetes mellitus is the main consequence in 14% of the patients after corona infection. Thus, in 2% of 14% diabetes started progressing due to the corona virus. In the other, diabetes debut occurred as the direct and negative consequence of the disease. Hyperglycemia results in the formation of protein molecules known as the advanced glycation end products (AGEs). The AGEs and their receptors (RAGE) are of high significance in the host-cell’s virus invasion. Consequently, more strict glucose control is necessary for optimal outcome and reduction in mortality. The better control for the COVID-19 course can be provided by the targeted effect on the RAGE axis. The review helps elucidate the molecular mechanism underlying the exacerbation of pathophysiology in the diabetic COVID-19 patients.
Collapse
Affiliation(s)
- G. M. Artykbaeva
- Institute of biophysics and biochemistry, National University of Uzbekistan named after Mirzo Ulugbek
| | - T. S. Saatov
- Institute of biophysics and biochemistry, National University of Uzbekistan named after Mirzo Ulugbek
| |
Collapse
|
41
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
42
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
43
|
Talipova D, Smagulova A, Poddighe D. Toll-like Receptors and Celiac Disease. Int J Mol Sci 2022; 24:265. [PMID: 36613709 PMCID: PMC9820541 DOI: 10.3390/ijms24010265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder triggered by dietary gluten intake in some genetically predisposed individuals; however, the additional non-HLA-related genetic factors implicated in CD immunopathogenesis are not well-defined. The role of the innate immune system in autoimmunity has emerged in the last few years. Genetic polymorphisms of some pattern-recognition receptors, including toll-like receptors (TLRs), have been associated with several autoimmune disorders. In this review, we summarize and discuss the evidence from basic research and clinical studies as regards the potential role of TLRs in CD immunopathogenesis. The evidence supporting the role of TLRs in CD immunopathogenesis is limited, especially in terms of basic research. However, differences in the expression and activation of TLRs between active CD patients from one side, and controls and treated CD patients from the other side, have been described in some clinical studies. Therefore, TLRs may be part of those non-HLA-related genetic factors implicated in CD etiopathogenesis, considering their potential role in the interaction between the host immune system and some environmental factors (including viral infections and gut microbiota), which are included in the list of candidate agents potentially contributing to the determination of CD risk in genetically predisposed individuals exposed to dietary gluten intake. Further basic research and clinical studies focused on TLRs in the context of CD and other gluten-related disorders are needed.
Collapse
Affiliation(s)
- Diana Talipova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Aiganym Smagulova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| |
Collapse
|
44
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Mishra R, Sharma S, Arora N. TLR-5 ligand conjugated with Per a 10 and T cell peptides potentiates Treg/Th1 response through PI3K/mTOR axis. Int Immunopharmacol 2022; 113:109389. [DOI: 10.1016/j.intimp.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
46
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
47
|
Quiroga J, Vidal S, Siel D, Caruffo M, Valdés A, Cabrera G, Lapierre L, Sáenz L. Novel Proteoliposome-Based Vaccine against E. coli: A Potential New Tool for the Control of Bovine Mastitis. Animals (Basel) 2022; 12:ani12192533. [PMID: 36230275 PMCID: PMC9558995 DOI: 10.3390/ani12192533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Mastitis is a highly prevalent disease in dairy cattle, affecting animal welfare and generating economic losses for the dairy industry. Control measures for coliform mastitis are limited, due to the constant exposure of the teat to bacteria and the emergence of antimicrobial-resistant bacteria, making vaccination an important strategy for control of mastitis. However, currently available vaccines show limited efficacy, which could be attributed to inactivation processes that alter the antigenic preservation of the vaccines. The aim of this study was to assess the efficacy of a novel vaccine against mastitis using proteoliposomes obtained from E. coli in a murine model of coliform mastitis. We demonstrated that the proteoliposome vaccine was safe, immunogenic and effective against an experimental model of E. coli mastitis, decreasing bacterial count and tissue damage. This proteoliposome vaccine is a potential new tool for prevention of mastitis. Abstract Escherichia coli is an important causative agent of clinical mastitis in cattle. Current available vaccines have shown limited protection. We evaluated the efficacy of a novel vaccine based on bacterial proteoliposomes derived from an E. coli field strain. Female BALB/c mice were immunized subcutaneously with two doses of the vaccine, 3 weeks apart. Between days 5 and 8 after the first inoculation, the females were mated. At 5–8 days postpartum, the mice were intramammary challenged with the same E. coli strain. Two days after bacterial infection, mice were euthanized, and the mammary glands were examined and removed to evaluate the efficacy and safety of the vaccine as well as the immune response generated by the new formulation. The vaccinated mice showed mild clinical symptoms and a lower mammary bacterial load as compared to non-vaccinated animals. The vaccination induced an increase in levels of IgG, IgG1 and IgG2a against E. coli in blood and mammary glands that showed less inflammatory infiltration and tissue damage, as compared to the control group. In summary, the vaccine based on bacterial proteoliposomes is safe, immunogenic, and effective against E. coli, constituting a new potential tool for mastitis control.
Collapse
Affiliation(s)
- John Quiroga
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sonia Vidal
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Daniela Siel
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile
| | - Mario Caruffo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Andrea Valdés
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Lissette Lapierre
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (L.L.); (L.S.); Tel.: +56-9229-785689 (L.S.)
| | - Leonardo Sáenz
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (L.L.); (L.S.); Tel.: +56-9229-785689 (L.S.)
| |
Collapse
|
48
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
49
|
Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, Gao H. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol 2022; 13:928475. [PMID: 36016947 PMCID: PMC9396262 DOI: 10.3389/fimmu.2022.928475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus is the core place for breeding new life. The balance and imbalance of uterine microecology can directly affect or even dominate the female reproductive health. Emerging data demonstrate that endometrial microbiota, endometrium and immunity play an irreplaceable role in regulating uterine microecology, forming a dynamic iron triangle relationship. Up to nowadays, it remains unclear how the three factors affect and interact with each other, which is also a frontier topic in the emerging field of reproductive tract microecology. From this new perspective, we aim to clarify the relationship and mechanism of the interaction of these three factors, especially their pairwise interactions. Finally, the limitations and future perspectives of the current studies are summarized. In general, these three factors have a dynamic relationship of mutual dependence, promotion and restriction under the physiological or pathological conditions of uterus, among which the regulatory mechanism of microbiota and immunity plays a role of bridge. These findings can provide new insights and measures for the regulation of uterine microecology, the prevention and treatment of endometrial diseases, and the further multi-disciplinary integration between microbiology, immunology and reproductive medicine.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- School of Nursing, University of South China, Hengyang, China
| | - Xuyan Yang
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Gao
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Hong Gao,
| |
Collapse
|
50
|
A structural vaccinology approach for in silico designing of a potential self-assembled nanovaccine against Leishmania infantum. Exp Parasitol 2022; 239:108295. [PMID: 35709889 DOI: 10.1016/j.exppara.2022.108295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/23/2022]
Abstract
Visceral leishmaniasis (VL) remains a major public health problem across 98 countries. To date, VL has no effective drug. Vaccines, as the most successful breakthroughs in medicine, can promise an effective strategy to fight various diseases. More recently, self-assembled peptide nanoparticles (SAPNs) have attracted considerable attention in the field of vaccine design due to their multivalency. In this study, a SAPN nanovaccine was designed using various immunoinformatics methods. High-ranked epitopes were chosen from a number of antigens, including Leishmania-specific hypothetical protein (LiHy), Leishmania-specific antigenic protein (LSAP), histone H1, and sterol 24-c-methyltransferase (SMT). To facilitate the oligomerization process, pentameric and trimeric coiled-coil domains were employed. RpfE, a resuscitation-promoting factor of Mycobacterium tuberculosis, was added to induce strong immune responses. Pentameric and trimeric coiled-coil domains as well as eight immunodominant epitopes from antigenic proteins of Leishmania infantum, the causative agent of VL, were joined together using appropriate linkers. High-quality 3D structure of monomeric and oligomeric structures followed by refinement and validation processes demonstrated that the designed nanovaccine could be considered to be a promising medication against the parasite; however, experimental validation is essential to confirm the effectiveness of the nanovaccine.
Collapse
|