1
|
Karnatak G, Das BK, Puthiyottil M, Devi MS, Paria P, Rajesh M, Sarkar UK, Behera BK, Tiwari VK, Chadha NK, Kumari S. Influence of stocking density and environmental factors on the expression of insulin-like growth factors in cage-reared butter catfish (Ompok bimaculatus, Bloch 1794) within a large reservoir ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123181-123192. [PMID: 37979103 DOI: 10.1007/s11356-023-30790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In vertebrates, insulin-like growth like factors (IGFs) play an important role in growth and other physiological processes. The GH-IGF axis is considered a valuable tool to monitor fish growth performance. Herein, we report the molecular characterization of igf-1, igf-2, and β-actin transcripts and relative expression of igf-1 and igf-2 in the liver and muscle tissue of cage-reared butter catfish, Ompok bimaculatus, in response to different stocking densities (T1, 15 fingerlings m-3; T2, 25 fingerlings m-3; and T3, 35 fingerlings m-3) over 180 days of culture duration. The length of the partial amplified transcript sequence of Obigf-1, Obigf-2, and Obβ-actin was 325, 438, and 924 bp, respectively. Phylogenetically, Obigf-1 and Obigf-2 were closely clustered with catfishes, viz., Clarias magur, Bagarius yarrelli, and Silurus asotus. The expression of igf-1 was significantly downregulated in the liver at higher densities after 120 days as biomass in the cages increased, while igf-2 expression did not change with the stocking densities over the culture period. Cortisol concentration was significantly elevated in T3 groups post 150 days of the culture period and correlated negatively with the expression of igf-1 (p < 0.05) and igf-2 (p > 0.05). Environmental parameters, pH, TDS, hardness, conductivity, and alkalinity showed a significant positive correlation with hepatic IGF expression. Our study indicates that the liver-derived igf-1 plays a more important role in the regulation of growth in response to culture density in the species studied, and thus, igf-1 can be used effectively as a biomarker for growth. Furthermore, this study will help in planning a proper harvest schedule and optimize the culture practices of O. bimaculatus in an open water cage system.
Collapse
Affiliation(s)
- Gunjan Karnatak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India.
| | - Mishal Puthiyottil
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | - Prasenjit Paria
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Manchi Rajesh
- Fish Nutritional Physiology Lab, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Uttam Kumar Sarkar
- ICAR-National Bureau of Fish Genetic Resources, Uttar Pradesh, Lucknow, India
| | - Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | | | - Suman Kumari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| |
Collapse
|
2
|
Huang J, Siyar S, Sharma R, Herrig I, Wise L, Aidt S, List E, Kopchick JJ, Puri V, Lee KY. Adipocyte Subpopulations Mediate Growth Hormone-induced Lipolysis and Glucose Tolerance in Male Mice. Endocrinology 2023; 164:bqad151. [PMID: 37897489 DOI: 10.1210/endocr/bqad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In adipose tissue, growth hormone (GH) stimulates lipolysis, leading to an increase in plasma free fatty acid levels and a reduction in insulin sensitivity. In our previous studies, we have found that GH increases lipolysis by reducing peroxisome proliferator-activated receptor γ (PPARγ) transcription activity, leading to a reduction of tat-specific protein 27 (FSP27, also known as CIDEC) expression. In previous studies, our laboratory uncovered 3 developmentally distinct subpopulations of white adipocytes. In this manuscript, we show that one of the subpopulations, termed type 2 adipocytes, has increased GH-induced signaling and lipolysis compared to other adipocyte subtypes. To assess the physiological role of GH-mediated lipolysis mediated by this adipocyte subpopulation, we specifically expressed human FSP27 (hFSP27) transgene in type 2 adipocytes (type2Ad-hFSP27tg mice). Systemically, male type2Ad-hFSP27tg mice displayed reduced serum glycerol release and nonesterified fatty acids levels after acute GH treatment, and improvement in acute, but not chronic, GH-induced glucose intolerance. Furthermore, we demonstrate that type2Ad-hFSP27tg mice displayed improved hepatic insulin signaling. Taken together, these results indicate that this adipocyte subpopulation is a critical regulator of the GH-mediated lipolytic and metabolic response. Thus, further investigation of adipocyte subpopulations may provide novel treatment strategies to regulate GH-induced glucose intolerance in patients with growth and metabolic disorders.
Collapse
Affiliation(s)
- Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sohana Siyar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Isabella Herrig
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Lauren Wise
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Spencer Aidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Edward List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Canonical growth hormone (GH)-dependent signaling is essential for growth and counterregulatory responses to hypoglycemia, but also may contribute to glucose homeostasis (even in the absence of hypoglycemia) via its impact on metabolism of carbohydrates, lipids and proteins, body composition, and cardiovascular risk profile. The aim of this review is to summarize recent data implicating GH action in metabolic control, including both IGF-1-dependent and -independent pathways, and its potential role as target for T2D therapy. RECENT FINDINGS Experimental blockade of the GHR can modulate glucose metabolism. Moreover, the soluble form of the GH receptor (GHR, or GHBP) was recently identified as a mediator of improvement in glycemic control in patients with T2D randomized to bariatric surgery vs. medical therapy. Reductions in GHR were accompanied by increases in plasma GH, but unchanged levels of both total and free IGF-1. Likewise, hepatic GHR expression is reduced following both RYGB and VSG in rodents. Emerging data indicate that GH signaling is important for regulation of long-term glucose metabolism in T2D. Future studies will be required to dissect tissue-specific GH signaling and sensitivity and their contributions to systemic glucose metabolism.
Collapse
Affiliation(s)
- Xuehong Dong
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Su
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Arlien-Søborg MC, Dal J, Madsen MA, Høgild ML, Hjelholt AJ, Pedersen SB, Møller N, Jessen N, Jørgensen JOL. Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly. EBioMedicine 2021; 75:103763. [PMID: 34929488 PMCID: PMC8688588 DOI: 10.1016/j.ebiom.2021.103763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Patients with active acromegaly exhibit insulin resistance despite a lean phenotype whereas controlled disease improves insulin sensitivity and increases fat mass. The mechanisms underlying this paradox remain elusive, but growth hormone (GH)-induced lipolysis plays a central role. The aim of the study was to investigative the molecular mechanisms of insulin resistance dissociated from obesity in patients with acromegaly. METHODS In a prospective study, twenty-one patients with newly diagnosed acromegaly were studied at diagnosis and after disease control obtained by either surgery alone (n=10) or somatostatin analogue (SA) treatment (n=11) with assessment of body composition (DXA scan), whole body and tissue-specific insulin sensitivity and GH and insulin signalling in adipose tissue and skeletal muscle. FINDINGS Disease control of acromegaly significantly reduced lean body mass (p<0.001) and increased fat mass (p<0.001). At diagnosis, GH signalling (pSTAT5) was constitutively activated in fat and enhanced expression of GH-regulated genes (CISH and IGF-I) were detected in muscle and fat. Insulin sensitivity in skeletal muscle, liver and adipose tissue increased after disease control regardless of treatment modality. This was associated with enhanced insulin signalling in both muscle and fat including downregulation of phosphatase and tensin homolog (PTEN) together with reduced signalling of GH and lipolytic activators in fat. INTERPRETATION In conclusion, the study support that uncontrolled lipolysis is a major feature of insulin resistance in active acromegaly, and is characterized by upregulation of PTEN and suppression of insulin signalling in both muscle and fat. FUNDING This work was supported by a grant from the Independent Research Fund, Denmark (7016-00303A) and from the Alfred Benzon Foundation, Denmark.
Collapse
Affiliation(s)
- Mai C Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark.
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Department of Endocrinology, Aalborg University Hospital, Denmark; Steno Diabetes Centre North, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Alle Madsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Morten Lyng Høgild
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Astrid Johannesson Hjelholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | | | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Niels Jessen
- Steno Diabetes Centre, Aarhus, Denmark; Department of Clinical Pharmacology, University of Aarhus, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Jens O L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
5
|
Treatment of Growth Hormone Deficiency via Daily Intravascular Injections in a Child with Bleeding Disorder. Case Rep Endocrinol 2021; 2021:7865398. [PMID: 34239740 PMCID: PMC8233067 DOI: 10.1155/2021/7865398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives The standard of treatment for pediatric growth hormone deficiency (GHD) is daily subcutaneous recombinant human growth hormone (rhGH) injections. The efficacy of rhGH treatment given as daily intravenous (IV) boluses is not known. Case Presentation. A female with protein C deficiency, a severe bleeding disorder characterized by thrombosis formation, was diagnosed with GHD at age four years. She has been receiving daily protein C infusion through a permanent port since the newborn period. GHD was treated with daily IV rhGH boluses given through the port following protein C infusion. She has reached a growth rate of 12 cm/year and had no side effects. Surprisingly, serum insulin-like growth factor-1 (IGF1) levels did not rise despite an excellent clinical response. Conclusions IV administration may be an alternative route for GHD treatment in eligible patients with permanent vascular access. A rise in serum IGF1 levels may not be needed to achieve the growth-promoting effect of rhGH.
Collapse
|
6
|
Alternative regulatory mechanism for the maintenance of bone homeostasis via STAT5-mediated regulation of the differentiation of BMSCs into adipocytes. Exp Mol Med 2021; 53:848-863. [PMID: 33990690 PMCID: PMC8178345 DOI: 10.1038/s12276-021-00616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
STAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5fl/fl;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases. A protein connected with bone maintenance and fat cell differentiation could provide a novel therapeutic target for both obesity and osteoporosis. The processes of healthy bone remodeling and fat cell (adipocyte) differentiation from bone marrow stem cells (BMSCs) are intrinsically connected. The transcription factor protein STAT5 plays roles in maintaining bone homeostasis and adipocyte differentiation, but its role in the latter is unclear. Nacksung Kim at Chonnam National University Medical School in Gwangju, South Korea, and co-workers examined the role of STAT5 in mice. Mice without the Stat5 gene had increased fat tissue in their bone marrow, suggesting increased BMSC differentiation into adipocytes. The mice also had reduced bone mass due to increased numbers of bone-degrading cells. Further investigations showed that STAT5 regulates the differentiation of BMSCs into adipocytes via activation of a regulatory gene.
Collapse
|
7
|
Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front Physiol 2021; 11:621226. [PMID: 33519525 PMCID: PMC7844366 DOI: 10.3389/fphys.2020.621226] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Wilkinson
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Philip J. Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
8
|
Endo Y, Nourmahnad A, Sinha I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front Physiol 2020; 11:874. [PMID: 32792984 PMCID: PMC7390896 DOI: 10.3389/fphys.2020.00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
9
|
Hjelholt A, Høgild M, Bak AM, Arlien-Søborg MC, Bæk A, Jessen N, Richelsen B, Pedersen SB, Møller N, Lunde Jørgensen JO. Growth Hormone and Obesity. Endocrinol Metab Clin North Am 2020; 49:239-250. [PMID: 32418587 DOI: 10.1016/j.ecl.2020.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth hormone (GH) exerts IGF-I dependent protein anabolic and direct lipolytic effects. Obesity reversibly suppresses GH secretion driven by elevated FFA levels, whereas serum IGF-I levels remain normal or elevated due to elevated portal insulin levels. Fasting in lean individuals suppresses hepatic IGF-I production and increases pituitary GH release, but this pattern is less pronounced in obesity. Fasting in obesity is associated with increased sensitivity to the insulin-antagonistic effects of GH. GH treatment in obesity induces a moderate reduction in fat mass and an increase in lean body mass but the therapeutic potential is uncertain.
Collapse
Affiliation(s)
- Astrid Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Morten Høgild
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Ann Mosegaard Bak
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Mai Christiansen Arlien-Søborg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Amanda Bæk
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bjørn Richelsen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Jens Otto Lunde Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark.
| |
Collapse
|
10
|
Kopchick JJ, Berryman DE, Puri V, Lee KY, Jorgensen JOL. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol 2020; 16:135-146. [PMID: 31780780 PMCID: PMC7180987 DOI: 10.1038/s41574-019-0280-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
The ability of growth hormone (GH) to induce adipose tissue lipolysis has been known for over five decades; however, the molecular mechanisms that mediate this effect and the ability of GH to inhibit insulin-stimulated glucose uptake have scarcely been documented. In this same time frame, our understanding of adipose tissue has evolved to reveal a complex structure with distinct types of adipocyte, depot-specific differences, a biologically significant extracellular matrix and important endocrine properties mediated by adipokines. All these aforementioned features, in turn, can influence lipolysis. In this Review, we provide a historical and current overview of the lipolytic effect of GH in humans, mice and cultured cells. More globally, we explain lipolysis in terms of GH-induced intracellular signalling and its effect on obesity, insulin resistance and lipotoxicity. In this regard, findings that define molecular mechanisms by which GH induces lipolysis are described. Finally, data are presented for the differential effect of GH on specific adipose tissue depots and on distinct classes of metabolically active adipocytes. Together, these cellular, animal and human studies reveal novel cellular phenotypes and molecular pathways regulating the metabolic effects of GH on adipose tissue.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA.
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Vishwajeet Puri
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Kevin Y Lee
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
12
|
Hjelholt AJ, Lee KY, Arlien-Søborg MC, Pedersen SB, Kopchick JJ, Puri V, Jessen N, Jørgensen JOL. Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial. Mol Metab 2019; 29:65-75. [PMID: 31668393 PMCID: PMC6731350 DOI: 10.1016/j.molmet.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Objective Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). Methods In a randomized, placebo-controlled, cross-over study, nine men were examined after injection of 1) a GH bolus and 2) a GH-receptor antagonist (pegvisomant) followed by four AT biopsies. In a second study, eight men were examined in a 2 × 2 factorial design including GH infusion and 36-h fasting with AT biopsies obtained during a basal period and a hyperinsulinemic-euglycemic clamp. Expression of GH-signaling intermediates and lipolytic regulators were studied by PCR and western blotting. In addition, mechanistic experiments in mouse models and 3T3-L1 adipocytes were performed. Results The GH bolus increased circulating free fatty acids (p < 0.0001) together with phosphorylation of signal transducer and activator of transcription 5 (STAT5) (p < 0.0001) and mRNA expression of the STAT5-dependent genes cytokine-inducible SH2-containing protein (CISH) and IGF-1 in AT. This was accompanied by suppressed mRNA expression of G0/G1 switch gene 2 (G0S2) (p = 0.007) and fat specific protein 27 (FSP27) (p = 0.002) and upregulation of phosphatase and tensin homolog (PTEN) mRNA expression (p = 0.03). Suppression of G0S2 was also observed in humans after GH infusion and fasting, as well as in GH transgene mice, and in vitro studies suggested MEK-PPARγ signaling to be involved. Conclusions GH-induced lipolysis in human subjects in vivo is linked to downregulation of G0S2 and FSP27 and upregulation of PTEN in AT. Mechanistically, in vitro data suggest that GH acts via MEK to suppress PPARγ-dependent transcription of G0S2. ClinicalTrials.govNCT02782221 and NCT01209429. Acute GH exposure in human subjects in vivo stimulates lipolysis and release of FFA together with GH signaling in adipose tissue. GH-induced lipolysis is associated with suppression of G0S2 and FSP27 and upregulation of PTEN in human subjects in vivo. Inhibition of MEK and activation of PPARγ abrogate GH-induced suppression of G0S2 mRNA expression in vitro.
Collapse
Affiliation(s)
- Astrid Johannesson Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark.
| | - Kevin Y Lee
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Konneker Research Center 108, Athens, OH 45701, USA
| | - Mai Christiansen Arlien-Søborg
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark
| | - John J Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Edison Biotechnology Institute, Ohio University, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, USA
| | - Vishwajeet Puri
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Konneker Research Center 108, Athens, OH 45701, USA
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Wilh. Meyers Allé 4, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus C, Denmark
| | - Jens Otto L Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| |
Collapse
|
13
|
Vila G, Jørgensen JOL, Luger A, Stalla GK. Insulin Resistance in Patients With Acromegaly. Front Endocrinol (Lausanne) 2019; 10:509. [PMID: 31417493 PMCID: PMC6683662 DOI: 10.3389/fendo.2019.00509] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Acromegaly is characterized by chronic overproduction of growth hormone (GH) that leads to insulin resistance, glucose intolerance and, ultimately, diabetes. The GH-induced sustained stimulation of lipolysis plays a major role not only in the development of insulin resistance and prediabetes/diabetes, but also in the reduction of lipid accumulation, making acromegaly a unique case of severe insulin resistance in the presence of reduced body fat. In the present review, we elucidate the effects of GH hypersecretion on metabolic organs, describing the pathophysiology of impaired glucose tolerance in acromegaly, as well as the impact of acromegaly-specific therapies on glucose metabolism. In addition, we highlight the role of insulin resistance in the development of acromegaly-associated complications such as hypertension, cardiac disease, sleep apnea, polycystic ovaries, bone disease, and cancer. Taken together, insulin resistance is an important metabolic hallmark of acromegaly, which is strongly related to disease activity, the development of comorbidities, and might even impact the response to drugs used in the treatment of acromegaly.
Collapse
Affiliation(s)
- Greisa Vila
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jens Otto L. Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anton Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Günter K. Stalla
- Max Planck Institute of Psychiatry, Munich, Germany
- *Correspondence: Günter K. Stalla ;
| |
Collapse
|
14
|
Anderson LJ, Tamayose JM, Garcia JM. Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol 2018; 464:65-74. [PMID: 28606865 PMCID: PMC5723243 DOI: 10.1016/j.mce.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022]
Abstract
Hormones with anabolic properties such as growth hormone (GH), insulin-like growth factor-1 (IGF-I), and insulin are commonly abused among professional and recreational athletes to enhance physical ability. Performance enhancing drugs (PEDs) such as these are also commonly used by recreational athletes to improve body aesthetics. The perception of increased muscle mass due to supraphysiologic hormone supplementation, or doping, is widespread among PED users despite a paucity of evidence-based data in humans. Even still, athletes will continue to abuse PEDs in hopes of replicating anecdotal results. It is important to educate the general public and potential treating physicians of the risks of PED use, including the dangers of polypharmacy and substance dependence. It will also be important for the research community to address the common challenges associated with studying PED use such as the ethical considerations of PED administration, the general reticence of the PED-using community to volunteer information, and the constant need to improve or create new detection methods as athletes continually attempt to circumvent current methods. This review highlights the anabolic mechanisms and suggestive data implicating GH, IGF-I, and insulin for use as PEDs, the specific detection methods with cutoff ranges that may be utilized to diagnose abuse of each substance, and their respective side effects.
Collapse
Affiliation(s)
- Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States
| | - Jamie M Tamayose
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States; Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
15
|
Mice overexpressing growth hormone exhibit increased skeletal muscle myostatin and MuRF1 with attenuation of muscle mass. Skelet Muscle 2017; 7:17. [PMID: 28870245 PMCID: PMC5583757 DOI: 10.1186/s13395-017-0133-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background In contrast to the acute effects of growth hormone (GH) on skeletal muscle protein synthesis, long-term GH treatment appears to have negligible effects on muscle mass. Despite this knowledge, little is known regarding the chronic effects of GH on skeletal muscle protein synthesis and atrophy signaling pathways. The purpose of this study was to determine if protein synthesis pathways are attenuated and/or muscle atrophy intracellular signaling pathways are altered in the skeletal muscle of transgenic bovine GH (bGH) mice. Methods The gastrocnemius and soleus from 5-month-old male bGH mice (n = 9) and wild type (WT) controls (n = 9) were harvested and analyzed for proteins involved in the protein synthesis (Akt/mTOR), growth and proliferation (MAPK), and muscle atrophy (MuRF1 and myostatin) pathways. Results Total body mass was significantly increased in bGH mice compared to WT controls (49%, P < 0.0001). When expressed relative to total body mass, the gastrocnemius (− 28%, P < 0.0001), but not the soleus, was significantly lower in mice overexpressing GH, compared to controls. Transgenic bGH mice had elevated phosphorylation levels of protein kinase b (Akt1), 4E-binding protein 1 (4E-BP1), p70 S6 kinase, p42/44, and p38 (P < 0.05) compared to WT littermates. Mature myostatin (26 kDa), premature myostatin (52 kDa), and activin receptor type IIB (AcvR2B) protein levels were increased in bGH mice (P < 0.05), along with elevated phosphorylation levels of mothers against decapentaplegic homolog (Smad2) (59%, P < 0.0001). Mice overexpressing GH had increased MuRF1 expression (30%, P < 0.05) and insulin receptor substrate 1 (IRS1) serine phosphorylation (44%, P < 0.05) in the gastrocnemius, but not the soleus, when compared to controls. Conclusions These findings demonstrate that chronic elevations in circulating GH have a critical impact on signaling pathways involved in skeletal muscle protein synthesis and atrophy, and suggest that MuRF1, myostatin, and IRS1 serine phosphorylation may act to inhibit exaggerated glycolytic muscle growth, in environments of chronic GH/IGF-1 excess.
Collapse
|
16
|
TOUSKOVA V, KLOUCKOVA J, DUROVCOVA V, LACINOVA Z, KAVALKOVA P, TRACHTA P, KOSAK M, MRAZ M, HALUZIKOVA D, HANA V, MAREK J, KRSEK M, HALUZIK M. The Possible Role of mRNA Expression Changes of GH/IGF-1/Insulin Axis Components in Subcutaneous Adipose Tissue in Metabolic Disturbances of Patients With Acromegaly. Physiol Res 2016; 65:493-503. [DOI: 10.33549/physiolres.933244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We explored the effect of chronically elevated circulating levels of growth hormone (GH)/insulin-like-growth-factor-1 (IGF-1) on mRNA expression of GH/IGF-1/insulin axis components and p85alpha subunit of phosphoinositide-3-kinase (p85alpha) in subcutaneous adipose tissue (SCAT) of patients with active acromegaly and compared these findings with healthy control subjects in order to find its possible relationships with insulin resistance and body composition changes. Acromegaly group had significantly decreased percentage of truncal and whole body fat and increased homeostasis model assessment-insulin resistance (HOMA-IR). In SCAT, patients with acromegaly had significantly increased IGF-1 and IGF-binding protein-3 (IGFBP-3) expression that both positively correlated with serum GH. P85alpha expression in SCAT did not differ from control group. IGF-1 and IGFBP-3 expression in SCAT were not independently associated with percentage of truncal and whole body fat or with HOMA-IR while IGFBP-3 expression in SCAT was an independent predictor of insulin receptor as well as of p85alpha expression in SCAT. Our data suggest that GH overproduction in acromegaly group increases IGF-1 and IGFBP-3 expression in SCAT while it does not affect SCAT p85alpha expression. Increased IGF-1 or IGFBP-3 in SCAT of acromegaly group do not appear to contribute to systemic differences in insulin sensitivity but may have local regulatory effects in SCAT of patients with acromegaly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - M. HALUZIK
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
17
|
Vendelbo MH, Christensen B, Grønbæk SB, Høgild M, Madsen M, Pedersen SB, Jørgensen JOL, Jessen N, Møller N. GH signaling in human adipose and muscle tissue during 'feast and famine': amplification of exercise stimulation following fasting compared to glucose administration. Eur J Endocrinol 2015; 173:283-90. [PMID: 26034073 DOI: 10.1530/eje-14-1157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/01/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Fasting and exercise stimulates, whereas glucose suppresses GH secretion, but it is uncertain how these conditions impact GH signaling in peripheral tissues. To test the original 'feast and famine hypothesis' by Rabinowitz and Zierler, according to which the metabolic effects of GH are predominant during fasting, we specifically hypothesized that fasting and exercise act in synergy to increase STAT-5b target gene expression. DESIGN AND METHODS Eight healthy men were studied on two occasions in relation to a 1 h exercise bout: i) with a concomitant i.v. glucose infusion ('feast') and ii) after a 36 h fast ('famine'). Muscle and fat biopsy specimens were obtained before, immediately after, and 30 min after exercise. RESULTS GH increased during exercise on both examination days and this effect was amplified by fasting, and free fatty acid (FFA) levels increased after fasting. STAT-5b phosphorylation increased similarly following exercise on both occasions. In adipose tissue, suppressors of cytokine signaling 1 (SOCS1) and SOCS2 were increased after exercise on the fasting day and both fasting and exercise increased cytokine inducible SH2-containing protein (CISH). In muscle, SOCS2 and CISH mRNA were persistently increased after fasting. Muscle SOCS1, SOCS3, and CISH mRNA expression increased, whereas SOCS2 decreased after exercise on both examination days. CONCLUSIONS This study demonstrates that fasting and exercise act in tandem to amplify STAT-5b target gene expression (SOCS and CISH) in adipose and muscle tissue in accordance with the 'feast and famine hypothesis'; the adipose tissue signaling responses, which hitherto have not been scrutinized, may play a particular role in promoting FFA mobilization.
Collapse
Affiliation(s)
- Mikkel H Vendelbo
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Britt Christensen
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Solbritt B Grønbæk
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Morten Høgild
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Michael Madsen
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Steen B Pedersen
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Jens O L Jørgensen
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Niels Jessen
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Niels Møller
- Departments of Endocrinology and Internal MedicineNuclear Medicine and PET CenterResearch Laboratory for Biochemical PathologyAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
18
|
Hochberg I, Tran QT, Barkan AL, Saltiel AR, Chandler WF, Bridges D. Gene Expression Signature in Adipose Tissue of Acromegaly Patients. PLoS One 2015; 10:e0129359. [PMID: 26087292 PMCID: PMC4472931 DOI: 10.1371/journal.pone.0129359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/07/2015] [Indexed: 12/29/2022] Open
Abstract
To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.
Collapse
Affiliation(s)
- Irit Hochberg
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail: (IH); (DB)
| | - Quynh T. Tran
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Ariel L. Barkan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Alan R. Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - William F. Chandler
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
- * E-mail: (IH); (DB)
| |
Collapse
|
19
|
Zhou N, Lee WR, Abasht B. Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens' feed efficiency. BMC Genomics 2015; 16:195. [PMID: 25886891 PMCID: PMC4414306 DOI: 10.1186/s12864-015-1364-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Advanced selection technologies have been developed and continually optimized to improve traits of agricultural importance; however, these methods have been primarily applied without knowledge of underlying biological changes that may be induced by selection. This study aims to characterize the biological basis of differences between chickens with low and high feed efficiency (FE) with a long-term goal of improving the ability to select for FE. Results High-throughput RNA sequencing was performed on 23 breast muscle samples from commercial broiler chickens with extremely high (n = 10) and low (n = 13) FE. An average of 34 million paired-end reads (75 bp) were produced for each sample, 80% of which were properly mapped to the chicken reference genome (Ensembl Galgal4). Differential expression analysis identified 1,059 genes (FDR < 0.05) that significantly divergently expressed in breast muscle between the high- and low-FE chickens. Gene function analysis revealed that genes involved in muscle remodeling, inflammatory response and free radical scavenging were mostly up-regulated in the high-FE birds. Additionally, growth hormone and IGFs/PI3K/Akt signaling pathways were enriched in differentially expressed genes, which might contribute to the high breast muscle yield in high-FE birds and partly explain the FE advantage of high-FE chickens. Conclusions This study provides novel insights into transcriptional differences in breast muscle between high- and low-FE broiler chickens. Our results show that feed efficiency is associated with breast muscle growth in these birds; furthermore, some physiological changes, e.g., inflammatory response and oxidative stress, may occur in the breast muscle of the high-FE chickens, which may be of concern for continued selection for both of these traits together in modern broiler chickens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| | | | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
20
|
Vestergaard PF, Vendelbo MH, Pedersen SB, Juul A, Ringgard S, Møller N, Jessen N, Jørgensen JOL. GH signaling in skeletal muscle and adipose tissue in healthy human subjects: impact of gender and age. Eur J Endocrinol 2014; 171:623-31. [PMID: 25163724 DOI: 10.1530/eje-14-0538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The mechanisms underlying the impact of age and gender on the GH-IGF1 axis remain unclear. We tested the hypothesis that age and gender have impacts on GH signaling in human subjects in vivo. DESIGN A total of 20 healthy non-obese adults ('young group'<30 years (5F/5M) and 'old group'>60 years (5F/5M)) were studied after: i) an i.v. GH bolus (0.5 mg) and ii) saline. METHODS Muscle and fat biopsies were obtained after 30 and 120 min. Total and phosphorylated STAT5B proteins, gene expression of IGF1, SOCS1, SOCS2, SOCS3 and CISH, body composition, VO2max, and muscle strength were measured. RESULTS In the GH-unstimulated state, women displayed significantly elevated levels of CISH mRNA in muscle (P=0.002) and fat (P=0.05) and reduced levels of IGF1 mRNA in fat. Phosphorylated STAT5B (pSTAT5b) was maximally increased in all subjects 30 min after GH exposure and more pronounced in women when compared with men (P=0.01). IGF1, SOCS1, SOCS2, SOCS3, and CISH mRNA expression increased significantly in muscle after 120 min in all subjects with no impact of age and gender. GH-induced pSTAT5b correlated inversely with lean body mass (LBM; r=-0.56, P=0.01) and positively with the CISH mRNA response (r=0.533, P=0.05). CONCLUSION i) GH signaling in muscle and fat after a single GH bolus in healthy human subjects is age independent, ii) we hypothesize that constitutive overexpression of CISH may contribute to the relative GH resistance in women, and iii) experimental studies on the impact of sex steroid administration and physical training on GH signaling in human subjects in vivo are required.
Collapse
Affiliation(s)
- Poul F Vestergaard
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Mikkel H Vendelbo
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Steen B Pedersen
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Anders Juul
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Steffen Ringgard
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Niels Møller
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Niels Jessen
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Jens O L Jørgensen
- The Medical Research LaboratoriesDepartment of Endocrinology and Internal Medicine, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, DenmarkDepartment of Growth and ReproductionUniversity Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, DenmarkDepartment of Clinical MedicineMR Research Centre Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| |
Collapse
|
21
|
Biomarkers for cardiac cachexia: Reality or utopia. Clin Chim Acta 2014; 436:323-8. [DOI: 10.1016/j.cca.2014.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 11/21/2022]
|
22
|
Deng HZ, Deng H, Cen CQ, Chen KY, Du ML. Post-receptor crosstalk between growth hormone and insulin signal in rats born small for gestational age with catch-up growth. PLoS One 2014; 9:e100459. [PMID: 24963636 PMCID: PMC4070916 DOI: 10.1371/journal.pone.0100459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/25/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Insulin resistance has been observed in individuals born small for gestational age (SGA) with catch-up growth (CUG), yet the mechanisms involved remain unclear. This study examined the role of GH and insulin signaling crosstalk in insulin resistance of SGA rats with CUG. Design and Methods SGA rats were developed by dietary restriction in pregnant rats. GH receptor inhibition was performed on four-week old CUG-SGA and AGA rats. Phosphorylation of IRS-1, AKT, and ERK, and expression of SOCS3 in the skeletal muscle were determined via immunoblot analysis at baseline and after insulin stimulation in CUG-SGA, NCUG-SGA and AGA groups. Results Compared to AGA controls, phosphorylation of IRS-1 and AKT in response to insulin stimulation in CUG-SGA rats was significantly blunted (P<0.05), and phosphorylation of ERK at baseline was dramatically activated (P<0.05). SOCS3 expression was significantly increased in CUG-SGA compared to AGA (P = 0.001) and NCUG-SGA (P = 0.006) rats, and was significantly suppressed following GHR inhibition (P<0.05). Furthermore, phosphorylation of IRS-1 and AKT in response to insulin stimulation increased after GHR inhibition (P<0.05). Conclusions Insulin resistance in CUG-SGA rats is associated with impairment of IRS-1-PI3K-AKT signaling, which may result from GH signaling-induced up-regulation of SOCS3.
Collapse
Affiliation(s)
- Hong-Zhu Deng
- Department of Pediatrics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Deng
- Department of Infectious diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail:
| | - Chao-Qun Cen
- Department of Pediatrics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai-Yun Chen
- Department of Pediatrics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min-Lian Du
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Hwang IS, Kim JE, Lee YJ, Kwak MH, Go J, Son HJ, Kim DS, Hwang DY. Fermented soybean product (Cheonggukjang) improved some attributes of protein and growth hormone measurements in Sprague-Dawley rats. Nutr Res 2014; 34:355-67. [PMID: 24774072 DOI: 10.1016/j.nutres.2014.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/03/2014] [Accepted: 02/05/2014] [Indexed: 01/15/2023]
Abstract
We hypothesized that the administration of Cheonggukjang (CKJ) would exert positive effects on factors implicated with growth in Sprague-Dawley (SD) rats. To test this hypothesis, we measured specific aspects of bone and organ growth in male SD rats that were treated for 6 weeks with 3 concentrations of CKJ. Although the CKJ extract contained high concentrations of flavonoids and phenolic compounds, no significant differences in body length, organ weights, or femur weight were detected between the CKJ- and vehicle-treated groups. However, thicknesses of the epiphyseal growth plate in the proximal femoral epiphysis and the compact bone in the linea aspera were broadest in the femur of the 2 CKJ-treated groups when compared with the vehicle-treated groups. Furthermore, the levels of growth hormone (GH) and calcium ion were higher in the sera of the high-concentration CKJ-treated groups, whereas the expression level of GH receptor was higher in muscle tissue of all CKJ-treated groups and in the liver tissue of the high-concentration CKJ-treated group. In the GH receptor downstream signaling pathway, the phosphorylation levels of Akt and Erk were expressed differently between liver and muscle tissues upon CKJ treatment. However, the phosphorylation level of STAT5 was very similar to the expression level of the GH receptor in all CKJ-treated groups. These results indicate that CKJ extract may increase the thickness of the epiphyseal growth plate and the compact bone of the femur, elevate GH secretion, and stimulate regulation of the GH receptor downstream signaling pathway in the liver and muscle tissues of SD rats.
Collapse
Affiliation(s)
- In Sik Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Young Ju Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Jun Go
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Hong Joo Son
- Department of Life Science & Environment Biochemistry, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Dong Sup Kim
- Department of Food Science & Technology, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea.
| |
Collapse
|
24
|
Carmean CM, Cohen RN, Brady MJ. Systemic regulation of adipose metabolism. Biochim Biophys Acta Mol Basis Dis 2014; 1842:424-30. [DOI: 10.1016/j.bbadis.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/15/2013] [Accepted: 06/01/2013] [Indexed: 12/11/2022]
|
25
|
Nellemann B, Vendelbo MH, Nielsen TS, Bak AM, Høgild M, Pedersen SB, Biensø RS, Pilegaard H, Møller N, Jessen N, Jørgensen JOL. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity. Acta Physiol (Oxf) 2014; 210:392-402. [PMID: 24148194 DOI: 10.1111/apha.12183] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/09/2013] [Accepted: 10/17/2013] [Indexed: 12/15/2022]
Abstract
AIM Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting. METHODS Eight healthy male subjects were studied four times in a randomized, single-blinded parallel design: Control, GH, Fasting (36 h) and GH + Fasting. GH (30 ng × kg(-1) × min(-1)) or saline was infused throughout the metabolic study day. Substrate metabolism and insulin sensitivity were assessed by indirect calorimetry and isotopically determined rates of glucose turnover before and after a hyperinsulinemic euglycemic clamp. PDHa activity, PDH-E1α phosphorylation, PDK4 expression and activation of insulin signalling proteins were assessed in skeletal muscle. RESULTS Both fasting and GH promoted lipolysis, which was associated with ≈50% reduction in insulin sensitivity compared with the control day. PDHa activity was significantly reduced by GH as well as fasting. This was associated with increased inhibitory PDH-E1α phosphorylation on site 1 (Ser(293)) and 2 (Ser(300)) and up-regulation of PDK4 mRNA, while canonical insulin signalling to glucose transport was unaffected. CONCLUSION Competition between intermediates of glucose and fatty acids seems to play a causal role in insulin resistance induced by GH in human subjects.
Collapse
Affiliation(s)
- B. Nellemann
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - M. H. Vendelbo
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - T. S. Nielsen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - A. M. Bak
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - M. Høgild
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - S. B. Pedersen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - R. S. Biensø
- Centre of Inflammation and Metabolism & August Krogh Centre; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - H. Pilegaard
- Centre of Inflammation and Metabolism & August Krogh Centre; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - N. Møller
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - N. Jessen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - J. O. L. Jørgensen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
26
|
Jiang H, Ge X. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle. J Anim Sci 2013; 92:21-9. [PMID: 24166991 DOI: 10.2527/jas.2013-7095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.
Collapse
Affiliation(s)
- H Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24060
| | | |
Collapse
|
27
|
Chaves VE, Júnior FM, Bertolini GL. The metabolic effects of growth hormone in adipose tissue. Endocrine 2013; 44:293-302. [PMID: 23430368 DOI: 10.1007/s12020-013-9904-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/09/2013] [Indexed: 11/27/2022]
Abstract
There is a general consensus that a reduction in growth hormone (GH) secretion results in obesity. However, the pathophysiologic role of GH in the metabolism of lipids is yet to be fully understood. The major somatic targets of GH are bones and muscles, but GH stimulates lipolysis and seems to regulate lipid deposition in adipose tissue. Patients with isolated GH deficiency (GHD) have enlarged fat depots due to higher fat cell volume, but their fat cell numbers are lower than those of matched controls. The treatment of patients with GH results in a relative loss of body fat and shifts both fat cell number and fat cell volume toward normal, indicating an adipogenic effect of GH. Adults with GHD are characterized by perturbations in body composition, lipid metabolism, cardiovascular risk profile, and bone mineral density. It is well established that GHD is usually accompanied by an increase in fat accumulation; GH replacement in GHD results in the reduction of fat mass, particularly abdominal fat mass. In addition, abdominal obesity results in a secondary reduction in GH secretion that is reversible with weight loss. However, whereas GH replacement in patients with GHD leads to specific depletion of intra-abdominal fat, administering GH to obese individuals does not seem to result in a consistent reduction or redistribution of body fat. Although administering GH to obese non-GHD subjects has only led to equivocal results, more recent studies indicate that GH still remains a plausible metabolic candidate.
Collapse
Affiliation(s)
- Valéria Ernestânia Chaves
- Laboratory of Physiology and Pharmacology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | | |
Collapse
|
28
|
Vestergaard ET, Krag MB, Poulsen MM, Pedersen SB, Moller N, Jorgensen JOL, Jessen N. Ghrelin- and GH-induced insulin resistance: no association with retinol-binding protein-4. Endocr Connect 2013; 2:96-103. [PMID: 23781325 PMCID: PMC3682232 DOI: 10.1530/ec-13-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects. MATERIALS AND METHODS To study GH-independent effects of ghrelin, seven hypopituitary men undergoing replacement therapy with GH and hydrocortisone were given ghrelin (5 pmol/kg per min) and saline infusions for 300 min in a randomized, double-blind, placebo-controlled, crossover design. Circulating RBP4 levels were measured at baseline and during a hyperinsulinemic-euglycemic clamp on both study days. To study the direct effects of GH, nine healthy men were treated with GH (2 mg at 2200 h) and placebo for 8 days in a randomized, double-blind, placebo-controlled, crossover study. Serum RBP4 levels were measured before and after treatment, and insulin sensitivity was measured by the hyperinsulinemic-euglycemic clamp technique. RESULTS Ghrelin acutely decreased peripheral insulin sensitivity. Serum RBP4 concentrations decreased in response to insulin infusion during the saline experiment (mg/l): 43.2±4.3 (baseline) vs 40.4±4.2 (clamp), P<0.001, but this effect was abrogated during ghrelin infusion (mg/l): 42.4±4.5 (baseline) vs 42.9±4.7 (clamp), P=0.73. In healthy subjects, serum RBP4 levels were not affected by GH administration (mg/l): 41.7±4.1 (GH) vs 43.8±4.6 (saline), P=0.09, although GH induced insulin resistance. CONCLUSIONS i) Serum RBP4 concentrations decrease in response to hyperinsulinemia, ii) ghrelin abrogates the inhibitory effect of insulin on circulating RBP4 concentrations, and iii) ghrelin as well as GH acutely induces insulin resistance in skeletal muscle without significant changes in circulating RBP4 levels.
Collapse
Affiliation(s)
- Esben Thyssen Vestergaard
- Medical Research LaboratoriesInstitute of Clinical Medicine, Aarhus UniversityNorrebrogade 44DK-8000, Aarhus CDenmark
- Department of Endocrinology and DiabetesAarhus University HospitalNorrebrogade 44DK-8000, Aarhus CDenmark
- Department of PediatricsRegional Hospital West JutlandGl. Landevej 61DK-7400, HerningDenmark
- Correspondence should be addressed to E T Vestergaard
| | - Morten B Krag
- Department of Endocrinology and DiabetesAarhus University HospitalNorrebrogade 44DK-8000, Aarhus CDenmark
| | - Morten M Poulsen
- Department of Endocrinology and DiabetesAarhus University HospitalTage-Hansens Gade 2DK-8000, Aarhus CDenmark
| | - Steen B Pedersen
- Department of Endocrinology and DiabetesAarhus University HospitalTage-Hansens Gade 2DK-8000, Aarhus CDenmark
| | - Niels Moller
- Medical Research LaboratoriesInstitute of Clinical Medicine, Aarhus UniversityNorrebrogade 44DK-8000, Aarhus CDenmark
- Department of Endocrinology and DiabetesAarhus University HospitalNorrebrogade 44DK-8000, Aarhus CDenmark
| | - Jens Otto Lunde Jorgensen
- Medical Research LaboratoriesInstitute of Clinical Medicine, Aarhus UniversityNorrebrogade 44DK-8000, Aarhus CDenmark
- Department of Endocrinology and DiabetesAarhus University HospitalNorrebrogade 44DK-8000, Aarhus CDenmark
| | - Niels Jessen
- Medical Research LaboratoriesInstitute of Clinical Medicine, Aarhus UniversityNorrebrogade 44DK-8000, Aarhus CDenmark
- Department of Endocrinology and DiabetesAarhus University HospitalNorrebrogade 44DK-8000, Aarhus CDenmark
| |
Collapse
|
29
|
Clasen BFF, Krusenstjerna-Hafstrøm T, Vendelbo MH, Thorsen K, Escande C, Møller N, Pedersen SB, Jørgensen JOL, Jessen N. Gene expression in skeletal muscle after an acute intravenous GH bolus in human subjects: identification of a mechanism regulating ANGPTL4. J Lipid Res 2013; 54:1988-97. [PMID: 23606725 DOI: 10.1194/jlr.p034520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Growth hormone (GH) acutely stimulates lipolysis and fat oxidation, a process that operates postabsorptively and involves activation of the JAK-STAT pathway in the target tissue; no in vivo data exist regarding subsequent GH-regulated gene transcription. We obtained serum samples and muscle biopsies in human subjects before and 2 h after administration of a GH bolus. A significant (~75%) elevation in serum FFA levels was recorded post GH. Microarray identified 79 GH-regulated genes in muscle. With qRT-PCR, we then examined the expression of selected genes in the presence and absence of glucose-induced suppression of lipolysis. Four genes involved in the JAK-STAT5 signaling pathway were regulated by GH, including SOCS1-3 and CISH, in addition to three genes associated with insulin action: NFκB1A, PIK3C2B, and PRKAG2. The gene encoding ANGPTL4, a protein involved in lipolysis and suppression of LPL activity, exhibited the most pronounced upregulation (5.6-fold) after GH, which was abrogated by concomitant suppression of lipolysis. Therefore, the GH-induced stimulation of ANGPTL4 gene expression seems secondary to induction of lipolysis. This new concept implies that abundant supply of circulating FFA decreases the need for alternative triglyceride-derived FFA through distinct inhibition of LPL mediated by increased ANGPTL4 gene expression in human muscle.
Collapse
Affiliation(s)
- Berthil F F Clasen
- Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The role of SOCS2 in recombinant human growth hormone (rhGH) regulating lipid metabolism in high-fat-diet-induced obesity mice. Mol Biol Rep 2012. [DOI: 10.1007/s11033-012-2313-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Giannoulis MG, Martin FC, Nair KS, Umpleby AM, Sonksen P. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr Rev 2012; 33:314-77. [PMID: 22433122 PMCID: PMC5393154 DOI: 10.1210/er.2012-1002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Improving physical function and mobility in a continuously expanding elderly population emerges as a high priority of medicine today. Muscle mass, strength/power, and maximal exercise capacity are major determinants of physical function, and all decline with aging. This contributes to the incidence of frailty and disability observed in older men. Furthermore, it facilitates the accumulation of body fat and development of insulin resistance. Muscle adaptation to exercise is strongly influenced by anabolic endocrine hormones and local load-sensitive autocrine/paracrine growth factors. GH, IGF-I, and testosterone (T) are directly involved in muscle adaptation to exercise because they promote muscle protein synthesis, whereas T and locally expressed IGF-I have been reported to activate muscle stem cells. Although exercise programs improve physical function, in the long-term most older men fail to comply. The GH/IGF-I axis and T levels decline markedly with aging, whereas accumulating evidence supports their indispensable role in maintaining physical function integrity. Several studies have reported that the administration of T improves lean body mass and maximal voluntary strength in healthy older men. On the other hand, most studies have shown that administration of GH alone failed to improve muscle strength despite amelioration of the detrimental somatic changes of aging. Both GH and T are anabolic agents that promote muscle protein synthesis and hypertrophy but work through separate mechanisms, and the combined administration of GH and T, albeit in only a few studies, has resulted in greater efficacy than either hormone alone. Although it is clear that this combined approach is effective, this review concludes that further studies are needed to assess the long-term efficacy and safety of combined hormone replacement therapy in older men before the medical rationale of prescribing hormone replacement therapy for combating the sarcopenia of aging can be established.
Collapse
Affiliation(s)
| | - Finbarr C. Martin
- Guy's and St. Thomas' National Health Service Foundation Trust (F.C.M.), and Institute of Gerontology (F.C.M.), King's College, London WC2R 2LS, United Kingdom
| | | | - A. Margot Umpleby
- Department of Human Metabolism, Diabetes, and Metabolic Medicine (A.M.U.), Postgraduate Medical School, University of Surrey, Guildford GU2 7WG, United Kingdom
| | - Peter Sonksen
- St. Thomas' Hospital and King's College (P.S.), London SE1 7EW, United Kingdom; and Southampton University (P.S.), SO17 1BJ, Southampton, United Kingdom
| |
Collapse
|
32
|
Christensen B, Lundby C, Jessen N, Nielsen TS, Vestergaard PF, Møller N, Pilegaard H, Pedersen SB, Kopchick JJ, Jørgensen JOL. Evaluation of functional erythropoietin receptor status in skeletal muscle in vivo: acute and prolonged studies in healthy human subjects. PLoS One 2012; 7:e31857. [PMID: 22384088 PMCID: PMC3285196 DOI: 10.1371/journal.pone.0031857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/18/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bielohuby M, Schaab M, Kummann M, Sawitzky M, Gebhardt R, Binder G, Frystyk J, Bjerre M, Hoeflich A, Kratzsch J, Bidlingmaier M. Serum IGF-I is not a reliable pharmacodynamic marker of exogenous growth hormone activity in mice. Endocrinology 2011; 152:4764-76. [PMID: 21971154 DOI: 10.1210/en.2011-1432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serum IGF-I is a well-established pharmacodynamic marker of GH administration in humans and has been used for this purpose in animal studies. However, its general suitability in wild-type laboratory mice has not been demonstrated. Here we show that treatment with recombinant human GH (rhGH) in four different strains of laboratory mice increases body weight, lean body mass, and liver weight but does not increase hepatic expression and release of IGF-I. In contrast and as expected, hypophysectomized rats show a rapid increase in serum IGF-I after rhGH administration. The lack of IGF-I up-regulation in mice occurs despite hepatic activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and is not explained by GH dose, route of administration, origin of GH (i.e. recombinant human, bovine, and murine GH), treatment duration, genetic background, sex, or formation of neutralizing antibodies. Effects on other components of the GH/IGF pathway were highly influenced by genetic background and sex but not consistently affected by rhGH treatment. We conclude that IGF-I is not a reliable indicator of the biological effects of exogenous GH treatment in genetically and pharmacologically unmodified mice. We speculate that IGF-I release is already maximal in these animals and cannot be further increased by exogenous GH treatment. This is also suggested by the observation of restored IGF-I up-regulation in isolated murine hepatocytes after rhGH treatment. Total body weight, lean body mass, and liver weight may be more reliable phenotypic indicators in these models.
Collapse
Affiliation(s)
- Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik-Innenstadt, Ludwig-Maximilians University, D-80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Trobec K, von Haehling S, Anker SD, Lainscak M. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia. J Cachexia Sarcopenia Muscle 2011; 2:191-200. [PMID: 22207907 PMCID: PMC3222822 DOI: 10.1007/s13539-011-0043-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/04/2011] [Indexed: 12/26/2022] Open
Abstract
Cachexia is an irreversible process that can develop in the course of chronic disease. It is characterized by the remodeling of the metabolic, inflammatory, and endocrine pathways. Insulin, growth hormone (GH), and insulin-like growth factor 1 (IGF-1) are involved in glucose, protein, and fat metabolism, which regulates body composition. In body wasting and cachexia, their signaling is impaired and causes anabolic/catabolic imbalance. Important mechanisms include inflammatory cytokines and neurohormonal activation. Remodeled post-receptor insulin, GH, and IGF-1 pathways constitute a potential target for pharmacological treatment in the setting of body wasting and cachexia. Peroxisome proliferator-activated receptor gamma agonists, drugs inhibiting angiotensin II action (angiotensin II antagonists and inhibitors of angiotensin-converting enzyme), and testosterone, which interfere with post-receptor pathways of insulin, GH, and IGF-1, were investigated as pharmacological intervention targets and various clinically important implications were reported. There are several other potential targets, but their treatment feasibility and applicability is yet to be established.
Collapse
Affiliation(s)
- Katja Trobec
- Hospital Pharmacy; University Clinic of Respiratory and Allergic Diseases Golnik; Golnik
| | - Stephan von Haehling
- Applied Cachexia Research, Department of Cardiology; Charité Medical School, Campus Virchow-Klinikum; Berlin
- Center for Cardiovascular Research (CCR); Charité Medical School, Campus Mitte; Berlin
| | - Stefan D. Anker
- Applied Cachexia Research, Department of Cardiology; Charité Medical School, Campus Virchow-Klinikum; Berlin
- Center for Clinical and Basic Research, IRCCS San Raffaele; Rome
| | - Mitja Lainscak
- Applied Cachexia Research, Department of Cardiology; Charité Medical School, Campus Virchow-Klinikum; Berlin
- Division of Cardiology; University Clinic of Respiratory and Allergic Diseases Golnik; Golnik 36 SI-4204 Golnik
| |
Collapse
|
35
|
Vakili H, Jin Y, Nagy JI, Cattini PA. Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: differential effects of dexamethasone and thyroid hormone. Mol Cell Endocrinol 2011; 345:48-57. [PMID: 21777655 DOI: 10.1016/j.mce.2011.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/14/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022]
Abstract
Growth hormone (GH) is regulated by pituitary and hypothalamic factors as well as peripheral endocrine factors including glucocorticoids and thyroid hormone. Studies on human GH are limited largely to the assessment of plasma levels in endocrine disorders. Thus, insight into the regulation of synthesis versus secretion has come mainly from studies done on non-human GH and/or pituitary tumor cells. However, primate and non-primate GH gene loci have differences in their structure and, by extension, regulation. We generated transgenic (171hGH/CS-TG) mice containing the intact hGH1 gene and locus control region, including sequences required for integration-independent and preferential pituitary expression. Here, we show hGH co-localizes with mouse (m) GH in somatotrophs in situ and in primary pituitary cells. Dexamethasone treatment increased hGH and mGH, as well as GH releasing hormone (GHRH) receptor RNA levels, and hGH release was stimulated by GHRH treatment. By contrast, triiodothyronine decreased or had no effect on hGH and mGH production, respectively, and the negative effect on hGH was also seen in the presence of dexamethasone. Thus, 171hGH/CS-TG mouse pituitary cultures represent a model system to investigate hormonal control of hGH synthesis and secretion.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dexamethasone/pharmacology
- Female
- Ghrelin/pharmacology
- Growth Hormone-Releasing Hormone/pharmacology
- Human Growth Hormone/genetics
- Human Growth Hormone/metabolism
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Transgenic
- Models, Biological
- Pituitary Gland/cytology
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Thyroid Hormones/pharmacology
- Triiodothyronine/pharmacology
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, University of Manitoba, Canada
| | | | | | | |
Collapse
|
36
|
Krusenstjerna-Hafstrøm T, Clasen BF, Møller N, Jessen N, Pedersen SB, Christiansen JS, Jørgensen JOL. Growth hormone (GH)-induced insulin resistance is rapidly reversible: an experimental study in GH-deficient adults. J Clin Endocrinol Metab 2011; 96:2548-57. [PMID: 21613350 DOI: 10.1210/jc.2011-0273] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT It is clinically relevant and of physiological interest to investigate whether GH-induced insulin resistance depends on the timing of GH exposure relative to when insulin sensitivity is assessed. HYPOTHESIS GH-induced insulin resistance is rapidly reversible. DESIGN AND PARTICIPANTS Eight male GH-deficient patients underwent a 6-h euglycemic-hyperinsulinemic glucose clamp thrice in a randomized crossover design receiving either no GH (study 0), a 7-h GH infusion (0.2-0.3 mg in total) that terminated 5 h before the clamp (study 1), or a similar GH infusion timed to continue during the first hour of the clamp (study 2). A muscle biopsy was obtained 30 min into the clamp. The patients were compared with eight healthy untreated control subjects (study c). MAIN OUTCOME MEASURES The glucose infusion rate, indirect calorimetry, and free fatty acid metabolism were assessed. In muscle biopsies, protein phosphorylation of signal transducer and activator of transcription 5, Akt, and Akt substrate 160 (phospho-Akt substrate signal) and gene expression of IGF-I and SOCS1-3 were assessed. RESULTS Insulin sensitivity differed significantly between the GH-deficiency studies (P = 0.005) with distinct insulin resistance in study 2 and increased insulin sensitivity in study 0 [area under the glucose infusion rate curve (mg/kg · min): 1663 ± 151 (study 0) vs. 1482 ± 166 (study 1) vs. 1123 ± 136 (study 2) vs. 1492 ± 229 (control group)]. Free fatty acid levels and lipid oxidation were elevated in response to GH exposure but became suppressed during the clamp. IGF-I and SOCS3 gene expression was increased in study 2. CONCLUSIONS Very-low-dose GH exposure evokes acute insulin resistance that subsides after 5 h. This time-dependent reversibility should be considered when assessing the impact of GH on glucose homeostasis.
Collapse
Affiliation(s)
- T Krusenstjerna-Hafstrøm
- Department of Internal Medicine and Endocrinology and Medical Research Laboratories, Aarhus University Hospital, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
Guerra B, Olmedillas H, Guadalupe-Grau A, Ponce-González JG, Morales-Alamo D, Fuentes T, Chapinal E, Fernández-Pérez L, De Pablos-Velasco P, Santana A, Calbet JAL. Is sprint exercise a leptin signaling mimetic in human skeletal muscle? J Appl Physiol (1985) 2011; 111:715-25. [PMID: 21659488 DOI: 10.1152/japplphysiol.00805.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine whether sprint exercise activates signaling cascades linked to leptin actions in human skeletal muscle and how this pattern of activation may be interfered by glucose ingestion. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before the Wingate test. Exercise elicited different patterns of JAK2, STAT3, STAT5, ERK1/2, p38 MAPK phosphorylation, and SOCS3 protein expression during the recovery period after glucose ingestion. Thirty minutes after the control sprint, STAT3 and ERK1/2 phosphorylation levels were augmented (both, P < 0.05). SOCS3 protein expression was increased 120 min after the control sprint but PTP1B protein expression was unaffected. Thirty and 120 min after the control sprint, STAT5 phosphorylation was augmented (P < 0.05). Glucose abolished the 30 min STAT3 and ERK1/2 phosphorylation and the 120 min SOCS3 protein expression increase while retarding the STAT5 phosphorylation response to sprint. Activation of these signaling cascades occurred despite a reduction of circulating leptin concentration after the sprint. Basal JAK2 and p38 MAPK phosphorylation levels were reduced and increased (both P < 0.05), respectively, by glucose ingestion prior to exercise. During recovery, JAK2 phosphorylation was unchanged and p38 MAPK phosphorylation was transiently reduced when the exercise was preceded by glucose ingestion. In conclusion, sprint exercise performed under fasting conditions is a leptin signaling mimetic in human skeletal muscle.
Collapse
Affiliation(s)
- Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Krusenstjerna-Hafstrøm T, Madsen M, Vendelbo MH, Pedersen SB, Christiansen JS, Møller N, Jessen N, Jørgensen JOL. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load. PLoS One 2011; 6:e19392. [PMID: 21559284 PMCID: PMC3086909 DOI: 10.1371/journal.pone.0019392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load. METHODS Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1) after an intravenous GH bolus 2) after an intravenous GH bolus plus an oral glucose load (OGTT), and 3) after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA). RESULTS GH increased AUC(glucose) after an OGTT (p<0.05) without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473) and thr(308)), and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1) A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2) Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3) The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH. TRIAL REGISTRATION ClinicalTrials.gov NCT00477997.
Collapse
Affiliation(s)
- Thomas Krusenstjerna-Hafstrøm
- Department of Internal Medicine and Endocrinology (MEA) and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Effects of GH in human muscle and fat. Pediatr Nephrol 2010; 25:705-9. [PMID: 19902270 DOI: 10.1007/s00467-009-1334-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Skeletal muscle is the major constituent of lean body mass and a major determinant of energy expenditure both at rest and during physical activity. Growth hormone, in turn, influences muscle mass as well as energy expenditure. Growth hormone substitution in adults increases muscle mass by 5-10%, but part of the effect is attributed to rehydration rather than protein accretion. In addition, GH regulates substrate metabolism in muscle and in particular antagonizes insulin-stimulated glucose disposal. This effect is linked to increased free fatty acid (FFA) flux but the molecular mechanisms remain unclear. During fasting, GH-induced insulin resistance may be favorable by reducing the demand of gluconeogenesis from protein. But in the postprandial phase, GH exposure may compromise glucose tolerance via the same mechanisms. Understanding the mechanisms whereby GH antagonizes insulin-stimulated glucose disposal in muscle is an important future research field with implications for a variety of clinical conditions ranging from malnutrition to obesity and type 2 diabetes.
Collapse
|
40
|
Miquet JG, Muñoz MC, Giani JF, González L, Dominici FP, Bartke A, Turyn D, Sotelo AI. Ames dwarf (Prop1(df)/Prop1(df)) mice display increased sensitivity of the major GH-signaling pathways in liver and skeletal muscle. Growth Horm IGF Res 2010; 20:118-126. [PMID: 20022531 DOI: 10.1016/j.ghir.2009.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/22/2022]
Abstract
CONTEXT Growth hormone (GH) is an anabolic hormone that regulates growth and metabolism. Ames dwarf mice are natural mutants for Prop1, with impaired development of anterior pituitary and undetectable levels of circulating GH, prolactin and TSH. They constitute an endocrine model of life-long GH-deficiency. The main signaling cascades activated by GH binding to its receptor are the JAK2/STATs, PI-3K/Akt and the MAPK Erk1/2 pathways. OBJECTIVES We have previously reported that GH-induced STAT5 activation was higher in Ames dwarf mice liver compared to non-dwarf controls. The aim of this study was to evaluate the principal components of the main GH-signaling pathways under GH-deficiency in liver and skeletal muscle, another GH-target tissue. METHODS Ames dwarf mice and their non-dwarf siblings were assessed. Animals were injected i.p. with GH or saline 15min before tissue removal. Protein content and phosphorylation of signaling mediators were determined by immunoblotting of tissue solubilizates. RESULTS GH was able to induce STAT5 and STAT3 tyrosine phosphorylation in both liver and muscle, but the response was higher for Ames dwarf mice than for non-dwarf controls. When Erk1/2 activation was assessed in liver, only dwarf mice showed GH-induced phosphorylation, while in muscle no response to the hormone was found in either genotype. GH-induced Akt phosphorylation at Ser473 in liver was only detected in dwarf mice. In skeletal muscle, both normal and dwarf mice responded to a GH stimulus, although dwarf mice presented higher GH activation levels. The phosphorylation of GSK-3, a substrate of Akt, increased upon hormone stimulation only in dwarf mice in both tissues. In contrast, no differences in the phosphorylation of mTOR, another substrate of Akt, were observed after GH stimulus, either in normal or dwarf mice in liver, while we were unable to determine mTOR in muscle. Protein content of GH-receptor and of the signaling mediators studied did not vary between normal and dwarf animals in the assessed tissues. CONCLUSION These results show that several components of the main GH-signaling pathways exhibit enhanced sensitivity to the hormone in liver and muscle of Ames dwarf mice.
Collapse
Affiliation(s)
- Johanna G Miquet
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Caba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Since the somatomedin hypothesis of growth hormone (GH) action was first formulated more than 50 years ago, the key roles of both GH and insulin-like growth factor-I (IGF-I) in human growth have been extended to include important effects on tissue maintenance and repair. More recent observations have revealed that this pathway has a negative side, as it has been implicated as a potential contributor to the development of several human cancers and has been linked to diminished lifespan in experimental animals. This brief review focuses on fundamental aspects of gene regulation by GH, as long-term hormonal effects all require changes in gene expression. Topics to be discussed include GH-stimulated signal transduction pathways, mechanisms of gene activation and gene repression by GH, and an analysis of control of IGF-I gene transcription by the GH-stimulated transcription factor, signal transducer and activator of transcription (Stat)5b.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
42
|
Moller L, Norrelund H, Jessen N, Flyvbjerg A, Pedersen SB, Gaylinn BD, Liu J, Thorner MO, Moller N, Lunde Jorgensen JO. Impact of growth hormone receptor blockade on substrate metabolism during fasting in healthy subjects. J Clin Endocrinol Metab 2009; 94:4524-32. [PMID: 19820031 PMCID: PMC2775657 DOI: 10.1210/jc.2009-0381] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Experimental studies in GH-deficient patients and in healthy subjects receiving somatostatin-infusion suggest that GH is an important regulator of substrate metabolism during fasting. These models may not adequately reflect the selective effects of GH, and GH receptor (GHR) blockade offers a new model to define the metabolic role of GH. OBJECTIVE The aim of this study was to investigate the impact of GHR blockade on substrate metabolism and insulin sensitivity during fasting. DESIGN We conducted a randomized, placebo-controlled, crossover study in 10 healthy young men. INTERVENTION After 36 h of fasting with saline or pegvisomant (GHR blockade), the subjects were studied during a 4-h basal period and 2.5-h hyperinsulinemic euglycemic clamp. MAIN OUTCOME We measured whole-body and forearm glucose, lipid, and protein metabolism, peripheral insulin sensitivity, and acyl and desacyl ghrelin. RESULTS GHR blockade significantly suppressed circulating free fatty acids (1226 +/- 83 vs. 1074 +/- 65 micromol/liter; P = 0.03) and ketone bodies (3080 +/- 271 vs. 2015 +/- 235 micromol/liter; P <or= 0.01), as well as forearm uptake of free fatty acids (0.341 +/- 0.150 vs. 0.004 +/- 0.119 micromol/100 ml x min; P < 0.01) and lipid oxidation (1.3 +/- 0.1 vs. 1.2 +/- 0.1 mg/kg x min; P = 0.03) in the basal period. By contrast, IGF-I levels in either serum or peripheral tissues were not impacted by GHR blockade, and protein metabolism was also unaffected. Basal glucose levels were elevated by GHR blockade, but insulin sensitivity was similar; this was associated with an increased acyl/desacyl ghrelin ratio. CONCLUSION GHR blockade, without changes in circulating or tissue IGF-I levels, selectively suppresses lipid mobilization and oxidation after short-term fasting. This supports the notion that stimulation of lipolysis is a primary and important effect of GH.
Collapse
Affiliation(s)
- Louise Moller
- Medical Department M, Medical Research Laboratories, Clinical Institute, Aarhus University Hospital, Aarhus Sygehus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Møller N, Gormsen LC, Schmitz O, Lund S, Jørgensen JOL, Jessen N. Free fatty acids inhibit growth hormone/signal transducer and activator of transcription-5 signaling in human muscle: a potential feedback mechanism. J Clin Endocrinol Metab 2009; 94:2204-7. [PMID: 19276230 DOI: 10.1210/jc.2008-2624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Stimulation of lipolysis, leading to increased blood concentrations of free fatty acids (FFAs), is a primary effect of GH and phosphorylation of intracellular signal transducer and activator of transcription (STAT)-5 is a primary mediator of the effects of GH. OBJECTIVE Based on preliminary results, we intended to test whether FFAs exert a negative feedback inhibition of STAT5 phosphorylation in skeletal muscle. DESIGN AND PARTICIPANTS Eight healthy young men were investigated for 8 h on four occasions at four different FFA levels in a single blind, randomized manner. Acipimox was used to suppress FFA levels and Intralipid was infused to obtain appropriate FFA concentrations. Somatostatin was infused to control GH levels and GH, insulin, and glucagon were replaced. Muscle biopsies were taken after 8 h and compared with a fifth biopsy taken under normal basal conditions. SETTING The study was conducted at a university clinical research unit. RESULTS GH concentrations remained steady and comparable in all studies and FFA concentrations varied between 0.01 and 1.71 mmol/liter on the four occasions (P < 0.05). We observed a dose-dependent 40% decrease of STAT5 phosphorylation in skeletal muscle with increasing concentrations of FFAs. CONCLUSIONS Our results strongly suggest the existence of a negative feedback loop, whereby effects of GH may be dampened by FFA inhibition of GH-dependent STAT5 phosphorylation. The mechanisms behind and biological consequences of this finding awaits additional studies.
Collapse
Affiliation(s)
- Niels Møller
- Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, University of Aarhus, Aarhus C 8000, Denmark
| | | | | | | | | | | |
Collapse
|
44
|
Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009; 30:152-77. [PMID: 19240267 DOI: 10.1210/er.2008-0027] [Citation(s) in RCA: 663] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In evolutionary terms, GH and intracellular STAT 5 signaling is a very old regulatory system. Whereas insulin dominates periprandially, GH may be viewed as the primary anabolic hormone during stress and fasting. GH exerts anabolic effects directly and through stimulation of IGF-I, insulin, and free fatty acids (FFA). When subjects are well nourished, the GH-induced stimulation of IGF-I and insulin is important for anabolic storage and growth of lean body mass (LBM), adipose tissue, and glycogen reserves. During fasting and other catabolic states, GH predominantly stimulates the release and oxidation of FFA, which leads to decreased glucose and protein oxidation and preservation of LBM and glycogen stores. The most prominent metabolic effect of GH is a marked increase in lipolysis and FFA levels. In the basal state, the effects of GH on protein metabolism are modest and include increased protein synthesis and decreased breakdown at the whole body level and in muscle together with decreased amino acid degradation/oxidation and decreased hepatic urea formation. During fasting and stress, the effects of GH on protein metabolism become more pronounced; lack of GH during fasting increases protein loss and urea production rates by approximately 50%, with a similar increase in muscle protein breakdown. GH is a counterregulatory hormone that antagonizes the hepatic and peripheral effects of insulin on glucose metabolism via mechanisms involving the concomitant increase in FFA flux and uptake. This ability of GH to induce insulin resistance is significant for the defense against hypoglycemia, for the development of "stress" diabetes during fasting and inflammatory illness, and perhaps for the "Dawn" phenomenon (the increase in insulin requirements in the early morning hours). Adult patients with GH deficiency are insulin resistant-probably related to increased adiposity, reduced LBM, and impaired physical performance-which temporarily worsens when GH treatment is initiated. Conversely, despite increased LBM and decreased fat mass, patients with acromegaly are consistently insulin resistant and become more sensitive after appropriate treatment.
Collapse
Affiliation(s)
- Niels Møller
- Medical Department M, Aarhus University Hospital, Aarhus Sygehus, DK, Aarhus, Denmak
| | | |
Collapse
|
45
|
Moller L, Dalman L, Norrelund H, Billestrup N, Frystyk J, Moller N, Jorgensen JOL. Impact of fasting on growth hormone signaling and action in muscle and fat. J Clin Endocrinol Metab 2009; 94:965-72. [PMID: 19066303 DOI: 10.1210/jc.2008-1385] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Whether GH promotes IGF-I production or lipolysis depends on nutritional status, but the underlying mechanisms remain unknown. OBJECTIVE To investigate the impact of fasting on GH-mediated changes in substrate metabolism, insulin sensitivity, and signaling pathways. DESIGN We conducted a randomized crossover study. SUBJECTS Ten healthy men (age 24.3 +/- 0.6 yr, body mass index 23.1 +/- 0.4 kg/m(2)) participated. INTERVENTION A GH bolus administered 1) postabsorptively and 2) in the fasting state (37.5 h). Skeletal muscle and adipose tissue biopsies were taken, and a hyperinsulinemic-euglycemic clamp was performed on both occasions. MAIN OUTCOME MEASURES Metabolic clearance rate (MCR) of GH, substrate metabolism, and insulin sensitivity were measured. Biopsies were subjected to Western blotting for expression of signaling proteins and to RT-PCR for expression of suppressor of cytokine signaling protein 3 and IGF-I mRNA. RESULTS Fasting was associated with reduced MCR of GH (P < 0.01), enhanced lipolytic responsiveness to GH, decreased insulin sensitivity (P < 0.01), and reduced IGF-I bioactivity (P = 0.04). After the GH bolus, phosphorylation of signal transducers and activators of transcription protein 5b (pSTAT5b) were observed in both conditions; however, the phospho-STAT5b/STAT5b ratio was significantly decreased in the fasting state (muscle P = 0.02 and fat P = 0.02). CONCLUSION The combination of fasting and GH exposure translates into enhanced lipolysis, reduced IGF-I activity and insulin sensitivity, and blunted activation of the Janus kinase (JAK)/STAT pathway. Whether this change in signaling activity is related to the change in MCR of GH and/or the concomitant shift in the metabolic effects of GH merits future attention.
Collapse
Affiliation(s)
- Louise Moller
- Medical Department M, Aarhus Sygehus, Norrebrogade 44, DK-8000 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
46
|
Aperghis M, Velloso CP, Hameed M, Brothwood T, Bradley L, Bouloux PMG, Harridge SDR, Goldspink G. Serum IGF-I levels and IGF-I gene splicing in muscle of healthy young males receiving rhGH. Growth Horm IGF Res 2009; 19:61-67. [PMID: 18799338 DOI: 10.1016/j.ghir.2008.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Elevated growth hormone (GH) levels lead to increased circulating insulin-like growth factor-I (IGF-I), but the effects on localised muscle IGF-I splice variant expression is not known. The effects of rhGH administration, with or without an acute bout of high resistance exercise, were measured on serum IGF-I and on the mRNA levels of IGF-I splice variants in the vastus lateralis muscle of healthy young men. DESIGN The study was a randomised double blind trial with a crossover design. Seven subjects were randomly assigned to a group receiving daily injections of rhGH (0.075IU kg(-1)day(-1)) or placebo for a two week period. Following a one month washout, the groups were reversed. RESULTS Administration of rhGH increased circulating IGF-I from 31.8+/-3.2 to 109+/-5.4 nmol/L (p<0.05). There was no effect of the exercise bout. RNA was extracted from muscle biopsies obtained from exercised and non-exercised legs 2.5h after the cessation of the exercise. Transcript expression was measured using Real-time QPCR. There was no effect of either exercise or rhGH administration on IGF-I 5' (Class 1 or Class 2) or 3' (IGF-IEa, or MGF) transcripts. CONCLUSION Although rhGH administration has an effect on liver IGF-I expression, as shown by increase in circulating IGF-I, muscle IGF-I expression is unaffected in young healthy subjects with normal GH profile. The findings contrast with those of a previous study in which GH deficient elderly men showed higher muscle IGF-I 3' splice variant levels following rhGH administration with and without resistance training. Unlike in the liver, muscle Class1 and 2 IGF-I expression do not change significantly following administration of rhGH.
Collapse
Affiliation(s)
- Michael Aperghis
- Department of Surgery, University College London, Hampstead Campus, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 2008; 18:455-471. [PMID: 18710818 PMCID: PMC2631405 DOI: 10.1016/j.ghir.2008.05.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 12/18/2022]
Abstract
Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the manipulation of the GH/IGF axis influences lifespan, highlight the invertebrate and vertebrate animal models with altered lifespan due to modifications to the GH/IGF-1 signaling cascade or homologous pathways, and discuss the basic phenotypic characteristics and healthspan of these models.
Collapse
Affiliation(s)
- Darlene E. Berryman
- School of Human and Consumer Sciences, College of Health and Human Services, Ohio University, Athens, OH 45701
| | - Jens Sandahl Christiansen
- Jens Sandahl Christiansen, Department of Endocrinology, Aarhus University Hospital, Kommunehospitalet, DK 8000 Aarhus, Denmark
| | - Gudmundur Johannsson
- Gudmundur Johannsson, MD, Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden
| | - Michael O. Thorner
- Michael O. Thorner, University of Virginia Health System, Endocrinology and Metabolism, Charlottesville, VA 22908
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; Phone: (740)593-4534; Fax: (740)593-4795
| |
Collapse
|
48
|
Consitt LA, Wideman L, Hickey MS, Morrison RF. Phosphorylation of the JAK2-STAT5 pathway in response to acute aerobic exercise. Med Sci Sports Exerc 2008; 40:1031-8. [PMID: 18461004 DOI: 10.1249/mss.0b013e3181690760] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Growth hormone (GH) is a powerful stimulator of the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway. Acute exercise is a known stimulus for GH secretion. PURPOSE The purpose of this study was to determine the phosphorylation of the JAK2-STAT5 pathway in human skeletal muscle in response to acute aerobic exercise. METHODS Eleven young (22.5 +/- 0.6, mean +/- SE), healthy, aerobically trained males performed 30 min of cycling at 70% V O2max. Blood samples were collected at 10- to 15-min intervals and analyzed for human GH, immunofunctional (IF) GH, GH binding protein, and insulin-like growth factor I (IGF-I). Muscle biopsies were taken from the vastus lateralis before exercise, immediately after exercise, as well as, 30 and 60 min postexercise. Muscle samples were analyzed for changes in JAK2 and STAT5 tyrosine phosphorylation, as well as changes in JAK2 and STAT5 protein content. RESULTS Multivariate ANOVA with post hoc comparisons demonstrated that GH and IF GH were significantly elevated immediately after exercise compared with preexercise (P < 0.001). Exercise significantly increased the phosphorylation of JAK2 immediately after exercise (P = 0.004). A trend toward increasing levels of STAT5 phosphorylation was observed immediately after exercise (P = 0.08) and was significantly elevated 30 min after exercise (P = 0.002), compared with preexercise levels. Muscle JAK2 and STAT5 protein content did not change. CONCLUSION The results demonstrate that the JAK2-STAT5 pathway is activated in response to acute aerobic exercise in human skeletal muscle and suggests that the exercise-induced release of GH may play a role in the activation of this pathway.
Collapse
Affiliation(s)
- Leslie A Consitt
- Department of Exercise and Sport Science, University of North Carolina at Greensboro, Greensboro, NC 27858, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Growth hormone (GH) is widely used as a performance-enhancing drug. One of its best-characterized effects is increasing levels of circulating insulin-like growth factor I (IGF-I), which is primarily of hepatic origin. It also induces synthesis of IGF-I in most non-hepatic tissues. The effects of GH in promoting postnatal body growth are IGF-I dependent, but IGF-I-independent functions are beginning to be elucidated. Although benefits of GH administration have been reported for those who suffer from GH deficiency, there is currently very little evidence to support an anabolic role for supraphysiological levels of systemic GH or IGF-I in skeletal muscle of healthy individuals. There may be other performance-enhancing effects of GH. In contrast, the hypertrophic effects of muscle-specific IGF-I infusion are well documented in animal models and muscle cell culture systems. Studies examining the molecular responses to hypertrophic stimuli in animals and humans frequently cite upregulation of IGF-I messenger RNA or immunoreactivity. The circulatory/systemic (endocrine) and local (autocrine/paracrine) effects of GH and IGF-I may have distinct effects on muscle mass regulation.
Collapse
|
50
|
Nielsen C, Gormsen LC, Jessen N, Pedersen SB, Møller N, Lund S, Jørgensen JOL. Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor blockade. J Clin Endocrinol Metab 2008; 93:2842-50. [PMID: 18460563 DOI: 10.1210/jc.2007-2414] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT GH induces insulin resistance in muscle and fat, and in vitro data indicate that this may involve cross-talk between the signaling pathways of the two hormones. OBJECTIVE Our objective was to investigate GH and insulin signaling in vivo in human muscle and fat tissue in response to GH, GH receptor blockade, and insulin stimulation. DESIGN We conducted two randomized crossover studies. PARTICIPANTS Sixteen healthy males participated. INTERVENTION GH was administered as a bolus (n = 8) and constant infusion (n = 8). The bolus study included three arms: 1) control (saline), 2) GH (0.5 mg iv), and 3) GH blockade (pegvisomant 30 mg sc), each combined with a hyperinsulinemic glucose clamp. The infusion study included two arms: 1) GH infusion (45 ng/.kg.min, 5.5 h) and 2) saline infusion (5.5 h) combined with a hyperinsulinemic glucose clamp during the final 2.5 h. MAIN OUTCOME MEASURES Muscle and fat biopsies were subjected to Western blotting for expression of Stat5/p-Stat5, Akt/p-Akt, and ERK1/2/p-ERK1/2 and to real-time RT-PCR for expression of SOCS1-3 and IGF-I mRNA. RESULTS GH significantly reduced insulin sensitivity. The GH bolus as well as GH infusion induced phosphorylation of Stat5 in muscle and fat, and SOCS3 and IGF-I mRNA expression increased after GH infusion. Hyperinsulinemia induced Akt phosphorylation in both tissues, irrespective of GH status. In muscle, ERK1/2 phosphorylation was increased by insulin, but insulin per se did not induce phosphorylation of Stat5. CONCLUSIONS GH exposure associated with insulin resistance acutely translates into GH receptor signaling in human muscle and fat without evidence of cross-talk with insulin signaling pathways. The molecular mechanisms subserving GH-induced insulin resistance in humans remain unclarified.
Collapse
Affiliation(s)
- Charlotte Nielsen
- Medical Department M, Aarhus University Hospital, Norrebrogade 44, Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|