1
|
Zhou X, Weng X, Xu J, Wang W. Correlation between remnant cholesterol and hyperuricemia in American adults. Lipids Health Dis 2024; 23:176. [PMID: 38851714 PMCID: PMC11161976 DOI: 10.1186/s12944-024-02167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Remnant cholesterol (RC) is an important marker for assessing the risk of metabolic syndrome. However, the correlation between RC and hyperuricemia (HUA) remains unclear. This study aimed to explore the correlation between RC and HUA in American adults. METHODS A total of 9089 participants from the 2013-2020 National Health and Nutrition Examination Survey were investigated. The correlation between RC and the odds of HUA was evaluated using multivariate logistic regression analysis. The nonlinear correlation was described using fitted smoothed curves. The correlation in subgroups was analyzed based on race, gender, alcohol consumption, age, body mass index, waist circumference, diabetes and moderate physical activities. RESULTS RC was correlated with uric acid (Spearman's correlation coefficient = 0.208 in males and 0.215 in females; all P < 0.001). Multiple logistic regression analysis indicated a positive correlation between RC and the risk of HUA (odds ratio = 1.022 in males and 1.031 in females; all P < 0.001). Subgroup analysis revealed that the correlation was stronger in females, participants aged < 50 years, and those without diabetes. Furthermore, the generalized smooth curve fitting demonstrated a linear correlation between RC and HUA, without threshold or saturation effects. CONCLUSION Elevated RC significantly and positively correlated with HUA in American adults. This correlation was stronger among females, participants aged < 50 years, and those without diabetes.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, P. R. China
| | - Xiaolu Weng
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, P. R. China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, P. R. China
| | - Wenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Filtz A, Parihar S, Greenberg GS, Park CM, Scotti A, Lorenzatti D, Badimon JJ, Soffer DE, Toth PP, Lavie CJ, Bittner V, Virani SS, Slipczuk L. New approaches to triglyceride reduction: Is there any hope left? Am J Prev Cardiol 2024; 18:100648. [PMID: 38584606 PMCID: PMC10998004 DOI: 10.1016/j.ajpc.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024] Open
Abstract
Triglycerides play a crucial role in the efficient storage of energy in the body. Mild and moderate hypertriglyceridemia (HTG) is a heterogeneous disorder with significant association with atherosclerotic cardiovascular disease (ASCVD), including myocardial infarction, ischemic stroke, and peripheral artery disease and represents an important component of the residual ASCVD risk in statin treated patients despite optimal low-density lipoprotein cholesterol reduction. Individuals with severe HTG (>1,000 mg/dL) rarely develop atherosclerosis but have an incremental incidence of acute pancreatitis with significant morbidity and mortality. HTG can occur from a combination of genetic (both mono and polygenic) and environmental factors including poor diet, low physical activity, obesity, medications, and diseases like insulin resistance and other endocrine pathologies. HTG represents a potential target for ASCVD risk and pancreatitis risk reduction, however data on ASCVD reduction by treating HTG is still lacking and HTG-associated acute pancreatitis occurs too rarely to effectively demonstrate treatment benefit. In this review, we address the key aspects of HTG pathophysiology and examine the mechanisms and background of current and emerging therapies in the management of HTG.
Collapse
Affiliation(s)
- Annalisa Filtz
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Siddhant Parihar
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Garred S Greenberg
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christine M Park
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Scotti
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Lorenzatti
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan J Badimon
- Cardiology Department, Hospital General Jaen, Jaen, Spain
- Atherothrombosis Research Unit, Mount Sinai School of Medicine, New York, New York, USA
| | - Daniel E Soffer
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter P Toth
- CGH Medical Center, Sterling, Illinois
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the UQ School of Medicine, New Orleans, Louisiana, USA
| | - Vera Bittner
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Salim S Virani
- Section of Cardiology, Department of Medicine, The Aga Khan University, Karachi, Pakistan
- Section of Cardiology, Texas Heart Institute & Baylor College of Medicine, Houston, TX, USA
| | - Leandro Slipczuk
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Xu D, Xie L, Cheng C, Xue F, Sun C. Triglyceride-rich lipoproteins and cardiovascular diseases. Front Endocrinol (Lausanne) 2024; 15:1409653. [PMID: 38883601 PMCID: PMC11176465 DOI: 10.3389/fendo.2024.1409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
4
|
Lin H, Xu J, Teng C. Correlation between remnant cholesterol and hyperuricemia in patients with type 2 diabetes mellitus: a cross-sectional study. Lipids Health Dis 2024; 23:155. [PMID: 38796430 PMCID: PMC11128103 DOI: 10.1186/s12944-024-02148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/15/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Remnant cholesterol (RC) has been known as an important factor for the assessment of the metabolic syndrome (Mets) risk. However, the correlation between RC and hyperuricemia (HUA) in type 2 diabetes mellitus (T2DM) remains unclear. This study aims to explore the correlation between RC and HUA in patients with T2DM. METHODS A total of 2956 patients with T2DM admitted to the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University from 2020 to 2022 were included. The correlation between RC and HUA was evaluated with Spearman's correlation, multiple logistic regression, subgroup analyses, receiver operating characteristic (ROC) curves analyses and generalized smooth curve fitting. Total cholesterol (TC) < 5.18mmol/L was defined as normal TC. RESULTS RC was correlated with uric acid in patients with T2DM (Spearman's correlation coefficient = 0.279, P < 0.001). According to the multiple logistic regression analyses, there was an independent positive correlation between RC and HUA (OR = 1.63, 95%CI = 1.40, 1.90). In addition, a non-linear correlation between RC and HUA was identified. The area under the ROC curve (AUC) of RC (0.658, 95%CI = 0.635, 0.681) was the largest compared with those of low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and TC. Subgroup analyses showed a more significant positive correlation among females or normal TC groups. CONCLUSION Elevated RC is correlated with HUA in patients with T2DM significantly and positively. RC is better in its predictability for HUA than that of conventional lipid indexes.
Collapse
Affiliation(s)
- Hainiao Lin
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jing Xu
- Department of Endocrine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenhuai Teng
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Lewis GF, Mulvihill EE. The Complexities of Intestinal Lipoprotein Production in Insulin Resistance and Diabetes: Revisiting a 2010 Diabetes Classic by Pavlic et al. Diabetes 2024; 73:335-337. [PMID: 38377446 DOI: 10.2337/dbi23-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024]
Affiliation(s)
- Gary F Lewis
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Jin J, Hu X, Francois M, Zeng P, Wang W, Yu B, Zhou Y, Dong H. Association between remnant cholesterol, metabolic syndrome, and cardiovascular disease: post hoc analysis of a prospective national cohort study. Eur J Med Res 2023; 28:420. [PMID: 37821969 PMCID: PMC10566110 DOI: 10.1186/s40001-023-01369-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Epidemiologic evidence suggested that remnant cholesterol (RC) is associated with the occurrence of cardiovascular disease (CVD). In recent years, RC has been connected with different types of cardiometabolic disorders. We aim to clarify the relationship among RC, metabolic syndrome (MetS) and subsequent CVD. METHODS We enrolled 7471 individuals into our study from China Health and Nutrition Survey in 2009 and followed participants till 2015. RC was calculated as total cholesterol minus low-density lipoprotein cholesterol minus high-density lipoprotein cholesterol. CVD was defined as myocardial infarction and stroke. Multivariate logistic regression and Cox regression models were used to evaluate the association between RC and MetS as well as CVD. We further investigated whether the association between RC and CVD was mediated by MetS. RESULTS Of all subjects, 24.73% were diagnosed with MetS and 2.74% developed CVD. Multivariate logistic regression analysis elucidated that per-tertile-increase in RC was associated with MetS after adjusting all the confounder factors, (odds ratio: 3.49, 95% confidence interval CI 3.21-3.79, P for trend < 0.001). And per-tertile-increase RC had a significant increased risk of CVD (hazard ratio: 1.26, 95% CI 1.06-1.50, P for trend = 0.008). Meanwhile, we found that RC level is associated with the prevalence of all the components of MetS. Significant indirect effects of RC between MetS and CVD were found, with the index mediated at 48.46% of the association. CONCLUSIONS Our study provides the evidence that RC level is independently associated with the prevalence of MetS and each component of MetS. MetS partially mediated the association between RC level and CVD risk.
Collapse
Affiliation(s)
- Junguo Jin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Melissa Francois
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ping Zeng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Weimian Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bingyan Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Haojian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- Nyingchi People's Hospital, Nyingchi, 860000, Tibet, China.
| |
Collapse
|
7
|
Gabani M, Shapiro MD, Toth PP. The Role of Triglyceride-rich Lipoproteins and Their Remnants in Atherosclerotic Cardiovascular Disease. Eur Cardiol 2023; 18:e56. [PMID: 37860700 PMCID: PMC10583159 DOI: 10.15420/ecr.2023.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 10/21/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the world's leading cause of death. ASCVD has multiple mediators that therapeutic interventions target, such as dyslipidaemia, hypertension, diabetes and heightened systemic inflammatory tone, among others. LDL cholesterol is one of the most well-studied and established mediators targeted for primary and secondary prevention of ASCVD. However, despite the strength of evidence supporting LDL cholesterol reduction by multiple management strategies, ASCVD events can still recur, even in patients whose LDL cholesterol has been very aggressively reduced. Hypertriglyceridaemia and elevated levels of triglyceride-rich lipoproteins (TRLs) may be key contributors to ASCVD residual risk. Several observational and genetic epidemiological studies have highlighted the causal role of triglycerides within the TRLs and/or their remnant cholesterol in the development and progression of ASCVD. TRLs consist of intestinally derived chylomicrons and hepatically synthesised very LDL. Lifestyle modification has been considered the first line intervention for managing hypertriglyceridaemia. Multiple novel targeted therapies are in development, and have shown efficacy in the preclinical and clinical phases of study in managing hypertriglyceridaemia and elevated TRLs. This comprehensive review provides an overview of the biology, pathogenicity, epidemiology, and genetics of triglycerides and TRLs, and how they impact the risk for ASCVD. In addition, we provide a summary of currently available and novel emerging triglyceride-lowering therapies in development.
Collapse
Affiliation(s)
- Mohanad Gabani
- Division of Cardiology, Wake Forest Baptist HealthWinston-Salem, North Carolina, US
| | - Michael D Shapiro
- Division of Cardiology, Wake Forest Baptist HealthWinston-Salem, North Carolina, US
| | - Peter P Toth
- CGH Medical CenterSterling, Illinois, US
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of MedicineBaltimore, Maryland, US
| |
Collapse
|
8
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
10
|
Lebrun LJ, Pallot G, Nguyen M, Tavernier A, Dusuel A, Pilot T, Deckert V, Dugail I, Le Guern N, Pais De Barros JP, Benkhaled A, Choubley H, Lagrost L, Masson D, Gautier T, Grober J. Increased Weight Gain and Insulin Resistance in HF-Fed PLTP Deficient Mice Is Related to Altered Inflammatory Response and Plasma Transport of Gut-Derived LPS. Int J Mol Sci 2022; 23:13226. [PMID: 36362012 PMCID: PMC9654699 DOI: 10.3390/ijms232113226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Lorène J. Lebrun
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Gaëtan Pallot
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, 21000 Dijon, France
| | - Annabelle Tavernier
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Alois Dusuel
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Valérie Deckert
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Isabelle Dugail
- Faculté de Médecine Pitié-Salpêtrière, UMR1269, 75000 Paris, France
| | - Naig Le Guern
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais De Barros
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Lipidomic Analytic Plate-Forme, UBFC, Bâtiment B3, 21000 Dijon, France
| | - Anissa Benkhaled
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Hélène Choubley
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Lipidomic Analytic Plate-Forme, UBFC, Bâtiment B3, 21000 Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Laboratory of Clinical Chemistry, François Mitterrand University Hospital, 21000 Dijon, France
| | - Thomas Gautier
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Jacques Grober
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| |
Collapse
|
11
|
Mobilia M, Whitus C, Karakashian A, Lu HS, Daugherty A, Gordon SM. Dennd5b-Deficient Mice are Resistant to PCSK9-Induced Hypercholesterolemia and Diet-Induced Hepatic Steatosis. J Lipid Res 2022; 63:100296. [PMID: 36243100 PMCID: PMC9685390 DOI: 10.1016/j.jlr.2022.100296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022] Open
Abstract
Dennd5b plays a pivotal role in intestinal absorption of dietary lipids in mice and is associated with body mass index in humans. This study examined the impact of whole-body Dennd5b deletion on plasma lipid concentrations, atherosclerosis, and hepatic lipid metabolism in mice. Hypercholesterolemia was induced in Dennd5b-/- mice by infection with an adeno-associated virus expressing the proprotein convertase subtilisin/kexin type 9 serine protease (PCSK9) gain-of-function mutation (PCSK9D377Y) and feeding a Western diet for 12 weeks. Body weight and plasma lipid concentrations were monitored over 12 weeks, and then aortic atherosclerosis and hepatic lipid content were quantified. Compared to Dennd5b+/+ mice, Dennd5b-/- mice were resistant to diet-induced weight gain and PCSK9-induced hypercholesterolemia. Atherosclerosis quantified by en face analysis and in aortic root sections, revealed significantly smaller lesions in Dennd5b-/- compared to Dennd5b+/+ mice. Additionally, Dennd5b-/- mice had significantly less hepatic lipid content (triglyceride and cholesterol) compared to Dennd5b+/+ mice. To gain insight into the basis for reduced hepatic lipids, quantitative PCR was used to measure mRNA abundance of genes involved in hepatic lipid metabolism. Key genes involved in hepatic lipid metabolism and lipid storage were differentially expressed in Dennd5b-/- liver including Pparg, Cd36, and Pnpla3. These findings demonstrate a significant impact of Dennd5b on plasma and hepatic lipid concentrations and resistance to PCSK9-induced hypercholesterolemia in the absence of Dennd5b.
Collapse
Affiliation(s)
- Maura Mobilia
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Callie Whitus
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Department of Physiology, University of Kentucky, Lexington, KY, USA,For correspondence: Scott M. Gordon
| |
Collapse
|
12
|
Tian L, Syed-Abdul MM, Stahel P, Lewis GF. Enteral glucose, absorbed and metabolized, potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. Am J Physiol Gastrointest Liver Physiol 2022; 323:G331-G340. [PMID: 35916412 DOI: 10.1152/ajpgi.00095.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A portion of absorbed dietary triglycerides (TG) is retained in the intestine after the postprandial period, within intracellular and extracellular compartments. This pool of TG can be mobilized in response to several stimuli, including oral glucose. The objective of this study was to determine whether oral glucose must be absorbed and metabolized to mobilize TG in rats and whether high-fat feeding, a model of insulin resistance, alters the lipid mobilization response to glucose. Lymph flow, TG concentration, TG output, and apolipoprotein B48 (apoB48) concentration and output were assessed after an intraduodenal lipid bolus in rats exposed to the following intraduodenal administrations 5 h later: saline (placebo), glucose, 2-deoxyglucose (2-DG, absorbed but not metabolized), or glucose + phlorizin (intestinal glucose absorption inhibitor). Glucose alone, but not 2-DG or glucose + phlorizin treatments, stimulated lymph flow, TG output, and apoB48 output compared with placebo. The effects of glucose in high-fat-fed rats were similar to those in chow-fed rats. In conclusion, glucose must be both absorbed and metabolized to enhance lymph flow and intestinal lipid mobilization. This effect is qualitatively and quantitatively similar in high-fat- and chow-fed rats. The precise signaling mechanism whereby enteral glucose enhances lymph flow and mobilizes enteral lipid remains to be determined.NEW & NOTEWORTHY Glucose potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. The magnitude of glucose effect on lymph flow is no different in chow- and high-fat-fed rats. Glucose must be absorbed and metabolized to enhance lymph flow and mobilize intestinal lipid.
Collapse
Affiliation(s)
- Lili Tian
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Majid Mufaqam Syed-Abdul
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
ZHANG J, MU J, LI X, ZHAO X. Relationship between probiotics and obesity: a review of recent research. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jing ZHANG
- Chongqing Chemical Industry Vocational College, China
| | - Jianfei MU
- Chongqing University of Education, China
| | - XiXi LI
- Chongqing Chemical Industry Vocational College, China
| | - Xin ZHAO
- Chongqing University of Education, China
| |
Collapse
|
14
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Morin R, Goulet N, Mauger JF, Imbeault P. Physiological Responses to Hypoxia on Triglyceride Levels. Front Physiol 2021; 12:730935. [PMID: 34497541 PMCID: PMC8419320 DOI: 10.3389/fphys.2021.730935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is a condition during which the body or specific tissues are deprived of oxygen. This phenomenon can occur in response to exposure to hypoxic environmental conditions such as high-altitude, or because of pathophysiological conditions such as obstructive sleep apnea. Circumstances such as these can restrict supply or increase consumption of oxygen, leading to oxyhemoglobin desaturation and tissue hypoxia. In certain cases, hypoxia may lead to severe health consequences such as an increased risk of developing cardiovascular diseases and type 2 diabetes. A potential explanation for the link between hypoxia and an increased risk of developing cardiovascular diseases lies in the disturbing effect of hypoxia on circulating blood lipids, specifically its capacity to increase plasma triglyceride concentrations. Increased circulating triglyceride levels result from the production of triglyceride-rich lipoproteins, such as very-low-density lipoproteins and chylomicrons, exceeding their clearance rate. Considerable research in murine models reports that hypoxia may have detrimental effects on several aspects of triglyceride metabolism. However, in humans, the mechanisms underlying the disturbing effect of hypoxia on triglyceride levels remain unclear. In this mini-review, we outline the available evidence on the physiological responses to hypoxia and their impact on circulating triglyceride levels. We also discuss mechanisms by which hypoxia affects various organs involved in the metabolism of triglyceride-rich lipoproteins. This information will benefit scientists and clinicians interested in the mechanistic of the regulatory cascade responsible for the response to hypoxia and how this response could lead to a deteriorated lipid profile and an increased risk of developing hypoxia-related health consequences.
Collapse
Affiliation(s)
- Renée Morin
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Nicholas Goulet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Mauger
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Hôpital Montfort, Institut du Savoir Montfort, Ottawa, ON, Canada
| |
Collapse
|
16
|
Abdik H, Cumbul A, Hayal TB, Avşar Abdik E, Taşlı PN, Kırbaş OK, Baban D, Şahin F. Sodium Pentaborate Pentahydrate ameliorates lipid accumulation and pathological damage caused by high fat diet induced obesity in BALB/c mice. J Trace Elem Med Biol 2021; 66:126736. [PMID: 33711700 DOI: 10.1016/j.jtemb.2021.126736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obesity is one of the most popular topic in the field of research. In order to defeat this highly widespread disease, the mechanism of fat accumulation at the molecular level and its elimination are crucial. The use of boron has been showing promising results during the recent years. METHODS In this study, anti-obesity potential of Sodium Pentaborate Pentahydrate (SPP) used as a dietary supplement on BALB/c mice fed with a high-fat diet was evaluated. Mice were divided into four groups with different diets, consisting of a normal diet, a high-fat diet (HFD) (containing 60 % fat), a HFD-supplemented with 0.5 mg/g body weight (BW) of SPP and a HFD-supplemented with 1.5 mg/g body weight (BW) of SPP. The animals were then observed for 10 weeks and physically monitored, and were sacrificed at the end of the experiment for physical and physicochemical evaluation. RESULTS According to the physical parameters measured -body weight, food and water intake ratios-, the results indicate that SPP decreased weight gain in a dose dependent manner. Measurement of the hormone levels in the blood and fat accumulation in organs of mice also supported the anti-obesity effects of SPP. Expressions of adipogenesis related genes were also negatively regulated by SPP administration in white adipose tissue (WAT) tissue. CONCLUSION These findings promise a treatment approach and drug development that can be used against obesity when SPP is used in the right doses. As a future aspect, clinical studies with SPP will reveal the effect of boron derivatives on obesity.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Alev Cumbul
- Department of Histology and Embryology, School of Medicine, University of Yeditepe, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Dilara Baban
- Department of Histology and Embryology, School of Medicine, University of Yeditepe, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
17
|
Morin R, Mauger JF, Amaratunga R, Imbeault P. The effect of acute intermittent hypoxia on postprandial triglyceride levels in humans: a randomized crossover trial. J Transl Med 2021; 19:268. [PMID: 34158069 PMCID: PMC8220832 DOI: 10.1186/s12967-021-02933-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Background Obstructive sleep apnea (OSA), a sleep disorder frequently observed in individuals living with obesity, consists of repeated involuntary breathing obstructions during sleep, leading to intermittent hypoxia (IH). In humans, acute continuous hypoxia slightly increases plasma triglycerides (TG). However, no study yet compared the postprandial TG response of individuals with or without OSA under intermittent hypoxia. Methods Using a randomized crossover design, seven individuals diagnosed with moderate OSA and eight healthy individuals without OSA were given a meal after which they were exposed for 6 h to normoxia or intermittent hypoxia (e.g., 15 hypoxic events per hour). Blood lipid levels were measured hourly during each session. Results Peak postprandial TG concentrations tended to be 22% higher under IH irrespective of group (IH × time interaction, p = 0.068). This trend toward higher total plasma TG was attributable to increased levels of denser TG-rich lipoproteins such as very low-density lipoproteins (VLDL) and chylomicrons (CM) remnants. Irrespective of group, the postprandial TG concentrations in denser TG-rich lipoproteins was 20% higher under IH (IH × time interaction, p = 0.036), although IH had virtually no impact on denser TG-rich lipoprotein concentrations in the OSA group. Conclusion Acute intermittent hypoxia tends to negatively affect postprandial TG levels in healthy individuals, which is attributable to an increase in denser TG-carrying lipoprotein levels such as VLDL and CM remnants. This altered postprandial TG response to acute intermittent hypoxia was not observed in individuals with OSA.
Collapse
Affiliation(s)
- Renée Morin
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Mauger
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ruwan Amaratunga
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON, Canada
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada. .,Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON, Canada. .,Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 200 Lees, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
18
|
Shaik A, Rosenson RS. Genetics of Triglyceride-Rich Lipoproteins Guide Identification of Pharmacotherapy for Cardiovascular Risk Reduction. Cardiovasc Drugs Ther 2021; 35:677-690. [PMID: 33710501 DOI: 10.1007/s10557-021-07168-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Despite aggressive reduction of low-density lipoprotein cholesterol (LDL-C), there is a residual risk of cardiovascular disease (CVD). Hypertriglyceridemia is known to be associated with increased CVD risk, independently of LDL-C. Triglycerides are one component of the heterogenous class of triglyceride-rich lipoproteins (TGRLs). METHODS/RESULTS Growing evidence from biology, epidemiology, and genetics supports the contribution of TGRLs to the development of CVD via a number of mechanisms, including through proinflammatory, proapoptotic, and procoagulant pathways. CONCLUSION New genetics-guided pharmacotherapies to reduce levels of triglycerides and TGRLs and thus reduce risk of CVD have been developed and will be discussed here.
Collapse
Affiliation(s)
- Aleesha Shaik
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert S Rosenson
- Cardiometabolics Unit, Zena and Michael A Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Kim HY, Hong MH, Kim KW, Yoon JJ, Lee JE, Kang DG, Lee HS. Improvement of Hypertriglyceridemia by Roasted Nelumbinis folium in High Fat/High Cholesterol Diet Rat Model. Nutrients 2020; 12:nu12123859. [PMID: 33348773 PMCID: PMC7766402 DOI: 10.3390/nu12123859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Hypertriglyceridemia is a condition characterized by high triglyceride levels and is a major risk factor for the development of cardiovascular diseases. The present study was designed to investigate the inhibitory effect of roasted Nelumbinis folium (RN), which is a medicinal substance produced by heating lotus leaves, on lipid metabolism in high fat/cholesterol (HFC) diet-induced hypertriglyceridemia. Except for those in the control group, Sprague–Dawley rats were fed an HFC diet for four weeks to induce hypertriglyceridemia. During the next nine weeks, the control, regular diet; HFC, HFC diet, FLU, fluvastatin (3 mg/kg/day); RNL, RN (100 mg/kg/day); RNH, RN (200 mg/kg/day) were orally administered together with the diet, and the experiments were conducted for a total of 13 weeks. The weight of the epididymal adipose tissue, liver, and heart of rats in the HFC diet group significantly increased compared to those in the control group but improved in the RN-treated group. It was also confirmed that vascular function, which is damaged by an HFC diet, was improved after RN treatment. The levels of insulin, glucose, triglycerides, total cholesterol, and low-density lipoprotein increased in the HFC diet group compared to those in the control group, while the administration of RN attenuated these parameters. In addition, the administration of RN significantly reduced the gene expression of both LXR and SREBP-1, which indicated the inhibitory effect of the biosynthesis of triglycerides caused by RN. The results indicated that RN administration resulted in an improvement in the overall lipid metabolism and a decrease in the concentration of triglycerides in the HFC diet-induced rat model of hypertriglyceridemia. Therefore, our findings suggest that the RN can be a candidate material to provide a new direction for treating hypertriglyceridemia.
Collapse
Affiliation(s)
- Hye Yoom Kim
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Mi Hyeon Hong
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Kwan Woo Kim
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Jung Eun Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Dae Gill Kang
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: (D.G.K.); (H.S.L.); Tel.: +82-63-6447 (D.G.K. & H.S.L.); Fax: +82-63-850-7260 (D.G.K. & H.S.L.)
| | - Ho Sub Lee
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: (D.G.K.); (H.S.L.); Tel.: +82-63-6447 (D.G.K. & H.S.L.); Fax: +82-63-850-7260 (D.G.K. & H.S.L.)
| |
Collapse
|
20
|
Myasoedov NF, Lyapina LA, Andreeva LA, Grigorieva ME, Obergan TY, Shubina TA. The modern view on the role of glyprolines by metabolic syndrome. Med Res Rev 2020; 41:2823-2840. [DOI: 10.1002/med.21748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Tamara Y. Obergan
- Department of Biology M. V. Lomonosov Moscow State University Moscow Russia
| | - Tatiana A. Shubina
- Department of Biology M. V. Lomonosov Moscow State University Moscow Russia
| |
Collapse
|
21
|
Gil-Zamorano J, Tomé-Carneiro J, Lopez de Las Hazas MC, Del Pozo-Acebo L, Crespo MC, Gómez-Coronado D, Chapado LA, Herrera E, Latasa MJ, Ruiz-Roso MB, Castro-Camarero M, Briand O, Dávalos A. Intestinal miRNAs regulated in response to dietary lipids. Sci Rep 2020; 10:18921. [PMID: 33144601 PMCID: PMC7642330 DOI: 10.1038/s41598-020-75751-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.
Collapse
Affiliation(s)
- Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM CSIC, 28049, Madrid, Spain
| | - María-Carmen Lopez de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM CSIC, 28049, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.,Centre of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - Emilio Herrera
- Department of Biochemistry and Chemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo CEU, 28668, Madrid, Spain
| | - María-Jesús Latasa
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - María Belén Ruiz-Roso
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - Mónica Castro-Camarero
- Servicio de Cirugía Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Olivier Briand
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, 59000, France
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain.
| |
Collapse
|
22
|
Lo CC, Coschigano KT. ApoB48 as an Efficient Regulator of Intestinal Lipid Transport. Front Physiol 2020; 11:796. [PMID: 32733283 PMCID: PMC7360825 DOI: 10.3389/fphys.2020.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fatty meals induce intestinal secretion of chylomicrons (CMs) containing apolipoprotein (Apo) B48. These CMs travel via the lymphatic system before entering the circulation. ApoB48 is produced after post-transcriptional RNA modification by Apobec-1 editing enzyme, exclusively in the small intestine of humans and most other mammals. In contrast, in the liver where Apobec-1 editing enzyme is not expressed (except in rats and mice), the unedited transcript encodes a larger protein, ApoB100, which is used in the formation of very low-density lipoproteins (VLDL) to transport liver-synthesized fat to peripheral tissues. Apobec-1 knockout (KO) mice lack the ability to perform ApoB RNA editing, and thus, express ApoB100 in the intestine. These mice, maintained on either a chow diet or high fat diet, have body weight gain and food intake comparable to their wildtype (WT) counterparts on the respective diet; however, they secrete larger triglyceride (TG)-rich lipoprotein particles and at a slower rate than the WT mice. Using a lymph fistula model, we demonstrated that Apobec-1 KO mice also produced fewer CMs and exhibited reduced lymphatic transport of TG in response to duodenal infusion of TG at a moderate dose; in contrast, the Apobec-1 KO and WT mice had similar lymphatic transport of TG when they received a high dose of TG. Thus, the smaller, energy-saving ApoB48 appears to play a superior role in comparison with ApoB100 in the control of intestinal lipid transport in response to dietary lipid intake, at least at low to moderate lipid levels.
Collapse
Affiliation(s)
- Chunmin C Lo
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Karen T Coschigano
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
23
|
Nahmias A, Stahel P, Dash S. Assessment of lipid response to acute olanzapine administration in healthy adults. Endocrinol Diabetes Metab 2020; 3:e00119. [PMID: 32318637 PMCID: PMC7170459 DOI: 10.1002/edm2.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Atypical antipsychotics (AAP) can induce hypertriglyceridaemia and type 2 diabetes. Weight gain contributes to these effects, but there is evidence that AAP can have acute metabolic effects on glycaemia independent of weight change. AIMS We undertook a single-blind crossover study in eight healthy volunteers to assess whether the AAP olanzapine acutely increases triglyceride and free fatty acid in response to a high-fat oral load (50 g fat with no carbohydrate) and whether these effects are attenuated by the dopamine D2 receptor agonist bromocriptine. METHODS Participants underwent three treatments in random order: Olanzapine 10 mg plus placebo (OL + PL), Olanzapine 10 mg plus bromocriptine 5 mg (OL + BR) and placebo plus placebo (PL + PL). RESULTS Olanzapine increased plasma prolactin, an effect that was reversed by co-administration of the D2 receptor agonist bromocriptine (P = .0002). There were no significant differences in postprandial triglyceride (P = .8), free fatty acid (P = .4) or glucose (P = .8). CONCLUSION These results suggest that AAPs likely do not directly increase postprandial lipids but may do so indirectly via changes in body weight and/or glycaemia.
Collapse
Affiliation(s)
- Avital Nahmias
- Department of MedicineBanting & Best Diabetes CenterUniversity of TorontoTorontoONCanada
- University Health NetworkTorontoONCanada
| | - Priska Stahel
- Department of MedicineBanting & Best Diabetes CenterUniversity of TorontoTorontoONCanada
- University Health NetworkTorontoONCanada
| | - Satya Dash
- Department of MedicineBanting & Best Diabetes CenterUniversity of TorontoTorontoONCanada
- University Health NetworkTorontoONCanada
| |
Collapse
|
24
|
Stahel P, Xiao C, Nahmias A, Lewis GF. Role of the Gut in Diabetic Dyslipidemia. Front Endocrinol (Lausanne) 2020; 11:116. [PMID: 32231641 PMCID: PMC7083132 DOI: 10.3389/fendo.2020.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). In insulin resistant states such as the metabolic syndrome, overproduction and impaired clearance of liver-derived very-low-density lipoproteins and gut-derived chylomicrons (CMs) contribute to hypertriglyceridemia and elevated atherogenic remnant lipoproteins. Although ingested fat is the major stimulus of CM secretion, intestinal lipid handling and ultimately CM secretory rate is determined by numerous additional regulatory inputs including nutrients, hormones and neural signals that fine tune CM secretion during fasted and fed states. Insulin resistance and T2D represent perturbed metabolic states in which intestinal sensitivity to key regulatory hormones such as insulin, leptin and glucagon-like peptide-1 (GLP-1) may be altered, contributing to increased CM secretion. In this review, we describe the evidence from human and animal models demonstrating increased CM secretion in insulin resistance and T2D and discuss the molecular mechanisms underlying these effects. Several novel compounds are in various stages of preclinical and clinical investigation to modulate intestinal CM synthesis and secretion. Their efficacy, safety and therapeutic utility are discussed. Similarly, the effects of currently approved lipid modulating therapies such as statins, ezetimibe, fibrates, and PCSK9 inhibitors on intestinal CM production are discussed. The intricacies of intestinal CM production are an active area of research that may yield novel therapies to prevent atherosclerotic CVD in insulin resistance and T2D.
Collapse
|
25
|
Dash S, Leiter LA. Residual cardiovascular risk among people with diabetes. Diabetes Obes Metab 2019; 21 Suppl 1:28-38. [PMID: 31002458 DOI: 10.1111/dom.13646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
Abstract
Type 2 diabetes (T2D) is a growing health concern across both developed and developing countries. Cardiovascular disease (CVD) remains the major cause of increased mortality in this patient population. In recent years, effective low density lipoprotein lowering treatments and other risk reduction strategies have substantially reduced the risk of atherosclerotic CVD, yet patients with T2D continue to remain at increased risk for atherosclerotic CVD. Here, we will briefly review various proposed underlying mechanisms for this residual risk with a more in-depth focus on the potential role of triglyceride-rich lipoproteins in residual risk and potential avenues to target this pharmacologically.
Collapse
Affiliation(s)
- Satya Dash
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Gonna H, Ray KK. The importance of dyslipidaemia in the pathogenesis of cardiovascular disease in people with diabetes. Diabetes Obes Metab 2019; 21 Suppl 1:6-16. [PMID: 31002453 DOI: 10.1111/dom.13691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/27/2022]
Abstract
Atherosclerotic cardiovascular events are the leading cause of mortality and morbidity in those with diabetes. A key contributor to the development of atherosclerosis in this population is the presence of a particularly atherogenic lipid profile often referred to as 'Diabetic Dyslipidemia'. This profile is characterized by elevated triglycerides, triglyceride-rich lipoproteins, small dense LDL particles, and reduced HDL levels. This article reviews the underlying aetiology and pathophysiology of this dyslipidaemia and atherosclerosis in those with diabetes, provides insights from epidemiological and genetic studies, and current cardiovascular risk reducing interventions including novel therapies such as PCSK-9 inhibitors.
Collapse
Affiliation(s)
- Hanney Gonna
- Department of Cardiology, St George's Hospital, London, UK
- Myocardial Function Section, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College London, London, UK
| |
Collapse
|
27
|
Chen L, Wu M, Zhang S, Tan W, Guan M, Feng L, Chen C, Tao J, Chen L, Qu L. Estrogen-related receptor γ regulates hepatic triglyceride metabolism through phospholipase A2 G12B. FASEB J 2019; 33:7942-7952. [PMID: 30922124 DOI: 10.1096/fj.201802704r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypersecretion of hepatic very LDL (VLDL)-associated triglyceride (TG) is the hallmark of hypertriglyceridemia. The estrogen-related receptor γ (ERRγ), an orphan nuclear receptor, plays crucial roles in the regulation of metabolic homeostasis, including TG formation in the liver. It remains unclear whether ERRγ regulates hepatic VLDL-TG secretion. We demonstrated that knockdown of ERRγ impairs hepatic VLDL-TG secretion in mice, whereas overexpression of ERRγ favors the secretion, indicating a novel role of ERRγ in hepatic TG metabolism. We found that ERRγ transcriptionally regulates the expression of PLA2G12B by binding to the promoter region of the Pla2g12b gene. In Pla2g12b-null mice, ERRγ fails to regulate hepatic VLDL-TG secretion. There is an apparent accumulation of large lipid droplets in the liver of Pla2g12b-null mice. These data suggest that ERRγ is a novel regulator of hepatic VLDL-TG secretion, which is mediated through the action on PLA2G12B.-Chen, L., Wu, M., Zhang, S., Tan, W., Guan, M., Feng, L., Chen, C., Tao, J., Chen, L., Qu, L. Estrogen-related receptor γ regulates hepatic triglyceride metabolism through phospholipase A2 G12B.
Collapse
Affiliation(s)
- Longhui Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Min Wu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengnan Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Life Science, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liqiang Feng
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,State Key Laboratories of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ling Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Life Science, University of Science and Technology of China, Hefei, China.,State Key Laboratories of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linbing Qu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
28
|
Homma T, Fujii J. Oxidative Stress and Dysfunction of the Intracellular Proteolytic Machinery. DIETARY INTERVENTIONS IN LIVER DISEASE 2019:59-70. [DOI: 10.1016/b978-0-12-814466-4.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Hernández-Mijares A, Ascaso JF, Blasco M, Brea Á, Díaz Á, Mantilla T, Pedro-Botet J, Pintó X, Millán J. Residual cardiovascular risk of lipid origin. Components and pathophysiological aspects. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 31:75-88. [PMID: 30262442 DOI: 10.1016/j.arteri.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022]
Abstract
There is no doubt about the relationship between LDL-c and cardiovascular risk, as well as about the benefits of statin treatment. Once the objective of LDL-c has been achieved, the evidences that demonstrate the persistence of a high cardiovascular risk, a concept called residual risk, are notable. The residual risk of lipid origin is based on atherogenic dyslipidemia, characterized by an increase in triglycerides and triglyceride-rich lipoproteins, a decrease in HDL-c and qualitative alterations in LDL particles. The most commonly used measures to identify this dyslipidemia are based on the determination of total cholesterol, triglycerides, HDL, non-HDL cholesterol and remaining cholesterol, as well as apolipoprotein B100 and lipoprotein (a) in certain cases. The treatment of atherogenic dyslipidemia is based on weight loss and physical exercise. Regarding pharmacological treatment, we have no evidence of cardiovascular benefit with drugs aimed at lowering triglycerides and HDL-c, fenofibrate seems to be effective in situations of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Antonio Hernández-Mijares
- Fundación para la Investigación Sanitaria y Biomédica de la Comunidad Valenciana FISABIO, Servicio de Endocrinología y Nutrición, Hospital Universitario Dr. Peset Valencia; Departamento de Medicina, Universitat de València, Valencia, España.
| | - Juan F Ascaso
- Servicio de Endocrinología, Hospital Clínico Universitario; Departamento de Medicina, Universitat de València, Valencia, España
| | - Mariano Blasco
- Área Sanitaria de Delicias, Atención Primaria, Zaragoza, España
| | - Ángel Brea
- Servicio de Medicina Interna, Hospital San Pedro, Logroño, España
| | - Ángel Díaz
- Centro de Salud de Bembibre, Bembibre (León), España
| | - Teresa Mantilla
- Centro de Salud de Prosperidad, Atención Primaria, Madrid, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España
| | - Xavier Pintó
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, Universitat de Barcelona, CIBERobn-ISCIII, Barcelona, España
| | - Jesús Millán
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, España.
| | | |
Collapse
|
30
|
Sæle Ø, Rød KEL, Quinlivan VH, Li S, Farber SA. A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:948-957. [PMID: 29778665 PMCID: PMC6054555 DOI: 10.1016/j.bbalip.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
The zebrafish larva is a powerful tool for the study of dietary triglyceride (TG) digestion and how fatty acids (FA) derived from dietary lipids are absorbed, metabolized and distributed to the body. While fluorescent FA analogues have enabled visualization of FA metabolism, methods for specifically assaying TG digestion are badly needed. Here we present a novel High Performance Liquid Chromatography (HPLC) method that quantitatively differentiates TG and phospholipid (PL) molecules with one or two fluorescent FA analogues. We show how this tool may be used to discriminate between undigested and digested TG or phosphatidylcholine (PC), and also the products of TG or PC that have been digested, absorbed and re-synthesized into new lipid molecules. Using this approach, we explored the dietary requirement of zebrafish larvae for phospholipids. Here we demonstrate that dietary TG is digested and absorbed in the intestinal epithelium, but without dietary PC, TG accumulates and is not transported out of the enterocytes. Consequently, intestinal ER stress increases and the ingested lipid is not available support the energy and metabolic needs of other tissues. In TG diets with PC, TG is readily transported from the intestine and subsequently metabolized.
Collapse
Affiliation(s)
- Øystein Sæle
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway.
| | - Kari Elin L Rød
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Shengrong Li
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA.
| |
Collapse
|
31
|
Effects of Dietary Intake of Japanese Mushrooms on Visceral Fat Accumulation and Gut Microbiota in Mice. Nutrients 2018; 10:nu10050610. [PMID: 29757949 PMCID: PMC5986490 DOI: 10.3390/nu10050610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
A lot of Japanese people are generally known for having a healthy diet, and consume a variety of mushrooms daily. Many studies have reported anti-obesity effects of mushrooms, but few have investigated the effects of consuming a variety of edible mushroom types together in realistic quantities. In this study, we investigated whether supplementation with a variety of mushroom types affects visceral fat accumulation and gut microbiota in mice. The most popular mushroom varieties in Japan were lyophilized and mixed according to their local production ratios. C57BL/6J mice were fed a normal diet, high-fat (HF) diet, HF with 0.5% mushroom mixture (equivalent to 100 g mushrooms/day in humans) or HF with 3% mushroom mixture (equivalent to 600 g mushrooms/day in humans) for 4 weeks. The mice were then sacrificed, and blood samples, tissue samples and feces were collected. Our results show that mushroom intake suppressed visceral fat accumulation and increased the relative abundance of some short chain fatty acid- and lactic acid-producing gut bacteria. These findings suggest that mushroom intake is an effective strategy for obesity prevention.
Collapse
|
32
|
Myasoedov NF, Lyapina LA, Andreeva LA, Obergan TY, Grigoryeva ME, Shubina TA. [Oxoprolinic short peptides - potential pharmacological means of hypolidemic and antitrombotic actions]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:546-552. [PMID: 29251617 DOI: 10.18097/pbmc20176306546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the most urgent and important tasks of modern biological and medical research is the search and research of pharmacological agents that combine lipid-lowering and antithrombotic effects in the organism. The unique effects of the regulatory peptides of the oxoproline series (5-oхo-Pro-His-Pro-NH2, 5-oxo-Pro-Trp-Pro and 5-oxo-Pro-Arg-Pro or 5-oхo-Pro-His-Pro-NH2, Pyr-Trp-Pro and Pyr-Arg-Pro) have been found in rats with hypercholesterolemia (metabolic syndrome). Multiple intranasal of these peptides to animals with developed hypercholesterolemia increased anticoagulant, fibrinolytic and antiplatelet potential of the blood and simultaneously lowered increased concentrations of total cholesterol, low-density lipoprotein cholesterol and triglycerides. In addition, they contributed to the normalization of blood glucose levels. A week after the last admistration of these peptides, the hypocholesterolemic, normoglycemic and anticoagulant effects persisted. The relationship between the structure of peptides of the oxoproline series and their functional properties is discussed. A conclusion is made about the prospects of further studies of oxoproline peptides as drugs that combine antithrombotic effects with the improvement of fat metabolism in the body.
Collapse
Affiliation(s)
| | - L A Lyapina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - L A Andreeva
- Institute of Molecular Genetics RAS, Moscow, Russia
| | - T Yu Obergan
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - M E Grigoryeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - T A Shubina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| |
Collapse
|
33
|
Lipid Metabolism and Emerging Targets for Lipid-Lowering Therapy. Can J Cardiol 2017; 33:872-882. [DOI: 10.1016/j.cjca.2016.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/26/2016] [Indexed: 12/25/2022] Open
|
34
|
Crouchet E, Baumert TF, Schuster C. Hepatitis C virus-apolipoprotein interactions: molecular mechanisms and clinical impact. Expert Rev Proteomics 2017; 14:593-606. [PMID: 28625086 PMCID: PMC6138823 DOI: 10.1080/14789450.2017.1344102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. Moreover, chronic HCV infection is associated with liver steatosis and metabolic disorders. With 130-150 million people chronically infected in the world, HCV infection represents a major public health problem. One hallmark on the virus is its close link with hepatic lipid and lipoprotein metabolism. Areas covered: HCV is associated with lipoprotein components such as apolipoproteins. These interactions play a key role in the viral life cycle, viral persistence and pathogenesis of liver disease. This review introduces first the role of apolipoproteins in lipoprotein metabolism, then highlights the molecular mechanisms of HCV-lipoprotein interactions and finally discusses their clinical impact. Expert commentary: While the study of virus-host interactions has resulted in a improvement of the understanding of the viral life cycle and the development of highly efficient therapies, major challenges remain: access to therapy is limited and an urgently needed HCV vaccine remains still elusive. Furthermore, the pathogenesis of disease biology is still only partially understood. The investigation of HCV-lipoproteins interactions offers new perspectives for novel therapeutic approaches, contribute to HCV vaccine design and understand virus-induced liver disease and cancer.
Collapse
Affiliation(s)
- Emilie Crouchet
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc Natl Acad Sci U S A 2017; 114:E4753-E4761. [PMID: 28559354 DOI: 10.1073/pnas.1702560114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The yolk sac is phylogenetically the oldest of the extraembryonic membranes. The human embryo retains a yolk sac, which goes through primary and secondary phases of development, but its importance is controversial. Although it is known to synthesize proteins, its transport functions are widely considered vestigial. Here, we report RNA-sequencing (RNA-seq) data for the human and murine yolk sacs and compare those data with data for the chicken. We also relate the human RNA-seq data to proteomic data for the coelomic fluid bathing the yolk sac. Conservation of transcriptomes across the species indicates that the human secondary yolk sac likely performs key functions early in development, particularly uptake and processing of macro- and micronutrients, many of which are found in coelomic fluid. More generally, our findings shed light on evolutionary mechanisms that give rise to complex structures such as the placenta. We identify genetic modules that are conserved across mammals and birds, suggesting these modules are part of the core amniote genetic repertoire and are the building blocks for both oviparous and viviparous reproductive modes. We propose that although a choriovitelline placenta is never established physically in the human, the placental villi, the exocoelomic cavity, and the secondary yolk sac function together as a physiological equivalent.
Collapse
|
36
|
Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J. A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult. J Nutr Biochem 2016; 40:44-52. [PMID: 27855316 DOI: 10.1016/j.jnutbio.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
Patients with nonalcoholic fatty liver disease may subsequently develop nonalcoholic steatohepatitis after suffering from a second insult, such as oxidative stress. Aim of this study was to investigate the pathogenesis of the liver injury caused when lipids accumulate under conditions of intrinsic oxidative stress using mice that are deficient in superoxide dismutase 1 (SOD1) and the leptin receptor (Lepr). We established Sod1-/-::Leprdb/db mice and carried out analyses of four groups of genetically modified mice, namely, wild type, Sod1-/-, Leprdb/db and Sod1-/-::Leprdb/db mice. Mice with defects in the SOD1 or Lepr gene are vulnerable to developing fatty livers, even when fed a normal diet. Feeding a high-fat diet (HFD) caused an increase in the number of lipid droplets in the liver to different extents in each genotypic mouse. an HFD caused the accelerated death of db/db mice, but contradictory to our expectations, the death rates for the Sod1-deficient mice were decreased by feeding HFD. Consistent with the improved probability of survival, liver damage was significantly ameliorated by feeding an HFD compared to a normal diet in the mice with an Sod1-deficient background. Oxidative stress markers, hyperoxidized peroxiredoxin and lipid peroxidation products, were decreased somewhat in Sod1-/- mice by feeding HFD. We conclude that lipids reacted with reactive oxygen species and eliminated them in the livers of the young mice, which resulted in the alleviation of oxidative stress, but in advanced age oxidized products accumulated, leading to the aggravation of the liver injury and an increase in fatality rate.
Collapse
Affiliation(s)
- Junitsu Ito
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ryusuke Akihara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ryo Kawasaki
- Department of Public Health, Yamagata University Graduate School of Medical Science, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| |
Collapse
|
37
|
Xiao C, Dash S, Morgantini C, Hegele RA, Lewis GF. Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol. Diabetes 2016; 65:1767-78. [PMID: 27329952 DOI: 10.2337/db16-0046] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/23/2016] [Indexed: 11/13/2022]
Abstract
Notwithstanding the effectiveness of lowering LDL cholesterol, residual CVD risk remains in high-risk populations, including patients with diabetes, likely contributed to by non-LDL lipid abnormalities. In this Perspectives in Diabetes article, we emphasize that changing demographics and lifestyles over the past few decades have resulted in an epidemic of the "atherogenic dyslipidemia complex," the main features of which include hypertriglyceridemia, low HDL cholesterol levels, qualitative changes in LDL particles, accumulation of remnant lipoproteins, and postprandial hyperlipidemia. We briefly review the underlying pathophysiology of this form of dyslipidemia, in particular its association with insulin resistance, obesity, and type 2 diabetes, and the marked atherogenicity of this condition. We explain the failure of existing classes of therapeutic agents such as fibrates, niacin, and cholesteryl ester transfer protein inhibitors that are known to modify components of the atherogenic dyslipidemia complex. Finally, we discuss targeted repurposing of existing therapies and review promising new therapeutic strategies to modify the atherogenic dyslipidemia complex. We postulate that targeting the central abnormality of the atherogenic dyslipidemia complex, the elevation of triglyceride-rich lipoprotein particles, represents a new frontier in CVD prevention and is likely to prove the most effective strategy in correcting most aspects of the atherogenic dyslipidemia complex, thereby preventing CVD events.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Cecilia Morgantini
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Abstract
Approximately 25% of US adults are estimated to have hypertriglyceridemia (triglyceride [TG] level ≥150 mg/dL [≥1.7 mmol/L]). Elevated TG levels are associated with increased cardiovascular disease (CVD) risk, and severe hypertriglyceridemia (TG levels ≥500 mg/dL [≥5.6 mmol/L]) is a well-established risk factor for acute pancreatitis. Plasma TG levels correspond to the sum of the TG content in TG-rich lipoproteins (TRLs; ie, very low-density lipoproteins plus chylomicrons) and their remnants. There remains some uncertainty regarding the direct causal role of TRLs in the progression of atherosclerosis and CVD, with cardiovascular outcome studies of TG-lowering agents, to date, having produced inconsistent results. Although low-density lipoprotein cholesterol (LDL-C) remains the primary treatment target to reduce CVD risk, a number of large-scale epidemiological studies have shown that elevated TG levels are independently associated with increased incidence of cardiovascular events, even in patients treated effectively with statins. Genetic studies have further clarified the causal association between TRLs and CVD. Variants in several key genes involved in TRL metabolism are strongly associated with CVD risk, with the strength of a variant's effect on TG levels correlating with the magnitude of the variant's effect on CVD. TRLs are thought to contribute to the progression of atherosclerosis and CVD via a number of direct and indirect mechanisms. They directly contribute to intimal cholesterol deposition and are also involved in the activation and enhancement of several proinflammatory, proapoptotic, and procoagulant pathways. Evidence suggests that non-high-density lipoprotein cholesterol, the sum of the total cholesterol carried by atherogenic lipoproteins (including LDL, TRL, and TRL remnants), provides a better indication of CVD risk than LDL-C, particularly in patients with hypertriglyceridemia. This article aims to provide an overview of the available epidemiological, clinical, and genetic evidence relating to the atherogenicity of TRLs and their role in the progression of CVD.
Collapse
Affiliation(s)
- Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| |
Collapse
|
39
|
Castro C, Corraze G, Basto A, Larroquet L, Panserat S, Oliva-Teles A. Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (Sparus aurata) Juveniles. Lipids 2016; 51:743-55. [DOI: 10.1007/s11745-016-4140-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/06/2016] [Indexed: 11/29/2022]
|
40
|
Carpentier AC. Hypertriglyceridemia Associated With Abdominal Obesity: Getting Contributing Factors Into Perspective. Arterioscler Thromb Vasc Biol 2015; 35:2076-8. [PMID: 26399918 DOI: 10.1161/atvbaha.115.306412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- André C Carpentier
- From the Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
41
|
Mechanisms for glyproline protection in hypercholesterolemia. ACTA ACUST UNITED AC 2015; 23:27-33. [PMID: 26631418 DOI: 10.1016/j.pathophys.2015.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 11/23/2022]
Abstract
Comparative analysis of the hypocholesterolemic and antithrombotic action of small regulatory glyproline peptides (Pro-Gly-Pro, Arg-Pro-Gly-Pro and Pro-Gly-Pro-Leu) was performed on an experimental hypercholesterolemia model of rats. Repeated intranasal introduction of glyproline peptides to fat-diet-fed animals led to more active functioning of the anticoagulation system (the anticoagulant and fibrinolytic properties of the plasma increased and platelet aggregation decreased) and to normalization of the total cholesterol level as a parameter of lipid metabolism. The largest anticoagulant and hypocholesterolemic effect was detected for the Pro-Gly-Pro-Leu peptide. Hypothetical mechanisms of antithrombotic and hypocholesterolemic effects of glyproline peptides are presented.
Collapse
|
42
|
Lyapina LA, Grigor’eva ME, Obergan TY, Shubina TA, Andreeva LA, Myasoedov NF. Peptide regulation of metabolic processes under hypercholesterinemia conditions of an organism. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015060060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Irawati D, Mamo JC, Soares MJ, Slivkoff-Clark KM, James AP. Hypertriglyceridemic subjects exhibit an accumulation of small dense chylomicron particles in the fasting state. Atherosclerosis 2015; 243:236-41. [DOI: 10.1016/j.atherosclerosis.2015.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 01/03/2023]
|
44
|
Hsieh J, Trajcevski KE, Farr SL, Baker CL, Lake EJ, Taher J, Iqbal J, Hussain MM, Adeli K. Glucagon-Like Peptide 2 (GLP-2) Stimulates Postprandial Chylomicron Production and Postabsorptive Release of Intestinal Triglyceride Storage Pools via Induction of Nitric Oxide Signaling in Male Hamsters and Mice. Endocrinology 2015; 156:3538-47. [PMID: 26132919 DOI: 10.1210/en.2015-1110] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intestinal overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles is a common feature of diabetic dyslipidemia and contributes to cardiovascular risk in insulin resistant states. We previously reported that glucagon-like peptide-2 (GLP-2) is a key endocrine stimulator of enterocyte fat absorption and chylomicron output in the postprandial state. GLP-2's stimulatory effect on chylomicron production in the postabsorptive state has been confirmed in human studies. The mechanism by which GLP-2 regulates chylomicron production is unclear, because its receptor is not expressed on enterocytes. We provide evidence for a key role of nitric oxide (NO) in mediating the stimulatory effects of GLP-2 during the postprandial and postabsorptive periods. Intestinal chylomicron production was assessed in GLP-2-treated hamsters administered the pan-specific NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester (L-NAME), and in GLP-2-treated endothelial NOS knockout mice. L-NAME blocked GLP-2-stimulated apoB48 secretion and reduced triglycerides (TGs) in the TG-rich lipoprotein (TRL) fraction of the plasma in the postprandial state. Endothelial NOS-deficient mice were resistant to GLP-2 stimulation and secreted fewer large apoB48-particles. When TG storage pools were allowed to accumulate, L-NAME mitigated the GLP-2-mediated increase in TRL-TG, suggesting that NO is required for early mobilization and secretion of stored TG and preformed chylomicrons. Importantly, the NO donor S-nitroso-L-glutathione was able to elicit an increase in TRL-TG in vivo and stimulate chylomicron release in vitro in primary enterocytes. We describe a novel role for GLP-2-mediated NO-signaling as a critical regulator of intestinal lipid handling and a potential contributor to postprandial dyslipidemia.
Collapse
Affiliation(s)
- Joanne Hsieh
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Karin E Trajcevski
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Sarah L Farr
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Christopher L Baker
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Elizabeth J Lake
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Jennifer Taher
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Jahangir Iqbal
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Mahmood M Hussain
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Khosrow Adeli
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| |
Collapse
|
45
|
Lipid transport in cholecystokinin knockout mice. Physiol Behav 2015; 151:198-206. [PMID: 26171590 DOI: 10.1016/j.physbeh.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Cholecystokinin (CCK) is released in response to lipid feeding and regulates pancreatic digestive enzymes vital to the absorption of nutrients. Our previous reports demonstrated that cholecystokinin knockout (CCK-KO) mice fed for 10 weeks of HFD had reduced body fat mass, but comparable glucose uptake by white adipose tissues and skeletal muscles. We hypothesized that CCK is involved in energy homeostasis and lipid transport from the small intestine to tissues in response to acute treatment with dietary lipids. CCK-KO mice with comparable fat absorption had increased energy expenditure and were resistant to HFD-induced obesity. Using intraduodenal infusion of butter fat and intravenous infusion using Liposyn III, we determined the mechanism of lipid transport from the small intestine to deposition in lymph and adipocytes in CCK-KO mice. CCK-KO mice had delayed secretion of Apo B48-chylomicrons, lipid transport to the lymphatic system, and triglyceride (TG)-derived fatty acid uptake by epididymal fat in response to acute treatment of intraduodenal lipids. In contrast, CCK-KO mice had comparable TG clearance and lipid uptake by white adipocytes in response to TGs in chylomicron-like emulsion. Thus, we concluded that CCK is important for lipid transport and energy expenditure to control body weight in response to dietary lipid feeding.
Collapse
|
46
|
Abstract
Dietary lipids are efficiently absorbed by the small intestine, incorporated into triglyceride-rich lipoproteins (chylomicrons), and transported in the circulation to various tissues. Intestinal lipid absorption and mobilization and chylomicron synthesis and secretion are highly regulated processes. Elevated chylomicron production rate contributes to the dyslipidemia seen in common metabolic disorders such as insulin-resistant states and type 2 diabetes and likely increases the risk for atherosclerosis seen in these conditions. An in-depth understanding of the regulation of chylomicron production may provide leads for the development of drugs that could be of therapeutic utility in the prevention of dyslipidemia and atherosclerosis. Chylomicron secretion is subject to regulation by various factors, including diet, body weight, genetic variants, hormones, nutraceuticals, medications, and emerging interventions such as bariatric surgical procedures. In this review we discuss the regulation of chylomicron production, mechanisms that underlie chylomicron dysregulation, and potential avenues for future research.
Collapse
Affiliation(s)
- Satya Dash
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, M5G 2C4 Canada;
| | | | | | | |
Collapse
|
47
|
Koska J, Sands M, Burciu C, Reaven P. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes. Diab Vasc Dis Res 2015; 12:154-63. [PMID: 25852133 DOI: 10.1177/1479164114562411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular (CV) disease is the leading cause of mortality and morbidity in patients with type 2 diabetes mellitus (T2DM). However, improving glycaemic control alone has not decreased CV events. Therapies that improve glycaemic control, CV disease risk factors and CV function are more likely to be successful. Dipeptidyl peptidase-4 (DPP-4) inhibitors prevent breakdown of incretin hormones glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic peptide and improve glycaemic control in patients with T2DM. DPP-4 acts on other substrates, many associated with cardioprotection. Thus, inhibition of DPP-4 may lead to elevations in these potentially beneficial substrates. Data from animal studies and small observational studies in humans suggest that DPP-4 inhibitors may potentially reduce CV risk. However, recently completed CV outcome trials in patients with T2DM and CV disease or at high risk of adverse CV events have shown that the DPP-4 inhibitors saxagliptin and alogliptin neither increased nor decreased major adverse CV events.
Collapse
Affiliation(s)
- Juraj Koska
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Michelle Sands
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Camelia Burciu
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Peter Reaven
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to summarize the recent epidemiological, basic science, and pharmaceutical research linking apolipoprotein C-III (apoC-III) with the development and treatment of cardiovascular disease (CVD). RECENT FINDINGS ApoC-III is an important emerging target linking hypertriglyceridemia with CVD. ApoC-III is a potent modulator of many established CVD risk factors, and is found on chylomicrons, very-low density lipoprotein, low-density lipoprotein, and high-density lipoprotein particles. Recent studies show that in humans, apoC-III levels are an independent risk factor for CVD, and its presence on lipoproteins may promote their atherogenicity. This year, two large-scale epidemiological studies have linked mutations in apoC-III with increased incidence of CVD and hypertriglyceridemia. ApoC-III raises plasma triglycerides through inhibition of lipoprotein lipase, stimulation of very-low density lipoprotein secretion, and is a novel factor in modulating intestinal triglyceride trafficking. ApoC-III also stimulates inflammatory processes in the vasculature and the pancreas. The combination of raising plasma triglycerides and independently stimulating inflammatory processes makes apoC-III a valuable target for reducing the residual CVD risk in patients already on statin therapy, or for whom triglycerides are poorly controlled. Clinical trials on apoC-III antisense oligonucleotides are in progress. SUMMARY ApoC-III is a potent direct modulator of established CVD risk factors: plasma triglycerides and inflammation. Recent findings show that changes in apoC-III levels are directly associated with changes in cardiovascular risk and the atherogenicity of the lipoproteins on which apoC-III resides. Emerging roles of apoC-III include a role in directing the atherogenicity of high-density lipoprotein, intestinal dietary triglyceride trafficking, and modulating pancreatic β-cell survival. The combination of these roles makes apoC-III an important therapeutic target for the management and prevention of CVD.
Collapse
Affiliation(s)
- Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
49
|
Abstract
Hypertriglyceridemia (HTG) is a highly prevalent condition that is associated with increased cardiovascular disease risk. HTG may arise as a result of defective metabolism of triglyceride-rich lipoproteins and their remnants, ie, impaired clearance, or increased production, or both. Current categorization of HTG segregates primary and secondary cases, implying genetic and nongenetic causes for each category. Many common and rare variants of the genes encoding factors involved in these pathways have been identified. Although monogenic forms of HTG do occur, most cases are polygenic and often coexist with nongenetic conditions. Cumulative, multiple genetic variants can increase the risks for HTG, whereas environmental and lifestyle factors can force expression of a dyslipidemic phenotype in a genetically susceptible person. HTG states are therefore best viewed as a complex phenotype resulting from the interaction of cumulated multiple susceptibility genes and environmental stressors. In view of the heterogeneity of the HTG states, the absence of a unifying metabolic or genetic abnormality, overlap with the metabolic syndrome and other features of insulin resistance, and evidence in some patients that accumulation of numerous small-effect genetic variants determines whether an individual is susceptible to HTG only or to HTG plus elevated low-density lipoprotein cholesterol, we propose that the diagnosis of primary HTG and further delineation of familial combined hyperlipidemia from familial HTG is neither feasible nor clinically relevant at the present time. The hope is that with greater understanding of genetic and environmental causes and their interaction, therapy can be intelligently targeted in the future.
Collapse
Affiliation(s)
- Gary F Lewis
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre (G.F.L., C.X.), University of Toronto, Toronto, Ontario, Canada M5G 2C4; and Robarts Research Institute (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | | | | |
Collapse
|
50
|
Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF. Glucagon-like peptide-2 regulates release of chylomicrons from the intestine. Gastroenterology 2014; 147:1275-1284.e4. [PMID: 25173752 PMCID: PMC4316201 DOI: 10.1053/j.gastro.2014.08.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The intestine efficiently incorporates and rapidly secretes dietary fat as chylomicrons (lipoprotein particles comprising triglycerides, phospholipids, cholesterol, and proteins) that contain the apolipoprotein isoform apoB-48. The gut can store lipids for many hours after their ingestion, and release them in chylomicrons in response to oral glucose, sham feeding, or unidentified stimuli. The gut hormone glucagon-like peptide-2 (GLP-2) facilitates intestinal absorption of lipids, but its role in chylomicron secretion in human beings is unknown. METHODS We performed a randomized, single-blind, cross-over study, with 2 study visits 4 weeks apart, to assess the effects of GLP-2 administration on triglyceride-rich lipoprotein (TRL) apoB-48 in 6 healthy men compared with placebo. Subjects underwent constant intraduodenal feeding, with a pancreatic clamp and primed constant infusion of deuterated leucine. In a separate randomized, single-blind, cross-over validation study, 6 additional healthy men ingested a high-fat meal containing retinyl palmitate and were given either GLP-2 or placebo 7 hours later with measurement of TRL triglyceride, TRL retinyl palmitate, and TRL apoB-48 levels. RESULTS GLP-2 administration resulted in a rapid (within 30 minutes) and transient increase in the concentration of TRL apoB-48, compared with placebo (P = .03). Mathematic modeling of stable isotope enrichment and the mass of the TRL apoB-48 suggested that the increase resulted from the release of stored, presynthesized apoB-48 from the gut. In the validation study, administration of GLP-2 at 7 hours after the meal, in the absence of additional food intake, robustly increased levels of TRL triglycerides (P = .007), TRL retinyl palmitate (P = .002), and TRL apoB-48 (P = .04) compared with placebo. CONCLUSIONS Administration of GLP-2 to men causes the release of chylomicrons that comprise previously synthesized and stored apoB-48 and lipids. This transiently increases TRL apoB-48 levels compared with placebo. Clinical trials number at www.clinicaltrials.gov: NCT 01958775.
Collapse
Affiliation(s)
- Satya Dash
- Department of Medicine, Department of Physiology, Banting and Best Diabetes Centre, Canada
,Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Medicine, Department of Physiology, Banting and Best Diabetes Centre, Canada
,Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cecilia Morgantini
- Department of Medicine, Department of Physiology, Banting and Best Diabetes Centre, Canada
,Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philip W. Connelly
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
,Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Bruce W. Patterson
- Center for Human Nutrition, Department of Internal Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, Missouri
| | - Gary F. Lewis
- Department of Medicine, Department of Physiology, Banting and Best Diabetes Centre, Canada
,Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|