1
|
Wang H, Zheng A, Thorley D, Arias EB, Cartee GD. Independent and combined effects of calorie restriction and AICAR on glucose uptake and insulin signaling in skeletal muscles from 24-month-old female and male rats. Appl Physiol Nutr Metab 2024; 49:614-625. [PMID: 38181403 PMCID: PMC11786792 DOI: 10.1139/apnm-2023-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
We assessed the effects of two levels of calorie restriction (CR; eating either 15% or 35% less than ad libitum, AL, food intake for 8 weeks) by 24-month-old female and male rats on glucose uptake (GU) and phosphorylation of key signaling proteins (Akt; AMP-activated protein kinase, AMPK; Akt substrate of 160 kDa, AS160) measured in isolated skeletal muscles that underwent four incubation conditions (without either insulin or AICAR, an AMPK activator; with AICAR alone; with insulin alone; or with insulin and AICAR). Regardless of sex: (1) neither CR group versus the AL group had greater GU by insulin-stimulated muscles; (2) phosphorylation of Akt in insulin-stimulated muscles was increased in 35% CR versus AL rats; (3) prior AICAR treatment of muscle resulted in greater GU by insulin-stimulated muscles, regardless of diet; and (4) AICAR caused elevated phosphorylation of acetyl CoA carboxylase, an indicator of AMPK activation, in all diet groups. There was a sexually dimorphic diet effect on AS160 phosphorylation, with 35% CR exceeding AL for insulin-stimulated muscles in male rats, but not in female rats. Our working hypothesis is that the lack of a CR-effect on GU by insulin-stimulated muscles was related to the extended duration of the ex vivo incubation period (290 min compared to 40-50 min that was previously reported to be effective). The observed efficacy of prior treatment of muscles with AICAR to improve glucose uptake in insulin-stimulated muscles supports the strategy of targeting AMPK with the goal of improving insulin sensitivity in older females and males.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Zheng
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Dominic Thorley
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward B. Arias
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory D. Cartee
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
3
|
Diedrich V, Haugg E, Van Hee J, Herwig A. Role of glucose in daily torpor of Djungarian hamsters ( Phodopus sungorus): challenge of continuous in vivo blood glucose measurements. Am J Physiol Regul Integr Comp Physiol 2023; 325:R359-R379. [PMID: 37519255 DOI: 10.1152/ajpregu.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/03/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Djungarian hamsters use daily torpor to save energy during winter. This metabolic downstate is part of their acclimatization strategy in response to short photoperiod and expressed spontaneously without energy challenges. During acute energy shortage, torpor incidence, depth, and duration can be modulated. Torpor induction might rely on glucose availability as acute metabolic energy source. To investigate this, the present study provides the first continuous in vivo blood glucose measurements of spontaneous daily torpor in short photoperiod-acclimated and fasting-induced torpor in long photoperiod-acclimated Djungarian hamsters. Glucose levels were almost identical in both photoperiods and showed a decrease during resting phase. Further decreases appeared during spontaneous daily torpor entrance, parallel with metabolic rate but before body temperature, while respiratory exchange rates were rising. During arousal, blood glucose tended to increase, and pretorpor values were reached at torpor termination. Although food-restricted hamsters underwent a considerable energetic challenge, blood glucose levels remained stable during the resting phase regardless of torpor expression. The activity phase preceding a torpor bout did not reveal changes in blood glucose that might be used as torpor predictor. Djungarian hamsters show a robust, circadian rhythm in blood glucose irrespective of season and maintain appropriate levels throughout complex acclimation processes including metabolic downstates. Although these measurements could not reveal blood glucose as proximate torpor induction factor, they provide new information about glucose availability during torpor. Technical innovations like in vivo microdialysis and in vitro transcriptome or proteome analyses may help to uncover the connection between torpor expression and glucose metabolism.
Collapse
Affiliation(s)
| | - Elena Haugg
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Justin Van Hee
- Data Sciences International, St. Paul, Minnesota, United States
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
5
|
Zijlmans DGM, Maaskant A, Louwerse AL, Sterck EHM, Langermans JAM. Overweight Management through Mild Caloric Restriction in Multigenerational Long-Tailed Macaque Breeding Groups. Vet Sci 2022; 9:262. [PMID: 35737314 PMCID: PMC9230116 DOI: 10.3390/vetsci9060262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Caloric restriction (CR) is an effective method to reduce overweight in captive non-human primates (NHPs). CR has been applied to individually- and pair-housed NHPs, but whether applying CR can be effective and safe in group-housed NHPs has not yet been assessed. This study investigates the effect of mild (20%) CR on adult overweight and biochemical parameters, immature growth, veterinary consultations, and reproductive success in multigenerational long-tailed macaque (Macaca fascicularis) breeding groups. Data were derived from anthropometric measurements and blood samples during yearly health checks, complemented with retrospective data on veterinary consultations and reproductive success. Adult body measures decreased after CR, with heavier individuals and females losing more weight compared to leaner individuals and males. CR lowered cholesterol levels in adults but had no overall effect on other biochemical parameters. Yet, biochemical parameters of individuals with high baseline values were reduced more compared to individuals with low baseline values. Immature growth, veterinary consultations and reproductive success were not influenced by CR. Thus, CR targeted the right individuals, i.e., overweight adults, and had no adverse effects on the variables examined in this study. This implies that mild CR can be a valuable overweight management strategy in group-housed NHPs.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Annet L. Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
6
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Puglisi SC, Mackiewicz AL, Ardeshir A, Garzel LM, Christe KL. Comparison of Insulins Glargine and Degludec in Diabetic Rhesus Macaques ( Macaca mulatta) with CGM Devices. Comp Med 2021; 71:247-255. [PMID: 34034855 DOI: 10.30802/aalas-cm-20-000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study's 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (Macaca mulatta) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.
Collapse
Affiliation(s)
| | | | - Amir Ardeshir
- California National Primate Research Center, Davis, California
| | | | | |
Collapse
|
8
|
Nicola R, Okun E. Food and Age: It Takes Two to Degenerate. Front Aging Neurosci 2020; 12:182. [PMID: 32676023 PMCID: PMC7333676 DOI: 10.3389/fnagi.2020.00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Raneen Nicola
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.,The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.,The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Dodds SG, Parihar M, Javors M, Nie J, Musi N, Dave Sharp Z, Hasty P. Acarbose improved survival for Apc +/Min mice. Aging Cell 2020; 19:e13088. [PMID: 31903726 PMCID: PMC6996958 DOI: 10.1111/acel.13088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/24/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022] Open
Abstract
Acarbose blocks the digestion of complex carbohydrates, and the NIA Intervention Testing Program (ITP) found that it improved survival when fed to mice. Yet, we do not know if lifespan extension was caused by its effect on metabolism with regard to the soma or cancer suppression. Cancer caused death for ~80% of ITP mice. The ITP found rapamycin, an inhibitor to the pro-growth mTORC1 (mechanistic target of rapamycin complex 1) pathway, improved survival and it suppressed tumors in Apc+/Min mice providing a plausible rationale to ask if acarbose had a similar effect. Apc+/Min is a mouse model prone to intestinal polyposis and a mimic of familial adenomatous polyposis in people. Polyp-associated anemia contributed to their death. To address this knowledge gap, we fed two doses of acarbose to Apc+/Min mice. Acarbose improved median survival at both doses. A cross-sectional analysis was performed next. At both doses, ACA fed mice exhibited reduced intestinal crypt depth, weight loss despite increased food consumption and reduced postprandial blood glucose and plasma insulin, indicative of improved insulin sensitivity. Dose-independent and dose-dependent compensatory liver responses were observed for AMPK and mTORC1 activities, respectively. Only mice fed the high dose diet exhibited reductions in tumor number with higher hematocrits. Because low-dose acarbose improved lifespan but failed to reduced tumors, its effects seem to be independent of cancer. These data implicate the importance of improved carbohydrate metabolism on survival.
Collapse
Affiliation(s)
- Sherry G. Dodds
- Department of Molecular Medicine and Institute of BiotechnologyUniversity of Texas HealthSan AntonioTXUSA
| | - Manish Parihar
- Department of Molecular Medicine and Institute of BiotechnologyUniversity of Texas HealthSan AntonioTXUSA
| | - Martin Javors
- Department of PsychiatryUniversity of Texas HealthSan AntonioTXUSA
| | - Jia Nie
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas HealthSan AntonioTXUSA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas HealthSan AntonioTXUSA
- San Antonio Geriatric ResearchEducation, and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTXUSA
| | - Zelton Dave Sharp
- Department of Molecular Medicine and Institute of BiotechnologyUniversity of Texas HealthSan AntonioTXUSA
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas HealthSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas HealthSan AntonioTXUSA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of BiotechnologyUniversity of Texas HealthSan AntonioTXUSA
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas HealthSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas HealthSan AntonioTXUSA
| |
Collapse
|
10
|
Deacetylation of metabolic enzymes by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging (Albany NY) 2019; 10:1053-1072. [PMID: 29769432 PMCID: PMC5990394 DOI: 10.18632/aging.101447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
Diapause in insects is akin to dauer in Caenorhabditis elegans and hibernation in vertebrates. Diapause causes a profound extension of lifespan by low metabolic activity. However, the detailed regulatory mechanisms for low metabolic activity remain unknown. Here, we showed that low pyruvate levels are present in the brains of diapause-destined pupae of the cotton bollworm Helicoverpa armigera, and three enzymes pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK), and phosphoglycerate mutase (PGAM) are closely correlated with pyruvate homeostasis. Notably, Sirt2 can deacetylate the three enzymes to increase their activity in vitro. Thus, low Sirt2 expression in the brains of diapause individuals decreases PK and PEPCK protein levels as well as PGAM activity, resulting in low pyruvate levels and low tricarboxylic acid cycle activity and eventually inducing diapause initiation by low metabolic activity. These findings suggest that pyruvate is a checkpoint for development or lifespan extension, and Sirt2 is a negative regulator to extend lifespan in insects.
Collapse
|
11
|
Ma Z, Parris AB, Howard EW, Shi Y, Yang S, Jiang Y, Kong L, Yang X. Caloric restriction inhibits mammary tumorigenesis in MMTV-ErbB2 transgenic mice through the suppression of ER and ErbB2 pathways and inhibition of epithelial cell stemness in premalignant mammary tissues. Carcinogenesis 2019; 39:1264-1273. [PMID: 30107476 DOI: 10.1093/carcin/bgy096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric intake influences the onset of many diseases, including cancer. In particular, caloric restriction (CR) has been reported to suppress mammary tumorigenesis in various models. However, the underlying cancer preventive mechanisms have not been fully explored. To this end, we aimed to characterize the anticancer mechanisms of CR using MMTV-ErbB2 transgenic mice, a well-established spontaneous ErbB2-overexpressing mammary tumor model, by focusing on cellular and molecular changes in premalignant tissues. In MMTV-ErbB2 mice with 30% CR beginning at 8 weeks of age, mammary tumor development was dramatically inhibited, as exhibited by reduced tumor incidence and increased tumor latency. Morphogenic mammary gland analyses in 15- and 20-week-old mice indicated that CR significantly decreased mammary epithelial cell (MEC) density and proliferative index. To understand the underlying mechanisms, we analyzed the effects of CR on mammary stem/progenitor cells. Results from fluorescence-activated cell sorting analyses showed that CR modified mammary tissue hierarchy dynamics, as evidenced by decreased luminal cells (CD24highCD49flow), putative mammary reconstituting unit subpopulation (CD24highCD49fhigh) and luminal progenitor cells (CD61highCD49fhigh). Mammosphere and colony-forming cell assays demonstrated that CR significantly inhibited mammary stem cell self-renewal and progenitor cell numbers. Molecular analyses indicated that CR concurrently inhibited estrogen receptor (ER) and ErbB2 signaling. These molecular changes were accompanied by decreased mRNA levels of ER-targeted genes and epidermal growth factor receptor/ErbB2 family members and ligands, suggesting ER-ErbB2 signaling cross-talk. Collectively, our data demonstrate that CR significantly impacts ER and ErbB2 signaling, which induces profound changes in MEC reprogramming, and mammary stem/progenitor cell inhibition is a critical mechanism of CR-mediated breast cancer prevention.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Yujie Shi
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lingfei Kong
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA.,Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Sparkman AM, Clark AD, Brummett LJ, Chism KR, Combrink LL, Kabey NM, Schwartz TS. Convergence in reduced body size, head size, and blood glucose in three island reptiles. Ecol Evol 2018; 8:6169-6182. [PMID: 29988440 PMCID: PMC6024148 DOI: 10.1002/ece3.4171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles-two snakes and one lizard-in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.
Collapse
Affiliation(s)
| | - Amanda D. Clark
- Department of Biological SciencesAuburn UniversityAuburnAlabama
| | | | | | | | - Nicole M. Kabey
- Department of BiologyWestmont CollegeSanta BarbaraCalifornia
| | | |
Collapse
|
13
|
Abbott DH, Rayome BH, Dumesic DA, Lewis KC, Edwards AK, Wallen K, Wilson ME, Appt SE, Levine JE. Clustering of PCOS-like traits in naturally hyperandrogenic female rhesus monkeys. Hum Reprod 2017; 32:923-936. [PMID: 28333238 DOI: 10.1093/humrep/dex036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Study question Do naturally occurring, hyperandrogenic (≥1 SD of population mean testosterone, T) female rhesus monkeys exhibit traits typical of women with polycystic ovary syndrome (PCOS)? Summary answer Hyperandrogenic female monkeys exhibited significantly increased serum levels of androstenedione (A4), 17-hydroxyprogesterone (17-OHP), estradiol (E2), LH, antimullerian hormone (AMH), cortisol, 11-deoxycortisol and corticosterone, as well as increased uterine endometrial thickness and evidence of reduced fertility, all traits associated with PCOS. What is known already Progress in treating women with PCOS is limited by incomplete knowledge of its pathogenesis and the absence of naturally occurring PCOS in animal models. A female macaque monkey, however, with naturally occurring hyperandrogenism, anovulation and polyfollicular ovaries, accompanied by insulin resistance, increased adiposity and endometrial hyperplasia, suggests naturally occurring origins for PCOS in nonhuman primates. Study design, size, duration As part of a larger study, circulating serum concentrations of selected pituitary, ovarian and adrenal hormones, together with fasted insulin and glucose levels, were determined in a single, morning blood sample obtained from 120 apparently healthy, ovary-intact, adult female rhesus monkeys (Macaca mulatta) while not pregnant or nursing. The monkeys were then sedated for somatometric and ultrasonographic measurements. Participants/materials, setting, methods Female monkeys were of prime reproductive age (7.2 ± 0.1 years, mean ± SEM) and represented a typical spectrum of adult body weight (7.4 ± 0.2 kg; maximum 12.5, minimum 4.6 kg). Females were defined as having normal (n = 99) or high T levels (n = 21; ≥1 SD above the overall mean, 0.31 ng/ml). Electronic health records provided menstrual and fecundity histories. Steroid hormones were determined by tandem LC-MS-MS; AMH was measured by enzymeimmunoassay; LH, FSH and insulin were determined by radioimmunoassay; and glucose was read by glucose meter. Most analyses were limited to 80 females (60 normal T, 20 high T) in the follicular phase of a menstrual cycle or anovulatory period (serum progesterone <1 ng/ml). Main results and the role of chance Of 80 monkeys, 15% (n = 12) exhibited classifiable PCOS-like phenotypes. High T females demonstrated elevations in serum levels of LH (P < 0.036), AMH (P < 0.021), A4 (P < 0.0001), 17-OHP (P < 0.008), E2 (P < 0.023), glucocorticoids (P < 0.02-0.0001), the serum T/E2 ratio (P < 0.03) and uterine endometrial thickness (P < 0.014) compared to normal T females. Within the high T group alone, anogenital distance, a biomarker for fetal T exposure, positively correlated (P < 0.015) with serum A4 levels, while clitoral volume, a biomarker for prior T exposure, positively correlated (P < 0.002) with postnatal age. Only high T females demonstrated positive correlations between serum LH, and both T and A4. Five of six (83%) high T females with serum T ≥2 SD above T mean (0.41 ng/ml) did not produce live offspring. Large scale data N/A. Limitations, reasons for caution This is an initial study of a single laboratory population in a single nonhuman primate species. While two biomarkers suggest lifelong hyperandrogenism, phenotypic expression during gestation, prepuberty, adolescence, mid-to-late reproductive years and postmenopause has yet to be determined. Wider implications of the findings Characterizing adult female monkeys with naturally occurring hyperandrogenism has identified individuals with high LH and AMH combined with infertility, suggesting developmental linkage among traits with endemic origins beyond humans. PCOS may thus be an ancient phenotype, as previously proposed, with a definable pathogenic mechanism(s). Study funding/competing interest(s) Funded by competitive supplement to P51 OD011106 (PI: Mallick), by P50 HD028934 (PI: Marshall) and by P50 HD044405 (PI: Dunaif). The authors have no potential conflicts of interest.
Collapse
Affiliation(s)
- D H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - B H Rayome
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - D A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, CA, USA
| | | | - A K Edwards
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - K Wallen
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, USA.,Department of Psychology, Emory University, Atlanta, GA, USA
| | - M E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, USA
| | - S E Appt
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - J E Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
14
|
Balasubramanian P, Mattison JA, Anderson RM. Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res Rev 2017; 39:29-35. [PMID: 28219777 PMCID: PMC5563491 DOI: 10.1016/j.arr.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/29/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
Abstract
This short review focuses on the importance of nonhuman primate nutrition and aging studies and makes the case that a targeted expansion of the use of this highly translatable model would be advantageous to the biology of aging field. First, we describe the high degree of similarity of the model in terms of aging phenotypes including incidence and prevalence of common human age-related diseases. Second, we discuss the importance of the nonhuman primate nutrition and aging studies and the extent to which the outcomes of two ongoing long-term studies of caloric restriction are congruent with short-term equivalent studies in humans. Third, we showcase a number of pharmacological agents previously employed in nonhuman primate studies that display some potential as caloric restriction mimetics. Finally, we present nonhuman primates as an important model for translation of mechanisms of delayed aging identified in studies of shorter-lived animals. Proof of efficacy and safety of candidate longevity agents in nonhuman primates would be a cost-effective means to bring these exciting new avenues a step closer to clinical application.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Geriatic Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
15
|
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1066-1077. [PMID: 27836629 PMCID: PMC5423868 DOI: 10.1016/j.bbadis.2016.11.010] [Citation(s) in RCA: 1007] [Impact Index Per Article: 125.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca2+ regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Gurjit Kaur Bhatti
- UGC Centre of Excellence in Nano applications, Panjab University, UIPS building, Chandigarh 160014, India
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States
| |
Collapse
|
16
|
Vaughan KL, Mattison JA. Obesity and Aging in Humans and Nonhuman Primates: A Mini-Review. Gerontology 2016; 62:611-617. [PMID: 27120471 PMCID: PMC5073030 DOI: 10.1159/000445800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity in the US is increasing exponentially across gender, age and ethnic groups. Obesity and a long-term hypercaloric diet result in what appears to be accelerated aging, often leading to a multi-systemic deterioration known as the metabolic syndrome. Due to their physiological similarity to humans as well as comparable rates of spontaneous obesity and diabetes mellitus, nonhuman primates provide a useful translational model for the human condition. They allow for an in vivo study of disease progression, interaction of comorbidities, and novel interventions. However, defining obesity in aged humans and nonhuman primates is difficult as the physiological changes that occur with aging are not accounted for using our current systems (BMI - body mass index and BCS - body condition score). Nonetheless, nonhuman primate studies have greatly contributed to our understanding of obesity and metabolic dysfunction and should continue to play a large role in translational research. Here, methods for defining obesity and metabolic syndrome in humans and nonhuman primates are described along with the prevalence and effects of these conditions.
Collapse
Affiliation(s)
- Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, Md., USA
| | | |
Collapse
|
17
|
López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol 2016; 594:2043-60. [PMID: 26607973 PMCID: PMC4834802 DOI: 10.1113/jp270543] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
Ageing causes loss of function in tissues and organs, is accompanied by a chronic inflammatory process and affects life- and healthspan. Calorie restriction (CR) is a non-genetic intervention that prevents age-associated diseases and extends longevity in most of the animal models studied so far. CR produces a pleiotropic effect and improves multiple metabolic pathways, generating benefits to the whole organism. Among the effects of CR, modulation of mitochondrial activity and a decrease in oxidative damage are two of the hallmarks. Oxidative damage is reduced by the induction of endogenous antioxidant systems and modulation of the peroxidability index in cell membranes. Mitochondrial activity changes are regulated by inhibition of IGF-1 and Target of Rapamycin (TOR)-dependent activities and activation of AMP-dependent kinase (AMPK) and the sirtuin family of proteins. The activity of PGC-1α and FoxO is regulated by these systems and is involved in mitochondria biogenesis, oxidative metabolism activity and mitochondrial turnover. The use of mimetics and the regulation of common factors have demonstrated that these molecular pathways are essential to explain the effect of CR in the organism. Finally, the anti-inflammatory effect of CR is an interesting emerging factor to be taken into consideration. In the present revision we focus on the general effect of CR and other mimetics in longevity, focusing especially on the cardiovascular system and skeletal muscle.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | - Plácido Navas
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| |
Collapse
|
18
|
Wang H, Arias EB, Cartee GD. Calorie restriction leads to greater Akt2 activity and glucose uptake by insulin-stimulated skeletal muscle from old rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R449-58. [PMID: 26739650 DOI: 10.1152/ajpregu.00449.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/30/2015] [Indexed: 11/22/2022]
Abstract
Skeletal muscle insulin resistance is associated with many common age-related diseases, but moderate calorie restriction (CR) can substantially elevate glucose uptake by insulin-stimulated skeletal muscle from both young and old rats. The current study evaluated the isolated epitrochlearis muscle from ∼24.5-mo-old rats that were either fed ad libitum (AL) or subjected to CR (consuming ∼65% of ad libitum, AL, intake beginning at ∼22.5 mo old). Some muscles were also incubated with MK-2206, a potent and selective Akt inhibitor. The most important results were that in isolated muscles, CR vs. AL resulted in 1) greater insulin-stimulated glucose uptake 2) that was accompanied by significantly increased insulin-mediated activation of Akt2, as indicated by greater phosphorylation on both Thr(309) and Ser(474) along with greater Akt2 activity, 3) concomitant with enhanced phosphorylation of several Akt substrates, including an Akt substrate of 160 kDa on Thr(642) and Ser(588), filamin C on Ser(2213) and proline-rich Akt substrate of 40 kDa on Thr(246), but not TBC1D1 on Thr(596); and 4) each of the CR effects was eliminated by MK-2206. These data provide compelling new evidence linking greater Akt2 activation to the CR-induced elevation of insulin-stimulated glucose uptake by muscle from old animals.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Fowler CG, Chiasson KB, Colman RJ, Kemnitz JW, Beasley TM, Weindruch RH. Hyperinsulinemia/diabetes, hearing, and aging in the University of Wisconsin calorie restriction monkeys. Hear Res 2015; 328:78-86. [PMID: 26163094 PMCID: PMC4581975 DOI: 10.1016/j.heares.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/20/2015] [Accepted: 07/02/2015] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to determine the effects of hyperinsulinemia/Type 2 diabetes mellitus (HI-T2DM) on hearing impairment using rhesus monkeys to obtain control over diet and lifestyle factors that confound human studies. The study is a retrospective evaluation of rhesus monkeys from the Wisconsin National Primate Research Center (WNPRC) study on caloric restriction and aging. The research questions were the following: 1. Is HI-T2DM related to hearing impairment? 2. If so, what is the site of lesion in the auditory system? and 3. What physiological factors affect the risk of hearing loss in HI-T2DM? Three groups of eight monkeys each were matched by sex and age; the caloric restricted (CR) monkeys had a reduced risk of diabetes, the normal control (NL) group had a normal risk, and the hyperinsulinemia/diabetes (HI-D) group had already developed HI-T2DM. Auditory testing included distortion product otoacoustic emissions (DPOAEs) with f2 frequencies from 2211 to 8837 Hz and auditory brainstem responses (ABRs) obtained with clicks and tone bursts (8, 16, and 32 kHz). DPOAEs had signal-to-noise ratios 8-17 dB larger in the NL group than in the HI-D and CR groups, signifying that cochlear function was best in the NL group. ABR thresholds were 5-8 dB better in the NL group than in the HI-D group, although no significant differences across the groups were evident for the thresholds, latencies, interwave intervals, or amplitudes. Correlations were significant for quadratic relations between body mass index (BMI) and DPOAE, with largest DPOAEs for animals in the middle of the BMI range. ABR thresholds elicited with 16 and 32 kHz signals were significantly correlated, positively with BMI and HbA1c, and negatively with KG (glucose tolerance), SI (insulin sensitivity index) and DI (disposition index). These findings suggest that the hearing loss associated with HI-T2DM is predominantly cochlear, and auditory structures underlying the higher frequencies are at risk with HI-T2DM. Loss of auditory function begins in the hyperinsulinemia, pre-diabetic state.
Collapse
Affiliation(s)
- Cynthia G Fowler
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive Madison, Madison, WI 53706, USA.
| | | | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715-1299, USA.
| | - Joseph W Kemnitz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715-1299, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715-1299, USA.
| | - T Mark Beasley
- Department of Biostatistics, School of Public Health, Ryals Public Health Bldg., University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Richard H Weindruch
- Department of Medicine, University of Wisconsin-Madison, Room B72 Veterans Admin Hospital, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705-2286, USA.
| |
Collapse
|
20
|
Keogh K, Kenny DA, Kelly AK, Waters SM. Insulin secretion and signaling in response to dietary restriction and subsequent re-alimentation in cattle. Physiol Genomics 2015; 47:344-54. [PMID: 26015430 DOI: 10.1152/physiolgenomics.00002.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/22/2015] [Indexed: 01/04/2023] Open
Abstract
The objectives of this study were to examine systemic insulin response to a glucose tolerance test (GTT) and transcript abundance of genes of the insulin signaling pathway in skeletal muscle, during both dietary restriction and re-alimentation-induced compensatory growth. Holstein Friesian bulls were blocked to one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 15) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (periods 1 and 2) (ADLIB, n = 15). On days 90 and 36 of periods 1 and 2, respectively, a GTT was performed. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2, respectively, and RNA-Seq analysis was performed. RES displayed a lower growth rate during period 1 (RES: 0.6 kg/day, ADLIB: 1.9 kg/day; P < 0.001), subsequently gaining more during re-alimentation (RES: 2.5 kg/day, ADLIB: 1.4 kg/day; P < 0.001). Systemic insulin response to glucose administration was lower in RES in period 1 (P < 0.001) with no difference observed during period 2. The insulin signaling pathway in M. longissimus dorsi was enriched (P < 0.05) in response to dietary restriction but not during re-alimentation (P > 0.05). Genes differentially expressed in the insulin signaling pathway suggested a greater sensitivity to insulin in skeletal muscle, with pleiotropic effects of insulin signaling interrupted during dietary restriction. Collectively, these results indicate increased sensitivity to glucose clearance and skeletal muscle insulin signaling during dietary restriction; however, no overall role for insulin was apparent in expressing compensatory growth.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, County Meath, Ireland; and UCD School of Agriculture and Food Science, Belfield, Dublin, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, County Meath, Ireland; and
| | - Alan K Kelly
- UCD School of Agriculture and Food Science, Belfield, Dublin, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, County Meath, Ireland; and
| |
Collapse
|
21
|
Lamming DW. Diminished mTOR signaling: a common mode of action for endocrine longevity factors. SPRINGERPLUS 2014; 3:735. [PMID: 25674466 PMCID: PMC4320218 DOI: 10.1186/2193-1801-3-735] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
Since the initial observation that a calorie-restricted (CR) diet can extend rodent lifespan, many genetic and pharmaceutical interventions that also extend lifespan in mammals have been discovered. The mechanism by which CR and these other interventions extend lifespan is the subject of significant debate and research. One proposed mechanism is that CR promotes longevity by increasing insulin sensitivity, but recent findings that dissociate longevity and insulin sensitivity cast doubt on this hypothesis. These findings can be reconciled if longevity is promoted not via increased insulin sensitivity, but instead via decreased PI3K/Akt/mTOR pathway signaling. This review presents a unifying hypothesis that explains the lifespan-extending effects of a variety of genetic mutations and pharmaceutical interventions and points towards new molecular pathways which may also be leveraged to promote healthy aging.
Collapse
Affiliation(s)
- Dudley W Lamming
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin USA ; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin USA
| |
Collapse
|
22
|
Keller E, Chazenbalk GD, Aguilera P, Madrigal V, Grogan T, Elashoff D, Dumesic DA, Abbott DH. Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys. Endocrinology 2014; 155:2696-703. [PMID: 24735327 PMCID: PMC4060192 DOI: 10.1210/en.2014-1050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metabolic characteristics of polycystic ovary syndrome women and polycystic ovary syndrome-like, prenatally androgenized (PA) female monkeys worsen with age, with altered adipogenesis of sc abdominal adipose potentially contributing to age-related adverse effects on metabolism. This study examines whether adipocyte morphology and gene expression in sc abdominal adipose differ between late reproductive-aged PA female rhesus monkeys compared with age-matched controls (C). Subcutaneous abdominal adipose of both groups was obtained for histological imaging and mRNA determination of zinc finger protein 423 (Zfp423) as a marker of adipose stem cell commitment to preadipocytes, and CCAAT/enhancer binding protein (C/EBP)α/peroxisome proliferator-activated receptor (PPAR)δ as well as C/EBPα/PPARγ as respective markers of early- and late-stage differentiation of preadipocytes to adipocytes. In all females combined, serum testosterone (T) levels positively correlated with fasting serum levels of total free fatty acid (r(2) = 0.73, P < .002). PA females had a greater population of small adipocytes vs C (P < .001) in the presence of increased Zfp423 (P < .025 vs C females) and decreased C/EBPα (P < .003, vs C females) mRNA expression. Moreover, Zfp423 mRNA expression positively correlated with circulating total free fatty acid levels during iv glucose tolerance testing (P < .004, r(2) = 0.66), whereas C/EBPα mRNA expression negatively correlated with serum T levels (P < .02, r(2) = 0.43). Gene expression of PPARδ and PPARγ were comparable between groups (P = .723 and P = .18, respectively). Early-to-mid gestational T excess in female rhesus monkeys impairs adult preadipocyte differentiation to adipocytes in sc abdominal adipose and may constrain the ability of this adipose depot to safely store fat with age.
Collapse
Affiliation(s)
- Erica Keller
- Departments of Obstetrics and Gynecology (E.K., G.D.C., P.A., V.M., D.A.D.) and Medicine Statistics Core (T.G., D.E.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095-1740; and Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A.), University of Wisconsin, Madison, Wisconsin 53715
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sharma N, Sequea DA, Castorena CM, Arias EB, Qi NR, Cartee GD. Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles. PLoS One 2013; 8:e65118. [PMID: 23755179 PMCID: PMC3670927 DOI: 10.1371/journal.pone.0065118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
Calorie restriction (CR) (consuming ~60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344 x Brown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (~140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [(14)C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160 kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Donel A. Sequea
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carlos M. Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nathan R. Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mattison JA, Wright C, Bronson RT, Roth GS, Ingram DK, Bartke A. Studies of aging in ames dwarf mice: Effects of caloric restriction. J Am Aging Assoc 2013; 23:9-16. [PMID: 23604794 DOI: 10.1007/s11357-000-0002-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ames dwarf mice, which are small and deficient in growth homone (GH), prolactin (PRL), and thyroid stimulating hormone (TSH) live much longer (1-1.25 years) than their normal siblings. It was of interest to examine the response of these animals to caloric restriction (CR) because of the possibility that dwarf mice are voluntarily caloric restricted. We are testing the hypothesis that this possible natural caloric restriction will negate any benefits of an imposed CR on lifespan. Male and female Ames dwarf mice and their normal counterparts have been fed ad libitum (AL) or a 30% CR diet for 25-29 months. Animals were monitored daily and weighed weekly. At 12-15 months of age, CR mice weighed significantly less than their AL fed counterparts (normal females: -42%, normal males: -23%, dwarf females: -18.8%, and dwarf males: -22.2%). Only in dwarf females has this significant difference disappeared with age. At one year of age, a comparison of daily food consumption revealed that female dwarf mice consume significantly more food per gram body weight than normal females and a similar tendency is evident for males. Although they received 30% less food, CR mice ate the same amount as AL mice per gram body weight. On measures of total locomotor activity, CR mice were significantly more active than their AL-fed counterparts. On an inhibitory avoidance learning task, 18-21 month old dwarf mice exhibited significantly better retention than their age-and diet-matched normal counterparts. Histopathological analysis in aging dwarf versus normal mice suggested that the incidence of tumors does not differ between the two groups but tumors appear to develop later in dwarf than in normal mice. After 2.25 years on the study 27% of AL normals, 52% of CR normals, 74% of AL dwarfs, and 87% of CR dwarfs are still alive. We conclude that Ames dwarfs are not CR mimetics although they share many characteristics. It remains to be determined whether CR will delay aging and cause a further life extension in Ames dwarf mice.
Collapse
Affiliation(s)
- J A Mattison
- Department of Physiology, Southern Illinois University, Carbondale, IL
| | | | | | | | | | | |
Collapse
|
25
|
Csiszar A, Sosnowska D, Tucsek Z, Gautam T, Toth P, Losonczy G, Colman RJ, Weindruch R, Anderson RM, Sonntag WE, Ungvari Z. Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells. J Gerontol A Biol Sci Med Sci 2012; 68:235-49. [PMID: 22904098 DOI: 10.1093/gerona/gls158] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Moderate caloric restriction (CR) without malnutrition increases healthspan in virtually every species studied, including nonhuman primates. In mice, CR exerts significant microvascular protective effects resulting in increased microvascular density in the heart and the brain, which likely contribute to enhanced tolerance to ischemia and improved cardiac performance and cognitive function. Yet, the underlying mechanisms by which CR confer microvascular protection remain elusive. To test the hypothesis that circulating factors triggered by CR regulate endothelial angiogenic capacity, we treated cultured human endothelial cells with sera derived from Macaca mulatta on long-term (over 10 years) CR. Cells treated with sera derived from ad-libitum-fed control monkeys served as controls. We found that factors present in CR sera upregulate vascular endothelial growth factor (VEGF) signaling and stimulate angiogenic processes, including endothelial cell proliferation and formation of capillary-like structures. Treatment with CR sera also tended to increase cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology) and adhesion to collagen. Collectively, we find that circulating factors induced by CR promote endothelial angiogenic processes, suggesting that increased angiogenesis may be a potential mechanism by which CR improves cardiac function and prevents vascular cognitive impairment.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Preventing the calorie restriction-induced increase in insulin-stimulated Akt2 phosphorylation eliminates calorie restriction's effect on glucose uptake in skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1735-40. [PMID: 22846604 DOI: 10.1016/j.bbadis.2012.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022]
Abstract
Calorie restriction (CR; ~60% of ad libitum, AL, consumption) improves insulin-stimulated glucose uptake in skeletal muscle. The precise cellular mechanism for this healthful outcome is unknown, but it is accompanied by enhanced insulin-stimulated activation of Akt. Previous research using Akt2-null mice demonstrated that Akt2 is essential for the full CR-effect on insulin-stimulated glucose uptake by muscle. However, because Akt2-null mice were completely deficient in Akt2 in every cell throughout life, it would be valuable to assess the efficacy of transient, muscle-specific Akt inhibition for attenuation of CR-effects on glucose uptake. Accordingly, we used a selective Akt inhibitor (MK-2206) to eliminate the CR-induced elevation in insulin-stimulated Akt2 phosphorylation and determined the effects on Akt substrates and glucose uptake. We incubated isolated epitrochlearis muscles from 9-month-old AL and CR (~60-65% of AL intake for 6months) rats with or without MK-2206 and measured insulin-stimulated (1.2nM) glucose uptake and phosphorylation of the insulin receptor (Tyr1162/1163), pan-Akt (Thr308 and Ser473), Akt2 (Thr308 and Ser473), AS160/TBC1D4 (Thr642), and Filamin C (Ser2213). Incubation of isolated skeletal muscles with a dose of a selective Akt inhibitor that eliminated the CR-induced increases in Akt2 phosphorylation prevented CR's effects on insulin-stimulated glucose uptake, pAS160(Thr642) and pFilamin C(Ser2213) without altering pIR(Tyr1162/1163). These data provide compelling new evidence linking the CR-induced increase in insulin-stimulated Akt2 phosphorylation to CR's effects on insulin-mediated phosphorylation of Akt substrates and glucose uptake in skeletal muscle.
Collapse
|
27
|
Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 2012; 11:390-8. [PMID: 22210414 DOI: 10.1016/j.arr.2011.11.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/09/2011] [Accepted: 11/18/2011] [Indexed: 12/25/2022]
Abstract
During aging there is an increasing imbalance of energy intake and expenditure resulting in obesity, frailty, and metabolic disorders. For decades, research has shown that caloric restriction (CR) and exercise can postpone detrimental aspects of aging. These two interventions invoke a similar physiological signature involving pathways associated with stress responses and mitochondrial homeostasis. Nonetheless, CR is able to delay aging processes that result in an increase of both mean and maximum lifespan, whereas exercise primarily increases healthspan. Due to the strict dietary regime necessary to achieve the beneficial effects of CR, most studies to date have focused on rodents and non-human primates. As a consequence, there is vast interest in the development of compounds such as resveratrol, metformin and rapamycin that would activate the same metabolic- and stress-response pathways induced by these interventions without actually restricting caloric intake. Therefore the scope of this review is to (i) describe the benefits of CR and exercise in healthy individuals, (ii) discuss the role of these interventions in the diseased state, and (iii) examine some of the promising pharmacological alternatives such as CR- and exercise-mimetics.
Collapse
|
28
|
Willette AA, Bendlin BB, Colman RJ, Kastman EK, Field AS, Alexander AL, Sridharan A, Allison DB, Anderson R, Voytko ML, Kemnitz JW, Weindruch RH, Johnson SC. Calorie restriction reduces the influence of glucoregulatory dysfunction on regional brain volume in aged rhesus monkeys. Diabetes 2012; 61:1036-42. [PMID: 22415875 PMCID: PMC3331743 DOI: 10.2337/db11-1187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Insulin signaling dysregulation is related to neural atrophy in hippocampus and other areas affected by neurovascular and neurodegenerative disorders. It is not known if long-term calorie restriction (CR) can ameliorate this relationship through improved insulin signaling or if such an effect might influence task learning and performance. To model this hypothesis, magnetic resonance imaging was conducted on 27 CR and 17 control rhesus monkeys aged 19-31 years from a longitudinal study. Voxel-based regression analyses were used to associate insulin sensitivity with brain volume and microstructure cross-sectionally. Monkey motor assessment panel (mMAP) performance was used as a measure of task performance. CR improved glucoregulation parameters and related indices. Higher insulin sensitivity predicted more gray matter in parietal and frontal cortices across groups. An insulin sensitivity × dietary condition interaction indicated that CR animals had more gray matter in hippocampus and other areas per unit increase relative to controls, suggesting a beneficial effect. Finally, bilateral hippocampal volume adjusted by insulin sensitivity, but not volume itself, was significantly associated with mMAP learning and performance. These results suggest that CR improves glucose regulation and may positively influence specific brain regions and at least motor task performance. Additional studies are warranted to validate these relationships.
Collapse
Affiliation(s)
- Auriel A. Willette
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barbara B. Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Erik K. Kastman
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron S. Field
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aadhavi Sridharan
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - David B. Allison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rozalyn Anderson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Mary-Lou Voytko
- Department of Neurobiology and Anatomy Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Joseph W. Kemnitz
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard H. Weindruch
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
- Corresponding author: Sterling C. Johnson,
| |
Collapse
|
29
|
Abstract
Animal models are important for determining the pathogenesis of and potential treatments for obesity and diabetes. Nonhuman primates (NHPs) are particularly useful for studying these disorders. As in humans, type 2 diabetes mellitus is the most common form of diabetes in NHPs and occurs more often in older obese animals, with a metabolic progression from insulin resistance (IR) and impaired glucose tolerance to overt diabetes. Histopathologic changes in pancreatic islets are also similar to those seen in humans with diabetes. Initially, there is islet hyperplasia with abundant insulin production to compensate for IR, followed by insufficient insulin production with replacement of islets with islet-associated amyloid. Diabetic NHPs also have adverse changes in plasma lipid and lipoprotein concentrations, biomarkers of obesity, inflammation, and oxidative stress, and protein glycation that contribute to the numerous complications of the disease. Furthermore, sex hormones, pregnancy, and environmental factors (e.g., diet and stress) affect IR and can also contribute to diabetes progression in NHPs. Additionally, due to their similar clinical and pathologic characteristics, NHPs have been used in many pharmacological studies to assess new therapeutic agents. For these reasons, NHPs are particularly valuable animal models of obesity and diabetes for studying disease pathogenesis, risk factors, comorbidities, and therapeutic interventions.
Collapse
Affiliation(s)
- H James Harwood
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
30
|
Marchal J, Blanc S, Epelbaum J, Aujard F, Pifferi F. Effects of chronic calorie restriction or dietary resveratrol supplementation on insulin sensitivity markers in a primate, Microcebus murinus. PLoS One 2012; 7:e34289. [PMID: 22479589 PMCID: PMC3316613 DOI: 10.1371/journal.pone.0034289] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day(-1)·kg(-1)). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes.
Collapse
Affiliation(s)
- Julia Marchal
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie, Ethologie UMR 7178 CNRS Université Louis Pasteur, Strasbourg, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neuroscience, UMR 894 Inserm, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
- * E-mail:
| | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| |
Collapse
|
31
|
Sequea DA, Sharma N, Arias EB, Cartee GD. Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J Gerontol A Biol Sci Med Sci 2012; 67:1279-85. [PMID: 22454372 DOI: 10.1093/gerona/gls085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.
Collapse
Affiliation(s)
- Donel A Sequea
- University of Michigan, School of Kinesiology, Room 4745F, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA.
| | | | | | | |
Collapse
|
32
|
Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol 2012; 24:101-6. [PMID: 22290875 DOI: 10.1002/ajhb.22243] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 12/16/2022] Open
Abstract
Underlying the importance of research on the biology of aging is the fact that many nations face the demographic reality of a rapidly aging populace and the looming healthcare challenges that it brings. This reality is a result of aging itself being the most significant risk factor for a range of the most prevalent diseases, including many cancers, cardiovascular disease, and diabetes. Accordingly, interventions are sorely needed that would be able to delay or prevent diseases and disorders associated with the aging process and thereby increase the period of time that aging individuals are in good health (the health-span). Caloric restriction (CR) has emerged as a model of major interest as it is widely agreed that CR is the most potent environmental intervention that delays the onset of aging and extends life span in diverse experimental organisms. A better understanding of the mechanisms by which CR delays aging will reveal new insights into the aging process and the underlying causes of disease vulnerability with age. These novel insights will allow the development of novel treatments and preventive measures for age-associated diseases and disorders.
Collapse
Affiliation(s)
- Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
33
|
Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol 2011; 301:H1205-19. [PMID: 21841020 PMCID: PMC3197347 DOI: 10.1152/ajpheart.00685.2011] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Research has shown that the majority of the cardiometabolic alterations associated with an increased risk of CVD (e.g., insulin resistance/type 2 diabetes, abdominal obesity, dyslipidemia, hypertension, and inflammation) can be prevented, and even reversed, with the implementation of healthier diets and regular exercise. Data from animal and human studies indicate that more drastic interventions, i.e., calorie restriction with adequate nutrition (CR), may have additional beneficial effects on several metabolic and molecular factors that are modulating cardiovascular aging itself (e.g., cardiac and arterial stiffness and heart rate variability). The purpose of this article is to review the current knowledge on the effects of CR on the aging of the cardiovascular system and CVD risk in rodents, monkeys, and humans. Taken together, research shows that CR has numerous beneficial effects on the aging cardiovascular system, some of which are likely related to reductions in inflammation and oxidative stress. In the vasculature, CR appears to protect against endothelial dysfunction and arterial stiffness and attenuates atherogenesis by improving several cardiometabolic risk factors. In the heart, CR attenuates age-related changes in the myocardium (i.e., CR protects against fibrosis, reduces cardiomyocyte apoptosis, prevents myosin isoform shifts, etc.) and preserves or improves left ventricular diastolic function. These effects, in combination with other benefits of CR, such as protection against obesity, diabetes, hypertension, and cancer, suggest that CR may have a major beneficial effect on health span, life span, and quality of life in humans.
Collapse
Affiliation(s)
- Edward P Weiss
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, Missouri 63104, USA.
| | | |
Collapse
|
34
|
Omodei D, Fontana L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 2011; 585:1537-42. [PMID: 21402069 PMCID: PMC3439843 DOI: 10.1016/j.febslet.2011.03.015] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
Abstract
Life expectancy in the world has increased dramatically during the last century; the number of older adults is expected to rise while the number of youths will decline in the near future. This demographic shift has considerable public health and economic implications since aging is associated with the development of serious chronic diseases. Calorie restriction (CR) is the most effective nutritional intervention for slowing aging and preventing chronic disease in rodents. In non-human and human primates, CR with adequate nutrition protects against abdominal obesity, diabetes, hypertension and cardiovascular diseases. Cancer morbidity and mortality are also diminished in CR monkeys, and data obtained from individuals practicing long-term CR show a reduction of metabolic and hormonal factors associated with increased cancer risk.
Collapse
Affiliation(s)
- Daniela Omodei
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nutrition and Aging, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
35
|
Sharma N, Arias EB, Bhat AD, Sequea DA, Ho S, Croff KK, Sajan MP, Farese RV, Cartee GD. Mechanisms for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and slow-twitch skeletal muscles of calorie-restricted rats. Am J Physiol Endocrinol Metab 2011; 300:E966-78. [PMID: 21386065 PMCID: PMC3118592 DOI: 10.1152/ajpendo.00659.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, Ann Arbor, MI 48109-2214, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vendelbo MH, Nair KS. Mitochondrial longevity pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:634-44. [PMID: 21295080 PMCID: PMC3071741 DOI: 10.1016/j.bbamcr.2011.01.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/31/2022]
Abstract
Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Better understanding of the underlying mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing oxidative damage. Reactive oxygen species (ROS) have been proposed to cause deleterious effects on DNA, proteins, and lipids, and generation of these highly reactive molecules takes place in the mitochondria. But ROS is positively implicated in cellular stress defense mechanisms and formation of ROS a highly regulated process controlled by a complex network of intracellular signaling pathways. There are endogenous anti-oxidant defense systems that have the potential to partially counteract ROS impact. In this review, we will describe pathways contributing to the regulation of the age-related decline in mitochondrial function and their impact on longevity. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- M H Vendelbo
- Division of endocrinology, Endocrine research Unit, The Mayo Clinic, 200 1st Street SW Joseph 5-194, Rochester, MN 55905, USA
| | | |
Collapse
|
37
|
Lu J, Lezi E, Wang W, Frontera J, Zhu H, Wang WT, Lee SP, Choi IY, Brooks WM, Burns JM, Aires D, Swerdlow RH. Alternate day fasting impacts the brain insulin-signaling pathway of young adult male C57BL/6 mice. J Neurochem 2011; 117:154-63. [PMID: 21244426 PMCID: PMC3055925 DOI: 10.1111/j.1471-4159.2011.07184.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five-month-old male mice were placed in ad libitum or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF + AO) fed group. During the 24-h fast blood glucose levels initially fell but stabilized within 6 h of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and glycogen synthase kinase 3 beta phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin-signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMP kinase phosphorylation, silent information regulator 2 phosphorylation, peroxisomal proliferator-activated receptor-gamma coactivator 1 alpha levels, and cytochrome oxidase subunit 4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production.
Collapse
Affiliation(s)
- Jianghua Lu
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - E Lezi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - WenFang Wang
- Department of Dermatology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Jennifer Frontera
- Department of Dermatology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Hao Zhu
- Department of Dermatology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Wen-Tung Wang
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Sang-Pil Lee
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - In Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - William M. Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Daniel Aires
- Department of Dermatology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| |
Collapse
|
38
|
Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis. PLoS One 2011; 6:e18433. [PMID: 21483800 PMCID: PMC3069103 DOI: 10.1371/journal.pone.0018433] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/04/2011] [Indexed: 01/28/2023] Open
Abstract
Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.
Collapse
|
39
|
Abstract
In the 75 years since the seminal observation of Clive McCay that restriction of calorie intake extends the lifespan of rats, a great deal has been learned about the effects of calorie restriction (CR; reduced intake of a nutritious diet) on aging in various short-lived animal models. Studies have demonstrated many beneficial effects of CR on health, the rate of aging, and longevity. Two prospective investigations of the effects of CR on long-lived nonhuman primate (NHP) species began nearly 25 years ago and are still under way. This review presents the design, methods, and main findings of these and other important contributing studies, which have generally revealed beneficial effects of CR on physiological function and the retardation of disease consistent with studies in other species. Specifically, prolonged CR appears to extend the lifespan of rhesus monkeys, which exhibited lower body fat; slower rate of muscle loss with age; lower incidence of neoplasia, cardiovascular disease, type 2 diabetes mellitus, and endometriosis; improved insulin sensitivity and glucose tolerance; and no apparent adverse effect on bone health, as well as a reduction in total energy expenditure. In addition, there are no reports of deleterious effects of CR on reproductive endpoints, and brain morphology is preserved by CR. Adrenal and thyroid hormone profiles are inconsistently affected. More research is needed to delineate the mechanisms of the desirable outcomes of CR and to develop interventions that can produce similar beneficial outcomes for humans. This research offers tremendous potential for producing novel insights into aging and risk of disease.
Collapse
Affiliation(s)
- Joseph W Kemnitz
- Wisconsin National Primate Research Center, 1220 Capitol Court, Madison, WI 53715-1299, USA.
| |
Collapse
|
40
|
|
41
|
Abstract
BACKGROUND Calorie Restriction (CR) research has expanded rapidly over the past few decades and CR remains the most highly reproducible, environmental intervention to improve health and extend lifespan in animal studies. Although many model organisms have consistently demonstrated positive responses to CR, it remains to be shown whether CR will extend lifespan in humans. Additionally, the current environment of excess caloric consumption and high incidence of overweight/obesity illustrate the improbable nature of the long-term adoption of a CR lifestyle by a significant proportion of the human population. Thus, the search for substances that can reproduce the beneficial physiologic responses of CR without a requisite calorie intake reduction, termed CR mimetics (CRMs), has gained momentum. MATERIAL AND METHODS Recent articles describing health and lifespan results of CR in nonhuman primates and short-term human studies are discussed. Additional consideration is given to the rapidly expanding search for CRMs. RESULTS The first results from a long-term, randomized, controlled CR study in nonhuman primates showing statistically significant benefits on longevity have now been reported. Additionally, positive results from short-term, randomized, controlled CR studies in humans are suggestive of potential health and longevity gains, while test of proposed CRMs (including rapamycin, resveratrol, 2-deoxyglucose and metformin) have shown both positive and mixed results in rodents. CONCLUSION Whether current positive results will translate into longevity gains for humans remains an open question. However, the apparent health benefits that have been observed with CR suggest that regardless of longevity gains, the promotion of healthy ageing and disease prevention may be attainable.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
42
|
Cruzen C, Colman RJ. Effects of caloric restriction on cardiovascular aging in non-human primates and humans. Clin Geriatr Med 2010; 25:733-43, ix-x. [PMID: 19944270 DOI: 10.1016/j.cger.2009.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Approximately one in three Americans has some form of cardiovascular disease (CVD), accounting for one of every 2.8 deaths in the United States in 2004. Two of the major risk factors for CVD are advancing age and obesity. An intervention able to positively impact both aging and obesity, such as caloric restriction (CR), may prove extremely useful in the fight against CVD. CR is the only environmental or lifestyle intervention that repeatedly has been shown to increase maximum life span and to retard aging in laboratory rodents. This article reviews evidence that CR in nonhuman primates and people has a positive effect on risk factors for CVD.
Collapse
Affiliation(s)
- Christina Cruzen
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | | |
Collapse
|
43
|
Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 2010; 31:89-98. [PMID: 20097433 DOI: 10.1016/j.tips.2009.11.004] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 12/16/2022]
Abstract
An important discovery of recent years has been that lifestyle and environmental factors affect cancer initiation, promotion and progression, suggesting that many malignancies are preventable. Epidemiological studies strongly suggest that excessive adiposity, decreased physical activity, and unhealthy diets are key players in the pathogenesis and prognosis of many common cancers. In addition, calorie restriction (CR), without malnutrition, has been shown to be broadly effective in cancer prevention in laboratory strains of rodents. Adult-onset moderate CR also reduces cancer incidence by 50% in monkeys. Whether the antitumorigenic effects of CR will apply to humans is unknown, but CR results in a consistent reduction in circulating levels of growth factors, anabolic hormones, inflammatory cytokines and oxidative stress markers associated with various malignancies. Here, we discuss the link between nutritional interventions and cancer prevention with focus on the mechanisms that might be responsible for these effects in simple systems and mammals with a view to developing chemoprevention agents.
Collapse
Affiliation(s)
- Valter D Longo
- The Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
44
|
Cantó C, Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 2009; 20:325-31. [PMID: 19713122 PMCID: PMC3627124 DOI: 10.1016/j.tem.2009.03.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 01/03/2023]
Abstract
More than 70 years after its initial report, caloric restriction stands strong as the most consistent non-pharmacological intervention increasing lifespan and protecting against metabolic disease. Among the different mechanisms by which caloric restriction might act, Sir2/SIRT1 (Silent information regulator 2/Silent information regulator T1) has been the focus of much attention because of its ability to integrate sensing of the metabolic status with adaptive transcriptional outputs. This review focuses on gathered evidence suggesting that Sir2/SIRT1 is a key mediator of the beneficial effects of caloric restriction and addresses the main questions that still need to be answered to consolidate this hypothesis.
Collapse
Affiliation(s)
- Carles Cantó
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
45
|
Oo AKS, Kaneko G, Hirayama M, Kinoshita S, Watabe S. Identification of genes differentially expressed by calorie restriction in the rotifer (Brachionus plicatilis). J Comp Physiol B 2009; 180:105-16. [PMID: 19618192 DOI: 10.1007/s00360-009-0389-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 06/24/2009] [Accepted: 06/29/2009] [Indexed: 01/05/2023]
Abstract
A monogonont rotifer Brachionus plicatilis has been widely used as a model organism for physiological, ecological studies and for ecotoxicology. Because of the availability of parthenogenetic mode of reproduction as well as its versatility to be used as live food in aquaculture, the population dynamic studies using the rotifer have become more important and acquired the priority over those using other species. Although many studies have been conducted to identify environmental factors that influence rotifer populations, the molecular mechanisms involved still remain to be elucidated. In this study, gene(s) differentially expressed by calorie restriction in the rotifer was analyzed, where a calorie-restricted group was fed 3 h day(-1) and a well-fed group fed ad libitum. A subtracted cDNA library from the calorie-restricted rotifer was constructed using suppression subtractive hybridization (SSH). One hundred sixty-three expressed sequence tags (ESTs) were identified, which included 109 putative genes with a high identity to known genes in the publicly available database as well as 54 unknown ESTs. After assembling, a total of 38 different genes were obtained among 109 ESTs. Further validation of expression by semi-quantitative reverse transcription-PCR showed that 29 out of the 38 genes obtained by SSH were up regulated by calorie restriction.
Collapse
Affiliation(s)
- Aung Kyaw Swar Oo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
46
|
Wang ZQ, Floyd ZE, Qin J, Liu X, Yu Y, Zhang XH, Wagner JD, Cefalu WT. Modulation of skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys. Diabetes 2009; 58:1488-98. [PMID: 19336678 PMCID: PMC2699875 DOI: 10.2337/db08-0977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Caloric restriction (CR) has been shown to retard aging processes, extend maximal life span, and consistently increase insulin action in experimental animals. The mechanism by which CR enhances insulin action, specifically in higher species, is not precisely known. We sought to examine insulin receptor signaling and transcriptional alterations in skeletal muscle of nonhuman primates subjected to CR over a 4-year period. RESEARCH DESIGN AND METHODS At baseline, 32 male adult cynomolgus monkeys (Macaca fascicularis) were randomized to an ad libitum (AL) diet or to 30% CR. Dietary intake, body weight, and insulin sensitivity were obtained at routine intervals over 4 years. At the end of the study, hyperinsulinemic-euglycemic clamps were performed and skeletal muscle (vastus lateralis) was obtained in the basal and insulin-stimulated states for insulin receptor signaling and gene expression profiling. RESULTS CR significantly increased whole-body insulin-mediated glucose disposal compared with AL diet and increased insulin receptor signaling, i.e., insulin receptor substrate (IRS)-1, insulin receptor phosphorylation, and IRS-associated PI 3-kinase activity in skeletal muscle (P < 0.01, P < 0.01, and P < 0.01, respectively). Gene expression for insulin signaling proteins, i.e., IRS-1 and IRS-2, were not increased with CR, although a significant increase in protein abundance was noted. Components of the ubiquitin-proteasome system, i.e., 20S and 19S proteasome subunit abundance and 20S proteasome activity, were significantly decreased by CR. CONCLUSIONS CR increases insulin sensitivity on a whole-body level and enhances insulin receptor signaling in this higher species. CR in cynomolgus monkeys may alter insulin signaling in vivo by modulating protein content of insulin receptor signaling proteins.
Collapse
Affiliation(s)
- Zhong Q. Wang
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Z. Elizabeth Floyd
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Jianhua Qin
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Xiaotuan Liu
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Yongmei Yu
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Xian H. Zhang
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Janice D. Wagner
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - William T. Cefalu
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Corresponding author: William T. Cefalu,
| |
Collapse
|
47
|
Huck JL, Biery DN, Lawler DF, Gregor TP, Runge JJ, Evans RH, Kealy RD, Smith GK. A longitudinal study of the influence of lifetime food restriction on development of osteoarthritis in the canine elbow. Vet Surg 2009; 38:192-8. [PMID: 19236677 DOI: 10.1111/j.1532-950x.2008.00487.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To report the effects of age and lifetime calorie restriction on development and progression of osteoarthritis (OA) in elbow joints of Labrador retrievers. STUDY DESIGN Longitudinal cohort study. ANIMALS Labrador retriever dogs (n=48). METHODS Puppies from 7 litters were allotted to 2 groups of 24 dogs each. Diet-restricted (DR) dogs received 25% fewer calories than control-fed (CF) pair mates. Elbow radiographs were taken at 6 and 8 years of age and end of life (EOL). Gross and histopathologic evaluations for OA occurred at EOL. RESULTS There was no statistical difference in radiographic OA frequency between groups at any of the time points. Radiographic OA severity was greater for CF dogs at 6 years only (P<.05). There was no significant difference between feeding groups for histopathologic prevalence or severity of OA. Similarly, there were no differences in gross OA lesions between the groups (P>.05). Fragmented medial coronoid process, un-united anconeal process, and osteochondrosis were not present in any elbow. CONCLUSION No differences in prevalence or severity of radiographic and histopathologic elbow OA were found between feeding groups. Diet restriction resulted in a 1.8-year extension in median lifespan but no additional incremental worsening of elbow disease. Evaluation at time points <6 years may have revealed larger differences in OA prevalence and severity between the dietary groups. CLINICAL RELEVANCE These findings support calorie restriction as a clinical tool to slow progression of elbow OA.
Collapse
Affiliation(s)
- Jennifer L Huck
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rezzi S, Martin FPJ, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 2009; 44:356-62. [PMID: 19264119 PMCID: PMC2822382 DOI: 10.1016/j.exger.2009.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
The long-term health benefits of caloric restriction (CR) are well known but the associated molecular mechanisms are poorly understood despite increasing knowledge of transcriptional and related metabolic changes. We report new metabolic insights into long-term CR in nonhuman primates revealed by the holistic inspection of plasma (1)H NMR spectroscopic metabolic and lipoprotein profiles. The results revealed attenuation of aging-dependant alterations of lipoprotein and energy metabolism by CR, noted by relative increase in HDL and reduction in VLDL levels. Metabonomic analysis also revealed animals exhibiting distinct metabolic trajectories from aging that correlated with higher insulin sensitivity. The plasma profiles of insulin-sensitive animals were marked by higher levels of gluconate and acetate suggesting a CR-modulated increase in metabolic flux through the pentose-phosphate pathway. The metabonomic findings, particularly those that parallel improved insulin sensitivity, are consistent with diminished adiposity in CR monkeys despite aging. The metabolic profile and the associated pathways are compatible with our previous findings that CR-induced gene transcriptional changes in tissue suggest the critical regulation of peroxisome proliferator-activated receptors as a key mechanism. The metabolic phenotyping provided in this study can be used to define a reference molecular profile of CR-associated health benefits and longevity in symbiotic superorganisms and man.
Collapse
Affiliation(s)
- Serge Rezzi
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ UK
| | - François-Pierre J. Martin
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ UK
| | | | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - Jeremy K. Nicholson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ UK
| | - Richard Weindruch
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
- Institute on Aging and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
49
|
Abstract
Animal studies suggest that diets low in calories and rich in unsaturated fatty acids (UFA) are beneficial for cognitive function in age. Here, we tested in a prospective interventional design whether the same effects can be induced in humans. Fifty healthy, normal- to overweight elderly subjects (29 females, mean age 60.5 years, mean body mass index 28 kg/m(2)) were stratified into 3 groups: (i) caloric restriction (30% reduction), (ii) relative increased intake of UFAs (20% increase, unchanged total fat), and (iii) control. Before and after 3 months of intervention, memory performance was assessed under standardized conditions. We found a significant increase in verbal memory scores after caloric restriction (mean increase 20%; P < 0.001), which was correlated with decreases in fasting plasma levels of insulin and high sensitive C-reactive protein, most pronounced in subjects with best adherence to the diet (all r values < -0.8; all P values <0.05). Levels of brain-derived neurotrophic factor remained unchanged. No significant memory changes were observed in the other 2 groups. This interventional trial demonstrates beneficial effects of caloric restriction on memory performance in healthy elderly subjects. Mechanisms underlying this improvement might include higher synaptic plasticity and stimulation of neurofacilitatory pathways in the brain because of improved insulin sensitivity and reduced inflammatory activity. Our study may help to generate novel prevention strategies to maintain cognitive functions into old age.
Collapse
|
50
|
Colman RJ, Beasley TM, Allison DB, Weindruch R. Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 2008; 63:556-9. [PMID: 18559628 PMCID: PMC2812805 DOI: 10.1093/gerona/63.6.556] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia, the loss of muscle mass with normal aging, devastates quality of life-and related healthcare expenditures are enormous. The prevention or attenuation of sarcopenia would be an important medical advance. Dietary restriction (DR) is the only dietary intervention that consistently extends median and maximum life span, as well as health span in rodents. Evidence suggests that DR will have a similar effect in primates. Furthermore, DR opposes sarcopenia in rodents. We tested the hypothesis that DR will reduce age-related sarcopenia in a nonhuman primate. Thirty adult male rhesus monkeys, half fed a normal calorie intake and half reduced by 30% in caloric intake, were examined over 17 years for changes in dual-energy X-ray absorptiometry-estimated skeletal muscle mass. Body weight-adjusted skeletal muscle mass declined somewhat in both groups but was far more rapid in the control group. We have shown that moderate, adult-onset DR can attenuate sarcopenia in a nonhuman primate model.
Collapse
Affiliation(s)
- Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Ct., Madison, WI 53715, USA.
| | | | | | | |
Collapse
|