1
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 PMCID: PMC12105169 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Zhao Y, Wang Y, Jiang L, Cai W, Yan J. Impaired intestinal FXR signaling is involved in aberrant stem cell function leading to intestinal failure-associated liver disease in pediatric patients with short bowel syndrome. FASEB J 2024; 38:e23847. [PMID: 39096137 DOI: 10.1096/fj.202400827r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Intestinal failure-associated liver disease (IFALD) is a serious complication of long-term parenteral nutrition in patients with short bowel syndrome (SBS), and is the main cause of death in SBS patients. Prevention of IFALD is one of the major challenges in the treatment of SBS. Impairment of intestinal barrier function is a key factor in triggering IFALD, therefore promoting intestinal repair is particularly important. Intestinal repair mainly relies on the function of intestinal stem cells (ISC), which require robust mitochondrial fatty acid oxidation (FAO) for self-renewal. Herein, we report that aberrant LGR5+ ISC function in IFALD may be attributed to impaired farnesoid X receptor (FXR) signaling, a transcriptional factor activated by steroids and bile acids. In both surgical biopsies and patient-derived organoids (PDOs), SBS patients with IFALD represented lower population of LGR5+ cells and decreased FXR expression. Moreover, treatment with T-βMCA in PDOs (an antagonist for FXR) dose-dependently reduced the population of LGR5+ cells and the proliferation rate of enterocytes, concomitant with decreased key genes involved in FAO including CPT1a. Interestingly, however, treatment with Tropifexor in PDOs (an agonist for FXR) only enhanced FAO capacity, without improvement in ISC function and enterocyte proliferation. In conclusion, these findings suggested that impaired FXR may accelerate the depletion of LGR5 + ISC population through disrupted FAO processes, which may serve as a new potential target of preventive interventions against IFALD for SBS patients.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lu Jiang
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
4
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
5
|
Yan Z, Yin B, Wang Y, Ni Z, Feng J, Yang Q, Li X, Zhu H, Dou Y. Therapeutic mechanism of Liangxue-Guyuan-Yishen decoction on intestinal stem cells and tight junction proteins in gastrointestinal acute radiation syndrome rats. JOURNAL OF RADIATION RESEARCH 2023; 64:880-892. [PMID: 37697698 PMCID: PMC10665307 DOI: 10.1093/jrr/rrad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
On the basis of the previous research, the Traditional Chinese Medicine theory was used to improve the drug composition for gastrointestinal acute radiation syndrome (GI-ARS). The purpose of this study was to study the therapeutic mechanism of Liangxue-Guyuan-Yishen decoction (LGYD) on GI-ARS and to provide a new scheme for the treatment of radiation injury. Here, we investigated the effects of LGYD on intestinal stem cells (ISCs) in a GI-ARS rat model. Rat health and survival and the protective efficacy of LGYD on the intestines were analyzed. The active principles in LGYD were detected using liquid chromatography-mass spectrometry (LC-MS). ISC proliferation, intestinal epithelial tight junction (TJ) protein expression and regulatory pathways were explored using immunohistochemistry, western blotting (WB) and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. Involvement of the WNT and MEK/ERK pathways in intestinal recovery was screened using network pharmacology analysis and validated by WB and RT-qPCR. LGYD administration significantly improved health and survival in GI-ARS rats. Pathological analysis showed that LGYD ameliorated radiation-induced intestinal injury and significantly promoted LGR5+ stem cell regeneration in the intestinal crypts, upregulated TJ protein, and accelerated crypt reconstruction in the irradiated rats. LC-MS revealed ≥13 constituents that might contribute to LGYD's protective effects. Collectively, LGYD can promote crypt cell proliferation and ISCs after radiation damage, the above effect may be related to WNT and MEK/ERK pathway.
Collapse
Affiliation(s)
- Ziqiao Yan
- Department of Traditional Chinese Medicine, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Fuxing Road 28th, Haidian District, Beijing, 10038, China
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Fuxing Road 28th, Haidian District, Beijing, 10038, China
| | - Bofeng Yin
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing, 10039, China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing, 10039, China
| | - Yuguo Wang
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Fucheng Road 6th, Haidian District, Beijing, 10037, China
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing, 10039, China
| | - Jian Feng
- Department of Traditional Chinese Medicine, The Chinese People’s Liberation Army (PLA) 96604 Hospital, Jingningnan Road 72th, Chengguan District, Lanzhou, 730030, China
| | - Qianyu Yang
- Graduate School of Hebei University of Chinese Medicine, Xinshinan Road 326th, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
| | - Xiao Li
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Fuxing Road 28th, Haidian District, Beijing, 10038, China
| | - Heng Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing, 10039, China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing, 10039, China
- Beijing Institute of Basic Medical Sciences, Taiping Road 27th, Haidian District, Beijing, 10039, China
- Graduate School of Anhui Medical University, Meishan Road 69th, Shushan District, Hefei, Anhui, 230022, China
| | - Yongqi Dou
- Department of Traditional Chinese Medicine, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Fuxing Road 28th, Haidian District, Beijing, 10038, China
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Fuxing Road 28th, Haidian District, Beijing, 10038, China
| |
Collapse
|
6
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
7
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
8
|
Zhang D, Zhou X, Zhou W, Cui SW, Nie S. Intestinal organoids: A thriving and powerful tool for investigating dietary nutrients-intestinal homeostasis axis. Food Res Int 2023; 172:113109. [PMID: 37689878 DOI: 10.1016/j.foodres.2023.113109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Dietary nutrients regulate intestinal homeostasis through a variety of complex mechanisms, to affect the host health. Nowadays, various models have been used to investigate the dietary nutrients-intestinal homeostasis axis. Different from the limited flux in animal experiments, limited intestinal cell types and distorted simulation of intestinal environment of 2D cells, intestinal organoid (IO) is a 3D culture system of mini-gut with various intestinal epithelial cells (IECs) and producibility of intestinal biology. Therefore, IOs is a powerful tool to evaluate dietary nutrients-intestinal homeostasis interaction. This review summarized the application of IOs in the investigation of mechanisms for macronutrients (carbohydrates, proteins and fats) and micronutrients (vitamins and minerals) affecting intestinal homeostasis directly or indirectly (polysaccharides-intestinal bacteria, proteins-amino acids). In addition, new perspectives of IOs in combination with advanced biological techniques and their applications in precise nutrition were proposed.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Wengan Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
9
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Tian J, Li Y, Bao X, Yang F, Tang X, Jiang Q, Yang C, Yin Y, Yao K. Glutamine boosts intestinal stem cell-mediated small intestinal epithelial development during early weaning: Involvement of WNT signaling. Stem Cell Reports 2023:S2213-6711(23)00191-1. [PMID: 37327782 PMCID: PMC10362502 DOI: 10.1016/j.stemcr.2023.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023] Open
Abstract
Early weaning usually causes small intestine epithelial development abnormality, increasing the risk of gastrointestinal diseases. Glutamine (Gln), enriching in plasma and milk, is widely reported to benefit intestinal health. However, whether Gln affects intestinal stem cell (ISC) activity in response to early weaning is unclear. Here, both the early weaning mice and intestinal organoids were used to study the role of Gln in regulating ISC activities. Results showed that Gln ameliorated early weaning-induced epithelial atrophy and augmented the ISC-mediated epithelial regeneration. Gln deprivation disabled ISC-mediated epithelial regeneration and crypt fission in vitro. Mechanistically, Gln augmented WNT signaling in a dose-dependent manner to regulate ISC activity, while WNT signaling blockage abolished the effects of Gln on ISCs. Together, Gln accelerates stem cell-mediated intestinal epithelial development associated with the augmentation of WNT signaling, which provides novel insights into the mechanism by which Gln promotes intestinal health.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yuying Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiongzhuo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China.
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China; University of Chinese Academy of Sciences, Beijing 100008, China.
| |
Collapse
|
11
|
Cowardin CA, Syed S, Iqbal N, Jamil Z, Sadiq K, Iqbal J, Ali SA, Moore SR. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 2023; 20:223-237. [PMID: 36526906 PMCID: PMC10065936 DOI: 10.1038/s41575-022-00714-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/31/2023]
Abstract
Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the 'first 1,000 days' of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.
Collapse
Affiliation(s)
- Carrie A Cowardin
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sana Syed
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zehra Jamil
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Horcas-Nieto JM, Versloot CJ, Langelaar-Makkinje M, Gerding A, Blokzijl T, Koster MH, Baanstra M, Martini IA, Coppes RP, Bourdon C, van Ijzendoorn SCD, Kim P, Bandsma RHJ, Bakker BM. Organoids as a model to study intestinal and liver dysfunction in severe malnutrition. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166635. [PMID: 36581145 DOI: 10.1016/j.bbadis.2022.166635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Affiliation(s)
- José M Horcas-Nieto
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Christian J Versloot
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirjam H Koster
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ingrid A Martini
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Céline Bourdon
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sven C D van Ijzendoorn
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Kim
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Robert H J Bandsma
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
13
|
Wang D, Kuang Y, Wan Z, Li P, Zhao J, Zhu H, Liu Y. Aspartate Alleviates Colonic Epithelial Damage by Regulating Intestinal Stem Cell Proliferation and Differentiation via Mitochondrial Dynamics. Mol Nutr Food Res 2022; 66:e2200168. [PMID: 36310136 DOI: 10.1002/mnfr.202200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/26/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Proliferation and differentiation of intestinal stem cells (ISCs) are crucial for functional restoration after injury, which can be regulated by nutritional molecules. Aspartate is implicated in maintaining intestinal barrier after injury, but underlying mechanisms remain elusive. Here, this study seeks to investigate if aspartate alleviates colonic epithelial damage by regulating ISC function, and to elucidate its mechanisms. METHODS AND RESULTS Eight-week-old male C57BL/6 mice supplement with or without 1% L-aspartate are subjected to drinking water or 2.5% DSS to induce colitis. In this study, aspartate administration alleviates the severity of colitis, as indicated by reduced body weight loss, colon shortening, and inhibited pro-inflammatory cytokine expression in DSS-challenged mice. Additionally, aspartate promotes colonic epithelial cell proliferation and differentiation after DSS-induced damage in mice. Pretreatment with aspartate not only enhances ISC proliferation but also induces ISC differentiation toward enterocytes and goblet cells, which prevent TNF-α-induced colonoid damage. Mechanistically, aspartate ameliorates DSS/TNF-α-induced perturbation of mitochondrial metabolism and maintains mitochondrial dynamics in colonic epithelium and colonoids. Moreover, aspartate-mediated ISC proliferation and differentiation are primarily dependent on mitochondrial fusion rather than fission. CONCLUSIONS The findings indicate that aspartate promotes ISC proliferation and differentiation to alleviate colonic epithelial damage by regulation of mitochondrial metabolism and dynamics.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhicheng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
14
|
Zhang B, Zhong Q, Liu N, Song P, Zhu P, Zhang C, Sun Z. Dietary Glutamine Supplementation Alleviated Inflammation Responses and Improved Intestinal Mucosa Barrier of LPS-Challenged Broilers. Animals (Basel) 2022; 12:ani12131729. [PMID: 35804628 PMCID: PMC9265045 DOI: 10.3390/ani12131729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In commercial intense industry, birds have to undergo a series of physical, social and microbial stress. LPS, a structural substance of gram-negative bacterial membrane and an effective immune stimulator for human and animal immune system, can impair growth performance, elevate the production of inflammatory cytokines and destroy the morphology of broilers’ small intestine. Moreover, LPS challenge also can reduce the expression levels of tight junction proteins and ruin the integrity of mucosal barrier of broilers. However, glutamine is considered to be conditionally essential for gut homeostasis and barrier function and maybe a useful strategy to attenuate immunological stress and improve intestine function in response to stressful conditions. Our study showed that 1% Gln supplementation improved the growth performance, alleviated the inflammatory responses and ameliorated the intestinal permeability and the integrity of intestinal mucosa barrier of LPS-challenged broilers. Abstract The present study was conducted to investigate the effects of glutamine (Gln) supplementation on intestinal inflammatory reaction and mucosa barrier of broilers administrated with lipopolysaccharide (LPS) stimuli. A total of 120 1-d-old male broilers were randomly divided into four treatments in a 2 × 2 experimental arrangement, containing immune challenge (injected with LPS in a dose of 0 or 500 μg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). The results showed that growth performance of broilers intra-abdominally injected with LPS was impaired, and Gln administration alleviated the adverse effects on growth performance induced by LPS challenge. Furthermore, Gln supplementation reduced the increased concentration of circulating tumor necrosis factor-α, interleukin-6 and interleukin-1β induced by LPS challenge. Meanwhile, D-lactic acid and diamine oxidase concentration in plasma were also decreased by Gln supplementation. In addition, the shorter villus height, deeper crypt depth and the lower ratio of villus height to crypt depth of duodenum, jejunum and ileum induced by LPS stimulation were reversed by Gln supplementation. Gln administration beneficially increased LPS-induced reduction in the expression of intestine tight junction proteins such as zonula occludens protein 1 (ZO-1), claudin-1 and occludin except for the ZO-1 in duodenum and occludin in ileum. Moreover, Gln supplementation downregulated the mRNA expression of toll-like receptor 4, focal adhesion kinase, myeloid differentiation factor 88 and IL-1R-associated kinase 4 in TLR4/FAK/MyD88 signaling pathway. Therefore, it can be concluded that Gln administration could attenuate LPS-induced inflammatory responses and improve intestinal barrier damage of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
| | - Ning Liu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peiyong Song
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peng Zhu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Caichao Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
15
|
Nutritional stimulation by in-ovo feeding modulates cellular proliferation and differentiation in the small intestinal epithelium of chicks. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:91-101. [PMID: 34977379 PMCID: PMC8669250 DOI: 10.1016/j.aninu.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Nutritional stimulation of the developing small intestine of chick embryos can be conducted by in-ovo feeding (IOF). We hypothesized that IOF of glutamine and leucine can enhance small intestinal development by promoting proliferation and differentiation of multipotent small intestinal epithelial cells. Broiler embryos (n = 128) were subject to IOF of glutamine (IOF-Gln), leucine (IOF-Leu), NaCl (IOF-NaCl) or no injection (control) at embryonic d 17 (E 17). Multipotent, progenitor and differentiated cells were located and quantified in the small intestinal epithelium between E 17 and d 7 after hatch (D 7) in all treatment groups by immunofluorescence of SRY-box transcription factor 9 (Sox9) and proliferating cell nuclear antigen (PCNA), in-situ hybridization of leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) and peptide transporter 1 (PepT1) and histochemical goblet cell staining. The effects of IOF treatments at E 19 (48 h post-IOF), in comparison to control embryos, were as follows: total cell counts increased by 40%, 33% and 19%, and multipotent cell counts increased by 52%, 50% and 38%, in IOF-Gln, IOF-Leu and IOF-NaCl embryos, respectively. Only IOF-Gln embryos exhibited a significance, 36% increase in progenitor cell counts. All IOF treatments shifted Lgr5+ stem cell localizations to villus bottoms. The differentiated, PepT1+ region of the villi was 1.9 and 1.3-fold longer in IOF-Gln and IOF-Leu embryos, respectively, while goblet cell densities decreased by 20% in IOF-Gln embryos. Post–hatch, crypt and villi epithelial cell counts were significantly higher IOF-Gln chicks, compared to control chicks (P < 0.05). We conclude IOF of glutamine stimulates small intestinal maturation and functionality during the peri-hatch period by promoting multipotent cell proliferation and differentiation, resulting in enhanced compartmentalization of multipotent and differentiated cell niches and expansions of the absorptive surface area.
Collapse
|
16
|
Xie J, Li LF, Dai TY, Qi X, Wang Y, Zheng TZ, Gao XY, Zhang YJ, Ai Y, Ma L, Chang SL, Luo FX, Tian Y, Sheng J. Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate α-Linolenic Acid Promote Intestinal Stem Cells Proliferation. Mol Nutr Food Res 2021; 66:e2100408. [PMID: 34708542 DOI: 10.1002/mnfr.202100408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Indexed: 12/18/2022]
Abstract
SCOPE The proliferation and differentiation of intestinal stem cells (ISCs) are the basis of intestinal renewal and regeneration, and gut microbiota plays an important role in it. Dietary nutrition has the effect of regulating the activity of ISCs; however, the regulation effect of α-linolenic acid (ALA) has seldom been reported. METHODS AND RESULTS After intervening mice with different doses of ALA for 30 days, it is found that ALA (0.5 g kg-1 ) promotes small intestinal and villus growth by activating the Wnt/β-catenin signaling pathway to stimulate the proliferation of ISCs. Furthermore, ALA administration increases the abundance of the Ruminococcaceae and Prevotellaceae, and promotes the production of short-chain fatty acids (SCFAs). Subsequent fecal transplantation and antibiotic experiments demonstrate that ALA on the proliferation of ISCs are gut microbiota dependent, among them, the functional microorganism may be derived from Ruminococcaceae. Administration of isobutyrate shows a similar effect to ALA in terms of promoting ISCs proliferation. Furthermore, ALA mitigates 5-fluorouracil-induced intestinal mucosal damage by promoting ISCs proliferation. CONCLUSION These results indicate that SCFAs produced by Ruminococcaceae mediate ALA promote ISCs proliferation by activating the Wnt/β-catenin signaling pathway, and suggest the possibility of ALA as a prebiotic agent for the prevention and treatment of intestinal mucositis.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tian-Yi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xin Qi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tiao-Zhen Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xiao-Yu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yun-Juan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yu Ai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Song-Lin Chang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Feng-Xian Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| |
Collapse
|
17
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|
18
|
Modulation of intestinal stem cell homeostasis by nutrients: a novel therapeutic option for intestinal diseases. Nutr Res Rev 2021; 35:150-158. [PMID: 34100341 DOI: 10.1017/s0954422421000172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intestinal stem cells, which are capable of both self-renewal and differentiation to mature cell types, are responsible for maintaining intestinal epithelial homeostasis. Recent evidence indicates that these processes are mediated, in part, through nutritional status in response to diet. Diverse dietary patterns including caloric restriction, fasting, high-fat diets, ketogenic diets and high-carbohydrate diets as well as other nutrients control intestinal stem cell self-renewal and differentiation through nutrient-sensing pathways such as mammalian target of rapamycin and AMP-activated kinase. Herein, we summarise the current understanding of how intestinal stem cells contribute to intestinal epithelial homeostasis and diseases. We also discuss the effects of diet and nutrient-sensing pathways on intestinal stem cell self-renewal and differentiation, as well as their potential application in the prevention and treatment of intestinal diseases.
Collapse
|
19
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021; 1875:188527. [PMID: 33640383 PMCID: PMC8068668 DOI: 10.1016/j.bbcan.2021.188527] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
An improved understanding of stem cell niches, organogenesis, and disease models has paved the way for developing a three-dimensional (3D) organoid culture system. Organoid cultures can be derived from primary tissues (single cells or tissue subunits), adult stem cells (ASCs), induced pluripotent stem cells (iPSCs), or embryonic stem cells (ESCs). As a significant technological breakthrough, 3D organoid models offer a promising approach for understanding the complexities of human diseases ranging from the mechanistic investigation of disease pathogenesis to therapy. Here, we discuss the recent applications, advantages, and limitations of organoids as in vitro models for studying metabolomics, drug development, infectious diseases, and the gut microbiome. We further discuss the use of organoids in cancer modeling using high throughput sequencing approaches.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
21
|
Klepinina L, Klepinin A, Truu L, Chekulayev V, Vija H, Kuus K, Teino I, Pook M, Maimets T, Kaambre T. Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One 2021; 16:e0245348. [PMID: 33471801 PMCID: PMC7817017 DOI: 10.1371/journal.pone.0245348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
The ability of butyrate to promote differentiation of cancer cells has important implication for colorectal cancer (CRC) prevention and therapy. In this study, we examined the effect of sodium butyrate (NaBT) on the energy metabolism of colon adenocarcinoma Caco-2 cells coupled with their differentiation. NaBT increased the activity of alkaline phosphatase indicating differentiation of Caco-2 cells. Changes in the expression of pluripotency-associated markers OCT4, NANOG and SOX2 were characterized during the induced differentiation at mRNA level along with the measures that allowed distinguishing the expression of different transcript variants. The functional activity of mitochondria was studied by high-resolution respirometry. Glycolytic pathway and phosphotransfer network were analyzed using enzymatical assays. The treatment of Caco-2 cells with NaBT increased production of ATP by oxidative phosphorylation, enhanced mitochondrial spare respiratory capacity and caused rearrangement of the cellular phosphotransfer networks. The flexibility of phosphotransfer networks depended on the availability of glutamine, but not glucose in the cell growth medium. These changes were accompanied by suppressed cell proliferation and altered gene expression of the main pluripotency-associated transcription factors. This study supports the view that modulating cell metabolism through NaBT can be an effective strategy for treating CRC. Our data indicate a close relationship between the phosphotransfer performance and metabolic plasticity of CRC, which is associated with the cell differentiation state.
Collapse
Affiliation(s)
- Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- * E-mail:
| | - Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kaisa Kuus
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
22
|
Mohammad MA, Didelija IC, Stoll B, Burrin DG, Marini JC. Modeling age-dependent developmental changes in the expression of genes involved in citrulline synthesis using pig enteroids. Physiol Rep 2020; 8:e14565. [PMID: 33181004 PMCID: PMC7660678 DOI: 10.14814/phy2.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Age-dependent changes in the intestinal gene expression of enzymes involved in the metabolism of citrulline and arginine are well characterized. Enteroids, a novel ex-vivo model that recreates the three-dimensional structure of the intestinal crypt-villus unit, have shown to replicate molecular and physiological profiles of the intestinal segment from where they originated ("location memory"). OBJECTIVE The present study tested the hypothesis that enteroids recapitulate the developmental changes observed in vivo regarding citrulline production in pigs ("developmental memory"). METHODS Preterm (10- and 5-d preterm) and term pigs at birth, together with 7- and 35-d-old pigs were studied. Gene expression was measured in jejunal samples and in enteroids derived from this segment. Whole body citrulline production was measured by isotope dilution and enteroid citrulline production by accumulation in the media. RESULTS With the exception of arginase I and inducible nitric oxide synthase, all the genes investigated expressed in jejunum were expressed by enteroids. In the jejunum, established markers of development (lactase and sucrase-isomaltase), as well as genes that code for enzymes involved in the production and utilization of citrulline and arginine, underwent the ontogenic changes described in the literature. However, enteroid expression of these genes, as well as citrulline production, failed to recapitulate the changes observed in vivo. CONCLUSIONS Under culture conditions used in our study, enteroids derived from jejunal crypts of pigs at different ages failed to replicate the gene expression observed in whole tissue and whole body citrulline production. Additional extracellular cues may be needed to reproduce the age-dependent phenotype.
Collapse
Affiliation(s)
- Mahmoud A. Mohammad
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Food Science and Nutrition DepartmentNational Research CentreDokki, GizaEgypt
| | - Inka C. Didelija
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Juan C. Marini
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Pediatric Critical Care MedicineDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
23
|
Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Commun Biol 2020; 3:611. [PMID: 33097830 PMCID: PMC7584578 DOI: 10.1038/s42003-020-01347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal and repair of intestinal epithelium depend on the self-renewal of intestinal stem cells (ISCs) under physiological and pathological conditions. Although previous work has established that exogenous nutrients regulate adult stem cell activity, little is known about the regulatory effect of L-arginine on ISCs. In this study we utilize mice and small intestinal (SI) organoid models to clarify the role of L-arginine on epithelial differentiation of ISCs. We show that L-arginine increases expansion of ISCs in mice. Furthermore, CD90+ intestinal stromal cells augment stem-cell function in response to L-arginine in co-culture experiments. Mechanistically, we find that L-arginine stimulates Wnt2b secretion by CD90+ stromal cells through the mammalian target of rapamycin complex 1 (mTORC1) and that blocking Wnt2b production prevents L-arginine-induced ISC expansion. Finally, we show that L-arginine treatment protects the gut in response to injury. Our findings highlight an important role for CD90+ stromal cells in L-arginine-stimulated ISC expansion.
Collapse
|
24
|
Kong X, Wang X, Qin Y, Han J. Effects of sunset yellow on proliferation and differentiation of intestinal epithelial cells in murine intestinal organoids. J Appl Toxicol 2020; 41:953-963. [PMID: 33063357 DOI: 10.1002/jat.4080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiunan Kong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Xiu Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Yumei Qin
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Jianzhong Han
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
25
|
Zhang Y, Zuo C, Han L, Liu X, Chen W, Wang J, Gui S, Peng C, Peng D. Uterine Metabolomics Reveals Protection of Taohong Siwu Decoction Against Abnormal Uterine Bleeding. Front Pharmacol 2020; 11:507113. [PMID: 33041788 PMCID: PMC7518030 DOI: 10.3389/fphar.2020.507113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Incomplete abortion, a procedure for terminating pregnancy, will lead to abnormal uterine bleeding (AUB), infections, and even death. Taohong Siwu decoction (TSD) is a traditional Chinese medicine (TCM) formula, which has been developed to treat AUB for hundreds of years. However, the mechanism of the protective effect of TSD against AUB is not clear. We performed mass spectrometry (MS) of uterine samples to observe metabolic profile resulting from the treatment with TSD. An integrated gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry based untargeted metabolomics approach combined with multivariate statistical analyses were used to investigate the metabolic profile of TSD against AUB. There was clear separation between pregnant and incomplete aborting rats as well as incomplete aborting and TSD administered rats. Based on random forest algorithm and receiver operator characteristic analysis, 12 biomarkers were optimized related to TSD administered. The effect of TSD on AUB are related to several pathways, such as AA metabolism, glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism. To our knowledge, this is the first uterine metabolomics study focusing on TSD on AUB and provide a new perspective for explaining the mechanism of TSD on AUB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Chijing Zuo
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China
| | - Lan Han
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaochuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| | - Jichen Wang
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| | - Can Peng
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| | - Daiyin Peng
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| |
Collapse
|
26
|
Intervention and Mechanisms of Alanyl-glutamine for Inflammation, Nutrition, and Enteropathy: A Randomized Controlled Trial. J Pediatr Gastroenterol Nutr 2020; 71:393-400. [PMID: 32649365 PMCID: PMC8576339 DOI: 10.1097/mpg.0000000000002834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Determine the minimum dosage of alanyl-glutamine (Ala-Gln) required to improve gut integrity and growth in children at risk of environmental enteropathy (EE). METHODS This was a double-blinded randomized placebo-controlled dose-response trial. We enrolled 140 children residing in a low-income community in Fortaleza, Brazil. Participants were 2 to 60 months old and had weight-for-age (WAZ), height-for-age (HAZ), or weight-for-height (WHZ) z-scores less than -1. We randomized children to 10 days of nutritional supplementation: Ala-Gln at 3 g/day, Ala-Gln at 6 g/day, Ala-Gln at 12 g/day, or an isonitrogenous dose of glycine (Gly) placebo at 12.5 g/day. Our primary outcome was urinary lactulose-mannitol excretion testing. Secondary outcomes were anthropometry, fecal markers of inflammation, urine metabolic profiles, and malabsorption (spot fecal energy). RESULTS Of 140 children, 103 completed 120 days of follow-up (24% dropout). In the group receiving the highest dose of Ala-Gln, we detected a modest improvement in urinary lactulose excretion from 0.19% on day 1 to 0.17% on day 10 (P = 0.05). We observed significant but transient improvements in WHZ at day 10 in 2 Ala-Gln groups, and in WHZ and WAZ in all Ala-Gln groups at day 30. We detected no effects on fecal inflammatory markers, diarrheal morbidity, or urine metabolic profiles; but did observe modest reductions in fecal energy and fecal lactoferrin in participants receiving Ala-Gln. CONCLUSIONS Intermediate dose Ala-Gln promotes short-term improvement in gut integrity and ponderal growth in children at risk of EE. Lower doses produced improvements in ponderal growth in the absence of enhanced gut integrity.
Collapse
|
27
|
Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact 2020; 19:129. [PMID: 32527330 PMCID: PMC7291740 DOI: 10.1186/s12934-020-01369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.
Collapse
Affiliation(s)
- Jiangming Zhu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bohua Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qun Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaotong Zhong
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quanxiu Gao
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Jiezheng Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
28
|
Costa PN, Soares AM, Filho JQ, Junior FS, Ambikapathi R, Rogawski McQuade ET, Guerrant RL, Caulfield LE, Lima AAM, Maciel BLL. Dietary intake from complementary feeding is associated with intestinal barrier function and environmental enteropathy in Brazilian children from the MAL-ED cohort study. Br J Nutr 2020; 123:1003-1012. [PMID: 31964426 PMCID: PMC7282865 DOI: 10.1017/s0007114520000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
A child's diet contains nutrients and other substances that influence intestinal health. The present study aimed to evaluate the relations between complementary feeding, intestinal barrier function and environmental enteropathy (EE) in infants. Data from 233 children were obtained from the Brazilian site of the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project cohort study. Habitual dietary intake from complementary feeding was estimated using seven 24-h dietary recalls, from 9 to 15 months of age. Intestinal barrier function was assessed using the lactulose-mannitol test (L-M), and EE was determined as a composite measure using faecal biomarkers concentrations - α-1-antitrypsin, myeloperoxidase (MPO) and neopterin (NEO) at 15 months of age. The nutrient adequacies explored the associations between dietary intake and the intestinal biomarkers. Children showed adequate nutrient intakes (with the exception of fibre), impaired intestinal barrier function and intestinal inflammation. There was a negative correlation between energy adequacy and L-M (ρ = -0·19, P < 0·05) and between folate adequacy and NEO concentrations (ρ = -0·21, P < 0·01). In addition, there was a positive correlation between thiamine adequacy and MPO concentration (ρ = 0·22, P < 0·01) and between Ca adequacy and NEO concentration (ρ = 0·23; P < 0·01). Multiple linear regression models showed that energy intakes were inversely associated with intestinal barrier function (β = -0·19, P = 0·02), and fibre intake was inversely associated with the EE scores (β = -0·20, P = 0·04). Findings suggest that dietary intake from complementary feeding is associated with decreased intestinal barrier function and EE in children.
Collapse
Affiliation(s)
- P. N. Costa
- Nutrition Post-Graduation Program, Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - A. M. Soares
- Department of Physiology and Pharmacology, INCT – Instituto de Biomedicina do Semiárido Brasileiro (IBISAB), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - J. Q. Filho
- Department of Physiology and Pharmacology, INCT – Instituto de Biomedicina do Semiárido Brasileiro (IBISAB), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - F. S. Junior
- Department of Physiology and Pharmacology, INCT – Instituto de Biomedicina do Semiárido Brasileiro (IBISAB), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R. Ambikapathi
- Department of Public Health, Purdue University, West Lafayette, IN, USA
| | | | - R. L. Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - L. E. Caulfield
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A. A. M. Lima
- Department of Public Health, Purdue University, West Lafayette, IN, USA
| | - B. L. L. Maciel
- Nutrition Post-Graduation Program, Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
29
|
Farré R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal Permeability, Inflammation and the Role of Nutrients. Nutrients 2020; 12:nu12041185. [PMID: 32340206 PMCID: PMC7231157 DOI: 10.3390/nu12041185] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The interaction between host and external environment mainly occurs in the gastrointestinal tract, where the mucosal barrier has a critical role in many physiologic functions ranging from digestion, absorption, and metabolism. This barrier allows the passage and absorption of nutrients, but at the same time, it must regulate the contact between luminal antigens and the immune system, confining undesirable products to the lumen. Diet is an important regulator of the mucosal barrier, and the cross-talk among dietary factors, the immune system, and microbiota is crucial for the modulation of intestinal permeability and for the maintenance of gastrointestinal tract (GI) homeostasis. In the present review, we will discuss the role of a number of dietary nutrients that have been proposed as regulators of inflammation and epithelial barrier function. We will also consider the metabolic function of the microbiota, which is capable of elaborating the diverse nutrients and synthesizing products of great interest. Better knowledge of the influence of dietary nutrients on inflammation and barrier function can be important for the future development of new therapeutic approaches for patients with mucosal barrier dysfunction, a critical factor in the pathogenesis of many GI and non-GI diseases.
Collapse
Affiliation(s)
- Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.F.); (S.A.R.); (G.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +32-16-34-57-52
| | - Marcello Fiorani
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.F.); (S.A.R.); (G.M.)
| | - Saeed Abdu Rahiman
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.F.); (S.A.R.); (G.M.)
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.F.); (S.A.R.); (G.M.)
| |
Collapse
|
30
|
Chen Y, Tsai YH, Tseng BJ, Tseng SH. Influence of Growth Hormone and Glutamine on Intestinal Stem Cells: A Narrative Review. Nutrients 2019; 11:E1941. [PMID: 31426533 PMCID: PMC6724402 DOI: 10.3390/nu11081941] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Growth hormone (GH) and glutamine (Gln) stimulate the growth of the intestinal mucosa. GH activates the proliferation of intestinal stem cells (ISCs), enhances the formation of crypt organoids, increases ISC stemness markers in the intestinal organoids, and drives the differentiation of ISCs into Paneth cells and enterocytes. Gln enhances the proliferation of ISCs and increases crypt organoid formation; however, it mainly acts on the post-proliferation activity of ISCs to maintain the stability of crypt organoids and the intestinal mucosa, as well as to stimulate the differentiation of ISCs into goblet cells and possibly Paneth cells and enteroendocrine cells. Since GH and Gln have differential effects on ISCs. Their use in combination may have synergistic effects on ISCs. In this review, we summarize the evidence of the actions of GH and/or Gln on crypt cells and ISCs in the literature. Overall, most studies demonstrated that GH and Gln in combination exerted synergistic effects to activate the proliferation of crypt cells and ISCs and enhance crypt organoid formation and mucosal growth. This treatment influenced the proliferation of ISCs to a similar degree as GH treatment alone and the differentiation of ISCs to a similar degree as Gln treatment alone.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei 220, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 320, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei 220, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 320, Taiwan
| | - Bor-Jiun Tseng
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei 220, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
31
|
Dietary alanyl-glutamine improves growth performance of weaned piglets through maintaining intestinal morphology and digestion-absorption function. Animal 2019; 13:1826-1833. [PMID: 30789107 DOI: 10.1017/s1751731119000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alanyl-glutamine (Ala-Gln), a highly soluble and stable glutamine dipeptide, is known to improve gut integrity and function. The aim of this study was to evaluate whether dietary Ala-Gln supplementation could improve growth performance, intestinal development and digestive-absorption function in weaned piglets. A total of 100 purebred Yorkshire piglets weaned at 21 days of age were assigned randomly to four dietary treatment groups and fed a basal diet (control group) or a basal diet containing 0.15%, 0.30% and 0.45% Ala-Gln, respectively. Compared with the control group, piglets fed the Ala-Gln diets had higher average daily gain and lower feed : gain and diarrhea rate (P < 0.05). Moreover, dietary Ala-Gln supplementation increased villous height and villous height : crypt depth ratio in duodenum and jejunum (P < 0.05), as well as the activities of maltase and lysozyme in jejunum mucosa (P < 0.05). In addition, a decrease in serum diamine oxidase activity and crypt depth in duodenum and jejunum was observed in piglets fed the Ala-Gln diets (P < 0.05). Serum cytosolic phospholipase A2 (cPLA2) concentration and gene expression of cPLA2, Na+-dependent glucose transporter 1, glucose transporter 2 and peptide transporter 1 in jejunum were increased by feeding Ala-Gln diets relative to control diet (P < 0.05). These results indicated that feeding Ala-Gln diet has beneficial effects on the growth performance of weaned piglets, which associated with maintaining intestinal morphology and digestive-absorption function.
Collapse
|
32
|
Alanyl-glutamine Protects Against Damage Induced by Enteroaggregative Escherichia coli Strains in Intestinal Cells. J Pediatr Gastroenterol Nutr 2019; 68:190-198. [PMID: 30247422 DOI: 10.1097/mpg.0000000000002152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an important pathogen causing enteric infections worldwide. This pathotype is linked to malnutrition in children from developing countries. Alanyl-glutamine (Ala-Gln) is an immune modulator nutrient that acts during intestinal damage and/or inflammation. This study investigated the effect of EAEC infection and Ala-Gln on cell viability, cell death, and inflammation of intestinal epithelium cells (IEC-6). METHODS Cells were infected with an EAEC prototype 042 strain, an EAEC wild-type strain isolated from a Brazilian malnourished child, and a commensal E coli HS. Gene transcription and protein levels of caspases-3, -8, and -9 and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) were evaluated using RT-qPCR, western blot analysis, and ELISA. RESULTS Infections with both EAEC strains decreased cell viability and induced apoptosis and necrosis after 24 hours. Ala-Gln supplementation increased cell proliferation and reduced cell death in infected cells. Likewise, EAEC strain 042 significantly increased the transcript levels of caspases-3, -8, and -9 when compared to the control group, and Ala-Gln treatment reversed this effect. Furthermore, EAEC induced CXCL1 protein levels, which were also reduced by Ala-Gln supplementation. CONCLUSION These findings suggest that EAEC infection promotes apoptosis, necrosis, and intestinal inflammation with involvement of caspases. Supplementation of Ala-Gln inhibits cell death, increases cell proliferation, attenuates mediators associated with cell death, and inflammatory pathways in infected cells.
Collapse
|
33
|
Sugihara K, Morhardt TL, Kamada N. The Role of Dietary Nutrients in Inflammatory Bowel Disease. Front Immunol 2019; 9:3183. [PMID: 30697218 PMCID: PMC6340967 DOI: 10.3389/fimmu.2018.03183] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disease of the gastrointestinal tract. Although the precise etiology of IBD remains incompletely understood, accumulating evidence suggests that various environmental factors, including dietary nutrients, contribute to its pathogenesis. Dietary nutrients are known to have an impact on host physiology and diseases. The interactions between dietary nutrients and intestinal immunity are complex. Dietary nutrients directly regulate the immuno-modulatory function of gut-resident immune cells. Likewise, dietary nutrients shape the composition of the gut microbiota. Therefore, a well-balanced diet is crucial for good health. In contrast, the relationships among dietary nutrients, host immunity and/or the gut microbiota may be perturbed in the context of IBD. Genetic predispositions and gut dysbiosis may affect the utilization of dietary nutrients. Moreover, the metabolism of nutrients in host cells and the gut microbiota may be altered by intestinal inflammation, thereby increasing or decreasing the demand for certain nutrients necessary for the maintenance of immune and microbial homeostasis. Herein, we review the current knowledge of the role dietary nutrients play in the development and the treatment of IBD, focusing on the interplay among dietary nutrients, the gut microbiota and host immune cells. We also discuss alterations in the nutritional metabolism of the gut microbiota and host cells in IBD that can influence the outcome of nutritional intervention. A better understanding of the diet-host-microbiota interactions may lead to new therapeutic approaches for the treatment of IBD.
Collapse
Affiliation(s)
- Kohei Sugihara
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Tina L Morhardt
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol 2019; 7:692-707. [PMID: 30630118 PMCID: PMC6477186 DOI: 10.1016/j.jcmgh.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Environmental enteric dysfunction (EED) (also referred to as environmental enteropathy) is a subclinical chronic intestinal disorder that is an emerging contributor to early childhood malnutrition. EED is common in resource-limited settings, and is postulated to consist of small intestinal injury, dysfunctional nutrient absorption, and chronic inflammation that results in impaired early child growth attainment. Although there is emerging interest in the hypothetical potential for chemical toxins in the environmental exposome to contribute to EED, the propensity of published data, and hence the focus of this review, implicates a critical role of environmental microbes. Early childhood malnutrition and EED are most prevalent in resource-limited settings where food is limited, and inadequate access to clean water and sanitation results in frequent gastrointestinal pathogen exposures. Even as overt diarrhea rates in these settings decline, silent enteric infections and faltering growth persist. Furthermore, beyond restricted physical growth, EED and/or enteric pathogens also associate with impaired oral vaccine responses, impaired cognitive development, and may even accelerate metabolic syndrome and its cardiovascular consequences. As these potentially costly long-term consequences of early childhood enteric infections increasingly are appreciated, novel therapeutic strategies that reverse damage resulting from nutritional deficiencies and microbial insults in the developing small intestine are needed. Given the inherent limitations in investigating how specific intestinal pathogens directly injure the small intestine in children, animal models provide an affordable and controlled opportunity to elucidate causal sequelae of specific enteric infections, to differentiate consequences of defined nutrient deprivation alone from co-incident enteropathogen insults, and to correlate the resulting gut pathologies with their functional impact during vulnerable early life windows.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - David T Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
35
|
Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K, Agarwal P, Duong F, Angara B, Tripathi M, Liu Z, Gottlieb RA, Wagner S, Posadas EM, Bhowmick NA. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest 2018; 128:4472-4484. [PMID: 30047926 PMCID: PMC6159981 DOI: 10.1172/jci99397] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is an androgen-dependent disease subject to interactions between the tumor epithelium and its microenvironment. Here, we found that epigenetic changes in prostatic cancer-associated fibroblasts (CAF) initiated a cascade of stromal-epithelial interactions. This facilitated lethal prostate cancer growth and development of resistance to androgen signaling deprivation therapy (ADT). We identified a Ras inhibitor, RASAL3, as epigenetically silenced in human prostatic CAF, leading to oncogenic Ras activity driving macropinocytosis-mediated glutamine synthesis. Interestingly, ADT further promoted RASAL3 epigenetic silencing and glutamine secretion by prostatic fibroblasts. In an orthotopic xenograft model, subsequent inhibition of macropinocytosis and glutamine transport resulted in antitumor effects. Stromal glutamine served as a source of energy through anaplerosis and as a mediator of neuroendocrine differentiation for prostate adenocarcinoma. Antagonizing the uptake of glutamine restored sensitivity to ADT in a castration-resistant xenograft model. In validating these findings, we found that prostate cancer patients on ADT with therapeutic resistance had elevated blood glutamine levels compared with those with therapeutically responsive disease (odds ratio = 7.451, P = 0.02). Identification of epigenetic regulation of Ras activity in prostatic CAF revealed RASAL3 as a sensor for metabolic and neuroendocrine reprogramming in prostate cancer patients failing ADT.
Collapse
Affiliation(s)
| | | | | | - Anisha Madhav
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | - Roberta A. Gottlieb
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shawn Wagner
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Neil A. Bhowmick
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
| |
Collapse
|
36
|
Wang X, Yuan Y, Didelija IC, Mohammad MA, Marini JC. Ex Vivo Enteroids Recapitulate In Vivo Citrulline Production in Mice. J Nutr 2018; 148:1415-1420. [PMID: 30184221 PMCID: PMC6669957 DOI: 10.1093/jn/nxy126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background The endogenous production of arginine relies on the synthesis of citrulline by enteral ornithine transcarbamylase (OTC). Mutations in the gene coding for this enzyme are the most frequent cause of urea cycle disorders. There is a lack of correlation between in vivo metabolic function and DNA sequence, transcript abundance, or in vitro enzyme activity. Objective The goal of the present work was to test the hypothesis that enteroids, a novel ex vivo model, are able to recapitulate the in vivo citrulline production of wild-type (WT) and mutant mice. Methods Six-week-old male WT and OTC-deficient mice [sparse fur and abnormal skin (spf-ash) mutation] were studied. Urea and citrulline fluxes were determined in vivo, and OTC abundance was measured in liver and gut tissue. Intestinal crypts were isolated and cultured to develop enteroids. Ex vivo citrulline production and OTC abundance were determined in these enteroids. Results Liver OTC abundance was lower (mean ± SE: 0.16 ± 0.01 compared with 1.85 ± 0.18 arbitrary units; P < 0.001) in spf-ash mice than in WT mice, but there was no difference in urea production. In gut tissue, OTC was barely detectable in mutant mice; despite this, a lower but substantial citrulline production (67 ± 3 compared with 167 ± 8 µmol · kg-1 · h-1; P < 0.001) was shown in the mutant mice. Enteroids recapitulated the in vivo findings of a very low OTC content accompanied by a reduced citrulline production (1.07 ± 0.20 compared with 4.64 ± 0.44 nmol · µg DNA-1 · d-1; P < 0.001). Conclusions Enteroids recapitulate in vivo citrulline production and offer the opportunity to study the regulation of citrulline production in a highly manipulable system.
Collapse
Affiliation(s)
- Xiaoying Wang
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Yang Yuan
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Inka C Didelija
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Mahmoud A Mohammad
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Juan C Marini
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
37
|
Abstract
Dietary composition and calorie intake are major determinants of health and disease. Calorie restriction promotes metabolic changes that favor tissue regeneration and is arguably the most successful and best-conserved antiaging intervention. Obesity, in contrast, impairs tissue homeostasis and is a major risk factor for the development of diseases including cancer. Stem cells, the central mediators of tissue regeneration, integrate dietary and energy cues via nutrient-sensing pathways to maintain growth or respond to stress. We discuss emerging data on the effects of diet and nutrient-sensing pathways on intestinal stem cells, as well as their potential application in the development of regenerative and therapeutic interventions.
Collapse
Affiliation(s)
- Salvador Alonso
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ömer H. Yilmaz
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
38
|
Chen S, Xia Y, Zhu G, Yan J, Tan C, Deng B, Deng J, Yin Y, Ren W. Glutamine supplementation improves intestinal cell proliferation and stem cell differentiation in weanling mice. Food Nutr Res 2018; 62:1439. [PMID: 30083086 PMCID: PMC6060183 DOI: 10.29219/fnr.v62.1439] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal stem cells can be differentiated into absorptive enterocytes and secretory cells, including Paneth cells, goblet cells, and enteroendocrine cells. Glutamine is a primary metabolic fuel of small intestinal enterocytes and is essential for the viability and growth of intestinal cells. OBJECTIVE Whether glutamine supplementation affects the differentiation of intestinal stem cells is unknown. DESIGN Three-week-old ICR (Institute of Cancer Research) male mice were divided randomly into two groups: 1) mice receiving a basal diet and normal drinking water and 2) mice receiving a basal diet and drinking water supplemented with glutamine. After 2 weeks, the mice were sacrificed to collect the ileum for analysis. RESULTS The study found that glutamine supplementation in weanling mice decreases the crypt depth in the ileum, leading to higher ratio of villus to crypt in the ileum, but promotes cell proliferation of intestinal cells and mRNA expression of Lgr5 (leucine-rich repeat-containing g-protein coupled receptor5) in the ileum. Glutamine has no effect on the number of Paneth cells and goblet cells, and the expression of markers for absorptive enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. CONCLUSION These findings reveal the beneficial effects of dietary glutamine supplementation to improve intestinal morphology in weanling mammals.
Collapse
Affiliation(s)
- Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiameng Yan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
39
|
Kim JH, Lee KJ, Seo Y, Kwon JH, Yoon JP, Kang JY, Lee HJ, Park SJ, Hong SP, Cheon JH, Kim WH, Il Kim T. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep 2018; 8:409. [PMID: 29323154 PMCID: PMC5765079 DOI: 10.1038/s41598-017-18762-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Metformin has been known to suppress cancer stem cells (CSCs) in some cancers. However, the differential effects of metformin on CSCs and their mechanisms have not been reported. Herein, metformin induced pAMPK activation and pS6 suppression in metformin-sensitive (HT29) cells, but not in metformin-resistant (SW620) cells. The oxygen consumption rate was higher in HT29 cells than in SW620 cells and showed a prominent decrease after metformin treatment in HT29 cells. In glutamine-depleted medium, but not in low-glucose medium, SW620 cells became sensitive to the CSC-suppressing effect of metformin. A combination of metformin and glutaminase C inhibitor (compound 968) suppressed CSCs in SW620 cells and enhanced that effect in HT29 cells. SW620 cells showed higher expression of glutaminase 1 and glutamine transporter (ASCT2) than HT29 cells, especially ASCT2 in CSCs. Knockdown of glutaminase 1, ASCT2, and c-Myc induced significant CSC-suppression and enhanced CSC-suppressing effect of metformin and compound 968. In xenografts and human cancer organoids, combined treatment with metformin and compound 968 showed the same results as those shown in vitro. In conclusion, the effect of metformin on CSCs varies depending on the AMPK-mTOR and glutamine metabolism. The inhibition of glutamine pathway could enhance the CSC-suppressing effect of metformin, overcoming metformin resistance.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Jin Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoojeong Seo
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Ji-Hee Kwon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Pil Yoon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jo Yeon Kang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Pil Hong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
- Cancer Prevention Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
40
|
Chen Y, Tseng SH, Yao CL, Li C, Tsai YH. Distinct Effects of Growth Hormone and Glutamine on Activation of Intestinal Stem Cells. JPEN J Parenter Enteral Nutr 2017; 42:642-651. [PMID: 28510488 DOI: 10.1177/0148607117709435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND For patients with short bowel syndrome under parenteral nutrition support, growth hormone (GH) and glutamine (GLN) have been found to help the growth of intestinal mucosa. In this research, we studied the effects of GH and GLN on intestinal stem cells (ISCs). METHODS The in vitro and in vivo effects of GH and/or GLN on ISCs were evaluated by observing the ability of ISCs to form organoids in a Matrigel culture system. The expression levels of stemness and differentiation markers in ISCs and organoids were assessed using quantitative real-time polymerase chain reaction, immunofluorescence assay, and immunohistochemistry staining. RESULTS In vitro administration of GH activated the stemness of ISCs, whereas GLN enhanced the expression of chromogranin A and Muc2, which are differentiation markers in enteroendocrine and goblet cells, respectively. Administration of GH or GLN in mice showed that GH, but not GLN, upregulated the proliferative activity of ISCs with increased formation of crypt organoids. In addition, GH increased the expression of Lgr5 and GLN enhanced expression of Muc2 in the crypt fractions of the intestines in mice. CONCLUSION These results suggest that GH mainly enhances proliferative activities, whereas GLN promotes the differentiation potential of ISCs.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Chuan Li
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan.,Department of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao, New Taipei, Taiwan
| |
Collapse
|
41
|
Abstract
Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.
Collapse
|
42
|
Serrano-Villar S, Vázquez-Castellanos JF, Vallejo A, Latorre A, Sainz T, Ferrando-Martínez S, Rojo D, Martínez-Botas J, Del Romero J, Madrid N, Leal M, Mosele JI, Motilva MJ, Barbas C, Ferrer M, Moya A, Moreno S, Gosalbes MJ, Estrada V. The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects. Mucosal Immunol 2017; 10:1279-1293. [PMID: 28000678 DOI: 10.1038/mi.2016.122] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/19/2016] [Indexed: 02/06/2023]
Abstract
Altered interactions between the gut mucosa and bacteria during HIV infection seem to contribute to chronic immune dysfunction. A deeper understanding of how nutritional interventions could ameliorate gut dysbiosis is needed. Forty-four subjects, including 12 HIV+ viremic untreated (VU) patients, 23 antiretroviral therapy-treated (ART+) virally suppressed patients (15 immunological responders and 8 non-responders) and 9 HIV- controls (HIV-), were blindly randomized to receive either prebiotics (scGOS/lcFOS/glutamine) or placebo (34/10) over 6 weeks in this pilot study. We assessed fecal microbiota composition using deep 16S rRNA gene sequencing and several immunological and genetic markers involved in HIV immunopathogenesis. The short dietary supplementation attenuated HIV-associated dysbiosis, which was most apparent in VU individuals but less so in ART+ subjects, whose gut microbiota was found more resilient. This compositional shift was not observed in the placebo arm. Significantly, declines in indirect markers of bacterial translocation and T-cell activation, improvement of thymic output, and changes in butyrate production were observed. Increases in the abundance of Faecalibacterium and Lachnospira strongly correlated with moderate but significant increases of butyrate production and amelioration of the inflammatory biomarkers soluble CD14 and high-sensitivity C-reactive protein, especially among VU. Hence, the bacterial butyrate synthesis pathway holds promise as a viable target for interventions.
Collapse
Affiliation(s)
- S Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - J F Vázquez-Castellanos
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - A Vallejo
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - A Latorre
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - T Sainz
- Department of Pediatric Infectious Diseases, University Hospital La Paz, and La Paz Research Institute, Madrid, Spain
| | - S Ferrando-Martínez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS), Department of Infectious Diseases, University Hospital Virgen del Rocío, Sevilla, Spain
| | - D Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, CEU San Pablo University, Madrid, Spain
| | - J Martínez-Botas
- Department of Biochemistry, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
- CIBER of Obesity and Nutrition Pathophysiology (CIBEROBN), Madrid, Spain
| | | | - N Madrid
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - M Leal
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS), Department of Infectious Diseases, University Hospital Virgen del Rocío, Sevilla, Spain
| | - J I Mosele
- Food Technology Department, Agrotecnio Center, University of Lleida, Spain
| | - M J Motilva
- Food Technology Department, Agrotecnio Center, University of Lleida, Spain
| | - C Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, CEU San Pablo University, Madrid, Spain
| | - M Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - A Moya
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - S Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - M J Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - V Estrada
- HIV Unit, Department of Internal Medicine, University Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
43
|
Fabiani IM, Rocha SL. Avaliação do tratamento da sepse com glutamina via enteral em ratos. Rev Col Bras Cir 2017; 44:231-237. [DOI: 10.1590/0100-69912017003002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivo: analisar a influência da glutamina nas alterações morfo-histológicas observadas em íleo, pulmão, rim e fígado de ratos Wistar submetidos à sepse. Métodos: a sepse foi induzida por meio de ligadura e punção do ceco. Os animais foram divididos em dois grupos: grupo A, controle, com cinco animais, e grupo B, experimento, com dez animais que utilizaram previamente glutamina por dois dias por via enteral. Na análise histológica, classificou-se as lesões de acordo com um escore cujo valor atribuído dependia da gravidade da lesão e do órgão acometido. A somatória dos valores atribuídos a cada animal resultou em sua nota final. No íleo, avaliaram-se as vilosidades; no fígado, esteatose microgoticular; no pulmão, pneumonite intersticial; e no rim, vacuolização dos túbulos contorcidos proximais. Resultados: a lise celular e a destruição das vilosidades no íleo do grupo controle foram mais intensas em relação aos animais que receberam glutamina. No rim, verificou-se vacuolização mais acentuada dos túbulos contorcidos proximais no grupo controle em relação aos animais que receberam glutamina. Tanto a esteatose microgoticular como a pneumonite intersticial mostraram-se semelhantes em ambos os grupos. Conclusão: o uso de glutamina via enteral previamente à sepse na dose de 0,5 g/kg/dia preservou de maneira significativa a estrutura histológica do intestino delgado e os rins em ratos.
Collapse
|
44
|
Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells. Biochem Biophys Res Commun 2017; 488:171-176. [PMID: 28483523 DOI: 10.1016/j.bbrc.2017.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022]
Abstract
We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivation conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation.
Collapse
|
45
|
Barron L, Sun RC, Aladegbami B, Erwin CR, Warner BW, Guo J. Intestinal Epithelial-Specific mTORC1 Activation Enhances Intestinal Adaptation After Small Bowel Resection. Cell Mol Gastroenterol Hepatol 2016; 3:231-244. [PMID: 28275690 PMCID: PMC5331783 DOI: 10.1016/j.jcmgh.2016.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Intestinal adaptation is a compensatory response to the massive loss of small intestine after surgical resection. We investigated the role of intestinal epithelial cell-specific mammalian target of rapamycin complex 1 (i-mTORC1) in intestinal adaptation after massive small bowel resection (SBR). METHODS We performed 50% proximal SBR on mice to study adaptation. To manipulate i-mTORC1 activity, Villin-CreER transgenic mice were crossed with tuberous sclerosis complex (TSC)1flox/flox or Raptorflox/flox mice to inducibly activate or inactivate i-mTORC1 activity with tamoxifen. Western blot was used to confirm the activity of mTORC1. Crypt depth and villus height were measured to score adaptation. Immunohistochemistry was used to investigate differentiation and rates of crypt proliferation. RESULTS After SBR, mice treated with systemic rapamycin showed diminished structural adaptation, blunted crypt cell proliferation, and significant body weight loss. Activating i-mTORC1 via TSC1 deletion induced larger hyperproliferative crypts and disorganized Paneth cells without a significant change in villus height. After SBR, ablating TSC1 in intestinal epithelium induced a robust villus growth with much stronger crypt cell proliferation, but similar body weight recovery. Acute inactivation of i-mTORC1 through deletion of Raptor did not change crypt cell proliferation or mucosa structure, but significantly reduced lysozyme/matrix metalloproteinase-7-positive Paneth cell and goblet cell numbers, with increased enteroendocrine cells. Surprisingly, ablation of intestinal epithelial cell-specific Raptor after SBR did not affect adaptation or crypt proliferation, but dramatically reduced body weight recovery after surgery. CONCLUSIONS Systemic, but not intestinal-specific, mTORC1 is important for normal adaptation responses to SBR. Although not required, forced enterocyte mTORC1 signaling after resection causes an enhanced adaptive response.
Collapse
Key Words
- Differentiation
- EGF, epidermal growth factor
- IHC, immunohistochemistry
- MMP, matrix metalloproteinase
- PCR, polymerase chain reaction
- Raptor
- S6K, S6 kinase
- SBR, small bowel resection
- TAM, tamoxifen
- TSC, tuberous sclerosis complex
- TSC1
- WT, wild type
- i-TSC-/-, intestinal epithelial cell–specific tuberous sclerosis complex 1 null mice
- mTOR, mammalian target of rapamycin
- mTORC, mammalian target of rapamycin complex
- p-HH3, phosphorylated histone H3
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Guo
- Correspondence Address correspondence to: Jun Guo, PhD, BJC Institute of Health Room 7118, 425 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 747–0610.BJC Institute of Health Room 7118425 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
46
|
Trehan I, Kelly P, Shaikh N, Manary MJ. New insights into environmental enteric dysfunction. Arch Dis Child 2016; 101:741-4. [PMID: 26933151 DOI: 10.1136/archdischild-2015-309534] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/13/2016] [Indexed: 01/10/2023]
Abstract
Environmental enteric dysfunction (EED) has been recognised as an important contributing factor to physical and cognitive stunting, poor response to oral vaccines, limited resilience to acute infections and ultimately global childhood mortality. The aetiology of EED remains poorly defined but the epidemiology suggests a multifactorial combination of prenatal and early-life undernutrition and repeated infectious and/or toxic environmental insults due to unsanitary and unhygienic environments. Previous attempts at medical interventions to ameliorate EED have been unsatisfying. However, a new generation of imaging and '-omics' technologies hold promise for developing a new understanding of the pathophysiology of EED. A series of trials designed to decrease EED and stunting are taking novel approaches, including improvements in sanitation, hygiene and nutritional interventions. Although many challenges remain in defeating EED, the global child health community must redouble their efforts to reduce EED in order to make substantive improvements in morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Indi Trehan
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri, USA Department of Paediatrics and Child Health, University of Malawi, Blantyre, Malawi
| | - Paul Kelly
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK TROPGAN Group, Department of Internal Medicine, University of Zambia, Lusaka, Zambia
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri, USA
| | - Mark J Manary
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri, USA Department of Community Health, University of Malawi, Blantyre, Malawi Children's Nutrition Research Center, Baylor College of Medicine, Houston, USA
| |
Collapse
|