1
|
Han Y, Jia R, Zhang J, Zhu Q, Wang X, Ji Q, Zhang W. Hypoxia Attenuates Colonic Innate Immune Response and Inhibits TLR4/NF-κB Signaling Pathway in Lipopolysaccharide-Induced Colonic Epithelial Injury Mice. J Interferon Cytokine Res 2023; 43:43-52. [PMID: 36603105 DOI: 10.1089/jir.2022.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High altitude hypoxia can lead to a spectrum of gastrointestinal problems. As the first line of host immune defense, innate immune response in the intestinal mucosa plays a pivotal role in maintaining intestinal homeostasis and protecting against intestinal injury at high altitude. This study aimed to investigate the effect of hypoxia on the colonic mucosal barrier and toll-like receptor 4 (TLR4)-mediated innate immune responses in the colon. The mice were exposed to a hypobaric chamber to simulate a 5,000 m plateau environment for 7 days, and the colonic mucosa changes were recorded. At the same time, the inflammation model was established by lipopolysaccharide (LPS) to explore the effects of hypoxia on the TLR4/nuclear factor kappa B (NF-κB) signaling pathway and its downstream inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and interferon (IFN)-γ] in the colon. We found that hypoxic exposure caused weight loss and structural disturbance of the colonic mucosa in mice. Compared with the control group, the protein levels of TLR4 [fold change (FC) = 0.75 versus FC = 0.23], MyD88 (FC = 0.80 versus FC = 0.30), TIR-domain-containing adaptor protein inducing interferon-β (TRIF: FC = 0.89 versus FC = 0.38), and NF-κB p65 (FC = 0.75 versus FC = 0.24) in the colon of mice in the hypobaric hypoxia group were significantly decreased. LPS-induced upregulation of the TLR4/NF-κB signaling and its downstream inflammatory factors was inhibited by hypoxia. Specifically, compared with the LPS group, the protein levels of TLR4 (FC = 1.18, FC = 0.86), MyD88 (FC = 1.20, FC = 0.80), TRIF (FC = 1.20, FC = 0.86), and NF-κB p65 (FC = 1.29, FC = 0.62) and the mRNA levels of IL-1β (FC = 7.38, FC = 5.06), IL-6 (FC = 16.06, FC = 9.22), and IFN-γ (FC = 2.01, FC = 1.16) were reduced in the hypobaric hypoxia plus LPS group. Our findings imply that hypoxia could lead to marked damage of the colonic mucosa and a reduction of TLR4-mediated colonic innate immune responses, potentially reducing host defense responses to colonic pathogens.
Collapse
Affiliation(s)
- Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qiaorong Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| |
Collapse
|
2
|
Nanoparticles Carrying NF-κB p65-Specific siRNA Alleviate Colitis in Mice by Attenuating NF-κB-Related Protein Expression and Pro-Inflammatory Cellular Mediator Secretion. Pharmaceutics 2022; 14:pharmaceutics14020419. [PMID: 35214151 PMCID: PMC8874689 DOI: 10.3390/pharmaceutics14020419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis is a disease that causes inflammation and ulcers in the colon and which is typically recurrent, and NF-κB proteins are important players during disease progression. Here, we assess the impact of silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against NF-κB p65 on a murine model of colitis. To this end, nanoparticles were injected intravenously (2.0 mg siRNA/kg body weight) into mice after colitis induction with dextran sulfate sodium or healthy ones. The disease activity index, the histopathological impact on the colon, the protein expression of several NF-κB-associated players, and the mediator secretion (colon tissue, blood) were analyzed. We found that the nanoparticles effectively alleviated the clinical and histopathological features of colitis. They further suppressed the expression of NF-κB proteins (e.g., p65, p50, p52, p100, etc.) in the colon. They finally attenuated the local (colon) or systemic (blood) pro-inflammatory mediator secretion (e.g., TNF-α, IFN-β, MCP-1, interleukins, etc.) as well as the leucocyte load of the spleen and mesenteric lymph nodes. The nanoparticle biodistribution in diseased animals was seen to pinpoint organs containing lymphoid entities (appendix, intestine, lung, etc.). Taken together, the nanoparticle-related silencing of p65 NF-κB protein expression could well be used for the treatment of ulcerative colitis in the future.
Collapse
|
3
|
Kozlowski K, Mikulski D, Rogiewicz A, Zdunczyk Z, Rad-Spice M, Jeroch H, Jankowski J, Slominski B. Yellow-seeded B. napus and B. juncea canola. Part 2. Nutritive value of the meal for turkeys. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Kaustio M, Haapaniemi E, Göös H, Hautala T, Park G, Syrjänen J, Einarsdottir E, Sahu B, Kilpinen S, Rounioja S, Fogarty CL, Glumoff V, Kulmala P, Katayama S, Tamene F, Trotta L, Morgunova E, Krjutškov K, Nurmi K, Eklund K, Lagerstedt A, Helminen M, Martelius T, Mustjoki S, Taipale J, Saarela J, Kere J, Varjosalo M, Seppänen M. Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J Allergy Clin Immunol 2017; 140:782-796. [PMID: 28115215 DOI: 10.1016/j.jaci.2016.10.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/02/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Emma Haapaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timo Hautala
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Giljun Park
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Research Programs Unit, Genome-scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Sanna Kilpinen
- Department of Internal Medicine, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Christopher L Fogarty
- Folkhälsan Institute of Genetics, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Petri Kulmala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO) and MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Competence Centre on Health Technologies, Tartu, Estonia
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anssi Lagerstedt
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Merja Helminen
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Timi Martelius
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janna Saarela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
6
|
Onrust L, Ducatelle R, Van Driessche K, De Maesschalck C, Vermeulen K, Haesebrouck F, Eeckhaut V, Van Immerseel F. Steering Endogenous Butyrate Production in the Intestinal Tract of Broilers as a Tool to Improve Gut Health. Front Vet Sci 2015; 2:75. [PMID: 26734618 PMCID: PMC4682374 DOI: 10.3389/fvets.2015.00075] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that are sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate-producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS) are such compounds as they can be converted to lactate, which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate-producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.
Collapse
Affiliation(s)
- Lonneke Onrust
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Karolien Van Driessche
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Celine De Maesschalck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Karen Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University , Merelbeke , Belgium
| |
Collapse
|
7
|
Wang A, Li J, Zhao Y, Johansson MEV, Xu H, Ghishan FK. Loss of NHE8 expression impairs intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol 2015; 309:G855-64. [PMID: 26505975 PMCID: PMC4669351 DOI: 10.1152/ajpgi.00278.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 01/31/2023]
Abstract
The newest member of the Na(+)/H(+) exchanger (NHE) family, NHE8, is abundantly expressed at the apical membrane of the intestinal epithelia. We previously reported that mucin 2 expression was significantly decreased in the colon in NHE8(-/-) mice, suggesting that NHE8 is involved in intestinal mucosal protection. In this study, we further evaluated the role of NHE8 in intestinal epithelial protection after dextran sodium sulfate (DSS) challenge. Compared with wild-type mice, NHE8(-/-) mice have increased bacterial adhesion and inflammation, especially in the distal colon. NHE8(-/-) mice are also susceptible to DSS treatment. Real-time PCR detected a remarkable increase in the expression of IL-1β, IL-6, TNF-α, and IL-4 in DSS-treated NHE8(-/-) mice compared with DSS-treated wild-type littermates. Immunohistochemistry showed a disorganized epithelial layer in the colon of NHE8(-/-) mice. Periodic acid-Schiff staining showed a reduction in the number of mature goblet cells and the area of the goblet cell theca in NHE8(-/-) mice. Phyloxine/tartrazine staining revealed a decrease in functional Paneth cell population in the NHE8(-/-) small intestinal crypt. The expression of enteric defensins was also decreased in NHE8(-/-) mice. The reduced mucin production in goblet cells and antimicrobial peptides production in Paneth cells lead to disruption of the intestinal mucosa protection. Therefore, NHE8 may be involved in the establishment of intestinal mucosal integrity by regulating the functions of goblet and Paneth cells.
Collapse
Affiliation(s)
- Aiping Wang
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona; ,2Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China; and
| | - Jing Li
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| | - Yang Zhao
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| | | | - Hua Xu
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| | - Fayez K. Ghishan
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| |
Collapse
|
8
|
Dengler F, Rackwitz R, Benesch F, Pfannkuche H, Gäbel G. Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites. J Anim Physiol Anim Nutr (Berl) 2014; 99:379-90. [PMID: 24804847 DOI: 10.1111/jpn.12201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/11/2014] [Indexed: 12/20/2022]
Abstract
Butyrate modulates the differentiation, proliferation and gene expression profiles of various cell types. Ruminal epithelium is exposed to a high intraluminal concentration and inflow of n-butyrate. We aimed to investigate the influence of n-butyrate on the mRNA expression of proteins involved in the transmembranal transfer of n-butyrate metabolites and short-chain fatty acids in ruminal epithelium. N-butyrate-induced changes were compared with the effects of hypoxia because metabolite accumulation after O2 depletion is at least partly comparable to the accumulation of metabolites after n-butyrate exposure. Furthermore, in various tissues, O2 depletion modulates the expression of transport proteins that are also involved in the extrusion of metabolites derived from n-butyrate breakdown in ruminal epithelium. Sheep ruminal epithelia mounted in Ussing chambers were exposed to 50 mM n-butyrate or incubated under hypoxic conditions for 6 h. Electrophysiological measurements showed hypoxia-induced damage in the epithelia. The mRNA expression levels of monocarboxylate transporters (MCT) 1 and 4, anion exchanger (AE) 2, downregulated in adenoma (DRA), putative anion transporter (PAT) 1 and glucose transporter (GLUT) 1 were assessed by RT-qPCR. We also examined the mRNA expression of nuclear factor (NF) κB, cyclooxygenase (COX) 2, hypoxia-inducible factor (HIF) 1α and acyl-CoA oxidase (ACO) to elucidate the possible signalling pathways involved in the modulation of gene expression. The mRNA expression levels of MCT 1, MCT 4, GLUT 1, HIF 1α and COX 2 were upregulated after both n-butyrate exposure and hypoxia. ACO and PAT 1 were upregulated only after n-butyrate incubation. Upregulation of both MCT isoforms and NFκB after n-butyrate incubation could be detected on protein level as well. Our study suggests key roles for MCT 1 and 4 in the adaptation to an increased intracellular load of metabolites, whereas an involvement of PAT 1 in the transport of n-butyrate also seems possible.
Collapse
Affiliation(s)
- F Dengler
- Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
9
|
Walker CR, Hautefort I, Dalton JE, Overweg K, Egan CE, Bongaerts RJ, Newton DJ, Cruickshank SM, Andrew EM, Carding SR. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS One 2013; 8:e84553. [PMID: 24358364 PMCID: PMC3866140 DOI: 10.1371/journal.pone.0084553] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.
Collapse
Affiliation(s)
- Catherine R. Walker
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Isabelle Hautefort
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Jane E. Dalton
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Karin Overweg
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Charlotte E. Egan
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Pediatric Surgery, Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Roy J. Bongaerts
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Darren J. Newton
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
| | - Sheena M. Cruickshank
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth M. Andrew
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
10
|
Li P, Gu J, Yang X, Cai H, Tao J, Yang X, Lu Q, Wang Z, Yin C, Gu M. Functional promoter -94 ins/del ATTG polymorphism in NFKB1 gene is associated with bladder cancer risk in a Chinese population. PLoS One 2013; 8:e71604. [PMID: 23977085 PMCID: PMC3748046 DOI: 10.1371/journal.pone.0071604] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022] Open
Abstract
Background A functional -94 insertion/deletion polymorphism (rs28362491) in the promoter of the NFKB1 gene was reported to influence NFKB1 expression and confer susceptibility to different types of cancer. This study aims to determine whether the polymorphism is associated with risk of bladder cancer. Materials and methods TaqMan assay was used to determine genotype among 609 cases and 640 controls in a Chinese population. Logistic regression was used to assess the association between the polymorphism and bladder cancer risk, and quantitative real-time polymerase chain reaction was used to determine NFKB1 mRNA expression. Results Compared with the ins/ins/ins/del genotypes, the del/del genotype was associated with a significantly increased risk of bladder cancer [adjusted odd ratio (OR) = 1.92, 95% confidence interval (CI) = 1.42–2.59]. The increased risk was more prominent among subjects over 65 years old (OR = 2.37, 95% CI = 1.52–3.70), male subjects (OR = 1.97, 95% CI = 1.40–2.79) and subjects with self-reported family history of cancer (OR = 3.59, 95% CI = 1.19–10.9). Furthermore, the polymorphism was associated with a higher risk of developing non-muscle invasive bladder cancer (OR = 2.07, 95% CI = 1.51–2.85), grade 1 bladder cancer (OR = 2.40, 95% CI = 1.68–3.43), single tumor bladder cancer (OR = 2.04, 95% CI = 1.48–2.82) and smaller tumor size bladder cancer (OR = 2.10, 95% CI = 1.51–2.92). The expression of NFKB1 mRNA in bladder cancer tissues with homozygous insertion genotype was higher than that with deletion allele. Conclusions In conclusion, the -94 ins/del ATTG polymorphism in NFKB1 promoter may contribute to the etiology of bladder cancer in the Chinese population.
Collapse
Affiliation(s)
- Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinbao Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongzhou Cai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuejian Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (CY); (MG)
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (CY); (MG)
| |
Collapse
|
11
|
McAllister CS, Lakhdari O, Pineton de Chambrun G, Gareau MG, Broquet A, Lee GH, Shenouda S, Eckmann L, Kagnoff MF. TLR3, TRIF, and caspase 8 determine double-stranded RNA-induced epithelial cell death and survival in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 190:418-27. [PMID: 23209324 DOI: 10.4049/jimmunol.1202756] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
TLR3 signaling is activated by dsRNA, a virus-associated molecular pattern. Injection of dsRNA into mice induced a rapid, dramatic, and reversible remodeling of the small intestinal mucosa with significant villus shortening. Villus shortening was preceded by increased caspase 3 and 8 activation and apoptosis of intestinal epithelial cells (IECs) located in the mid to upper villus with ensuing luminal fluid accumulation and diarrhea because of an increased secretory state. Mice lacking TLR3 or the adaptor molelcule TRIF mice were completely protected from dsRNA-induced IEC apoptosis, villus shortening, and diarrhea. dsRNA-induced apoptosis was independent of TNF signaling. Notably, NF-κB signaling through IκB kinase β protected crypt IECs but did not protect villus IECs from dsRNA-induced or TNF-induced apoptosis. dsRNA did not induce early caspase 3 activation with subsequent villus shortening in mice lacking caspase 8 in IECs but instead caused villus destruction with a loss of small intestinal surface epithelium and death. Consistent with direct activation of the TLR3-TRIF-caspase 8 signaling pathway by dsRNA in IECs, dsRNA-induced signaling of apoptosis was independent of non-TLR3 dsRNA signaling pathways, IL-15, TNF, IL-1, IL-6, IFN regulatory factor 3, type I IFN receptor, adaptive immunity, as well as dendritic cells, NK cells, and other hematopoietic cells. We conclude that dsRNA activation of the TLR3-TRIF-caspase 8 signaling pathway in IECs has a significant impact on the structure and function of the small intestinal mucosa and suggest signaling through this pathway has a host protective role during infection with viral pathogens.
Collapse
|
12
|
Southern SL, Collard TJ, Urban BC, Skeen VR, Smartt HJ, Hague A, Oakley F, Townsend PA, Perkins ND, Paraskeva C, Williams AC. BAG-1 interacts with the p50-p50 homodimeric NF-κB complex: implications for colorectal carcinogenesis. Oncogene 2012; 31:2761-72. [PMID: 21963853 PMCID: PMC3272420 DOI: 10.1038/onc.2011.452] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/28/2011] [Accepted: 08/18/2011] [Indexed: 02/06/2023]
Abstract
Understanding the mechanisms that promote aberrant tumour cell survival is critical for the determination of novel strategies to combat colorectal cancer (CRC). We have recently shown that the anti-apoptotic protein BAG-1, highly expressed in pre-malignant and CRC tissue, can potentiate cell survival through regulating NF-κB transcriptional activity. In this study, we identify a novel complex between BAG-1 and the p50-p50 NF-κB homodimers, implicating BAG-1 as a co-regulator of an atypical NF-κB pathway. Importantly, the BAG-1-p50 complex was detected at gene regulatory sequences including the epidermal growth factor receptor (EGFR) and COX-2 (PTGS2) genes. Suppression of BAG-1 expression using small interfering RNA was shown to increase EGFR and suppress COX-2 expression in CRC cells. Furthermore, mouse embryonic fibroblasts derived from the NF-κB1 (p105/p50) knock-out mouse were used to demonstrate that p50 expression was required for BAG-1 to suppress EGFR expression. This was shown to be functionally relevant as attenuation of BAG-1 expression increased ligand activated phosphorylation of EGFR in CRC cells. In summary, this paper identifies a novel role for BAG-1 in modulating gene expression through interaction with the p50-p50 NF-κB complexes. Data presented led us to propose that BAG-1 can act as a selective regulator of p50-p50 NF-κB responsive genes in colorectal tumour cells, potentially important for the promotion of cell survival in the context of the fluctuating tumour microenvironment. As BAG-1 expression is increased in the developing adenoma through to metastatic lesions, understanding the function of the BAG-1-p50 NF-κB complexes may aid in identifying strategies for both the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samantha L. Southern
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Tracey J. Collard
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Bettina C Urban
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Victoria R Skeen
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Helena J Smartt
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Angela Hague
- University of Bristol, School of Oral & Dental Sciences, Lower Maudlin Street, Bristol BS1 2LY UK
| | - Fiona Oakley
- Newcastle University Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Paul A Townsend
- University of Southampton, Cancer Sciences, School of Medicine, Southampton General Hospital, Southampton, SO16 6YDUK
| | - Neil D. Perkins
- Newcastle University Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Christos Paraskeva
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Ann C. Williams
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| |
Collapse
|
13
|
López-Posadas R, Ballester I, Mascaraque C, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Flavonoids exert distinct modulatory actions on cyclooxygenase 2 and NF-kappaB in an intestinal epithelial cell line (IEC18). Br J Pharmacol 2010; 160:1714-26. [PMID: 20649574 DOI: 10.1111/j.1476-5381.2010.00827.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cyclooxygenase 2 (COX-2) is involved in inflammatory bowel disease, but the effect of flavonoids at the intestinal epithelial level is unknown. We aimed to characterize the effect and structure-activity relationship of nine selected flavonoids on COX-2 expression in intestinal epithelial cell (IEC)18 cells. We also investigated the signal transduction pathway(s) responsible for the effects observed. EXPERIMENTAL APPROACH Intestinal epithelial cell 18, a non-tumour cell line with intestinal epithelial phenotype, was used. COX-2 was measured by Western blot and the involvement of the NF-kappaB pathway assessed by Western blot, pharmacological inhibition, luciferase reporter assays and nuclear translocation experiments. KEY RESULTS The effect of flavonoids on COX-2 expression depended on the experimental conditions tested [non-stimulated and lipopolysaccharide (LPS)-stimulated]. Flavonoids caused an increase in COX-2 expression and NF-kappaB-dependent gene transcription under basal conditions. Conversely, under LPS stimulation flavonoids increased, decreased or did not affect COX-2 levels depending on the specific type. Variable effects were observed on extracellular signal regulated kinase/p38/c-Jun N-terminal kinase phosphorylation and p50/65 nuclear translocation. CONCLUSION AND IMPLICATIONS The effect of flavonoids on COX-2 expression depended on the balance of the interference with IkappaB-alpha phosphorylation and other signalling targets, and therefore depends on the experimental conditions and on the type of flavonoids. This is expected to result in different effects in inflammatory conditions. In general, flavonoids may limit epithelial COX-2 expression in inflammatory conditions while favouring it when inflammation is not present.
Collapse
Affiliation(s)
- R López-Posadas
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang DK, He FQ, Li TK, Pang XH, Cui DJ, Xie Q, Huang XL, Gan HT. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol 2010; 222:213-22. [PMID: 20632386 DOI: 10.1002/path.2749] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although enteric glial cells (EGCs) have been demonstrated to play a key role in maintaining intestinal epithelial barrier integrity, it is not known how EGCs regulate this integrity. We therefore hypothesized that glial-derived neurotrophic factor (GDNF) produced by EGCs might be involved in this regulation. Here we investigated the role of GDNF in regulating epithelial barrier function in vivo. Recombinant adenoviral vectors encoding GDNF (Ad-GDNF) were administered intracolonically in experimental colitis induced by dextran sulphate sodium (DSS). The disease activity index (DAI) and histological score were measured. Epithelial permeability was assayed using Evans blue dye. The anti-apoptotic potency of GDNF in vivo was evaluated. The expression of tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and myeloperoxidase (MPO) activity were measured by ELISA assay and/or RT-PCR. The expression of ZO-1, Akt, caspase-3, and NF-kappaB p65 was analysed by western blot assay. Our results showed that GDNF resulted in a significant reduction in enhanced permeability, inhibited MPO activity, IL-1beta and TNF-alpha expression, and increased ZO-1 and Akt expression. Moreover, GDNF strongly prevented apoptosis in vivo and significantly ameliorated experimental colitis. Our findings indicate that GDNF participates directly in restoring epithelial barrier function in vivo via reduction of increased epithelial permeability and inhibition of mucosal inflammatory response, and is efficacious in DSS-induced colitis. These findings support the notion that EGCs are able to regulate intestinal epithelial barrier integrity indirectly via their release of GDNF in vivo. GDNF is namely an important mediator of the cross-talk between EGCs and mucosal epithelial cells. GDNF may be a useful therapeutic approach to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Dei Kui Zhang
- Department of Gastroenterology and Geriatrics Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang J, Ford HR, Grishin AV. NF-kappaB-mediated expression of MAPK phosphatase-1 is an early step in desensitization to TLR ligands in enterocytes. Mucosal Immunol 2010; 3:523-34. [PMID: 20555314 DOI: 10.1038/mi.2010.35] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Toll-like receptor (TLR) signaling in naive enterocytes is rapidly inhibited, leading to the establishment of tolerance. To gain insight into tolerance at the level of the proinflammatory mitogen-activated protein kinase (MAPK) p38, we characterized TLR-mediated induction of the p38-specific phosphatase MKP-1. In cultured enterocytes, ligands of TLR3, TLR4, TLR5, and TLR9, but not TLR2, induce MKP-1 at 30-60 min, coincident with dephosphorylation of p38 following the peak of TLR ligand-induced phosphorylation. Induction of MKP-1 is blocked by inhibitors of nuclear factor (NF)-kappaB, but not of MAPK. Small interfering RNA knockdown of IkBalpha prolongs the expression of MKP-1. Rat MKP-1 promoter contains two NF-kappaB-binding sites, mutations in which additively impair lipopolysaccharide-induced transcription from the MKP-1 promoter. In the intestine, MKP-1 is expressed in the crypts, the epithelial compartment that also displays bacteria-dependent activating phosphorylation of p38. Thus, NF-kappaB-dependent expression of MKP-1 may contribute, by desensitization of p38, to the rapid establishment of unresponsiveness to several TLR ligands in enterocytes.
Collapse
Affiliation(s)
- J Wang
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
16
|
Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol 2010; 136:245-56. [PMID: 20452828 DOI: 10.1016/j.clim.2010.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 03/12/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Accumulating evidence suggests a role for Toll-like receptor (TLR) signaling at the intestinal epithelial cells (IECs) level for intestinal protection against exogenous injury or pathogenic infection. We hypothesized that MyD88 dependent TLR signaling at intestinal epithelium is critical for mucosal immune homeostasis. In the current study, a transgenic mouse model was generated in which a dominant-negative mutant of MyD88 (dnMyD88) was driven by an intestinal epithelial-specific murine villin promoter. Aged transgenic mice spontaneously developed chronic small intestinal inflammation, as revealed by increased CD4+ and CD8+ lymphocytes, neutrophil and macrophage infiltration, increased production of cytokines as TNF-alpha, IFN-gamma, IL-1beta, and IL-17, crypt abscesses, lymphedema, and Goblet cell depletion. The chronic inflammation was not due to increased epithelial apoptosis or permeability, but to a decreased Paneth cell-derived alpha-defensins (cryptdins) and RegIII-gamma and increased commensal bacteria translocation. Thus, epithelial MyD88-dependent pathway plays an essential role in limiting mucosal microflora penetration and preventing mucosal immunoregulation disturbance in vivo.
Collapse
|
17
|
Tanaka T, de Azevedo MBM, Durán N, Alderete JB, Epifano F, Genovese S, Tanaka M, Tanaka T, Curini M. Colorectal cancer chemoprevention by 2 beta-cyclodextrin inclusion compounds of auraptene and 4'-geranyloxyferulic acid. Int J Cancer 2010; 126:830-40. [PMID: 19688830 DOI: 10.1002/ijc.24833] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inhibitory effects of novel prodrugs, inclusion complexes of 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans propenoic acid (GOFA) and auraptene (AUR) with beta-cyclodextrin (CD), on colon carcinogenesis were investigated using an azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Male CD-1 (ICR) mice initiated with a single intraperitoneal injection of AOM (10 mg/kg body weight) were promoted by the addition of 1.5% (w/v) DSS to their drinking water for 7 days. They were then given a basal diet containing 2 dose levels (100 and 500 ppm) of GOFA/beta-CD or AUR/beta-CD for 15 weeks. At Week 18, the development of colonic adenocarcinoma was significantly inhibited by feeding with GOFA/beta-CD at dose levels of 100 ppm (63% reduction in multiplicity, p < 0.05) and 500 ppm (83% reduction in the multiplicity, p < 0.001), when compared with the AOM/DSS group (multiplicity: 3.36 +/- 3.34). In addition, feeding with 100 and 500 ppm (p < 0.01) of AUR/beta-CD suppressed the development of colonic adenocarcinomas. The dietary administration with GOFA/beta-CD and AUR/beta-CD inhibited colonic inflammation and also modulated proliferation, apoptosis and the expression of several proinflammatory cytokines, such as nuclear factor-kappaB, tumor necrosis factor-alpha, Stat3, NF-E2-related factor 2, interleukin (IL)-6 and IL-1beta, which were induced in the adenocarcinomas. Our findings indicate that GOFA/beta-CD and AUR/beta-CD, especially GOFA/beta-CD, are therefore able to inhibit colitis-related colon carcinogenesis by modulating inflammation, proliferation and the expression of proinflammatory cytokines in mice.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The NF-kappaB p50 subunit is protective during intestinal Entamoeba histolytica infection of 129 and C57BL/6 mice. Infect Immun 2010; 78:1475-81. [PMID: 20086086 DOI: 10.1128/iai.00669-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Entamoeba histolytica is the agent of amebic colitis. In this work we examined the intestinal NF-kappaB response to this parasite. Using an enzyme-linked immunosorbent assay (ELISA) and an electrophoretic mobility shift assay, we found that the NF-kappaB subunit p50 predominated in nuclear extracts of whole cecal tissue and of isolated crypts from mice inoculated with E. histolytica. p50 was protective, since C57BL/6 and 129 mice in which there was targeted deletion of this subunit were more susceptible to E. histolytica infection as measured by culture results, cecal parasite ELISA results, and/or histologic scores. The transepithelial electrical resistance of cecal explants from C57BL/6 and 129 p50 knockout mice decreased markedly in response to the parasite compared with the transepithelial electrical resistance of their wild-type counterparts, suggesting that a protective function of p50 was present in the epithelium itself. This work shows that NF-kappaB activity, particularly activity of the p50 subunit, is one factor that contributes to resistance of the gut to E. histolytica infection.
Collapse
|
19
|
Garg P, Sarma D, Jeppsson S, Patel NR, Gewirtz AT, Merlin D, Sitaraman SV. Matrix metalloproteinase-9 functions as a tumor suppressor in colitis-associated cancer. Cancer Res 2010; 70:792-801. [PMID: 20068187 DOI: 10.1158/0008-5472.can-09-3166] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a well-documented association of matrix metalloproteinase-9 (MMP-9) and receptor Notch-1 overexpression in colon cancer. We recently showed that MMP-9 is also upregulated in colitis, where it modulates tissue damage and goblet cell differentiation via proteolytic cleavage of Notch-1. In this study, we investigated whether MMP-9 is critical for colitis-associated colon cancer (CAC). Mice that are wild type (WT) or MMP-9 nullizygous (MMP-9(-/-)) were used for in vivo studies and the human enterocyte cell line Caco2-BBE was used for in vitro studies. CAC was induced in mice using an established carcinogenesis protocol that involves exposure to azoxymethane followed by treatment with dextran sodium sulfate. MMP-9(-/-) mice exhibited increased susceptibility to CAC relative to WT mice. Elevations in tumor multiplicity, size, and mortality were associated with increased proliferation and decreased apoptosis. Tumors formed in MMP-9(-/-) mice exhibited expression of p21(WAF1/Cip1) and increased expression of beta-catenin relative to WT mice. In vitro studies of MMP-9 overexpression showed increased Notch-1 activation with a reciprocal decrease in beta-catenin. Notch and beta-catenin/Wnt signaling have crucial roles in determining differentiation and carcinogenesis in gut epithelia. Despite being a mediator of proinflammatory responses in colitis, MMP-9 plays a protective role and acts as a tumor suppressor in CAC by modulating Notch-1 activation, thereby resulting in activation of p21(WAF1/Cip1) and suppression of beta-catenin.
Collapse
Affiliation(s)
- Pallavi Garg
- Division of Digestive Diseases and Department of Pathology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kim JY, Kajino-Sakamoto R, Omori E, Jobin C, Ninomiya-Tsuji J. Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against chemical-induced colitis. PLoS One 2009; 4:e4561. [PMID: 19234607 PMCID: PMC2642721 DOI: 10.1371/journal.pone.0004561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/15/2009] [Indexed: 12/11/2022] Open
Abstract
Background We have previously reported that intestinal epithelium-specific TAK1 deleted mice exhibit severe inflammation and mortality at postnatal day 1 due to TNF-induced epithelial cell death. Although deletion of TNF receptor 1 (TNFR1) can largely rescue those neonatal phenotypes, mice harboring double deletion of TNF receptor 1 (TNFR1) and intestinal epithelium-specific deletion of TAK1 (TNFR1KO/TAK1IEKO) still occasionally show increased inflammation. This indicates that TAK1 is important for TNF-independent regulation of intestinal integrity. Methodology/Principal Findings In this study, we investigated the TNF-independent role of TAK1 in the intestinal epithelium. Because the inflammatory conditions were sporadically developed in the double mutant TNFR1KO/TAK1IEKO mice, we hypothesize that epithelial TAK1 signaling is important for preventing stress-induced barrier dysfunction. To test this hypothesis, the TNFR1KO/TAK1IEKO mice were subjected to acute colitis by administration of dextran sulfate sodium (DSS). We found that loss of TAK1 significantly augments DSS-induced experimental colitis. DSS induced weight loss, intestinal damages and inflammatory markers in TNFR1KO/TAK1IEKO mice at higher levels compared to the TNFR1KO control mice. Apoptosis was strongly induced and epithelial cell proliferation was decreased in the TAK1-deficient intestinal epithelium upon DSS exposure. These suggest that epithelial-derived TAK1 signaling is important for cytoprotection and repair against injury. Finally, we showed that TAK1 is essential for interleukin 1- and bacterial components-induced expression of cytoprotective factors such as interleukin 6 and cycloxygenase 2. Conclusions Homeostatic cytokines and microbes-induced intestinal epithelial TAK1 signaling regulates cytoprotective factors and cell proliferation, which is pivotal for protecting the intestinal epithelium against injury.
Collapse
Affiliation(s)
- Jae-Young Kim
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rie Kajino-Sakamoto
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Emily Omori
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Christian Jobin
- Department of Medicine and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Melatonin suppresses AOM/DSS-induced large bowel oncogenesis in rats. Chem Biol Interact 2008; 177:128-36. [PMID: 19028472 DOI: 10.1016/j.cbi.2008.10.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/16/2008] [Accepted: 10/22/2008] [Indexed: 12/15/2022]
Abstract
The inhibitory effects of exogenous melatonin (MEL) on colon oncogenesis were investigated using an azoxymethane (AOM)/dextran sodium sulfate (DSS) rat model. Male F344 rats initiated with a single intraperitoneal injection of AOM (20mg/kg bw) were promoted by 1% (w/v) DSS in drinking water for 7 days. They were then given 0.4, 2 or 10ppm MEL in drinking water for 17 weeks. At week 20, the development of colonic adenocarcinoma was significantly inhibited by the administration with MEL dose-dependently. MEL exposure modulated the mitotic and apoptotic indices in the colonic adenocarcinomas that developed and lowered the immunohistochemical expression of nuclear factor kappa B, tumor necrosis factor alpha, interleukin-1beta and STAT3 in the epithelial malignancies. These results may indicate the beneficial effects of MEL on colitis-related colon carcinogenesis and a potential application for inhibiting colorectal cancer development in the inflamed colon.
Collapse
|
22
|
Cruickshank SM, Wakenshaw L, Cardone J, Howdle PD, Murray PJ, Carding SR. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival. World J Gastroenterol 2008; 14:5834-41. [PMID: 18855982 PMCID: PMC2751893 DOI: 10.3748/wjg.14.5834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC).
METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines.
RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis.
CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.
Collapse
|
23
|
Laubitz D, Larmonier CB, Bai A, Midura-Kiela MT, Lipko MA, Thurston RD, Kiela PR, Ghishan FK. Colonic gene expression profile in NHE3-deficient mice: evidence for spontaneous distal colitis. Am J Physiol Gastrointest Liver Physiol 2008; 295:G63-G77. [PMID: 18467500 PMCID: PMC2494721 DOI: 10.1152/ajpgi.90207.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na+/H+ exchanger 3 (NHE3) provides a major route for intestinal Na+ absorption. NHE3 has been considered a target of proinflammatory cytokines and enteropathogenic bacteria, and impaired NHE3 expression and/or activity may be responsible for inflammation-associated diarrhea. However, the possibility of loss of NHE3 function reciprocally affecting gut immune homeostasis has not been investigated. In this report, we describe that NHE3-deficient mice spontaneously develop colitis restricted to distal colonic mucosa. NHE3(-/-) mice housed in a conventional facility exhibited phenotypic features such as mild diarrhea, occasional rectal prolapse, and reduced body weight. Genomewide microarray analysis identified not only a large group of transport genes that potentially represent an adaptive response, but also a considerable number of genes consistent with an inflammatory response. Histological examination demonstrated changes in the distal colon consistent with active inflammation, including crypt hyperplasia with an increased number of 5-bromo-2'-deoxyuridine-positive cells, diffuse neutrophilic infiltrate with concomitant 15-fold increase in matrix metalloproteinase 8 expression, an increased number of pSer276-RelA-positive cells, and a significant decrease in periodic acid-Schiff-positive goblet cells. Real-time PCR demonstrated elevated expression of inducible nitric oxide synthase (38-fold), TNF-alpha (6-fold), macrophage inflammatory protein-2 (48-fold), and IL-18 (3-fold) in the distal colon of NHE3(-/-) mice. NHE3(-/-) mice showed enhanced bacterial adhesion and translocation in the distal colon. Colitis was ameliorated by oral administration of broad-spectrum antibiotics. In conclusion, NHE3 deficiency leads to an exacerbated innate immune response, an observation suggesting a potentially novel role of NHE3 as a modifier gene, which when downregulated during infectious or chronic colitis may modulate the extent and severity of colonic inflammation.
Collapse
Affiliation(s)
- Daniel Laubitz
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Schaeffer C, Habold C, Martin E, Lignot JH, Kedinger M, Foltzer-Jourdainne C. Cytokine expression in rat colon during postnatal development: regulation by glucocorticoids. J Pediatr Gastroenterol Nutr 2006; 43:439-50. [PMID: 17033518 DOI: 10.1097/01.mpg.0000239989.27893.f1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Cytokine expression and regulation by glucocorticoids and retinoic acid were investigated in the colon during postnatal development. MATERIALS AND METHODS Gene expression of the transforming growth factors (TGFs) TGF-beta1, TGF-beta2 and TGF-alpha and the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) in rat colon mucosa during weaning and in adult rats. Protein expression and distribution of TGF-betas was analysed in the colon from 14- and 60-day-old animals. The effect of hydrocortisone administration on mucosal cytokine transcripts (RT-PCR) and of dexamethasone on the expression of cytokines by the epithelial cell line IEC-18 and 2 subepithelial myofibroblasts (MIC 307-1 and 316) was examined. RESULTS TGF-beta1 and TGF-beta2 messenger RNAs and proteins decreased in the entire colon from weaning to adult stages, whereas the amount of TGF-alpha messenger RNA increased in the proximal colon and decreased in the distal part of the colon in adult rats in comparison with weanlings. However, proinflammatory cytokines showed no postnatal changes in the proximal colon but decreased in the distal part in comparison with weaning rats. Hydrocortisone treatment did not affect growth factor expression but decreased proinflammatory cytokines. Likewise, dexamethasone decreased TNF-alpha and IL-1beta gene expression but did not affect TGF-betas in either epithelial or myofibroblast cells. CONCLUSIONS During postnatal maturation, the expression of growth factors and proinflammatory cytokines decreased in the distal colon, whereas in the proximal colon, a differential maturation occurs with no changes in proinflammatory cytokines, an increase in TGF-alpha and a decrease in TGF-beta. Glucocorticoids may control the developmental profile of proinflammatory cytokines.
Collapse
|
25
|
Wang Y, Xiang GS, Kourouma F, Umar S. Citrobacter rodentium-induced NF-kappaB activation in hyperproliferating colonic epithelia: role of p65 (Ser536) phosphorylation. Br J Pharmacol 2006; 148:814-24. [PMID: 16751795 PMCID: PMC1617077 DOI: 10.1038/sj.bjp.0706784] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
1. The transcription factors of the NF-kappaB/Rel family form dimeric complexes that control expression of various genes involved in inflammation and proliferation. 2. During transmissible murine colonic hyperplasia (TMCH) induced by Citrobacter rodentium, nuclear translocation of NF-kappaB in isolated colonic crypts increased 3 day's post-infection and continued over 12 days paralleling peak hyperplasia. Antibody supershifts for both p65/p50 hetero- and p50/p50 homodimers occurred. Expression levels of both p50 and p65 subunits increased in cytosolic/nuclear extracts and correlated with NF-kappaB activation kinetics. IkappaB alpha levels decreased during this time. 3. Phosphorylation of IKK alpha (at Ser(176/180)) and -beta (at Ser(177/181)) increased significantly during TMCH suggesting activation in vivo. 4. p65-Ser536 (p65(536)) exhibited increased phosphorylation on immunoblotting and immunohistochemistry (IHC) both at day 6 and 12 TMCH. p65(536) translocated to nucleus and interacted with transcriptional coactivator CREB binding protein (CBP). 5. Proteasomal inhibitor bortezomib (Velcade) caused accumulation of Ser(32/36)-phosphorylated IkappaB alpha and significant inhibition of NF-kappaB activity in vivo. Velcade also blocked nuclear translocation of activated p65: both immunoblotting and IHC failed to detect p65(536) nuclear immunoreactivity. Velcade, however, did not abrogate TMCH. 6. p65 interacted strongly with ribosomal S6 kinase 1 (RSK-1) during coimmunoprecipitation but not with IKK alpha or -beta. 7. Thus, NF-kappaB activation during TMCH involves both IkappaB alpha degradation and p65-Ser536 phosphorylation. p65/RSK-1 interaction and concomitant increase in p65(536) complexed with CBP may be important in modulating NF-kappaB activity in vivo. Activated NF-kappaB, besides modulating proliferation, may aid in providing protective immunity against C. rodentium infection in vivo.
Collapse
Affiliation(s)
- Yu Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, 1108 Strand, Galveston TX 77555-0632, U.S.A
| | - Guang-Sheng Xiang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, 1108 Strand, Galveston TX 77555-0632, U.S.A
| | - Famourou Kourouma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, 1108 Strand, Galveston TX 77555-0632, U.S.A
| | - Shahid Umar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, 1108 Strand, Galveston TX 77555-0632, U.S.A
- Author for correspondence:
| |
Collapse
|
26
|
Furrie E, Macfarlane S, Thomson G, Macfarlane GT. Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 2005; 115:565-74. [PMID: 16011525 PMCID: PMC1782176 DOI: 10.1111/j.1365-2567.2005.02200.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The colonic epithelium provides an interface between the host and micro-organisms colonising the gastrointestinal tract. Molecular recognition of bacteria is facilitated through Toll-like receptors (TLR). The colonic epithelium expresses relatively high levels of mRNA for TLR3 and less for TLR2 and -4. Little is known of the expression patterns and mode of induction of expression for these pattern recognition receptors in human colon. The aim of this study was to investigate their localization in the gut and induction of expression in epithelial cell lines by mucosal bacteria. TLR2 and -4 were expressed only in crypt epithelial cells, expression was lost as the cells matured and moved towards the gut lumen. In contrast, TLR3 was only produced in mature epithelial cells. HT29 and CACO-2 had different levels of expression for TLR1-4. Co-culture of HT29 cells with different mucosal isolates showed that they were highly responsive to bacterial challenge, with up-regulation of mRNA for TLR1-4. In contrast, CACO-2 cells were refractive to bacterial challenge, showing little difference in mRNA levels. TLR3 was induced in HT29 only by Gram-positive commensals with up-regulation of both mRNA and protein and an enhancement of the antiviral immune response. This pattern of expression allows induction of responsiveness to bacteria only by the crypt epithelium so that tolerance to commensal organisms can be maintained. In contrast, mature columnar epithelium is able to respond to viral pathogens, which are not part of the normal gut commensal microbiota.
Collapse
Affiliation(s)
- Elizabeth Furrie
- Ninewells Hospital Medical School, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
27
|
Cheikhelard A, Go S, Canioni D, Leborgne M, Brousse N, Révillon Y, Cerf-Bensussan N, Sarnacki S. Enhanced in situ expression of NF-kappaBp65 is an early marker of intestinal graft rejection in rats. J Pediatr Surg 2005; 40:1420-7. [PMID: 16150343 DOI: 10.1016/j.jpedsurg.2005.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although intestinal transplantation provides a unique situation of free access to the graft because of the presence of temporary enterostomas, evaluation of local immunosuppression is still an unresolved issue and may constitute one of the causes of grafting failure. AIMS To study in a rat model of allogeneic intestinal transplantation the expression of transcription factors involved in lymphocyte activation in situ in the graft and to identify factors reflecting the efficiency of drug immunosuppression. METHODS Intestinal transplantation was performed in a Brown Norway (RT1n-donors)-Lewis (RT1(l)-recipients) rat strain combination. The animals were treated with tacrolimus to induce tolerance or left untreated. Syngeneic intestinal grafts and intestine from donor rats with peritonitis were used as controls. NF-kappaBp65, p-c-Jun, interleukin 2 receptor (CD25), and major histocompatibility complex class II antigen (OX-6) expression was studied in graft biopsies on days 2 and 5 by immunohistochemistry. RESULTS On day 2, before the onset of histologic signs of rejection, the number of cells expressing NF-kappaBp65 in the pericryptic lamina propria was significantly higher in untreated recipients of allogeneic grafts than in the other groups (P = .009). NF-kappaBp65 expression then fell between days 2 and 5 (P = .009). Classic markers of T-cell activation (CD25 and OX-6) were expressed during rejection in the lamina propria and on crypt enterocytes, respectively. p-c-Jun expression did not differ among the 3 groups. CONCLUSION NF-kappaBp65 expression in intestinal grafts is a precocious sign of local activation during rejection and could thus serve to optimize the management of immunosuppressive therapy.
Collapse
Affiliation(s)
- Alaa Cheikhelard
- INSERM E-0212, Faculté Necker Enfants-Malades, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lan JG, Cruickshank SM, Singh JCI, Farrar M, Lodge JPA, Felsburg PJ, Carding SR. Different cytokine response of primary colonic epithelial cells to commensal bacteria. World J Gastroenterol 2005; 11:3375-84. [PMID: 15948242 PMCID: PMC4315991 DOI: 10.3748/wjg.v11.i22.3375] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria.
METHODS: A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production.
RESULTS: Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1α/β and β defensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2α expression, respectively. TNFα, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion.
CONCLUSION: These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Jing-Gang Lan
- School of Biochemistry and Microbiology, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Tong X, Yin L, Washington R, Rosenberg DW, Giardina C. The p50-p50 NF-kappaB complex as a stimulus-specific repressor of gene activation. Mol Cell Biochem 2005; 265:171-83. [PMID: 15543947 DOI: 10.1023/b:mcbi.0000044394.66951.4d] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The transcription factor NF-kappaB can be activated in different forms, including transcriptional activating and repressing forms. Intestinal epithelial cells have been found to modulate the relative levels of the p65-p50 and p50-p50 NF-kappaB complexes in a number of instances, and here we show that this ratio was altered in response to dietary fiber (wheat bran) and carcinogen exposure (azoxymethane). The influence of these complexes on gene regulation was examined in more detail in cell culture models. The colon-derived HT-29 cell line likewise activated both p65-p50 and p50-p50 NF-kappaB complexes: TNF-alpha triggered a strong, sustained p65-p50 activation with lower relative levels of p50-p50, whereas IL-1beta transiently activated p65-p50 with higher relative levels of p50-p50. Transfection experiments with an NF-kappaB reporter plasmid indicated that p50 was a repressor in HT-29 cells. Increased expression of the p50-p50 dimer by an adenovirus showed that the p50-p50 dimer suppressed IL-1beta activation of endogenous genes more than 5-fold (TNF-alpha, Cox-2 and IL-8), whereas gene activation by TNF-alpha was not significantly affected. DNA binding analyses showed a number of strong p50-p50 binding sites on these promoters. The selective p50-p50 suppression of IL-1beta gene activation corresponded to the transient nature of p65-p50 activation induced by IL-1beta (in both HT-29 and Caco-2 cells). Our findings demonstrate a novel gene regulatory mechanism for the NF-kappaB p50-p50 complex: a signal-specific transcriptional repression that appears to selectively inhibit stimuli that transiently activate p65-p50 complexes.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
30
|
Singh JCI, Cruickshank SM, Newton DJ, Wakenshaw L, Graham A, Lan J, Lodge JPA, Felsburg PJ, Carding SR. Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288:G514-24. [PMID: 15499080 DOI: 10.1152/ajpgi.00377.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interleukin-2-deficient (IL-2(-/-)) mouse model of ulcerative colitis was used to test the hypothesis that colonic epithelial cells (CEC) directly respond to bacterial antigens and that alterations in Toll-like receptor (TLR)-mediated signaling may occur during the development of colitis. TLR expression and activation of TLR-mediated signaling pathways in primary CEC of healthy animals was compared with CEC in IL-2(-/-) mice during the development of colitis. In healthy animals, CEC expressed functional TLR, and in response to the TLR4 ligand LPS, proliferated and secreted the cytokines IL-6 and monocyte chemoattractant protein-1 (MCP-1). However, the TLR-responsiveness of CEC in IL-2(-/-) mice was different with decreased TLR4 responsiveness and augmented TLR2 responses that result in IL-6 and MCP-1 secretion. TLR signaling in CEC did not involve NF-kappaB (p65) activation with the inhibitory p50 form of NF-kappaB predominating in CEC in both the healthy and inflamed colon. Development of colitis was, however, associated with the activation of MAPK family members and upregulation of MyD88-independent signaling pathways characterized by increased caspase-1 activity and IL-18 production. These findings identify changes in TLR expression and signaling during the development of colitis that may contribute to changes in the host response to bacterial antigens seen in colitis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Bacteria/metabolism
- Blotting, Western
- Caspase 1/metabolism
- Cell Separation
- Cells, Cultured
- Colitis/pathology
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Electrophoretic Mobility Shift Assay
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/pathology
- Flow Cytometry
- Interleukin-18/biosynthesis
- Intestines/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Myeloid Differentiation Factor 88
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/physiology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Up-Regulation/physiology
Collapse
|
31
|
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118:229-41. [PMID: 15260992 DOI: 10.1016/j.cell.2004.07.002] [Citation(s) in RCA: 3135] [Impact Index Per Article: 149.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/21/2004] [Accepted: 05/26/2004] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
32
|
Din FVN, Dunlop MG, Stark LA. Evidence for colorectal cancer cell specificity of aspirin effects on NF kappa B signalling and apoptosis. Br J Cancer 2004; 91:381-8. [PMID: 15188000 PMCID: PMC2409803 DOI: 10.1038/sj.bjc.6601913] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidemiological evidence indicates that non-steroidal anti-inflammatory drugs (NSAIDs) protect against colorectal cancer (CRC) to a greater degree than other non-gastrointestinal cancers, but the molecular basis for this difference is unknown. We previously reported that aspirin induces signal-specific IκBα degradation followed by NFκB nuclear translocation in CRC cells, and that this mechanism contributes substantially to aspirin-induced apoptosis. Here, we explored the hypothesis that cell-type specific effects on NFκB signalling are responsible for the observed differences in protection by aspirin against CRC compared to breast and gynaecological cancers. We also assessed whether COX-2 expression, mutation status of adenomatous polyposis coli (APC), β-catenin, p53, or DNA mismatch repair (MMR) genes in CRC lines influenced aspirin-induced effects. We found that aspirin induced concentration-dependent IκBα degradation, NFκB nuclear translocation and apoptosis in all CRC lines studied. However, there was no such effect on the other cancer cell types, indicating a considerable degree of cell-type specificity. The lack of effect on NFκB signalling, paralleled by absence of an apoptotic response to aspirin in non-CRC lines, strongly suggests a molecular rationale for the particular protective effect of NSAIDs against CRC. Effects on NFκB and apoptosis were observed irrespective of COX-2 expression, or mutation status in APC, β-catenin, p53 and DNA MMR genes, underscoring the generality of the aspirin effect on NFκB in CRC cells. These findings raise the possibility of cell-type specific targets for the development of novel chemopreventative agents.
Collapse
Affiliation(s)
- F V N Din
- Colon Cancer Genetics Group, University of Edinburgh Department of Oncology and MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, Scotland
| | - M G Dunlop
- Colon Cancer Genetics Group, University of Edinburgh Department of Oncology and MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, Scotland
- Colon Cancer Genetics Group, University of Edinburgh Department of Oncology and MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, Scotland. E-mail:
| | - L A Stark
- Colon Cancer Genetics Group, University of Edinburgh Department of Oncology and MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, Scotland
| |
Collapse
|
33
|
Smartt HJM, Elder DJE, Hicks DJ, Williams NA, Paraskeva C. Increased NF-kappaB DNA binding but not transcriptional activity during apoptosis induced by the COX-2-selective inhibitor NS-398 in colorectal carcinoma cells. Br J Cancer 2003; 89:1358-65. [PMID: 14520472 PMCID: PMC2394298 DOI: 10.1038/sj.bjc.6601266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit colorectal neoplasia, an effect that is associated with their ability to induce apoptosis. Although NSAIDs have been reported to inhibit NF-κB, more recent studies show activation of NF-κB by NSAIDs. NF-κB commonly shows antiapoptotic activity and is implicated in the therapeutic resistance of cancer cells. The effects of highly COX-2-selective NSAIDs such as NS-398 on NF-κB in colorectal tumour cells have not been reported. Therefore, we addressed whether NF-κB has a role in NS-398-induced apoptosis of colorectal cancer cells. Treatment of HT-29 colorectal carcinoma cells with doses of NS-398 (50–75 μM) known to induce apoptosis had no effect on NF-κB for up to 48 h. However after 72 and 96 h NF-κB DNA-binding activity was increased by NS-398, in parallel with apoptosis induction. NS-398-treated HT-29 cells showed increased p50 homodimer binding and an induction of p50/p65 heterodimers, as demonstrated by supershift assay. However, although NS-398 increased NF-κB DNA binding it did not increase NF-κB-dependent reporter activity and inhibition of NF-κB DNA binding did not enhance NS-398-induced apoptosis. This indicates that NF-κB activated by NS-398 is transcriptionally inactive and is an encouraging result for the use of COX-2-selective NSAIDs not only in chemoprevention but also as novel therapies for colon cancer.
Collapse
Affiliation(s)
- H J M Smartt
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - D J E Elder
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - D J Hicks
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - N A Williams
- Department of Pathology and Microbiology, Division of Immunology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - C Paraskeva
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK. E-mail:
| |
Collapse
|
34
|
Parhar K, Ray A, Steinbrecher U, Nelson C, Salh B. The p38 mitogen-activated protein kinase regulates interleukin-1beta-induced IL-8 expression via an effect on the IL-8 promoter in intestinal epithelial cells. Immunology 2003. [PMID: 12667212 DOI: 10.1046/i.1365-2567.2003.01603.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Kuljit Parhar
- Department of Medicine, The Jack Bell Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
35
|
Parhar K, Ray A, Steinbrecher U, Nelson C, Salh B. The p38 mitogen-activated protein kinase regulates interleukin-1beta-induced IL-8 expression via an effect on the IL-8 promoter in intestinal epithelial cells. Immunology 2003; 108:502-12. [PMID: 12667212 PMCID: PMC1782920 DOI: 10.1046/j.1365-2567.2003.01603.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Kuljit Parhar
- Department of Medicine, The Jack Bell Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
36
|
Malago JJ, Koninkx JFJG, van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones 2003. [PMID: 12380687 DOI: 10.1379/1466-1268(2002)007%3c0191:thsrac%3e2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following heat stress, the mammalian intestinal epithelial cells respond by producing heat shock proteins that confer protection under stressful conditions, which would otherwise lead to cell damage or death. Some of the noxious processes against which the heat shock response protects cells include heat stress, infection, and inflammation. The mechanisms of heat shock response-induced cytoprotection involve inhibition of proinflammatory cytokine production and induction of cellular proliferation for restitution of the damaged epithelium. This can mean selective interference of pathways, such as nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK), that mediate cytokine production and growth responses. Insight into elucidating the exact protective mechanisms could have therapeutic significance in treating intestinal inflammations and in aiding maintenance of intestinal integrity. Herein we review findings on heat shock response-induced intestinal epithelial protection involving regulation of NF-kappaB and MAPK cytokine production.
Collapse
Affiliation(s)
- Joshua J Malago
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
37
|
Kim S, Domon-Dell C, Wang Q, Chung DH, Di Cristofano A, Pandolfi PP, Freund JN, Evers BM. PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology 2002; 123:1163-78. [PMID: 12360479 DOI: 10.1053/gast.2002.36043] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS PTEN (phosphatase and tensin homologue deleted from chromosome 10) is a dual-specificity phosphatase implicated in embryonic development, intestinal cell proliferation and differentiation, and tumor suppression. The transcription factor Cdx-2 is critical in intestinal development and homeostasis, and its expression is altered in colorectal cancers. However, the regulation of the Cdx-2 gene has not been entirely elucidated. Here, we hypothesize that Cdx-2 may be a target of PTEN signaling in the intestine. METHODS The expression patterns for Cdx-2 and PTEN along wild-type mouse colon, as well as in colon tumors occurring in Pten(+/-) mice, were examined. The effect of PTEN or phosphatidylinositol 3-kinase inhibition and tumor necrosis factor alpha on Cdx-2 messenger RNA and protein expression, Cdx-2 DNA binding activity, and the promoter activity of the Cdx-2 gene was analyzed in human colon cancer cell lines. RESULTS Cdx-2 expression correlates with PTEN along the length of the murine colon and in colonic polyps that develop in Pten(+/-) mice. In colon cancer cells, PTEN stimulates Cdx-2 protein expression and the transcriptional activity of the Cdx-2 promoter. Phosphatidylinositol 3-kinase inhibition by wortmannin or by a dominant-negative phosphatidylinositol 3-kinase mimics the Cdx-2 stimulation by PTEN. Inversely, cell treatment by tumor necrosis factor alpha decreases Cdx-2 expression. Phosphatidylinositol 3-kinase inhibition by PTEN or wortmannin has an inverse effect compared with tumor necrosis factor alpha on the balance between the p50 and p65 subunits of nuclear factor kappaB. p65 inhibits the activity of the Cdx-2 promoter, whereas p50 prevents p65 action. CONCLUSIONS Our results suggest that the intestinal Cdx-2 homeobox gene is a target of PTEN/phosphatidylinositol 3-kinase signaling and tumor necrosis factor alpha signaling via nuclear factor kappaB-dependent pathways.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Malago JJ, Koninkx JFJG, van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones 2002; 7:191-9. [PMID: 12380687 PMCID: PMC514817 DOI: 10.1379/1466-1268(2002)007<0191:thsrac>2.0.co;2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following heat stress, the mammalian intestinal epithelial cells respond by producing heat shock proteins that confer protection under stressful conditions, which would otherwise lead to cell damage or death. Some of the noxious processes against which the heat shock response protects cells include heat stress, infection, and inflammation. The mechanisms of heat shock response-induced cytoprotection involve inhibition of proinflammatory cytokine production and induction of cellular proliferation for restitution of the damaged epithelium. This can mean selective interference of pathways, such as nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK), that mediate cytokine production and growth responses. Insight into elucidating the exact protective mechanisms could have therapeutic significance in treating intestinal inflammations and in aiding maintenance of intestinal integrity. Herein we review findings on heat shock response-induced intestinal epithelial protection involving regulation of NF-kappaB and MAPK cytokine production.
Collapse
Affiliation(s)
- Joshua J Malago
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | |
Collapse
|