1
|
Cai Y, Yan L, Cogan JD, Hedges LK, Nunley B, Negretti N, Sucre JMS, West J, Austin ED, Hamid R. RNA-Seq and ChIP-Seq Identification of Unique and Overlapping Target Genes and Pathways Regulated by TBX4 in Human Pulmonary Fibroblasts and Pericytes. Pulm Circ 2025; 15:e70058. [PMID: 39980707 PMCID: PMC11839389 DOI: 10.1002/pul2.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Transcription factor TBX4 rare variants associate with pulmonary arterial hypertension (PAH), particularly in children, and are the second most common cause of heritable PAH. However, TBX4's down-stream targets and the molecular and cellular pathways these targets regulate remain largely unknown in PAH. We combined RNA-seq and ChIP-seq results to identify TBX4 direct targets in lung fibroblasts and pericytes, respectively. There were 555 genes with altered expression with TBX4 knockdown in both fibroblasts and pericytes by RNA-seq, and which also were found to be bound by TBX4 by ChIP-seq. Gene ontology analysis found that these were dominated by genes related to extracellular matrix, actin organization, and migration guidance, although there were also significant groups related to serine/threonine kinase signaling, GTPase mediated signaling, and glycoprotein metabolism. Migration and proliferation studies using TBX4 knockdown fibroblasts confirmed functional effects. These studies provide the first insights into how genes and pathways regulated by TBX4 are impacted and inform future studies about the key biological processes that lead to PAH in patients who carry pathologic TBX4 rare variants.
Collapse
Affiliation(s)
- Ying Cai
- Division of Medical Genetics and Genomic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ling Yan
- Division of Medical Genetics and Genomic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Joy D. Cogan
- Division of Medical Genetics and Genomic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lora K. Hedges
- Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Bethany Nunley
- Division of Medical Genetics and Genomic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nick Negretti
- Mildred Stahlman Division of NeonatologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of PediatricsBiodevelopment Origins of Lung Disease (BOLD) CenterNashvilleTennesseeUSA
| | - Jennifer M. S. Sucre
- Mildred Stahlman Division of NeonatologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of PediatricsBiodevelopment Origins of Lung Disease (BOLD) CenterNashvilleTennesseeUSA
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Eric D. Austin
- Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Rizwan Hamid
- Division of Medical Genetics and Genomic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
2
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
3
|
Xiao L, Wang M, Yang S, Li S, Huang Q, Xu L, Li Y, Fu Y. The diagnostic potential of plasma SCUBE-1 concentration for pulmonary embolism: A pilot study. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:263-269. [PMID: 36748401 PMCID: PMC10113275 DOI: 10.1111/crj.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This study aimed to investigate the potential application of plasma signal peptide-complement C1r/C1s, Uegf and Bmp1-epidermal growth factor domain-containing protein 1 (SCUBE-1) as a biomarker in the diagnosis of pulmonary embolism (PE). METHODS This cross-sectional study enrolled 177 patients who underwent PE diagnostic test and 87 healthy controls. The results of CT pulmonary angiogram (CTPA) were used as reference standards for PE diagnosis. The levels of SCUBE-1 and D-dimer in participants' plasma were detected with enzyme-linked immunosorbent assay and compared among patients with confirmed PE, suspicious PE and healthy controls. The diagnostic values were analysed using receiver operating characteristic (ROC) curve analysis. In addition, differences in plasma SCUBE-1 levels were compared among patients with different risk stratifications. RESULTS The plasma SCUBE-1 concentration levels in patients with CTPA confirmed PE (14.28 ± 7.74 ng/ml) was significantly higher than those in the suspicious patients (11.11 ± 4.48 ng/ml) and in healthy control (4.40 ± 3.23 ng/ml) (P < 0.01). ROC curve analysis showed that at the cut-off of 7.789 ng/ml, SCUBE-1 has significant diagnostic value in differentiating PE patients from healthy control (AUC = 0.919, sensitivity = 81.25%, specificity = 92.13%), and the performance is more accurate than D-dimer (cut-off 273.4 ng/ml, AUC = 0.648, sensitivity = 65.75%, specificity = 67.42%). The combination of D-dimer with SCUBE-1 did not further improve the diagnostic value. However, SCUBE-1 did not show significant diagnostic value in identifying PE among suspicious patients There was no significant difference in SCUBE-1 level among different risk groups (P > 0.05). CONCLUSION We believe that SCUBE-1 could be a potential coagulation-related marker for the diagnosis of PE.
Collapse
Affiliation(s)
- Lu Xiao
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China.,Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minlian Wang
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Sicong Yang
- Department of Cardiology, The seventh Affiliated Hospital of Sun Yat sen University (Shenzhen), Shenzhen, China
| | - Shulin Li
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Qijun Huang
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Lan Xu
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Yazhen Li
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Yingyun Fu
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Louis F, Sowa Y, Irie S, Higuchi Y, Kitano S, Mazda O, Matsusaki M. Injectable Prevascularized Mature Adipose Tissues (iPAT) to Achieve Long-Term Survival in Soft Tissue Regeneration. Adv Healthc Mater 2022; 11:e2201440. [PMID: 36103662 DOI: 10.1002/adhm.202201440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 09/01/2022] [Indexed: 01/28/2023]
Abstract
Soft tissue regeneration remains a challenge in reconstructive surgery. So far, both autologous fat implantations and artificial implants methods used in clinical applications lead to various disadvantages and limited lifespan. To overcome these limitations and improve the graft volume maintenance, reproducing a mature adipose tissue already including vasculature structure before implantation can be the solution. Therefore, injectable prevascularized adipose tissues (iPAT) are made from physiological collagen microfibers mixed with human mature adipocytes, adipose-derived stem cells, and human umbilical vein endothelial cells, embedded in fibrin gel. Following murine subcutaneous implantation, the iPAT show a higher cell survival (84% ± 6% viability) and volume maintenance after 3 months (up to twice heavier) when compared to non-prevascularized balls and liposuctioned fat implanted controls. This higher survival can be explained by the greater amount of blood vessels found (up to 1.6-fold increase), with balanced host anastomosis (51% ± 1% of human/mouse lumens), also involving infiltration by the lymphatic and neural vasculature networks. Furthermore, with the cryopreservation possibility enabling their later reinjection, the iPAT technology has the merit to allow noninvasive soft tissue regeneration for long-term outcomes.
Collapse
Affiliation(s)
- Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
5
|
Disseminated Melanoma Cells Transdifferentiate into Endothelial Cells in Intravascular Niches at Metastatic Sites. Cell Rep 2021; 31:107765. [PMID: 32553158 DOI: 10.1016/j.celrep.2020.107765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/24/2019] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cell plasticity, including transdifferentiation, is thought to be a key driver of therapy failure, tumor dormancy, and metastatic dissemination. Although melanoma cells have been shown to adopt various phenotypic features in vitro, direct in vivo evidence of metastatic cell plasticity remains sparse. Here, we combine lineage tracing in a spontaneous metastatic mouse model of melanoma, advanced imaging, and single-cell RNA sequencing approaches to search for pathophysiologically relevant melanoma cellular states. We identify melanoma cells in intravascular niches of various metastatic organs. These cells are quiescent, are negative for characteristic melanoma markers, and acquire endothelial cell features. We replicate the endothelial transdifferentiation (EndT) finding in another mouse model and provide evidence of EndT in BRAFV600E-metastatic biopsies from human lung, brain, and small intestine, thus highlighting the clinical relevance of these findings. The tumor-vasculature pattern described herein may contribute to melanoma dormancy within metastatic organs and represent a putative target for therapies.
Collapse
|
6
|
Fukusumi Y, Yasuda H, Zhang Y, Kawachi H. Nephrin-Ephrin-B1-Na +/H + Exchanger Regulatory Factor 2-Ezrin-Actin Axis Is Critical in Podocyte Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1209-1226. [PMID: 33887216 DOI: 10.1016/j.ajpath.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Ephrin-B1 is one of the critical components of the slit diaphragm of kidney glomerular podocyte. However, the precise function of ephrin-B1 is unclear. To clarify the function of ephrin-B1, ephrin-B1-associated molecules were studied. RNA-sequencing analysis suggested that Na+/H+ exchanger regulatory factor 2 (NHERF2), a scaffolding protein, is associated with ephrin-B1. NHERF2 was expressed at the apical area and the slit diaphragm, and interacted with the nephrin-ephrin-B1 complex at the slit diaphragm. The nephrin-ephrin-B1-NHERF2 complex interacted with ezrin bound to F-actin. NHERF2 bound ephrin-B1 via its first postsynaptic density protein-95/disks large/zonula occludens-1 domain, and podocalyxin via its second postsynaptic density protein-95/disks large/zonula occludens-1 domain. Both in vitro analyses with human embryonic kidney 293 cells and in vivo study with rat nephrotic model showed that stimulaiton of the slit diaphragm, phosphorylation of nephrin and ephrin-B1, and dephosphorylation of NHERF2 and ezrin, disrupted the linkages of ephrin-B1-NHERF2 and NHERF2-ezrin. It is conceivable that the linkage of nephrin-ephrin-B1-NHERF2-ezrin-actin is a novel critical axis in the podocytes. Ephrin-B1 phosphorylation also disrupted the linkage of an apical transmembrane protein, podocalyxin, with NHERF2-ezrin-actin. The phosphorylation of ephrin-B1 and the consequent dephosphorylation of NHERF2 are critical initiation events leading to podocyte injury.
Collapse
Affiliation(s)
- Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidenori Yasuda
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ying Zhang
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
7
|
Dini P, Carossino M, Balasuriya UBR, El-Sheikh Ali H, Loux SC, Esteller-Vico A, Scoggin KE, Loynachan AT, Kalbfleisch T, De Spiegelaere W, Daels P, Ball BA. Paternally expressed retrotransposon Gag-like 1 gene, RTL1, is one of the crucial elements for placental angiogenesis in horses†. Biol Reprod 2021; 104:1386-1399. [PMID: 33693478 DOI: 10.1093/biolre/ioab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/08/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.
Collapse
Affiliation(s)
- Pouya Dini
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Mariano Carossino
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Udeni B R Balasuriya
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alejandro Esteller-Vico
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alan T Loynachan
- Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Theodore Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Daels
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Barry A Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Peng T, Yang F, Sun Z, Yan J. miR-19a-3p Facilitates Lung Adenocarcinoma Cell Phenotypes by Inhibiting TEK. Cancer Biother Radiopharm 2021; 37:589-601. [PMID: 33493418 DOI: 10.1089/cbr.2020.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Both TEK and miR-19a-3p have been reported to regulate lung adenocarcinoma (LUAD) progression. However, the association between TEK and miR-19a-3p in LUAD remained unknown. This research aimed to investigate a novel miR-19a-3p/TEK interactome in LUAD cells. Methods: The mRNA expression and protein expression in the cell lines were determined using qPCR and Western blot assay, respectively. CCK-8 assay, EDU assay, flow cytometry cell apoptosis assay, scratch assay, and cell-to-extracellular matrix adhesion assay were performed to detect the proliferation, apoptosis, migration, and adhesion ability of A549 and H1975 cell lines. Results: Findings revealed that both mRNA and protein levels of TEK were downregulated in the LUAD tumor tissues and cell lines. It was also found that compared with the control group, the transfection of TEK overexpression plasmids into H1975 and A549 cell lines significantly inhibited cancerous phenotypes. However, experimental results indicated that by downregulating TEK, miR-19a-3p promoted LUAD cell phenotypes. Conclusion: This research demonstrated that an interactome existed between miR-19a-3p and TEK and that miR-19a-3p could suppress LUAD tumors by inhibiting TEK. This novel interactome could be used as a novel therapy target for LUAD.
Collapse
Affiliation(s)
- Tao Peng
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Fan Yang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Zhanwen Sun
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| |
Collapse
|
9
|
Shan ZG, Sun ZW, Zhao LQ, Gou Q, Chen ZF, Zhang JY, Chen W, Su CY, You N, Zhuang Y, Zhao YL. Upregulation of Tubulointerstitial nephritis antigen like 1 promotes gastric cancer growth and metastasis by regulating multiple matrix metallopeptidase expression. J Gastroenterol Hepatol 2021; 36:196-203. [PMID: 32537806 DOI: 10.1111/jgh.15150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Tubulointerstitial nephritis antigen-like 1 (TINAGL1), as a novel matricellular protein, has been demonstrated to participate in cancer progression, whereas the potential function of TINAGL1 in gastric cancer (GC) remains unknown. METHODS The expression pattern of TINAGL1 in GC was examined by immunohistochemistry, ELISA, real-time polymerase chain reaction, and Western blot. Correlation between TINAGL1 and matrix metalloproteinases (MMPs) was analyzed by the GEPIA website and Kaplan-Meier plots database. The lentivirus-based TINAGL1 knockdown, CCK-8, and transwell assays were used to test the function of TINAGL1 in vitro. The role of TINAGL1 was confirmed by subcutaneous xenograft, abdominal dissemination, and lung metastasis model. Microarray experiments, ELISA, real-time polymerase chain reaction, and Western blot were used to identify molecular mechanism. RESULTS TINAGL1 was increased in GC tumor tissues and associated with poor patient survival. Moreover, TINAGL1 significantly promoted GC cell proliferation and migration in vitro as well as facilitated GC tumor growth and metastasis in vivo. TINAGL1 expression in GC cells was accompanied with increasing MMPs including MMP2, MMP9, MMP11, MMP14, and MMP16. GEPIA database revealed that these MMPs were correlated with TINAGL1 in GC tumors and that the most highly expressed MMP was MMP2. Mechanically, TINAGL1 regulated MMP2 through the JNK signaling pathway activation. CONCLUSIONS Our data highlight that TINAGL1 promotes GC growth and metastasis and regulates MMP2 expression, indicating that TINAGL1 may serve as a therapeutic target for GC.
Collapse
Affiliation(s)
- Zhi-Guo Shan
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhen-Wei Sun
- The 988 Hospital of PLA, Zhengzhou, Henan, China
| | - Li-Qun Zhao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Qiang Gou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhi-Fu Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jin-Yu Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Chong-Yu Su
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yong-Liang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Walawalkar S, Almelkar S. Fabricating a pre-vascularized large-sized metabolically-supportive scaffold using Brassica oleracea leaf. J Biomater Appl 2020; 36:165-178. [PMID: 33135573 DOI: 10.1177/0885328220968388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND There is a significant pitfall in clinical translation of large-sized tissue-engineered grafts - a lack of vascularization. This study was carried out to find the answer in a plant leaf, as plants and animals share structural similarities. METHODS AND RESULTS We fabricated a scaffold using Brassica oleracea leaves (10%SDS) and expanded the endothelial cells onto them. The vascularity was demarcated by angiography. The thermal decomposition confirmed that the oxidation resistance of the scaffold is parallel to the natural leaf. The acellularity of the scaffold as well as the presence of cellular establishment after culture on the scaffold was confirmed by histology, scanning electron microscopy, periodic acid-Schiff, and DNA quantification. Further, we estimated various biochemical markers like MDA, catalase, total proteins, and total nitric oxide for confirming their metabolic activities. Cell-specific markers like vWF, lectin established their phenotype. Cytotoxicity and live-dead assay showed the viability of cells. CONCLUSION Our findings proved that the decellularized leaf scaffold preserves vascularity, exhibits non-toxicity, maintains the cell identity, and supports mammalian cells for their metabolic activities. The study gives a futuristic hope in combating the ever-growing issues of clinical applicability of large-sized grafts.
Collapse
Affiliation(s)
- Sonal Walawalkar
- Division of Tissue Engineering & Cell Science (TECS), HEAL BIOLABS, Shree Hospital & Research Institute (SHRI), Maharashtra, India
| | - Shahdab Almelkar
- Division of Tissue Engineering & Cell Science (TECS), HEAL BIOLABS, Shree Hospital & Research Institute (SHRI), Maharashtra, India
| |
Collapse
|
11
|
Equine hydrallantois is associated with impaired angiogenesis in the placenta. Placenta 2020; 93:101-112. [PMID: 32250734 DOI: 10.1016/j.placenta.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydrallantois is the excessive accumulation of fluid in the allantoic cavities during the last trimester of pregnancy, leading to abdominal wall hernias, cardiovascular shock, abortion, and dystocia. It has been postulated that hydrallantois is associated with structural and/or functional changes in the chorioallantoic membrane. In the present study, we hypothesized that angiogenesis is impaired in the hydrallantoic placenta. METHOD Capillary density in the hydrallantoic placenta was evaluated in the chorioallantois via immunohistochemistry for Von Willebrand Factor. Moreover, the expression of angiogenic genes was compared between equine hydrallantois and age-matched, normal placentas. RESULTS In the hydrallantoic samples, edema was the main pathological finding. The capillary density was significantly lower in the hydrallantoic samples than in normal placentas. The reduction in the number of vessels was associated with abnormal expression of a subset of angiogenic and hypoxia-associated genes including VEGF, VEGFR1, VEGFR2, ANGPT1, eNOS and HIF1A. We believe that the capillary density and the abnormal expression of angiogenic genes leads to tissue hypoxia (high expression of HIF1A) and edema. Finally, we identified a lower expression of genes associated with steroidogenic enzyme (CYP19A1) and estrogen receptor signaling (ESR2) in the hydrallantoic placenta. DISCUSSION Based on the presented data, we believe that formation of edema is due to disrupted vascular development (low number of capillaries) and hypoxia in the hydrallantoic placenta. The edema leads to further hypoxia and consequently, causes an increase in vessel permeability which leads to a gradual increase in interstitial fluid accumulation, resulting in an insufficient transplacental exchange rate and accumulation of fluid in the allantoic cavity.
Collapse
|
12
|
Dahlin A, Sordillo JE, McGeachie M, Kelly RS, Tantisira KG, Lutz SM, Lasky-Su J, Wu AC. Genome-wide interaction study reveals age-dependent determinants of responsiveness to inhaled corticosteroids in individuals with asthma. PLoS One 2020; 15:e0229241. [PMID: 32119686 PMCID: PMC7051058 DOI: 10.1371/journal.pone.0229241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022] Open
Abstract
While genome-wide association studies have identified genes involved in differential treatment responses to inhaled corticosteroids (ICS) in asthma, few studies have evaluated the potential effects of age in this context. A significant proportion of asthmatics experience exacerbations (hospitalizations and emergency department visits) during ICS treatment. We evaluated the interaction of genetic variation and age on ICS response (measured by the occurrence of exacerbations) through a genome-wide interaction study (GWIS) of 1,321 adult and child asthmatic patients of European ancestry. We identified 107 genome-wide suggestive (P<10-05) age-by-genotype interactions, two of which also met genome-wide significance (P<5x10-08) (rs34631960 [OR 2.3±1.6-3.3] in thrombospondin type 1 domain-containing protein 4 (THSD4) and rs2328386 [OR 0.5±0.3-0.7] in human immunodeficiency virus type I enhancer binding protein 2 (HIVEP2)) by joint analysis of GWIS results from discovery and replication populations. In addition to THSD4 and HIVEP2, age-by-genotype interactions also prioritized genes previously identified as asthma candidate genes, including DPP10, HDAC9, TBXAS1, FBXL7, and GSDMB/ORMDL3, as pharmacogenomic loci as well. This study is the first to link these genes to a pharmacogenetic trait for asthma.
Collapse
Affiliation(s)
- Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joanne E. Sordillo
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Sharon M. Lutz
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ann Chen Wu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Walawalkar S, Verma MK, Almelkar S. Re-endothelization of human saphenous vein scaffold surfaces for bioprosthesis fabrication. J Biomater Appl 2020; 34:1081-1091. [DOI: 10.1177/0885328219898349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various in vitro methods have been used for biological and synthetic scaffold fabrication. Some use polymers such as expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), and polyethylene terephthalate (PET), while others use allogeneic or xenogeneic biological materials (e.g. blood vessels). While fabricating a biological scaffold, the first step is complete decellularization by enzymes (e.g. trypsin, collagenase, etc.) or chemicals (e.g. SDS, Triton-X, etc.), and the scaffolds should maintain its extracellular matrix (ECM). The second step involves re-endothelization so as to get fully biomimetic graft. In this study, we focused (concentrated) on the fabrication of a human saphenous vein scaffold by using various chemicals. We observed that cationic 1% SDS solution (Group B) performed excellent decellularization without altering the extracellular matrix as compared to the other chemicals like 0.25% trypsin and 70% ethanol (Groups C and D). Decellularization percentage and intactness of ECM (in all tunicae – intima, media, and adventitia) were confirmed based on histology. The PicoGreen assay showed that Group B (1% SDS decellularized scaffold, n = 3) had no detectable residual DNA. Re-endothelization on the complete decellularized scaffold (Group B) was done in both ways, without initial fibrin glue application (Group E) and with prior fibrin glue application (Group F). The vWF and lectin expressions suggested that endothelial cells did not alter their phenotype on human saphenous vein scaffolds. Uniaxial tensile testing revealed no significant differences in strain characteristics and modulus between native tissue and decellularized scaffolds. The live-dead (FDA/PI) and MTT assays confirmed the endothelial cell proliferation and viability, and the scanning electron microscope (SEM) data showed that the cells adhered to the scaffold matrix (Group F). We concluded that an allogeneic human saphenous vein scaffold with desirable properties can be fabricated and re-endothelialized to form a non-thrombogenic intimal surface in vitro using this protocol.
Collapse
Affiliation(s)
| | | | - Shahdab Almelkar
- HEALTH BIOLABS, Shree Hospital & Research Institute (SHRI), Kolhapur, India
| |
Collapse
|
14
|
Zheng W, Zhang H, Zhao D, Zhang J, Pollard JW. Lung Mammary Metastases but Not Primary Tumors Induce Accumulation of Atypical Large Platelets and Their Chemokine Expression. Cell Rep 2019; 29:1747-1755.e4. [PMID: 31722193 PMCID: PMC6919330 DOI: 10.1016/j.celrep.2019.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
The tumor microenvironment (TME) at the metastatic site consists of multiple components with considerable cellular heterogeneity. To test whether endothelial cells (ECs) associated with lung metastases express a distinct gene expression program that promotes metastatic growth, we isolated CD31+/CD45- cells from lung mammary cancer metastases for RNA sequencing and found CD44 upregulation. Unexpectedly, the CD44+ subset did not comprise authentic ECs nor were they bone-marrow-derived CD45- endothelial progenitor cells. Instead, they were a population of large platelets that are distinct from regular small platelets. These CD44+ large platelets were enriched in lung metastases but not primary mammary tumors and upregulated myeloid cell-regulating chemokines indicative of potential regulation of metastasis via indirect mechanisms. Identification of this cellular player in the TME of metastasis suggests a role for the recently identified lung-resident megakaryocytes (MKs) and offers an unexplored route to discover novel mechanisms and an opportunity for therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Hui Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
15
|
Fabrication of aortic bioprosthesis by decellularization, fibrin glue coating and re-endothelization: a cell scaffold approach. Prog Biomater 2019; 8:197-210. [PMID: 31606862 PMCID: PMC6825630 DOI: 10.1007/s40204-019-00122-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Aortic dysfunctions (aneurysm, aortitis) lead to the most serious conditions related to aortic wall with life-threatening complications. The most common modality of management for such conditions is replacement (diseased part) of aorta by a larger diameter stent (reconstructive vascular surgery) which in itself is a big trial. The most natural way is to use a re-endothelized scaffold. Developing a scaffold with biomimetic properties is an experimental aim for most of the scientists and surgeons. We aim to structure a strategy to overcome the well-known problems associated with aorta. In this study, we plan to remold a larger diameter blood vessel such as aorta from xenogeneic origin using different protocols to decellularize and comparing them with normal aorta. The chemicals and enzymes used for bovine aorta decellularization are 1% SDS (group II), 70% ethanol + 0.25% trypsin (group III), 70% ethanol (group IV), and 0.25% trypsin (group V). Group I served as control (without decellularization). Histology and SEM study were conducted for cellular presence/absence in all scaffolds. Later, the scaffolds were coated with the fibrin glue (FG) and endothelial cells were proliferated over them. 3D images were taken showing the remolding of the endothelial cells on FG-coated surfaces. The re-endothelization was confirmed by lectin and vWF+/+ expression. Graft elasticity and burst pressure were confirmed by biomechanical tensile testing. Further, the absence of host tissue DNA and presence of cellular DNA after re-endothelialization were confirmed by PicoGreen assay. The acceptability for metabolically active cellular proliferation on scaffolds and its non-toxicity were proved by cell viability assay. Current findings accomplish that larger diameter aorta extracellular matrix scaffold (group II) can be fabricated and re-endothelialized to develop non-thrombotic surfaces with improved graft patency with promising results compared to other fabricated scaffold groups.
Collapse
|
16
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
17
|
The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis. Cancers (Basel) 2019; 11:cancers11020237. [PMID: 30781714 PMCID: PMC6406946 DOI: 10.3390/cancers11020237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.
Collapse
|
18
|
Dumazet A, Launois C, Dury S, Sailhan F, Alifano M, Dewolf M, Lebargy F, Deslee G, Perotin JM. Hereditary multiple exostoses of the ribs as an uncommon cause of pneumothorax: A case report. Medicine (Baltimore) 2018; 97:e11894. [PMID: 30170381 PMCID: PMC6393102 DOI: 10.1097/md.0000000000011894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Hereditary multiple exostoses (HME) is a genetic musculoskeletal condition causing multiple exostoses. Rib location of exostosis can be complicated by thoracic injuries. PATIENT CONCERNS AND DIAGNOSES We report a case of pneumothorax in a 32-year-old man with a partial left-sided pneumothorax caused by an exostosis of the fourth and fifth ribs. INTERVENTIONS AND OUTCOMES Clinical and radiological presentations allowed a conservative management. A video-assisted thoracoscopic surgery was performed a few weeks later to avoid any recurrence. LESSONS Rib exostosis represents an unusual cause of pneumothorax. Any local modification of symptoms or size of the exostosis should lead to investigations in regard to chondrosarcoma transformation.
Collapse
Affiliation(s)
- Antoine Dumazet
- Department of Respiratory Diseases, University Hospital, Reims, France
| | - Claire Launois
- Department of Respiratory Diseases, University Hospital, Reims, France
| | - Sandra Dury
- Department of Respiratory Diseases, University Hospital, Reims, France
- EA 4683, Laboratoire D’immunologie et de Biotechnologies, UFR de Pharmacie, Reims
| | - Frédéric Sailhan
- Department of Orthopedic Surgery, Cochin Hospital, APHP, Paris Descartes University
| | - Marco Alifano
- Department of Thoracic Surgery, Cochin hospital, APHP, Paris Descartes University, Paris
| | - Maxime Dewolf
- Department of Respiratory Diseases, University Hospital, Reims, France
| | - François Lebargy
- Department of Respiratory Diseases, University Hospital, Reims, France
- EA 4683, Laboratoire D’immunologie et de Biotechnologies, UFR de Pharmacie, Reims
| | - Gaëtan Deslee
- Department of Respiratory Diseases, University Hospital, Reims, France
- INSERM UMRS 1250, University Hospital, Reims, France
| | - Jeanne-Marie Perotin
- Department of Respiratory Diseases, University Hospital, Reims, France
- INSERM UMRS 1250, University Hospital, Reims, France
| |
Collapse
|
19
|
Diagnostic value of signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 on serum and tissue samples in non-small cell lung cancer. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 26:246-253. [PMID: 32082741 DOI: 10.5606/tgkdc.dergisi.2018.14600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
Abstract
Background This study aims to investigate whether there is any relationship between the type, stage and the extensiveness of lung cancer and levels of signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domaincontaining protein 1 in serum and lung tissues of non-small cell lung cancer patients and also whether there is any difference in signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 levels of patients with malignant or benign diseases. Methods The study included 55 subjects (45 males, 10 females; mean age 57.8±15.9 years; range 18 to 82 years) who were separated into three groups as 25 resectable non-small cell lung cancer patients (21 males, 4 females; mean age 64.6±9.4 years; range, 41 to 79 years) who were operated with the purpose of diagnosis and treatment (group 1), 15 unresectable non-small cell lung cancer patients (10 males, 5 females; mean age 61.8±9.6 years; range, 48 to 82 years) (group 2), and 15 patients (14 males, 1 females; mean age 42.5±19.5 years; range, 18 to 76 years) who were operated with non-cancer related reasons (group 3; control group). Results Preoperative serum signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 levels in groups 1 and 2 were significantly higher compared to control group (p=0.045). Serum signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 levels in group 2 were significantly higher compared to the other two groups (p=0.008). Levels of signal peptide- Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domaincontaining protein 1 in tissue samples were significantly higher in patients with non-small cell lung cancer and yielded a prognostic importance such that a 1 ng/mL rise in tissue signal peptide-Complement C1r/C1s, Uegf, and Bmp1- epidermal growth factor domain-containing protein 1 concentration caused a 1.4 fold increase in death risk (p=0.009). Conclusion Concentration of signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 in serum and tumor tissue may be an important biomarker in determining the diagnosis and prognosis in non-small cell lung cancer patients.
Collapse
|
20
|
Abstract
This study investigates the role of ephrin receptor A3 (EphA3) in the angiogenesis of Multiple Myeloma (MM) and the effects of a selective target of EphA3 by a specific monoclonal antibody on primary bone marrow endothelial cells (ECs) of MM patients. EphA3 mRNA and protein were evaluated in ECs of MM patients (MMECs), in ECs of patients with monoclonal gammopathies of undetermined significance (MGECs) and in ECs of healthy subjects (control ECs). The effects of EphA3 targeting by mRNA silencing (siRNA) or by the anti EphA3 antibody on the angiogenesis were evaluated. We found that EphA3 is highly expressed in MMECs compared to the other EC types. Loss of function of EphA3 by siRNA significantly inhibited the ability of MMECs to adhere to fibronectin, to migrate and to form tube like structures in vitro, without affecting cell proliferation or viability. In addition, gene expression profiling showed that knockdown of EphA3 down modulated some molecules that regulate adhesion, migration and invasion processes. Interestingly, EphA3 targeting by an anti EphA3 antibody reduced all the MMEC angiogenesis-related functions in vitro. In conclusion, our findings suggest that EphA3 plays an important role in MM angiogenesis.
Collapse
|
21
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
Lewis JB, Jimenez FR, Merrell BJ, Kimbler B, Arroyo JA, Reynolds PR. The expression profile of Claudin family members in the developing mouse lung and expression alterations resulting from exposure to secondhand smoke (SHS). Exp Lung Res 2018; 44:13-24. [DOI: 10.1080/01902148.2017.1409846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joshua B. Lewis
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Felix R. Jimenez
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Brigham J. Merrell
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Brent Kimbler
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Juan A. Arroyo
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
23
|
Stump B, Cui Y, Kidambi P, Lamattina AM, El-Chemaly S. Lymphatic Changes in Respiratory Diseases: More than Just Remodeling of the Lung? Am J Respir Cell Mol Biol 2017; 57:272-279. [PMID: 28443685 DOI: 10.1165/rcmb.2016-0290tr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Advances in our ability to identify lymphatic endothelial cells and differentiate them from blood endothelial cells have led to important progress in the study of lymphatic biology. Over the past decade, preclinical and clinical studies have shown that there are changes to the lymphatic vasculature in nearly all lung diseases. Efforts to understand the contribution of lymphatics and their growth factors to disease initiation, progression, and resolution have led to seminal findings establishing critical roles for lymphatics in lung biology spanning from the first breath after birth to asthma, tuberculosis, and lung transplantation. However, in other diseases, it remains unclear if lymphatics are part of the overall lung remodeling process or real contributors to disease pathogenesis. The goal of this Translational Review is to highlight some of the advances in our understanding of the role(s) of lymphatics in lung disease and shed light on the critical needs and unanswered questions that might lead to novel translational applications.
Collapse
Affiliation(s)
- Benjamin Stump
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pranav Kidambi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Boopathy GTK, Kulkarni M, Ho SY, Boey A, Chua EWM, Barathi VA, Carney TJ, Wang X, Hong W. Cavin-2 regulates the activity and stability of endothelial nitric-oxide synthase (eNOS) in angiogenesis. J Biol Chem 2017; 292:17760-17776. [PMID: 28912276 PMCID: PMC5663877 DOI: 10.1074/jbc.m117.794743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/04/2017] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dysregulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric-oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| | - Madhura Kulkarni
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sze Yuan Ho
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Adrian Boey
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Edmond Wei Min Chua
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Veluchamy A Barathi
- the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore.,the Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Rd., 169857 Singapore.,the Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, and
| | - Tom J Carney
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaomeng Wang
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore
| | - Wanjin Hong
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| |
Collapse
|
25
|
Mary S, Kulkarni MJ, Mehendale SS, Joshi SR, Giri AP. Tubulointerstitial nephritis antigen-like 1 protein is downregulated in the placenta of pre-eclamptic women. Clin Proteomics 2017; 14:8. [PMID: 28344540 PMCID: PMC5361709 DOI: 10.1186/s12014-017-9144-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/11/2017] [Indexed: 12/30/2022] Open
Abstract
Background Tubulointerstitial nephritis antigen-like 1 protein (TINAGL1), is a matricellular protein, known to play role in cell adhesion and cell receptor interaction. Research related to TINAGL1 is limited to cell culture and animal models. Demonstration of TINAGL1 as a positive regulator of angiogenesis and its expression in the decidua of postimplantation mouse uterus, prompted us to validate its expression in human placenta during impaired angiogenesis in pre-eclamptic condition. Methods Placental tissue from normotensive (n = 25) and pre-eclamptic (n = 25) pregnancies were used to study the differentially expressed proteins by two-dimensional gel electrophoresis and TINAGL1 protein was validated with Western blotting. Results A total of 55 protein spots were differentially expressed (fold change >1.5, p < 0.05), of which 27 were upregulated and 28 were downregulated in the pre-eclamptic placenta. TINAGL1 was found to be downregulated in pre-eclamptic compared to normotensive pregnant women. Conclusion This is the first study reporting TINAGL1 to be present in human placenta and differentially expressed in pre-eclamptic condition. The functional role of TINAGL1 in association to human pregnancy needs to be explored further. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9144-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheon Mary
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Mahesh J Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Savita S Mehendale
- Department of Gynecology, Bharati Vidyapeeth Medical College, Pune, Maharashtra 411043 India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra 411043 India
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| |
Collapse
|
26
|
Tanaka M, Iwakiri Y. The Hepatic Lymphatic Vascular System: Structure, Function, Markers, and Lymphangiogenesis. Cell Mol Gastroenterol Hepatol 2016; 2:733-749. [PMID: 28105461 PMCID: PMC5240041 DOI: 10.1016/j.jcmgh.2016.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vascular system has been minimally explored in the liver despite its essential functions including maintenance of tissue fluid homeostasis. The discovery of specific markers for lymphatic endothelial cells has advanced the study of lymphatics by methods including imaging, cell isolation, and transgenic animal models and has resulted in rapid progress in lymphatic vascular research during the last decade. These studies have yielded concrete evidence that lymphatic vessel dysfunction plays an important role in the pathogenesis of many diseases. This article reviews the current knowledge of the structure, function, and markers of the hepatic lymphatic vascular system as well as factors associated with hepatic lymphangiogenesis and compares liver lymphatics with those in other tissues.
Collapse
Key Words
- CCl4, carbon tetrachloride
- Cirrhosis
- EHE, epithelioid hemangioendothelioma
- HA, hyaluronan
- HBx Ag, hepatitis B x antigen
- HCC, hepatocellular carcinoma
- IFN, interferon
- IL, interleukin
- Inflammation
- LSEC, liver sinusoidal endothelial cell
- LYVE-1, lymphatic vessel endothelial hyaluronan receptor 1
- LyEC, lymphatic endothelial cell
- NO, nitric oxide
- Portal Hypertension
- Prox1, prospero homeobox protein 1
- VEGF
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
| | - Yasuko Iwakiri
- Reprint requests Address requests for reprints to: Yasuko Iwakiri, PhD, Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, TAC S223B, 333 Cedar Street, New Haven, Connecticut 06520. fax: (203) 785-7273.Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineTAC S223B, 333 Cedar StreetNew HavenConnecticut 06520
| |
Collapse
|
27
|
Wang J, Zhang C, Liu C, Wang W, Zhang N, Hadadi C, Huang J, Zhong N, Lu W. Functional mutations in 5'UTR of the BMPR2 gene identified in Chinese families with pulmonary arterial hypertension. Pulm Circ 2016; 6:103-8. [PMID: 27162618 PMCID: PMC4860546 DOI: 10.1086/685078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vasculopathy with significant morbidity and mortality. Bone morphogenetic protein receptor type 2 (BMPR2) has been well recognized as the principal gene responsible for heritable and sporadic PAH. Four unrelated Chinese patients with PAH and their family members, both symptomatic and asymptomatic, were genetically evaluated by sequencing all exons and the flanking regions of BMPR2. Functionality of the aberrant mutations at the 5' untranslated region (UTR) of BMPR2 in the families with PAH was determined by site mutation, transient transfection, and promoter-reporter assays. Four individual mutations in the BMPR2 gene were identified in the 4 families, respectively: 10-GGC repeats, 13-GGC repeats, 4-AGC repeats in 5'UTR, and a novel missense mutation in exon 7 (c.961C>T; p.Arg321X). Moreover, we demonstrated that (1) these 5'UTR mutations decreased the transcription of BMPR2 and (2) the GGC repeats and AGC repeats in BMPR2 5'UTR bore functional binding sites of EGR-1 and MYF5, respectively. This is the first report demonstrating the presence of functional BMPR2 5'UTR mutations in familial patients with PAH and further indicating that EGR-1 and MYF5 are potential targets for correcting these genetic abnormalities for PAH therapy.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; These authors contributed equally to this work
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; These authors contributed equally to this work
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; These authors contributed equally to this work
| | - Wei Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; These authors contributed equally to this work
| | - Nuofu Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; These authors contributed equally to this work
| | - Cyrus Hadadi
- Department of Cardiology, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Skaria T, Bachli E, Schoedon G. Wnt5A/Ryk signaling critically affects barrier function in human vascular endothelial cells. Cell Adh Migr 2016; 11:24-38. [PMID: 27159116 DOI: 10.1080/19336918.2016.1178449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Satisfactory therapeutic strategies for septic shock are still missing. Previously we found elevated levels of Wnt5A in patients with severe sepsis and septic shock. Wnt5A is released by activated macrophages but knowledge of its effects in the vascular system remains scant. Here we investigate the response of human coronary artery endothelial cells (HCAEC) to Wnt5A. We used a genome-wide differential expression approach to define novel targets regulated by Wnt5A. Gene ontology analysis of expression profiles revealed clusters of genes involved in actin cytoskeleton remodeling as the predominant targets of Wnt5A. Wnt5A targeted Rho-associated protein serine/threonine kinase (ROCK), leading to phosphorylation of LIM kinase-2 (LIMK2) and inactivation of the actin depolymerization factor cofilin-1 (CFL1). Functional experiments recording cytoskeletal rearrangements in living cells showed that Wnt5A enhanced stress fiber formation as a consequence of reduced actin depolymerization. The antagonist Wnt inhibitory factor 1 (WIF1) that specifically interferes with the WIF domain of Ryk receptors prevented actin polymerization. Wnt5A disrupted β-catenin and VE-cadherin adherens junctions forming inter-endothelial gaps. Functional experiments targeting the endothelial monolayer integrity and live recording of trans-endothelial resistance revealed enhanced permeability of Wnt5A-treated HCAEC. Ryk silencing completely prevented Wnt5A-induced endothelial hyperpermeability. Wnt5A decreased wound healing capacity of HCAEC monolayers; this was restored by the ROCK inhibitor Y-27632. Here we show that Wnt5A acts on the vascular endothelium causing enhanced permeability through Ryk interaction and downstream ROCK/LIMK2/CFL1 signaling. Wnt5A/Ryk signaling might provide novel therapeutic strategies to prevent capillary leakage in systemic inflammation and septic shock.
Collapse
Affiliation(s)
- Tom Skaria
- a Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich , Zürich , Switzerland
| | - Esther Bachli
- b Department of Medicine , Uster Hospital , Uster , Switzerland
| | - Gabriele Schoedon
- a Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich , Zürich , Switzerland
| |
Collapse
|
29
|
Kaser-Eichberger A, Schroedl F, Bieler L, Trost A, Bogner B, Runge C, Tempfer H, Zaunmair P, Kreutzer C, Traweger A, Reitsamer HA, Couillard-Despres S. Expression of Lymphatic Markers in the Adult Rat Spinal Cord. Front Cell Neurosci 2016; 10:23. [PMID: 26903808 PMCID: PMC4746237 DOI: 10.3389/fncel.2016.00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022] Open
Abstract
Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with Iba1, the LYVE-1+ cell population likely represents a macrophage subpopulation, while a significant fraction of PROX1+ cells belong to the oligodendrocytic lineage based on their distribution and the expression of OLIG2. The response of these LYVE-1+ and PROX1+ cell subpopulations to pathological conditions, especially in spinal cord inflammatory conditions, needs to be further elucidated.
Collapse
Affiliation(s)
- Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Austria
| | - Falk Schroedl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical UniversitySalzburg, Austria; Institute of Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical UniversitySalzburg, Austria; Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical UniversitySalzburg, Austria; Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
30
|
Wang J, Zhang C, Zhang Z, Zheng Z, Sun D, Yang Q, Hadadi C, Li D, Xu X, Xiong M, Zhou Q, Guo M, Wang Y, Tang C, Xu G, Yang K, Zhong N, Lu W. A Functional Variant rs6435156C > T in BMPR2 is Associated With Increased Risk of Chronic Obstructive Pulmonary Disease (COPD) in Southern Chinese Population. EBioMedicine 2016; 5:167-74. [PMID: 27077124 PMCID: PMC4816816 DOI: 10.1016/j.ebiom.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUNDS Bone morphogenetic protein receptor type 2 (BMPR2) signaling is anti-inflammatory. Decreased BMPR2 expression was seen in lung tissue from chronic obstructive pulmonary disease (COPD) patients. METHODS The selected single nucleotide polymorphisms (SNPs) in BMPR2 were genotyped with polymerase chain reaction (PCR) ligase detection reaction. The effects of SNPs on gene expression were analyzed with luciferase assays. The mRNA and protein expression levels of BMPR2 in peripheral blood mononuclear cells (PBMCs) from COPD patients were determined by quantitative PCR and western blotting, respectively. FINDINGS Two SNPs, rs6435156C > T and rs1048829G > T in the 3'-untranslated region (3'UTR) of BMPR2 were selected and genotyped in COPD case and healthy control subjects from southern Chinese population. Both of them were found associated with significantly increased COPD risk (adjusted odds ratio [OR] = 1.58 with 95% confidence interval [CI] = 1.14-2.15, P = 0.0056 for rs6435156C > T; adjusted OR = 1.47 and 95% CI = 1.10-1.97, P = 0.0092 for rs1048829G > T). Older age, cigarette smoking, family history of cancer and COPD were all factors that interacted with rs6435156C > T and rs1048829G > T causing increased COPD risk. Cigarette smokers with rs6435156 (CT + TT) or rs1048829 (GT + TT) were more susceptible to COPD than that with the rs6435156CC or rs1048829GG genotypes. In A549 human alveolar epithelial cells, luciferase reporter assays revealed that introduction of 3'UTR of BMPR2 plasmids carrying rs6435156T allele but not rs1048829T led to lower luciferase activity than the wild-type C or G alleles. Comparing to rs6435156CC, treatment with hsa-miR-20a mimics deceased whereas hsa-miR-20a inhibitor restored the luciferase reporter activity in cells transfected with constructs carrying rs6435156TT. BMPR2 mRNA and protein expressions were significantly lower in PBMCs from COPD smokers than that in non-smokers. COPD patients carrying rs6435156T allele had less BMPR2 expression in PBMCs. INTERPRETATION This study demonstrated that both rs6435156C > T and rs1048829G > T variants in BMPR2 contributed to increased susceptibility to COPD. The T variants of rs6435156 increased COPD risk likely by binding with hsa-miR-20a, thus leading to downregulated BMPR2 expression in lung epithelial and immune cells.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Respiration, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia, China; Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zeguang Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Sun
- Department of Respiration, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Quan Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cyrus Hadadi
- Geisinger Medical Center, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingmei Xiong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qipeng Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meihua Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingfeng Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guihua Xu
- Department of Respiration, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Zhuang X, Herbert JMJ, Lodhia P, Bradford J, Turner AM, Newby PM, Thickett D, Naidu U, Blakey D, Barry S, Cross DAE, Bicknell R. Identification of novel vascular targets in lung cancer. Br J Cancer 2015; 112:485-94. [PMID: 25535734 PMCID: PMC4453649 DOI: 10.1038/bjc.2014.626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/13/2014] [Accepted: 11/26/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related death, largely owing to the lack of effective treatments. A tumour vascular targeting strategy presents an attractive alternative; however, the molecular signature of the vasculature in lung cancer is poorly explored. This work aimed to identify novel tumour vascular targets in lung cancer. METHODS Enzymatic digestion of fresh tissue followed by endothelial capture with Ulex lectin-coated magnetic beads was used to isolate the endothelium from fresh tumour specimens of lung cancer patients. Endothelial isolates from the healthy and tumour lung tissue were subjected to whole human genome expression profiling using microarray technology. RESULTS Bioinformatics analysis identified tumour endothelial expression of angiogenic factors, matrix metalloproteases and cell-surface transmembrane proteins. Predicted novel tumour vascular targets were verified by RNA-seq, quantitative real-time PCR analysis and immunohistochemistry. Further detailed expression profiling of STEAP1 on 82 lung cancer patients confirmed STEAP1 as a novel target in the tumour vasculature. Functional analysis of STEAP1 using siRNA silencing implicates a role in endothelial cell migration and tube formation. CONCLUSIONS The identification of cell-surface tumour endothelial markers in lung is of interest in therapeutic antibody and vaccine development.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gene Expression Profiling
- Genetic Association Studies/methods
- Humans
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Male
- Microarray Analysis
- Middle Aged
- Molecular Targeted Therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- X Zhuang
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
- School of Cancer Sciences, College of
Medical and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham
B15 2TT, UK
| | - J M J Herbert
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
- Technology Hub Sequencing and
Bioinformatics, College of Medical and Dental Sciences,
Birmingham
B15, UK
| | - P Lodhia
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
| | - J Bradford
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - A M Turner
- School of Clinical and Experimental
Medicine, University of Birmingham, QEHB Research Laboratories,
Mindelsohn Way, Birmingham
B15 2WB, UK
- Birmingham Heartlands Hospital,
Bordesley Green, Birmingham
B9 5SS, UK
| | - P M Newby
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
| | - D Thickett
- School of Clinical and Experimental
Medicine, University of Birmingham, QEHB Research Laboratories,
Mindelsohn Way, Birmingham
B15 2WB, UK
| | - U Naidu
- School of Clinical and Experimental
Medicine, University of Birmingham, QEHB Research Laboratories,
Mindelsohn Way, Birmingham
B15 2WB, UK
- Birmingham Heartlands Hospital,
Bordesley Green, Birmingham
B9 5SS, UK
| | - D Blakey
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - S Barry
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - D A E Cross
- AstraZeneca, Mereside,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, UK
| | - R Bicknell
- School of Immunity and Infection,
Institute for Biomedical Research, College of Medical and Dental Sciences,
University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
- School of Cancer Sciences, College of
Medical and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham
B15 2TT, UK
| |
Collapse
|
32
|
Sonmez E, Turkdogan KA, Karabacak M, Civelek C, Yilmaz C, Ozer OF, Çavuş UY. The diagnostic role of signal peptide-C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 in non-ST-elevation acute coronary syndrome. Am J Emerg Med 2014; 33:21-4. [PMID: 25445868 DOI: 10.1016/j.ajem.2014.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE Chest pain and/or electrocardiogram changes in non-ST elevation or suspicious chest pain and cardiac marker elevations are defined as non-ST-elevation acute coronary syndrome (NSTE-ACS). Serial electrocardiogram and marker follow-up are needed to make a diagnosis of NSTE-ACS and to eliminate noncoronary chest pain (NCCP). Signal peptide-C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 (SCUBE1) is stored within the α granules of inactive platelets and secreted at a high rate during thrombosis. We believe that SCUBE1 may be a sensitive early diagnostic indicator in distinguishing coronary-induced chest pain from noncoronary-induced chest pain. MATERIALS AND METHODS The study included 190 patients with an initial diagnosis of acute coronary syndrome in the emergency department. Based on a definitive diagnosis, these patients were classified into 3 groups: ST-elevation myocardial infarction (STEMI), NSTE-ACS, and NCCP. RESULTS Plasma SCUBE1 levels were significantly higher in the STEMI group when compared with those of the other groups (P < .05). They were also significantly higher in the NSTE-ACS group when compared with those of the NCCP group (P < .01). Troponin I, creatinine kinase, and creatinine kinase MB levels were significantly different in the NSTE-ACS group when compared with those of the NCCP group (P < .05). CONCLUSION High rates of SCUBE1 were found both in the STEMI and NSTE-ACS patients. Furthermore, in the study group, SCUBE1 was an adequate marker for distinguishing NSTE-ACS from NCCP.
Collapse
Affiliation(s)
- Ertan Sonmez
- Bezmialem Vakıf University, Department of Emergency Medicine, İstanbul, Turkey.
| | | | - Mustafa Karabacak
- Isparta State Hospital, Department of Emergency Medicine, Isparta, Turkey.
| | - Cemil Civelek
- Bezmialem Vakıf University, Department of Emergency Medicine, İstanbul, Turkey.
| | - Cahit Yilmaz
- Bezmialem Vakıf University, Department of Emergency Medicine, İstanbul, Turkey.
| | - Omer Faruk Ozer
- Bezmialem Vakıf University, Department of Emergency Medicine, İstanbul, Turkey.
| | - Umut Yücel Çavuş
- Dişkapi Yildirim Beyazit Training and Research Hospital, Department of Emergency Medicine, Ankara, Turkey.
| |
Collapse
|
33
|
McLoughlin P, Keane MP. Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 2013; 1:1473-508. [PMID: 23733650 DOI: 10.1002/cphy.c100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis occurs during growth and physiological adaptation in many systemic organs, for example, exercise-induced skeletal and cardiac muscle hypertrophy, ovulation, and tissue repair. Disordered angiogenesis contributes to chronic inflammatory disease processes and to tumor growth and metastasis. Although it was previously thought that the adult pulmonary circulation was incapable of supporting new vessel growth, over that past 10 years new data have shown that angiogenesis within this circulation occurs both during physiological adaptive processes and as part of the pathogenic mechanisms of lung diseases. Here we review the expression of vascular growth factors in the adult lung, their essential role in pulmonary vascular homeostasis and the changes in their expression that occur in response to physiological challenges and in disease. We consider the evidence for adaptive neovascularization in the pulmonary circulation in response to alveolar hypoxia and during lung growth following pneumonectomy in the adult lung. In addition, we review the role of disordered angiogenesis in specific lung diseases including idiopathic pulmonary fibrosis, acute adult distress syndrome and both primary and metastatic tumors of the lung. Finally, we examine recent experimental data showing that therapeutic enhancement of pulmonary angiogenesis has the potential to treat lung diseases characterized by vessel loss.
Collapse
Affiliation(s)
- Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, and St. Vincent's University Hospital, Dublin, Ireland.
| | | |
Collapse
|
34
|
Shin ES, Sorenson CM, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 306:L620-34. [PMID: 24318110 DOI: 10.1152/ajplung.00188.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with important roles in regulation of inflammation and angiogenesis. It is produced by various cell types, including endothelial cells (EC). However, the cell autonomous impact of PEDF on EC function needs further investigation. Lung EC prepared from PEDF-deficient (PEDF-/-) mice were more migratory and failed to undergo capillary morphogenesis in Matrigel compared with wild type (PEDF+/+) EC. Although no significant differences were observed in the rates of apoptosis in PEDF-/- EC compared with PEDF+/+ cells under basal or stress conditions, PEDF-/- EC proliferated at a slower rate. PEDF-/- EC also expressed increased levels of proinflammatory markers, including vascular endothelial growth factor, inducible nitric oxide synthase, vascular cell adhesion molecule-1, as well as altered cellular junctional organization, and nuclear localization of β-catenin. The PEDF-/- EC were also more adhesive, expressed decreased levels of thrombospondin-2, tenascin-C, and osteopontin, and increased fibronectin. Furthermore, we showed lungs from PEDF-/- mice exhibited increased expression of macrophage marker F4/80, along with increased thickness of the vascular walls, consistent with a proinflammatory phenotype. Together, our data suggest that the PEDF expression makes significant contribution to modulation of the inflammatory and angiogenic phenotype of the lung endothelium.
Collapse
Affiliation(s)
- Eui Seok Shin
- Dept. of Ophthalmology and Visual Sciences, Univ. of Wisconsin, 600 Highland Ave., K6/458 CSC, Madison, WI 53792-4673.
| | | | | |
Collapse
|
35
|
Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2013; 141:140-9. [PMID: 24076266 DOI: 10.1016/j.pharmthera.2013.09.005] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
Notch signaling plays an important role in development and cell fate determination, and it is deregulated in human hematologic malignancies and solid tumors. This review includes a brief introduction of the relevant pathophysiology of Notch signaling pathway and primarily focuses on the clinical development of promising agents that either obstruct Notch receptor cleavages such as γ-secretase inhibitors (GSIs) or interfere with the Notch ligand-receptor interaction by monoclonal antibodies (mAbs). Antitumor activity by GSIs and mAbs administered as single agent in early phases of clinical trials has been observed in advanced or metastatic thyroid cancer, non-small cell lung cancer, intracranial tumors, sarcoma or desmoid tumors, colorectal cancer with neuroendocrine features, melanoma and ovarian cancer. A number of mechanism-based adverse events particularly gastrointestinal toxicities emerged and mitigation strategies are developed after testing multiple GSIs and Notch targeting mAbs. We also discuss pharmacodynamic biomarkers in conjunction with methods of assessment of the molecular target inhibition validation. Biomarkers of efficacy or benefit may be of importance for a successful development of this class of drugs.
Collapse
Affiliation(s)
- Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Dat Nguyen
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
36
|
Lactate dehydrogenase a expression is necessary to sustain rapid angiogenesis of pulmonary microvascular endothelium. PLoS One 2013; 8:e75984. [PMID: 24086675 PMCID: PMC3784391 DOI: 10.1371/journal.pone.0075984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/19/2013] [Indexed: 01/11/2023] Open
Abstract
Angiogenesis is a fundamental property of endothelium, yet not all endothelial cells display equivalent angiogenic responses; pulmonary microvascular endothelial cells undergo rapid angiogenesis when compared to endothelial cells isolated from conduit vessels. At present it is not clear how pulmonary microvascular endothelial cells fulfill the bioenergetic demands that are necessary to sustain such rapid blood vessel formation. We have previously established that pulmonary microvascular endothelial cells utilize aerobic glycolysis to generate ATP during growth, a process that requires the expression of lactate dehydrogenase A to convert pyruvate to lactate. Here, we test the hypothesis that lactate dehydrogenase A is required for pulmonary microvascular endothelial cells to sustain rapid angiogenesis. To test this hypothesis, Tet-On and Tet-Off conditional expression systems were developed in pulmonary microvascular endothelial cells, where doxycycline is utilized to induce lactate dehydrogenase A shRNA expression. Expression of LDH-A shRNA induced a time-dependent decrease in LDH-A protein, which corresponded with a decrease in glucose consumption from the media, lactate production and cell growth; re-expression of LDH-A rescued each of these parameters. LDH-A silencing greatly reduced network formation on Matrigel in vitro, and decreased blood vessel formation in Matrigel in vivo. These findings demonstrate that LDH-A is critically important for sustaining the rapid angiogenesis of pulmonary microvascular endothelial cells.
Collapse
|
37
|
Kubínová L, Mao XW, Janáček J. Blood capillary length estimation from three-dimensional microscopic data by image analysis and stereology. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:898-906. [PMID: 23673308 DOI: 10.1017/s1431927613001487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studies of the capillary bed characterized by its length or length density are relevant in many biomedical studies. A reliable assessment of capillary length from two-dimensional (2D), thin histological sections is a rather difficult task as it requires physical cutting of such sections in randomized directions. This is often technically demanding, inefficient, or outright impossible. However, if 3D image data of the microscopic structure under investigation are available, methods of length estimation that do not require randomized physical cutting of sections may be applied. Two different rat brain regions were optically sliced by confocal microscopy and resulting 3D images processed by three types of capillary length estimation methods: (1) stereological methods based on a computer generation of isotropic uniform random virtual test probes in 3D, either in the form of spatial grids of virtual "slicer" planes or spherical probes; (2) automatic method employing a digital version of the Crofton relations using the Euler characteristic of planar sections of the binary image; and (3) interactive "tracer" method for length measurement based on a manual delineation in 3D of the axes of capillary segments. The presented methods were compared in terms of their practical applicability, efficiency, and precision.
Collapse
Affiliation(s)
- Lucie Kubínová
- Department of Biomathematics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic.
| | | | | |
Collapse
|
38
|
Nagel S, Ehrentraut S, Tomasch J, Quentmeier H, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Ectopic expression of homeobox gene NKX2-1 in diffuse large B-cell lymphoma is mediated by aberrant chromatin modifications. PLoS One 2013; 8:e61447. [PMID: 23637834 PMCID: PMC3639244 DOI: 10.1371/journal.pone.0061447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/08/2013] [Indexed: 12/01/2022] Open
Abstract
Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yahaya B, McLachlan G, McCorquodale C, Collie D. Gene expression changes associated with the airway wall response to injury. PLoS One 2013; 8:e58930. [PMID: 23593124 PMCID: PMC3621906 DOI: 10.1371/journal.pone.0058930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/08/2013] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall. Methodology/Principal Findings We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7. Conclusions/Significance It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance.
Collapse
Affiliation(s)
- Badrul Yahaya
- Cluster for Regenerative Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, Kepala Batas, Penang, Malaysia.
| | | | | | | |
Collapse
|
40
|
Li X, Hawkins GA, Ampleford EJ, Moore WC, Li H, Hastie AT, Howard TD, Boushey HA, Busse WW, Calhoun WJ, Castro M, Erzurum SC, Israel E, Lemanske RF, Szefler SJ, Wasserman SI, Wenzel SE, Peters SP, Meyers DA, Bleecker ER. Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. J Allergy Clin Immunol 2013; 132:313-20.e15. [PMID: 23541324 DOI: 10.1016/j.jaci.2013.01.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/18/2012] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent meta-analyses of genome-wide association studies in general populations of European descent have identified 28 loci for lung function. OBJECTIVE We sought to identify novel lung function loci specifically for asthma and to confirm lung function loci identified in general populations. METHODS Genome-wide association studies of lung function (percent predicted FEV1 [ppFEV1], percent predicted forced vital capacity, and FEV1/forced vital capacity ratio) were performed in 4 white populations of European descent (n = 1544), followed by meta-analyses. RESULTS Seven of 28 previously identified lung function loci (HHIP, FAM13A, THSD4, GSTCD, NOTCH4-AGER, RARB, and ZNF323) identified in general populations were confirmed at single nucleotide polymorphism (SNP) levels (P < .05). Four of 32 loci (IL12A, IL12RB1, STAT4, and IRF2) associated with ppFEV1 (P < 10(-4)) belong to the TH1 or IL-12 cytokine family pathway. By using a linear additive model, these 4 TH1 pathway SNPs cumulatively explained 2.9% to 7.8% of the variance in ppFEV1 values in 4 populations (P = 3 × 10(-11)). Genetic scores of these 4 SNPs were associated with ppFEV1 values (P = 2 × 10(-7)) and the American Thoracic Society severe asthma classification (P = .005) in the Severe Asthma Research Program population. TH2 pathway genes (IL13, TSLP, IL33, and IL1RL1) conferring asthma susceptibility were not associated with lung function. CONCLUSION Genes involved in airway structure/remodeling are associated with lung function in both general populations and asthmatic subjects. TH1 pathway genes involved in anti-virus/bacterial infection and inflammation modify lung function in asthmatic subjects. Genes associated with lung function that might affect asthma severity are distinct from those genes associated with asthma susceptibility.
Collapse
Affiliation(s)
- Xingnan Li
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Newman AC, Hughes CCW. Macrophages and angiogenesis: a role for Wnt signaling. Vasc Cell 2012; 4:13. [PMID: 22938389 PMCID: PMC3479425 DOI: 10.1186/2045-824x-4-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 07/13/2012] [Indexed: 12/15/2022] Open
Abstract
Macrophages regulate many developmental and pathological processes in both embryonic and adult tissues, and recent studies have shown a significant role in angiogenesis. Similarly, Wnt signaling is fundamental to tissue morphogenesis and also has a role in vascular development. In this review, we summarize recent advances in the field of macrophage-regulated angiogenesis, with a focus on the role of macrophage-derived Wnt ligands. We review data that provide both direct and indirect evidence for macrophage-derived Wnt regulation of physiologic and pathologic angiogenesis. Finally, we propose that Wnt signaling plays a central role in differentiation of tumor associated and wound infiltrating macrophages to a proangiogenic phenotype.
Collapse
Affiliation(s)
- Andrew C Newman
- The Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.
| | | |
Collapse
|
42
|
Li JJ, Xie D. The roles and therapeutic potentials of Ephs and ephrins in lung cancer. Exp Cell Res 2012; 319:152-9. [PMID: 22960108 DOI: 10.1016/j.yexcr.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/26/2012] [Indexed: 11/15/2022]
Abstract
Eph receptors and their membrane-bound ephrin ligands are intimately involved in embryonic patterning, neuronal targeting, and vascular development during normal embryogenesis. In recent years, a growing number of studies revealed their participation in the development of various cancers. In this review, we concentrate on their involvement in lung cancer. In this context, we summarize their aberrant expressions, their pro- or anti-oncogenic effects as well as related mechanisms, and their potential as drug targets in lung cancer.
Collapse
Affiliation(s)
- Jing-Jing Li
- Center for Cancer Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Tai-Yuan Road, Shanghai 200031, PR China
| | | |
Collapse
|
43
|
Mammoto T, Chen J, Jiang E, Jiang A, Smith LE, Ingber DE, Mammoto A. LRP5 regulates development of lung microvessels and alveoli through the angiopoietin-Tie2 pathway. PLoS One 2012; 7:e41596. [PMID: 22848540 PMCID: PMC3404972 DOI: 10.1371/journal.pone.0041596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/27/2012] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is crucial for lung development. Although there has been considerable exploration, the mechanism by which lung vascular and alveolar formation is controlled is still not completely understood. Here we show that low-density lipoprotein receptor-related protein 5 (LRP5), a component of the Wnt ligand-receptor complex, regulates angiogenesis and alveolar formation in the lung by modulating expression of the angiopoietin (Ang) receptor, Tie2, in vascular endothelial cells (ECs). Vascular development in whole mouse lungs and in cultured ECs is controlled by LRP5 signaling, which is, in turn, governed by a balance between the activities of the antagonistic Tie2 ligands, Ang1 and Ang2. Under physiological conditions when Ang1 is dominant, LRP5 knockdown decreases Tie2 expression and thereby, inhibits vascular and alveolar development in the lung. Conversely, when Ang2 dominates under hyperoxia treatment in neonatal mice, high LRP5 and Tie2 expression suppress angiogenesis and lung development. These findings suggest that the LRP5-Tie2-Ang signaling axis plays a central role in control of both angiogenesis and alveolarization during postnatal lung development, and that deregulation of this signaling mechanism might lead to developmental abnormalities of the lung, such as are observed in bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lois E. Smith
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald E. Ingber
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States of America
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Wild JRL, Staton CA, Chapple K, Corfe BM. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012; 93:81-103. [PMID: 22414290 DOI: 10.1111/j.1365-2613.2012.00810.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Initially found expressed in neuronal and then later in endothelial cells, it is well established that the transmembrane glycoproteins neuropilin-1 (NRP1) and neuropilin-2 (NRP2) play essential roles in axonal growth and guidance and in physiological and pathological angiogenesis. Neuropilin expression and function in epithelial cells has received little attention when compared with neuronal and endothelial cells. Overexpression of NRPs is shown to enhance growth, correlate with invasion and is associated with poor prognosis in various tumour types, especially those of epithelial origin. The contribution of NRP and its ligands to tumour growth and metastasis has spurred a strong interest in NRPs as novel chemotherapy drug targets. Given NRP's role as a multifunctional co-receptor with an ability to bind with disparate ligand families, this has sparked new areas of research implicating NRPs in diverse biological functions. Here, we review the growing body of research demonstrating NRP expression and role in the normal and neoplastic epithelium.
Collapse
Affiliation(s)
- Jonathan R L Wild
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, The Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
45
|
Dou GR, Wang L, Wang YS, Han H. Notch signaling in ocular vasculature development and diseases. Mol Med 2012; 18:47-55. [PMID: 21989947 PMCID: PMC3269647 DOI: 10.2119/molmed.2011.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/04/2011] [Indexed: 01/10/2023] Open
Abstract
Ocular angiogenesis, characterized by the formation of new blood vessels in the avascular area in eyes, is a highly coordinated process involved in retinal vasculature formation and several ocular diseases such as age-related macular degeneration, proliferative diabetic retinopathy and retinopathy of prematurity. This process is orchestrated by complicated cellular interactions and vascular growth factors, during which endothelial cells acquire heterogeneous phenotypes and distinct cellular destinations. To date, while the vascular endothelial growth factor has been identified as the most critical angiogenic agent with a remarkable therapeutic value, the Notch signaling pathway appears to be a similarly important regulator in several angiogenic steps. Recent progress has highlighted the involvement, mechanisms and therapeutic potential of Notch signaling in retinal vasculature development and pathological angiogenesis-related eye disorders, which may cause irreversible blindness.
Collapse
Affiliation(s)
- Guo-Rui Dou
- Department of Ophthalmology, Xijing Hospital, Xi’an, China
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Lin Wang
- Department of Hepatic Surgery, Xijing Hospital, Xi’an, China
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Xi’an, China
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
46
|
Vadivel A, van Haaften T, Alphonse RS, Rey-Parra GJ, Ionescu L, Haromy A, Eaton F, Michelakis E, Thébaud B. Critical role of the axonal guidance cue EphrinB2 in lung growth, angiogenesis, and repair. Am J Respir Crit Care Med 2011; 185:564-74. [PMID: 22161159 DOI: 10.1164/rccm.201103-0545oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.
Collapse
Affiliation(s)
- Arul Vadivel
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, Schermuly RT. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 2011; 185:409-19. [PMID: 22161164 DOI: 10.1164/rccm.201106-1093oc] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RATIONALE MicroRNAs (miRs) control various cellular processes in tissue homeostasis and disease by regulating gene expression on the posttranscriptional level. Recently, it was demonstrated that the expression of miR-21 and members of the miR-17-92 cluster was significantly altered in experimental pulmonary hypertension (PH). OBJECTIVES To evaluate the therapeutic efficacy and antiremodeling potential of miR inhibitors in the pathogenesis of PH. METHODS We first tested the effects of miR inhibitors (antagomirs), which were specifically designed to block miR-17 (A-17), miR-21 (A-21), and miR-92a (A-92a) in chronic hypoxia-induced PH in mice and A-17 in monocrotaline-induced PH in rats. Moreover, biological function of miR-17 was analyzed in cultured pulmonary artery smooth muscle cells. MEASUREMENTS AND MAIN RESULTS In the PH mouse model, A-17 and A-21 reduced right ventricular systolic pressure, and all antagomirs decreased pulmonary arterial muscularization. However, only A-17 reduced hypoxia-induced right ventricular hypertrophy and improved pulmonary artery acceleration time. In the monocrotaline-induced PH rat model, A-17 treatment significantly decreased right ventricular systolic pressure and total pulmonary vascular resistance index, increased pulmonary artery acceleration time, normalized cardiac output, and decreased pulmonary vascular remodeling. Among the tested miR-17 targets, the cyclin-dependent kinase inhibitor 1A (p21) was up-regulated in lungs undergoing A-17 treatment. Likewise, in human pulmonary artery smooth muscle cells, A-17 increased p21. Overexpression of miR-17 significantly reduced p21 expression and increased proliferation of smooth muscle cells. CONCLUSIONS Our data demonstrate that A-17 improves heart and lung function in experimental PH by interfering with lung vascular and right ventricular remodeling. The beneficial effects may be related to the up-regulation of p21. Thus, inhibition of miR-17 may represent a novel therapeutic concept to ameliorate disease state in PH.
Collapse
Affiliation(s)
- Soni S Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ephs and ephrins in cancer: ephrin-A1 signalling. Semin Cell Dev Biol 2011; 23:109-15. [PMID: 22040911 DOI: 10.1016/j.semcdb.2011.10.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022]
Abstract
Ephrin-A1 and its primary receptor, EphA2, are involved in numerous physiological processes and have been intensely studied for their roles in malignancy. Ephrin-Eph signalling is complex on its own and is also cell-type dependent, making elucidation of the exact role of ephrin-A1 in neoplasia challenging. Multiple oncogenic signalling pathways, such as MAP/ERK and PI3K are affected by ephrin-A1, and in some cases evidence suggests the promotion of a specific pathway in one cell or cancer type and inhibition of the same pathway in another type of cell or cancer. Ephrin-A1 also plays an integral role in angiogenesis and tumor neovascularization. Until recently, studies investigating ephrins focused on the ligands as GPI-anchored proteins that required membrane anchoring or artificial clustering for Eph receptor activation. However, recent studies have demonstrated a functional role for soluble, monomeric ephrin-A1. This review will focus on various forms of ephrin-A1-specific signalling in human malignancy.
Collapse
|
49
|
Farkas L, Farkas D, Warburton D, Gauldie J, Shi W, Stampfli MR, Voelkel NF, Kolb M. Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice. Am J Physiol Lung Cell Mol Physiol 2011; 301:L391-401. [PMID: 21743024 DOI: 10.1152/ajplung.00369.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concept of genetic susceptibility factors predisposing cigarette smokers to develop emphysema stems from the clinical observation that only a fraction of smokers develop clinically significant chronic obstructive pulmonary disease. We investigated whether Smad3 knockout mice, which develop spontaneous air space enlargement after birth because of a defect in transforming growth factor-β (TGF-β) signaling, develop enhanced alveolar cell apoptosis and air space enlargement following cigarette smoke exposure. We investigated Smad3(-/-) and Smad3(+/+) mice at different adult ages and determined air space enlargement, alveolar cell proliferation, and apoptosis. Furthermore, laser-capture microdissection and real-time PCR were used to measure compartment-specific gene expression. We then compared the effects of cigarette smoke exposure on Smad3(-/-) and littermate controls. Smad3 knockout resulted in the development of air space enlargement in the adult mouse and was associated with decreased alveolar VEGF levels and activity and increased alveolar cell apoptosis. Cigarette smoke exposure aggravated air space enlargement and alveolar cell apoptosis. We also found increased Smad2 protein expression and phosphorylation, which was enhanced following cigarette smoke exposure, in Smad3-knockout animals. Double immunofluorescence analysis revealed that endothelial apoptosis started before epithelial apoptosis. Our data indicate that balanced TGF-β signaling is not only important for regulation of extracellular matrix turnover, but also for alveolar cell homeostasis. Impaired signaling via the Smad3 pathway results in alveolar cell apoptosis and alveolar destruction, likely via increased Smad2 and reduced VEGF expression and might represent a predisposition for accelerated development of emphysema due to cigarette smoke exposure.
Collapse
Affiliation(s)
- Laszlo Farkas
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dumas EK, Cox PM, Fullenwider CO, Nguyen M, Centola M, Frank MB, Dozmorov I, James JA, Farris AD. Anthrax lethal toxin-induced gene expression changes in mouse lung. Toxins (Basel) 2011; 3:1111-30. [PMID: 22039574 PMCID: PMC3202878 DOI: 10.3390/toxins3091111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/24/2011] [Accepted: 09/06/2011] [Indexed: 11/16/2022] Open
Abstract
A major virulence factor of Bacillus anthracis is the anthrax Lethal Toxin (LeTx), a bipartite toxin composed of Protective Antigen and Lethal Factor. Systemic administration of LeTx to laboratory animals leads to death associated with vascular leakage and pulmonary edema. In this study, we investigated whether systemic exposure of mice to LeTx would induce gene expression changes associated with vascular/capillary leakage in lung tissue. We observed enhanced susceptibility of A/J mice to death by systemic LeTx administration compared to the C57BL/6 strain. LeTx-induced groups of both up- and down-regulated genes were observed in mouse lungs 6 h after systemic administration of wild type toxin compared to lungs of mice exposed to an inactive mutant form of the toxin. Lungs of the less susceptible C57BL/6 strain showed 80% fewer differentially expressed genes compared to lungs of the more sensitive A/J strain. Expression of genes known to regulate vascular permeability was modulated by LeTx in the lungs of the more susceptible A/J strain. Unexpectedly, the largest set of genes with altered expression was immune specific, characterized by the up-regulation of lymphoid genes and the down-regulation of myeloid genes. Transcripts encoding neutrophil chemoattractants, modulators of tumor regulation and angiogenesis were also differentially expressed in both mouse strains. These studies provide new directions for the investigation of vascular leakage and pulmonary edema induced by anthrax LeTx.
Collapse
Affiliation(s)
- Eric K. Dumas
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK 73104, USA; (E.K.D.); (M.N.); (J.A.J.)
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
| | - Philip M. Cox
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
| | - Charles O’Connor Fullenwider
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
| | - Melissa Nguyen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK 73104, USA; (E.K.D.); (M.N.); (J.A.J.)
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
| | - Michael Centola
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
- Microarray Research Facility, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS 53, Oklahoma City, OK 73104, USA
| | - Mark Barton Frank
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
- Microarray Research Facility, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS 53, Oklahoma City, OK 73104, USA
| | - Igor Dozmorov
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
| | - Judith A. James
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK 73104, USA; (E.K.D.); (M.N.); (J.A.J.)
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
| | - A. Darise Farris
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK 73104, USA; (E.K.D.); (M.N.); (J.A.J.)
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation; 825 NE 13 Street, MS 53, Oklahoma City, OK 73104, USA; (P.M.C.); (C.O.F.); (M.C.); (M.B.K.); (I.D.)
- Author to whom correspondence should be addressed; ; Tel.: +1-405-271-7389; Fax: +1-405-271-706
| |
Collapse
|