1
|
Zohora FT, Pathmanathan R, Chowdhury EH. Application of Strontium Chloride Hexahydrate to Synthesize Strontium-Substituted Carbonate Apatite as a pH-Sensitive, Biologically Safe, and Highly Efficient siRNA Nanocarrier. ACS APPLIED BIO MATERIALS 2025; 8:348-367. [PMID: 39723844 DOI: 10.1021/acsabm.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Naked siRNAs are sensitive to enzymatic degradation, phagocytic entrapment, quick renal excretion, membrane impermeability, endosomal escape, and off-target effects. Designing a safe and efficient nanocarrier for siRNA delivery to the target site without toxicity remains a significant hurdle in gene therapy. CA is a unique derivative of hydroxyapatite and a highly pH-sensitive nanocarrier with strong particle aggregation and a high polydispersity index. Strontium (Sr2+), a group two divalent metal in the periodic table, has been reported for substituting calcium (Ca2+) ions from the apatite lattice and limiting particle growth/aggregation. This study used strontium chloride hexahydrate (SrCl2·6H2O) salt to develop a Sr-substituted CA (Sr-CA) nanocarrier with ∼30 nm size, spherical shape, less aggregation, homodispersity, and a fair anionic charge. Sr-CA demonstrated a large surface area-to-volume ratio, an improved cargo loading efficiency, and enhanced cellular uptake in HEK-293 cells. Moreover, Sr-CA is a pH-responsive nanocarrier responsible for its long physiological stability, efficient endosomal escape, and optimal cargo delivery within cells. These NPs have differential effects on MAPK1, MAP2K4, PIK3Ca, CAMK4, and p53 gene expression in HEK-293 cells without showing any significant cytotoxicity in cell growth properties. Gene silencing by Sr-CA-mediated siRNA delivery against MAPK1, MAP2K4, PIK3Ca, and CAMK4 genes significantly decreased the level of target gene expression and cell survival, demonstrating successful intracellular siRNA delivery in HEK-293 cells. Additionally, biocompatibility testing confirmed the biological safety of the Sr-CA nanocarrier in mice. These findings suggest that Sr-CA nanocarriers are a promising siRNA delivery system, combining high efficiency with pH-sensitive release and excellent biocompatibility, making them a viable option for future therapeutic applications.
Collapse
Affiliation(s)
- Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Rajadurai Pathmanathan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Nanoflex LLC, 31756 Broadwater Avenue, Leesburg, Florida 34748, United States
| |
Collapse
|
2
|
Tilden SG, Ricco MH, Hemann EA, Anchordoquy TJ. Exploiting a type III interferon response to improve chemotherapeutic safety and efficacy. Eur J Pharm Sci 2025; 204:106974. [PMID: 39608735 PMCID: PMC11753202 DOI: 10.1016/j.ejps.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Immune reactions to nanomedicines can be detrimental to the patient and compromise efficacy. However, our recent study characterizing the effects of a type III interferon (IFN-λ) response to lipid nanoparticles complexed with nucleic acids (lipoplexes) suggests that an IFN-λ pretreatment can increase tumor accumulation while decreasing off-target distribution of chemotherapeutic nanomedicines. This project provides a direct follow-up to our previously published works by clarifying 1) which cell type(s) can produce IFN-λ in response to lipoplexes and how the effects of IFN-λ may be propagated in humans. Additionally, we demonstrate 2) that an IFN-λ pretreatment is also capable of altering the accumulation profile of chemotherapeutic small molecules like doxorubicin. Finally, we determined 3) that the subcutaneous administration route for an IFN-λ pretreatment is the most efficacious, and 4) that an IFN-λ pretreatment can significantly increase the survival time of mice receiving Doxil® in a murine CT26 tumor model. With several chemotherapeutic nanomedicines available in the clinic and an IFN-λ product recently completing late phase clinical trials, this study provides the model for a novel anti-cancer treatment regime that can be rapidly translated to the clinic and improve the efficacy of contemporary treatment protocols.
Collapse
Affiliation(s)
- Scott G Tilden
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Madison H Ricco
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily A Hemann
- Ohio State University, Ohio State University College of Medicine, Columbus, OH
| | - Thomas J Anchordoquy
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Catenacci L, Rossi R, Sechi F, Buonocore D, Sorrenti M, Perteghella S, Peviani M, Bonferoni MC. Effect of Lipid Nanoparticle Physico-Chemical Properties and Composition on Their Interaction with the Immune System. Pharmaceutics 2024; 16:1521. [PMID: 39771501 PMCID: PMC11728546 DOI: 10.3390/pharmaceutics16121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles. This recognition can trigger the activation of inflammatory pathways and the production of cytokines and chemokines, leading to potential adverse effects such as fever, inflammation, and pain at the injection site. On the other hand, the adaptive immune response to LNPs appears to be primarily directed against the protein encoded by the mRNA cargo, with little evidence of an ongoing adaptive immune response to the components of the LNP itself. Understanding the relationship between LNPs and the immune system is critical for the development of safe and effective nucleic acid-based delivery systems. In fact, targeting the immune system is essential to develop effective vaccines, as well as therapies against cancer or infections. There is a lack of research in the literature that has systematically studied the factors that influence the interaction between LNPs and the immune system and further research is needed to better elucidate the mechanisms underlying the immune response to LNPs. In this review, we discuss LNPs' composition, physico-chemical properties, such as size, shape, and surface charge, and the protein corona formation which can affect the reactivity of the immune system, thus providing a guide for the research on new formulations that could gain a favorable efficacy/safety profile.
Collapse
Affiliation(s)
- Laura Catenacci
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Rachele Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Francesca Sechi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Daniela Buonocore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| |
Collapse
|
4
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Yihunie W, Nibret G, Aschale Y. Recent Advances in Messenger Ribonucleic Acid (mRNA) Vaccines and Their Delivery Systems: A Review. Clin Pharmacol 2023; 15:77-98. [PMID: 37554660 PMCID: PMC10405914 DOI: 10.2147/cpaa.s418314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) was found as the intermediary that transfers genetic information from DNA to ribosomes for protein synthesis in 1961. The emergency use authorization of the two covid-19 mRNA vaccines, BNT162b2 and mRNA-1273, is a significant achievement in the history of vaccine development. Because they are generated in a cell-free environment using the in vitro transcription (IVT) process, mRNA vaccines are risk-free. Moreover, chemical modifications to the mRNA molecule, such as cap structures and changed nucleosides, have proved critical in overcoming immunogenicity concerns, achieving sustained stability, and achieving effective, accurate protein production in vivo. Several vaccine delivery strategies (including protamine, lipid nanoparticles (LNPs), polymers, nanoemulsions, and cell-based administration) were also optimized to load and transport RNA into the cytosol. LNPs, which are composed of a cationic or a pH-dependent ionizable lipid layer, a polyethylene glycol (PEG) component, phospholipids, and cholesterol, are the most advanced systems for delivering mRNA vaccines. Moreover, modifications of the four components that make up the LNPs showed to increase vaccine effectiveness and reduce side effects. Furthermore, the introduction of biodegradable lipids improved LNP biocompatibility. Furthermore, mRNA-based therapies are expected to be effective treatments for a variety of refractory conditions, including infectious diseases, metabolic genetic diseases, cancer, cardiovascular and cerebrovascular diseases. Therefore, the present review aims to provide the scientific community with up-to-date information on mRNA vaccines and their delivery systems.
Collapse
Affiliation(s)
- Wubetu Yihunie
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getinet Nibret
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
6
|
Betker JL, Anchordoquy TJ. The Effect of Repeat Administration of Lipoplexes on Gene Delivery, Biodistribution, and Cytokine Response in Immunocompetent Tumor-bearing Mice. J Pharm Sci 2021; 111:1926-1936. [PMID: 34929156 DOI: 10.1016/j.xphs.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
It is becoming increasingly clear that the intravenous administration of nanoparticles elicits an immune response that compromises delivery efficiency and can be life threatening. This study investigated both the systemic and tissue-level cytokine response to repeat administration of lipoplexes coated with either lactose or PEG. We report that blood cytokine levels differ significantly from that observed in individual tissues. While we consistently observed a reduced cytokine response to lactosylated particles, this did not result in enhanced delivery or expression as compared to PEGylated formulations. We also document that repeat injection did not increase plasmid levels in the liver, lung, or spleen, but delivery to the tumor was enhanced under these conditions. In addition, we show that changes in neither blood nor tissue cytokines correlated strongly with reporter gene expression, and we observed relatively constant expression efficiencies (RLU/ng plasmid) across all tissues despite a considerably reduced cytokine response in the tumor. Together, these results indicate that both biodistribution and cytokine responses are dramatically altered by a repeat intravenous injection of lipoplexes, and that the mechanisms regulating reporter gene expression are not straightforward.
Collapse
Affiliation(s)
- Jamie L Betker
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
7
|
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. NATURE REVIEWS. MATERIALS 2021; 6:1078-1094. [PMID: 34394960 PMCID: PMC8353930 DOI: 10.1038/s41578-021-00358-0] [Citation(s) in RCA: 1699] [Impact Index Per Article: 424.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 05/09/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle-mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle-mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle-mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle-mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology.
Collapse
Affiliation(s)
- Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| |
Collapse
|
8
|
Tournier JN, Kononchik J. Virus Eradication and Synthetic Biology: Changes with SARS-CoV-2? Viruses 2021; 13:569. [PMID: 33800626 PMCID: PMC8066276 DOI: 10.3390/v13040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The eradication of infectious diseases has been achieved only once in history, in 1980, with smallpox. Since 1988, significant effort has been made to eliminate poliomyelitis viruses, but eradication is still just out of reach. As the goal of viral disease eradication approaches, the ability to recreate historically eradicated viruses using synthetic biology has the potential to jeopardize the long-term sustainability of eradication. However, the emergence of the severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 pandemic has highlighted our ability to swiftly and resolutely respond to a potential outbreak. This virus has been synthetized faster than any other in the past and is resulting in vaccines before most attenuated candidates reach clinical trials. Here, synthetic biology has the opportunity to demonstrate its truest potential to the public and solidify a footing in the world of vaccines.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- CNRS UMR-3569, Innovative Vaccine Laboratory, Virology Department, Institut Pasteur, 75015 Paris, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Joseph Kononchik
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Toxicology and Chemical Risk Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
9
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
10
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Pizzuto M, Gangloff M, Scherman D, Gay NJ, Escriou V, Ruysschaert JM, Lonez C. Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers. J Control Release 2016; 247:182-193. [PMID: 28040465 PMCID: PMC5312493 DOI: 10.1016/j.jconrel.2016.12.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Abstract
Lipopolyamines (LPAs) are cationic lipids; they interact spontaneously with nucleic acids to form lipoplexes used for gene delivery. The main hurdle to using lipoplexes in gene therapy lies in their immunostimulatory properties, so far attributed to the nucleic acid cargo, while cationic lipids were considered as inert to the immune system. Here we demonstrate for the first time that di-C18 LPAs trigger pro-inflammatory responses through Toll-like receptor 2 (TLR2) activation, and this whether they are bound to nucleic acids or not. Molecular docking experiments suggest potential TLR2 binding modes reminiscent of bacterial lipopeptide sensing. The di-C18 LPAs share the ability of burying their lipid chains in the hydrophobic cavity of TLR2 and, in some cases, TLR1, at the vicinity of the dimerization interface; the cationic headgroups form multiple hydrogen bonds, thus crosslinking TLRs into functional complexes. Unravelling the molecular basis of TLR1 and TLR6-driven heterodimerization upon LPA binding underlines the highly collaborative and promiscuous ligand binding mechanism. The prevalence of non-specific main chain-mediated interactions demonstrates that potentially any saturated LPA currently used or proposed as transfection agent is likely to activate TLR2 during transfection. Hence our study emphasizes the urgent need to test the inflammatory properties of transfection agents and proposes the use of docking analysis as a preliminary screening tool for the synthesis of new non-immunostimulatory nanocarriers.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK.
| | - Daniel Scherman
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, F-75006 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité University, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Virginie Escriou
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, F-75006 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité University, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Caroline Lonez
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium; Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| |
Collapse
|
12
|
Enhanced gene delivery to the lung using biodegradable polyunsaturated cationic phosphatidylcholine-detergent conjugates. Int J Pharm 2016; 511:205-218. [DOI: 10.1016/j.ijpharm.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
|
13
|
Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 2016; 299:78-89. [PMID: 26739622 PMCID: PMC4811709 DOI: 10.1016/j.taap.2015.12.022] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, USA.
| | - Michael Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Anna A Shvedova
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
14
|
Rawat J, Gadgil M. Shear stress increases cytotoxicity and reduces transfection efficiency of liposomal gene delivery to CHO-S cells. Cytotechnology 2016; 68:2529-2538. [PMID: 27130551 DOI: 10.1007/s10616-016-9974-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/19/2016] [Indexed: 11/26/2022] Open
Abstract
Animal cells in suspension experience shear stress in different situations such as in vivo due to hemodynamics, or in vitro due to agitation in large-scale bioreactors. Shear stress is known to affect cell physiology, including binding and uptake of extracellular cargo. In adherent cells the effects of exposure to shear stress on particle binding kinetics and uptake have been studied. There are however no reports on the effect of shear stress on extracellular cargo delivery to suspension cells. In this study, we have evaluated the effect of shear stress on transfection of CHO-S cells using Lipofectamine 2000 in a simple flow apparatus. Our results show decreased cell growth and transfection efficiency upon lipoplex assisted transfection of CHO-S while being subjected to shear stress. This effect is not seen to the same extent when cells are exposed to shear stress in absence of the lipoplex complex and subsequently transfected, or if the lipoplex is subjected to shear stress and subsequently used to transfect the cells. It is also not seen to the same extent when cells are exposed to shear stress in presence of liposome alone, suggesting that the observed effect is dependent on interaction of the lipoplex with cells in the presence of shear stress. These results suggest that studies involving liposomal DNA delivery in presence of shear stress such as large scale transient protein expression should account for the effect of shear during lipoplex assisted DNA delivery.
Collapse
Affiliation(s)
- Jyoti Rawat
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
15
|
Ditto AJ, Reho JJ, Shah KN, Smolen JA, Holda JH, Ramirez RJ, Yun YH. In vivo gene delivery with L-tyrosine polyphosphate nanoparticles. Mol Pharm 2013; 10:1836-44. [PMID: 23510151 DOI: 10.1021/mp300623a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of gene therapy is promising; however, the perceived risks and side effects associated with this technology have severely dampened the researchers' enthusiasm. Thus, the development of a nonviral gene vector without immunological effects and with high transfection efficiency is necessary. Currently, most nonviral vectors have failed to achieve the in vivo transfection efficiencies of viral vectors due to their toxicity, rapid clearance, and/or inappropriate release rates. Although our previous studies have successfully demonstrated the controlled-release of plasmid DNA (pDNA) polyplexes encapsulated into nanoparticles formulated with l-tyrosine polyphosphate (LTP-pDNA nanoparticles), the in vivo transfection capabilities and immunogenicity of this delivery system have yet to be examined. Thus, we evaluate LTP-pDNA nanoparticles in an in vivo setting via injection into rodent uterine tissue. Our results demonstrate through X-gal staining and immunohistochemistry of uterine tissue that transfection has successfully occurred after a nine-day incubation. In contrast, the results for the control nanoparticles show results similar to those of shams. Furthermore, reverse transcriptase polymerase chain reaction (RT-PCR) from the injected tissues confirms the transfection in vivo. To examine the immunogenicity, the l-tyrosine polyphosphate (LTP) nanoparticles have been evaluated in a mouse model. No significant differences in the activation of the innate immune system are observed. These data provide the first report for the potential use of controlled-release nanoparticles formulated from an amino acid based polymer as an in vivo nonviral vector for gene therapy.
Collapse
Affiliation(s)
- Andrew J Ditto
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Akron, Ohio 44325-0302, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Shashidharamurthy R, Bozeman EN, Patel J, Kaur R, Meganathan J, Selvaraj P. Immunotherapeutic strategies for cancer treatment: a novel protein transfer approach for cancer vaccine development. Med Res Rev 2012; 32:1197-1219. [PMID: 23059764 DOI: 10.1002/med.20237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer cells have developed numerous ways to escape immune surveillance and gain unlimited proliferative capacity. Currently, several chemotherapeutic agents and radiotherapy, either alone or in combination, are being used to treat malignancies. However, both of these therapies are associated with several limitations and detrimental side effects. Therefore, recent scientific investigations suggest that immunotherapy is among the most promising new approaches in modern cancer therapy. The focus of cancer immunotherapy is to boost both acquired and innate immunity against malignancies by specifically targeting tumor cells, and leaving healthy cells and tissues unharmed. Cellular, cytokine, gene, and monoclonal antibody therapies have progressively become promising immunotherapeutic approaches that are being tested for several cancers in preclinical models as well as in the clinic. In this review, we discuss recent advances in these immunotherapeutic approaches, focusing on new strategies that allow the expression of specific immunostimulatory molecules on the surface of tumor cells to induce robust antitumor immunity.
Collapse
Affiliation(s)
- Rangaiah Shashidharamurthy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W, Goldberg EP, Zarogoulidis K. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13:10828-10862. [PMID: 23109824 PMCID: PMC3472716 DOI: 10.3390/ijms130910828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022] Open
Abstract
Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer.
Collapse
Affiliation(s)
- Paul Zarogouldis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
- Pulmonary Department-Interventional Unit, “Ruhrland Klinik”, University of Essen, Essen 45239, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-697-727-1974; Fax: +30-231-099-2433
| | - Nikos K. Karamanos
- Laboratory of Biochemistry, University of Patras, Patras 25200, Greece; E-Mail:
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | | | - Eugene P. Goldberg
- Biomaterials Science & Engineering, Department of Materials Science & Engineering, University of Florida, FL 32611, USA; E-Mail:
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| |
Collapse
|
18
|
Montis C, Milani S, Berti D, Baglioni P. Complexes of nucleolipid liposomes with single-stranded and double-stranded nucleic acids. J Colloid Interface Sci 2012; 373:57-68. [DOI: 10.1016/j.jcis.2011.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 01/10/2023]
|
19
|
Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012; 30:2256-72. [PMID: 22306376 DOI: 10.1016/j.vaccine.2012.01.070] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 02/06/2023]
Abstract
Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines - method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties - exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study.
Collapse
Affiliation(s)
- Douglas S Watson
- Biosciences Division, SRI International, 140 Research Drive, Harrisonburg, VA 22802, United States. [corrected]
| | | | | |
Collapse
|
20
|
Yuan QY, Zhu ZW, Wang Z, Wang XM, Li XS, Huang J, Si LY. A novel method of augmenting gene expression and angiogenesis in the normal and ischemic canine myocardium. Heart Vessels 2011; 27:316-26. [PMID: 21688013 DOI: 10.1007/s00380-011-0165-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 04/22/2011] [Indexed: 02/07/2023]
Abstract
This study presents a novel method that direct intramyocardial injection of low-dose plasmid DNA and microbubbles combined with insonation could further augment gene expression in normal and ischemic canine myocardium. Plasmids encoding enhanced green fluorescent protein (pEGFP) and hepatocyte growth factor (pHGF) (500 μg) were individually mixed with 0.5 ml of microbubble solution (MB) and injected into the normal or acute ischemic canine myocardium. The dogs in the plasmid + MB/US group underwent insonation (US). Other dogs were randomly divided into three treatment groups: plasmid and insonation, plasmid and MB injection, and plasmid injection only. The EGFP and HGF mRNA expressions were assessed in the myocardium at the injection site and at sites 0.5 and 1 cm remote from the injection site. Compared to plasmid transfer alone, a mean 13.4-fold enhancement of gene expression was achieved in the EGFP + MB/US group at 48 h (p < 0.01). HGF mRNA expression in ischemic zones was markedly elevated after 28 days, with a mean 9.0-fold enhancement in the HGF + MB/US group (p < 0.01). EGFP protein expression was detected in the normal myocardium at 1 cm remote from the injection site in the EGFP + MB/US group. Similarly, HGF protein expression was detected in the ischemic myocardium at 0.5 cm remote from the injection site in the HGF + MB/US group. These findings indicate that the radius of gene expression was partly extended in the two plasmid + MB/US groups. The capillary density increased from 20.9 ± 5.3/mm(2) in control myocardial infarction dogs without treatment to 126.7 ± 38.2/mm(2) in the HGF + MB/US group (p < 0.01). Taken together, the present data demonstrate that direct intramyocardial injection of an angiogenic gene and microbubbles combined with insonation can augment gene expression and angiogenesis. Consequently, this strategy may be a useful tool for gene therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Qiao-Ying Yuan
- Department of Geriatrics, Southwest Hospital, Third Military Medical University, Gao Tan Yan Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu L, Anchordoquy T. Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 2011; 100:38-52. [PMID: 20575003 DOI: 10.1002/jps.22243] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability to deliver nucleic acids (e.g., plasmid DNA, antisense oligonucleotides, siRNA) offers the potential to develop potent vaccines and novel therapeutics. However, nucleic acid-based therapeutics are still in their early stages as a new category of biologics. The efficacy of nucleic acids requires that these molecules be delivered to the interior of the target cell, which greatly complicates delivery strategies and compromises efficiency. Due to the safety concerns of viral vectors, synthetic vectors such as liposomes and polymers are preferred for the delivery of nucleic acid-based therapeutics. Yet, delivery efficiencies of synthetic vectors in the clinic are still too low to obtain therapeutic levels of gene expression. In this review, we focus on some key issues in the field of nucleic acid delivery such as PEGylation, encapsulation and targeted delivery and provide some perspectives for consideration in the development of improved synthetic vectors.
Collapse
Affiliation(s)
- Long Xu
- Department of Pharmaceutical Sciences, University of Colorado, 12700 East Nineteenth Avenue, Aurora, Colorado 80045, USA
| | | |
Collapse
|
22
|
Tumor suppressor gene-based nanotherapy: from test tube to the clinic. JOURNAL OF DRUG DELIVERY 2011; 2011:465845. [PMID: 21490751 PMCID: PMC3065904 DOI: 10.1155/2011/465845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023]
Abstract
Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.
Collapse
|
23
|
Walker WE, Booth CJ, Goldstein DR. TLR9 and IRF3 cooperate to induce a systemic inflammatory response in mice injected with liposome:DNA. Mol Ther 2010; 18:775-84. [PMID: 20145605 DOI: 10.1038/mt.2010.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Liposome:DNA is a promising gene therapy vector. However, this vector can elicit a systemic inflammatory response syndrome (SIRS). Prior reports indicate that liposome:DNA vectors activate Toll-like receptor (TLR)9. We hypothesized that liposome:DNA vectors also activate the cytosolic DNA-sensing pathway, which signals via interferon (IFN) regulatory factor (IRF)3. To test this, we treated dendritic cells (DCs) with liposome:DNA in vitro and found that IRF3 was phosphorylated independent of TLR9. To test the contribution of this pathway in vivo, we injected a liposome:DNA vector into wild-type (WT), TLR9-knockout (KO), IRF3-KO, and TLR9-IRF3-double-KO (DKO) mice. WT mice exhibited a systemic inflammatory response, evidenced by elevations in serum cytokines, serum enzyme changes indicating organ damage, hypothermia, and mortality. The cytokine response was reduced in TLR9-KO, IRF3-KO, and TLR9-IRF3-DKO mice and all three groups survived. We found that IFN-gamma-KO mice that receive liposome:DNA had a reduced cytokine response and 100% survival. CD11c(+) and NK1.1(+) cells produced IFN-gamma and depleting CD11c(+) cells reduced the cytokine response in mice injected with liposome:DNA. These findings may facilitate the development of immunologically inert gene therapy vectors and may provide general insight into the mechanisms of SIRS.
Collapse
Affiliation(s)
- Wendy E Walker
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
24
|
Hughes TS, Langer SJ, Virtanen SI, Chavez RA, Watkins LR, Milligan ED, Leinwand LA. Immunogenicity of intrathecal plasmid gene delivery: cytokine release and effects on transgene expression. J Gene Med 2009; 11:782-90. [PMID: 19533588 DOI: 10.1002/jgm.1364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND One method for the delivery of therapeutic proteins to the spinal cord is to inject nonviral gene vectors including plasmid DNA into the cerebrospinal fluid (CSF) that surrounds the spinal cord (intrathecal space). This approach has produced therapeutic benefits in animal models of disease and several months of protein expression; however, there is little information available on the immune response to these treatments in the intrathecal space, the relevance of plasmid CpG sequences to any plasmid-induced immune response, or the effect of this immune response on transgene expression. METHODS In the present study, coding or noncoding plasmids were delivered to the intrathecal space of the lumbar spinal region in rats. Lumbosacral CSF was then collected at various time points afterwards for monitoring of cytokines and transgene expression. RESULTS This work demonstrates, for the first time, increased tumor necrosis factor-alpha and interleukin-1 in response to intrathecal plasmid vector injection and provides evidence indicating that this response is largely absent in a CpG-depleted vector. Transgene expression in the CSF is not significantly affected by this immune response. Expression after intrathecal plasmid injection is variable across rats but correlates with the amount of tissue associated plasmid and is increased by disrupting normal CSF flow. CONCLUSIONS The data obtained in the present study indicate that plasmid immunogenicity may affect intrathecal plasmid gene therapy safety but not transgene expression in the CSF. Furthermore, the development of methods to prevent loss of plasmid via CSF flow out of the central nervous system through the injection hole and/or natural outflow routes may increase intrathecal plasmid gene delivery efficacy.
Collapse
Affiliation(s)
- Travis S Hughes
- Department of Molecular, Cellular and Developmental Biology, University of CO, Boulder, CO, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Mukai H, Kawakami S, Kamiya Y, Ma F, Takahashi H, Satake K, Terao K, Kotera H, Yamashita F, Hashida M. Pressure-Mediated Transfection of Murine Spleen and Liver. Hum Gene Ther 2009; 20:1157-67. [DOI: 10.1089/hum.2008.213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Hidefumi Mukai
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuki Kamiya
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Fan Ma
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Haruyuki Takahashi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kyosuke Satake
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kyohei Terao
- Department of Micro-Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Hidetoshi Kotera
- Department of Micro-Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
27
|
Di Gioia S, Conese M. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:163-88. [PMID: 19920904 PMCID: PMC2761186 DOI: 10.2147/dddt.s2708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI) has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane) and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Biomedical Sciences, University of Foggia, Viale L. Pinto 1, Foggia, Italy
| | | |
Collapse
|
28
|
Kuruba R, Wilson A, Gao X, Li S. Targeted delivery of nucleic-acid-based therapeutics to the pulmonary circulation. AAPS JOURNAL 2009; 11:23-30. [PMID: 19132538 DOI: 10.1208/s12248-008-9073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/25/2008] [Indexed: 02/07/2023]
Abstract
Targeted delivery of functional nucleic acids (genes and oligonucleotides) to pulmonary endothelium may become a novel therapy for the treatment of various types of lung diseases. It may also provide a new research tool to study the functions and regulation of novel genes in pulmonary endothelium. Its success is largely dependent on the development of a vehicle that is capable of efficient pulmonary delivery with minimal toxicity. This review summarizes the recent progress that has been made in our laboratory along these research directions. Factors that affect pulmonary nucleic acids delivery are also discussed.
Collapse
Affiliation(s)
- Ramalinga Kuruba
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
29
|
Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int J Pharm 2008; 368:56-62. [PMID: 18992312 DOI: 10.1016/j.ijpharm.2008.09.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
Recently, we have developed a simple and potent therapeutic cancer vaccine consisting of a cationic lipid and a peptide antigen. In this report, we expanded the utility of this formulation to protein based vaccines. First, we formulated the human papillomavirus (HPV) 16 E7 protein (E7) in different doses of DOTAP liposome. The results showed that these formulations failed to regress an established tumor. However, when sodium chloride (30 mM) was added to the DOTAP (100 nmol)/E7 (20 microg) formulation, anti-tumor activity was generated in the immunized mice. Correlatively, 30 mM NaCl in the DOTAP/E7 protein formulation increased the particle size from approximately 350 to 550 nm, decreased the protein loading capacity (from 95 to 90%), and finally increased the zeta potential (from 29 to 38 mV). Next, a model protein antigen ovalbumin (OVA) was formulated in different doses of DOTAP liposomes. Similarly, the results showed that 20 microg OVA formulated in 200 nmol DOTAP with 30 mM NaCl had the best OVA-specific antibody response, including both IgG(1) and IgG(2a), suggesting both Th1 and Th2 immune responses were generated by this formulation. In conclusion, we have expanded the application of cationic DOTAP liposome formulation to protein based vaccines and also identified that small amounts of salt could change the physicochemical properties of the vaccine formulation and enhance the activity of the DOTAP/protein based vaccine. The enhancement of immune responses by salt is possibly due to its interference of the electrostatic interaction between the cationic lipid and the protein antigen to facilitate the antigen release from the carrier and at the same time activate the antigen presenting cells.
Collapse
Affiliation(s)
- Weili Yan
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 2316 Kerr Hall, CB# 7360, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|
30
|
Bonnet ME, Erbacher P, Bolcato-Bellemin AL. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res 2008; 25:2972-82. [PMID: 18709489 DOI: 10.1007/s11095-008-9693-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/21/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE The success of nucleic acid therapies depends upon delivery vehicle's ability to selectively and efficiently deliver therapeutic nucleic acids to target organ with minimal toxicity. The cationic polymer polyethylenimine (PEI) has been widely used for nucleic acid delivery due to its versatility and efficiency. In particular, the last generation of linear PEI (L-PEI) is being more efficient in vivo than the first generation of branched PEI. This led to several clinical trials including phase II bladder cancer therapy and human immunodeficiency virus immunotherapy. When moving towards to the clinic, it is crucial to identify potential side-effects induced by the delivery vehicle. MATERIALS AND METHODS For this purpose we have analyzed the production of pro-inflammatory cytokines [tumor necrosis factor-alpha, interferon (IFN)-gamma, interleukin (IL)-6, IL-12/IL-23, IFN-beta and IL-1beta] and hepatic enzyme levels (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase) in the blood serum of mice after systemic injection of DNA or siRNAs delivered with L-PEI. RESULTS Our data show no major production of pro-inflammatory cytokines or hepatic enzymes after injection of DNA or oligonucleotides active for RNA interference (siRNAs or sticky siRNAs) complexed with L-PEI. Only a slight induction of IFN-gamma was measured after DNA delivery, which is probably induced by the CpG mediated response. CONCLUSION Taken together our data highlight that linear polyethylenimine is a delivery reagent of choice for nucleic acid therapeutics.
Collapse
Affiliation(s)
- Marie-Elise Bonnet
- Polyplus-transfection SA, Bioparc, BP90018, Boulevard Sébastien Brandt, Illkirch Cedex, France
| | | | | |
Collapse
|
31
|
Li T, Koshy S, Folkesson HG. RNA interference for CFTR attenuates lung fluid absorption at birth in rats. Respir Res 2008; 9:55. [PMID: 18652671 PMCID: PMC2515309 DOI: 10.1186/1465-9921-9-55] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background Small interfering RNA (siRNA) against αENaC (α-subunit of the epithelial Na channel) and CFTR (cystic fibrosis transmembrane conductance regulator) was used to explore ENaC and CTFR function in newborn rat lungs. Methods Twenty-four hours after trans-thoracic intrapulmonary (ttip) injection of siRNA-generating plasmid DNA (pSi-0, pSi-4, or pSi-C2), we measured CFTR and ENaC expression, extravascular lung water, and mortality. Results αENaC and CFTR mRNA and protein decreased by ~80% and ~85%, respectively, following αENaC and CFTR silencing. Extravascular lung water and mortality increased after αENaC and CFTR-silencing. In pSi-C2-transfected isolated DLE cells there were attenuated CFTR mRNA and protein. In pSi-4-transfected DLE cells αENaC mRNA and protein were both reduced. Interestingly, CFTR-silencing also reduced αENaC mRNA and protein. αENaC silencing, on the other hand, only slightly reduced CFTR mRNA and protein. Conclusion Thus, ENaC and CFTR are both involved in the fluid secretion to absorption conversion around at birth.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272-0095, USA.
| | | | | |
Collapse
|
32
|
de Wolf HK, Johansson N, Thong AT, Snel CJ, Mastrobattista E, Hennink WE, Storm G. Plasmid CpG depletion improves degree and duration of tumor gene expression after intravenous administration of polyplexes. Pharm Res 2008; 25:1654-62. [PMID: 18317886 PMCID: PMC2440937 DOI: 10.1007/s11095-008-9558-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/11/2008] [Indexed: 11/11/2022]
Abstract
Purpose Tumor gene expression after the intravenous (i.v.) administration of current polymer-based gene delivery systems is generally low and short-lived. Immune stimulatory CpG dinucleotides, present within the plasmid DNA of the polyplexes are likely to contribute to this. The effect of CpG replacement on the levels of transgene expression was studied, after the i.v. administration of polyethylenimine (PEI) polyplexes. Methods Tumor transfection and immune stimulation of PEI polyplexes containing plasmid DNA encoding for luciferase and rich in CpG motifs was monitored and compared to polyplexes containing the same gene but devoid of CpG motifs. Lipoplexes based on 1,2-dioleyl-3-trimethylammonium-propane/dioleoylphosphatidylethanolamine liposomes were included as a control. Results The replacement of CpGrich DNA by CpGfree DNA did neither affect the physical properties of the DNA complexes nor did it affect their in vitro transfection activity or cytotoxicity. The immune stimulation (interleukin-12) after i.v. administration of the PEI DNA complexes was low and unaffected by the presence of CpG motifs. The absence of CpG motifs within the different DNA complexes improved the degree and the duration of organ and tumor gene expression. Conclusion The depletion of CpG dinucleotides within the plasmid DNA of polyplexes enhances the degree and duration of in vivo transgene expression.
Collapse
Affiliation(s)
- Holger K de Wolf
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Qin L, Greenland JR, Moriya C, Cayabyab MJ, Letvin NL. Effects of type I interferons on the adjuvant properties of plasmid granulocyte-macrophage colony-stimulating factor in vivo. J Virol 2007; 81:10606-13. [PMID: 17652387 PMCID: PMC2045443 DOI: 10.1128/jvi.01000-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) can induce the local recruitment of activated antigen-presenting cells at the site of vaccine inoculation, this cellular recruitment is associated with a paradoxical decrease in local vaccine antigen expression and vaccine-elicited CD8+ T-cell responses. To clarify why this cytokine administration does not potentiate immunization, we examined the recruited cells and expressed inflammatory mediators in muscles following intramuscular administration of plasmid GM-CSF in mice. While large numbers of dendritic cells and macrophages were attracted to the site of plasmid GM-CSF inoculation, high concentrations of type I interferons were also detected in the muscles. As type I interferons have been reported to damp foreign gene expression in vivo, we examined the possibility that these local innate mediators might decrease plasmid DNA expression and therefore the immunogenicity of plasmid DNA vaccines. In fact, we found that coadministration of an anti-beta interferon monoclonal antibody with the plasmid DNA immunogen and plasmid GM-CSF restored both the local antigen expression and the CD8+ T-cell immunogenicity of the vaccine. These data demonstrate that local innate immune responses can change the ability of vaccines to generate robust adaptive immunity.
Collapse
Affiliation(s)
- Lizeng Qin
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
34
|
De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:292-307. [PMID: 17512630 PMCID: PMC1949490 DOI: 10.1016/j.addr.2007.03.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled, localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University Chicago, IL 60611
| |
Collapse
|
35
|
Paesold G, Nerlich AG, Boos N. Biological treatment strategies for disc degeneration: potentials and shortcomings. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2007; 16:447-68. [PMID: 16983559 PMCID: PMC2229827 DOI: 10.1007/s00586-006-0220-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/14/2006] [Accepted: 08/15/2006] [Indexed: 01/07/2023]
Abstract
Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient.
Collapse
Affiliation(s)
- Günther Paesold
- Centre for Spinal Surgery, University of Zürich, Balgrist, Zurich, Switzerland.
| | | | | |
Collapse
|
36
|
Zhou R, Norton JE, Zhang N, Dean DA. Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther 2007; 14:775-80. [PMID: 17344904 PMCID: PMC4150868 DOI: 10.1038/sj.gt.3302936] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electroporation can deliver DNA efficiently and safely to tissues in live animals, including the lung where it causes little inflammation or lung injury. In contrast, cationic lipid-mediated gene transfer has been shown to induce an inflammatory response caused by unmethylated plasmid CpG residues, which activate the toll-like receptor (TLR9) signaling pathway. As TLR9 is located in the endosomal/lysosomal compartment, we hypothesized that plasmids do not activate TLR9 during electroporation because they enter the cytoplasm directly through transient pores in the plasma membrane. To test this, plasmids were transfected into kidney epithelial cells overexpressing TLR9 (HEK293-TLR9+) and cells lacking TLR9 (HEK293-TLR9-null). Interleukin (IL)-8 expression, an indicator of TLR9 activation, increased more than 10-fold at 24 h post-liposome transfection in HEK293-TLR9+ cells, but showed no significant increase in electroporated cells, compared with untransfected cells. In vivo liposome-mediated gene transfer caused increases in IL-6, IL-12, tumor necrosis factor alpha and interferon gamma in mouse bronchial alveolar lavage fluid, whereas the levels of these cytokines were more than 10-fold lower by comparison following electroporation. Depletion of alveolar macrophages suggested that this inflammatory response is mediated by resident pulmonary epithelial cells. These results suggest that electroporation-mediated gene transfer bypasses the TLR-9 pathway, thus accounting for the low levels of inflammation seen with this approach.
Collapse
Affiliation(s)
- Rui Zhou
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - James E. Norton
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ning Zhang
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - David A. Dean
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Address all correspondence to: David A. Dean, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Ave, McGaw 2336, Chicago, IL 60611, Tel: 312-503-3121, Fax: 312-908-4650,
| |
Collapse
|
37
|
Milligan ED, Sloane EM, Langer SJ, Hughes TS, Jekich BM, Frank MG, Mahoney JH, Levkoff LH, Maier SF, Cruz PE, Flotte TR, Johnson KW, Mahoney MM, Chavez RA, Leinwand LA, Watkins LR. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain 2006; 126:294-308. [PMID: 16949747 DOI: 10.1016/j.pain.2006.07.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 07/05/2006] [Accepted: 07/17/2006] [Indexed: 01/23/2023]
Abstract
Neuropathic pain is a major clinical problem unresolved by available therapeutics. Spinal cord glia play a pivotal role in neuropathic pain, via the release of proinflammatory cytokines. Anti-inflammatory cytokines, like interleukin-10 (IL-10), suppress proinflammatory cytokines. Thus, IL-10 may provide a means for controlling glial amplification of pain. We recently documented that intrathecal IL-10 protein resolves neuropathic pain, albeit briefly (approximately 2-3 h), given its short half-life. Intrathecal gene therapy using viruses encoding IL-10 can also resolve neuropathic pain, but for only approximately 2 weeks. Here, we report a novel approach that dramatically increases the efficacy of intrathecal IL-10 gene therapy. Repeated intrathecal delivery of plasmid DNA vectors encoding IL-10 (pDNA-IL-10) abolished neuropathic pain for greater than 40 days. Naked pDNA-IL-10 reversed chronic constriction injury (CCI)-induced allodynia both shortly after nerve injury as well as 2 months later. This supports that spinal proinflammatory cytokines are important in both the initiation and maintenance of neuropathic pain. Importantly, pDNA-IL-10 gene therapy reversed mechanical allodynia induced by CCI, returning rats to normal pain responsiveness, without additional analgesia. Together, these data suggest that intrathecal IL-10 gene therapy may provide a novel approach for prolonged clinical pain control.
Collapse
Affiliation(s)
- Erin D Milligan
- Department of Psychology and the Center for Neuroscience, University of CO at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ochiai H, Harashima H, Kamiya H. Effect of methylated adenine in plasmid DNA on transgene expression in mice. Biol Pharm Bull 2006; 28:2019-22. [PMID: 16204970 DOI: 10.1248/bpb.28.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic lipid-mediated transfer of DNA is promising in gene therapy. However, one disadvantage with this approach is the induction of an inflammatory response, which may decrease transgene expression. Recently, we found that plasmid DNA containing N6-methyladenine (N6-MeA), a bacterium-specific modified base, induced cytokine twice as efficiently as plasmid DNA without N6-MeA, when complexed with cationic lipids. Thus, plasmid DNA without N6-MeA might express a transgene more efficiently than that containing N6-MeA in vivo. To evaluate the effects of adenine methylation on transgene expression in vivo, we injected luciferase-encoding plasmid DNA, complexed with cationic lipids or a cationic polymer, intravenously into mice. When the plasmid DNA-cationic lipid complexes were injected, the luciferase expression from the methylated and unmethylated plasmids was similar, although cytokine was more efficiently elicited by the methylated DNA than the unmethylated DNA. Hydrodynamics-based injections of plasmid DNA-cationic polymer complexes did not induce cytokine, and the luciferase expression from the unmethylated plasmid was slightly lower than that from the methylated plasmid DNA. These results suggest that the presence of N6-MeA did not reduce transgene expression in vivo.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Graduate School of Pharmaceutical Sciences, Hokkaido University; Kita-12, Nishi-6, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
39
|
Fletcher S, Ahmad A, Perouzel E, Heron A, Miller AD, Jorgensen MR. In Vivo Studies of Dialkynoyl Analogues of DOTAP Demonstrate Improved Gene Transfer Efficiency of Cationic Liposomes in Mouse Lung. J Med Chem 2005; 49:349-57. [PMID: 16392819 DOI: 10.1021/jm0507227] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel set of dialkynoyl analogues of the cationic, gene delivery lipid DOTAP (1) was synthesized. Structure-activity studies demonstrate that replacement of the cis-double bonds of DOTAP with triple bonds in varying positions alters both the physical properties of the resultant cationic liposome-DNA complexes and their biological functionalities, both in vitro and in vivo. Particularly, in vivo studies demonstrate that pDNA transfection of mouse lung endothelial cells with lead analogue DS(14-yne)TAP (4):cholesterol lipoplexes exhibits double the transfection level with less associated toxicity relative to the well-established DOTAP:cholesterol system. In fact, 4:cholesterol delivers up to 3 times the dose of pDNA in mice than can be tolerated by DOTAP, leading to nearly 3 times greater marker-gene expression. X-ray diffraction studies suggest that lipoplexes containing analogue 4 display increased stability at physiological temperatures. Our results thus suggest that analogue 4 is a potentially strong candidate for the gene therapy of lung tumors.
Collapse
|
40
|
Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther 2005; 12:475-83. [PMID: 15950542 PMCID: PMC2648405 DOI: 10.1016/j.ymthe.2005.03.036] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering scaffolds capable of sustained plasmid release can promote gene transfer locally and stimulate new tissue formation. We have investigated the scaffold design parameters that influence the extent and duration of transgene expression and have characterized the distribution of transfected cells. Porous scaffolds with encapsulated plasmid were fabricated from poly(lactide-co-glycolide) with a gas foaming procedure, with wet granulation employed to mix the components homogeneously prior to foaming. Wet granulation enhanced plasmid incorporation relative to standard procedures and also enhanced in vivo transgene expression, possibly through the increased loading and maintenance of the scaffold pore structure. The plasmid loading regulated the quantity and duration of transgene expression, with expression for 105 days achieved at the highest dosage. Expression was localized to the implantation site, though the distribution of transfected cells varied with time. Transfected cells were initially observed at the scaffold periphery (day 3), then within the pores and adjacent to the polymer (day 17), and finally throughout the scaffold interior (day 126). Delivery of a plasmid encoding VEGF increased the blood vessel density relative to control. Correlating scaffold design with gene transfer efficiency and tissue formation will facilitate application of plasmid-releasing scaffolds to multiple tissues.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
| | - Christopher B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
- To whom correspondence and reprint requests should be addressed. Fax: +1 847 491 3728. E-mail:
| |
Collapse
|
41
|
Li T, Folkesson HG. RNA interference for alpha-ENaC inhibits rat lung fluid absorption in vivo. Am J Physiol Lung Cell Mol Physiol 2005; 290:L649-L660. [PMID: 16258001 DOI: 10.1152/ajplung.00205.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used siRNA against the alpha-ENaC (epithelial Na channel) subunit to investigate ENaC involvement in lung fluid absorption in rats by the impermeable tracer technique during baseline and after beta-adrenoceptor stimulation by terbutaline. Terbutaline stimulation of lung fluid absorption increased fluid absorption by 165% in pSi-0-pretreated rat lungs (irrelevant siRNA-generating plasmid). Terbutaline failed to increase lung fluid absorption in rats given the specific alpha-ENaC siRNA-generating plasmid (pSi-4). pSi-4 pretreatment reduced baseline lung fluid absorption by approximately 30%. alpha-ENaC was undetectable in pSi-4-pretreated lungs, regardless of condition but was normal in pSi-0-pretreated lungs. We carried out a dose-response analysis where rats were given 0-200 microg/kg body wt pSi-4, and alpha-ENaC mRNA and protein expressions were analyzed. To reach IC(50) for alpha-ENaC mRNA expression, 32 microg/kg body wt pSi-4 was needed, and to reach IC(50) for alpha-ENaC protein expression, 59 microg/kg body wt pSi-4 was needed. We tested for lung tissue specificity and found no changes in beta-ENaC expression, at either mRNA or protein level, as well as no changes in alpha(1)-Na-K-ATPase protein expression. We isolated alveolar epithelial type II cells 24 h after in vivo pSi-4 pretreatment. In these cells, alpha-ENaC mRNA was undetectable, demonstrating that alveolar epithelial ENaC expression was attenuated after intratracheal alpha-ENaC siRNA-generating plasmid DNA instillation. We tested for organ specificity and found no changes in kidney alpha- and beta-ENaC mRNA and protein expression. Thus we provide conclusive evidence that beta-adrenoceptor stimulation of lung fluid absorption is critically ENaC dependent, whereas baseline lung fluid absorption seemed less ENaC dependent.
Collapse
Affiliation(s)
- Tianbo Li
- Dept. of Physiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272-0095, USA
| | | |
Collapse
|
42
|
De Laporte L, Cruz Rea J, Shea LD. Design of modular non-viral gene therapy vectors. Biomaterials 2005; 27:947-54. [PMID: 16243391 PMCID: PMC2648393 DOI: 10.1016/j.biomaterials.2005.09.036] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 09/26/2005] [Indexed: 01/08/2023]
Abstract
Gene delivery has numerous potential applications both clinically and for basic science research. Non-viral vectors represent the long-term future of gene therapy and biomaterials are a critical component for the development of efficient delivery systems. Biomaterial development combined with fundamental studies of virus function and cellular processes will enable the molecular level design of modular vectors. Vectors are being developed based on cationic polymers or lipids that contain functional groups to mediate appropriate interactions with the extracellular environment or to interface with specific cellular processes. This review describes recent progress on the development of biomaterials for non-viral vectors and highlights opportunities for future development. Ultimately, efficient vectors will expand the traditional applications of gene therapy within the clinic and may enable numerous other opportunities within diagnostics, biotechnology, and basic science research.
Collapse
Affiliation(s)
| | | | - Lonnie D. Shea
- Corresponding author. Tel.: 847 491 7043; fax: 847 491 3728. E-mail address: (L.D. Shea)
| |
Collapse
|
43
|
Price A, Limberis M, Gruneich JA, Wilson JM, Diamond SL. Targeting Viral-Mediated Transduction to the Lung Airway Epithelium with the Anti-inflammatory Cationic Lipid Dexamethasone–Spermine. Mol Ther 2005; 12:502-9. [PMID: 16099413 DOI: 10.1016/j.ymthe.2005.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 12/27/2022] Open
Abstract
We formulated adenovirus (AdV) vectors with cationic steroid liposomes containing dexamethasone-spermine (DS)/dioleoylphosphatidylethanolamine (DOPE) in an effort to overcome the lack of apically expressed AdV vector receptors on airway epithelial cells and to reduce the inflammation associated with AdV vector exposure. An AdV vector (1 to 2.5 x 10(11) genome copies) expressing human placental alkaline phosphatase or beta-galactosidase (LacZ) was delivered alone or complexed with DS/DOPE, DC-Chol/DOPE, or dexamethasone to C57Bl/6 mice via intranasal instillation. Formulation of the AdV vector with DS/DOPE and DC-Chol/DOPE resulted in transgene expression targeted only to the airway epithelial cells with minimal expression in alveolar cells, while AdV alone caused high alveolar transduction. The DS/DOPE and dexamethasone formulations greatly reduced cellular infiltrates compared to AdV vector alone, while formulation with DC-Chol/DOPE did not. IFN-gamma was significantly elevated at day 7 in mice receiving only the AdV vector compared to the AdV vector formulated with DS/DOPE, DC-Chol/DOPE, or dexamethasone. Lipid formulation of adeno-associated virus vector expressing LacZ also produced airway epithelial targeting, similar to the AdV vector. Viral vectors can be formulated with DS/DOPE to improve targeting to the airway epithelium in vivo and to attenuate vector-induced inflammation through the pharmacological activity of DS.
Collapse
Affiliation(s)
- Amber Price
- Department of Bioengineering, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Delivery of therapeutic genes to the lungs is an attractive strategy to correct a variety of pulmonary dysfunctions such as cystic fibrosis, alpha-1 antitrypsin deficiency, pulmonary hypertension, asthma, and lung cancer. Different delivery routes such as intratracheal instillation, aerosol and intravenous injection have been utilized with varying degrees of efficiency. Both viral and non-viral vectors, with their respective strengths and weaknesses, have achieved significant levels of transgene expression in the lungs. However, the application of gene therapy for the treatment of pulmonary disease has been handicapped by various barriers to the delivery vectors such as serum proteins during intravenous delivery, and surfactant proteins and mucus in the airway lumen during topical application of therapeutic genes. Immune and cytokine responses against the delivery vehicle are also major problems encountered in pulmonary gene therapy. Despite these shortcomings much progress has been made to enhance the efficiency, as well as lower the toxicity of gene therapy vehicles in the treatment of pulmonary disorders such as cystic fibrosis, lung cancer and asthma.
Collapse
Affiliation(s)
- Ajay Gautam
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030 USA
| | - Clifford J. Waldrep
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030 USA
| | - Charles L. Densmore
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030 USA
| |
Collapse
|
45
|
Ulrich K, Stern M, Goddard ME, Williams J, Zhu J, Dewar A, Painter HA, Jeffery PK, Gill DR, Hyde SC, Geddes DM, Takata M, Alton EWFW. Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1179-92. [PMID: 15681392 DOI: 10.1152/ajplung.00450.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar type II (ATII) cell proliferation and differentiation are important mechanisms in repair following injury to the alveolar epithelium. KGF is a potent ATII cell mitogen, which has been demonstrated to be protective in a number of animal models of lung injury. We have assessed the effect of recombinant human KGF (rhKGF) and liposome-mediated KGF gene delivery in vivo and evaluated the potential of KGF as a therapy for acute lung injury in mice. rhKGF was administered intratracheally in male BALB/c mice to assess dose response and time course of proliferation. SP-B immunohistochemistry demonstrated significant increases in ATII cell numbers at all rhKGF doses compared with control animals and peaked 2 days following administration of 10 mg/kg rhKGF. Protein therapy in general is very expensive, and gene therapy has been suggested as a cheaper alternative for many protein replacement therapies. We evaluated the effect of topical and systemic liposome-mediated KGF-gene delivery on ATII cell proliferation. SP-B immunohistochemistry showed only modest increases in ATII cell numbers following gene delivery, and these approaches were therefore not believed to be capable of reaching therapeutic levels. The effect of rhKGF was evaluated in a murine model of OA-induced lung injury. This model was found to be associated with significant alveolar damage leading to severe impairment of gas exchange and lung compliance. Pretreatment with rhKGF 2 days before intravenous OA challenge resulted in significant improvements in PO2, PCO2, and lung compliance. This study suggests the feasibility of KGF as a therapy for acute lung injury.
Collapse
Affiliation(s)
- K Ulrich
- Dept. of Gene Therapy, National Heart and Lung Institute, Manresa Road, London SW3 6LR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu Q, Esuvaranathan K, Mahendran R. Monitoring the Response of Orthotopic Bladder Tumors to Granulocyte Macrophage Colony-Stimulating Factor Therapy Using the Prostate-Specific Antigen Gene as a Reporter. Clin Cancer Res 2004; 10:6977-84. [PMID: 15501977 DOI: 10.1158/1078-0432.ccr-04-0605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although orthotopic animal models of cancer best reflect the disease in humans, a major drawback of these models is the inability to monitor tumor growth accurately. Our aims were to produce a bladder tumor cell line (MB49) that secreted human prostate-specific antigen (PSA), analyze the feasibility and accuracy of PSA as a biomarker for monitoring orthotopic bladder tumor growth, and evaluate the effectiveness of granulocyte macrophage colony-stimulating factor (GM-CSF) gene therapy using this model. EXPERIMENTAL DESIGN PSA secretion was assessed after both s.c. and orthotopic implantation of MB49-PSA cells in C57BL/6 mice. PSA levels in mouse serum and urine samples were monitored at 2- to 3-day intervals by ELISA. Using the orthotopic model, mice with confirmed tumors were given liposome-mediated GM-CSF gene therapy twice a week for 3 weeks intravesically and PSA levels monitored. RESULTS The MB49-PSA cells behaved similarly as the parental cell line and produced high levels of PSA both in vitro and in vivo. In the s.c. model, the level of PSA produced correlated with tumor volume (r = 0.96). In the orthotopic model, PSA could be detected in serum and urine on the fourth day after implantation. PSA levels over the treatment period indicated that tumor growth was inhibited by GM-CSF gene therapy. Up to 50% of the treated mice were cured. Cytokine array analysis revealed that GM-CSF gene therapy induced the production of other cytokines and chemokines. CONCLUSIONS MB49 cells modified to secrete PSA are a reliable method to evaluate therapeutic modalities for bladder cancer.
Collapse
Affiliation(s)
- Qinghui Wu
- Department of Surgery, National University of Singapore, Singapore
| | | | | |
Collapse
|
47
|
Bjersing JL, Eriksson K, Tarkowski A, Collins LV. The arthritogenic and immunostimulatory properties of phosphorothioate oligodeoxynucleotides rely on synergy between the activities of the nuclease-resistant backbone and CpG motifs. Inflammation 2004; 28:39-51. [PMID: 15072229 DOI: 10.1023/b:ifla.0000014710.44475.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experiments with immunostimulatory unmethylated CpG-containing DNA are usually conducted with nuclease-protected phosphorothioate oligodeoxynucleotides (S-ODNs), rather than phosphodiester oligodeoxynucleotides (O-ODNs). We compared the murine immune responses to S-ODNs and O-ODNs that either contained or lacked CpG motifs. Both CpG and non-CpG S-ODNs induced synovitis, as did sequence-matched CpG O-ODN, but not GpC O-ODN. There was a minimum length requirement for arthritogenic S-ODNs since a CpC dinucleotide S-ODN did not induce arthritis. There were both sequence- (CpG > non-CpG) and backbone-dependent (S-ODN > O-ODN) differences in the levels of DNA-induced arthritis upon intra-articular injection with the ODNs. However, CpG O-ODN being an exception, induced more severe arthritis than the GpC S-ODN. The levels of in vitro proliferation and production of IL-6, TNF-alpha, IL-12, and RANTES by splenocytes following exposure to CpG S-ODN were significantly higher than those induced by CpG O-ODN. In addition, both proliferative responses and cytokine production induced by S-ODN-stimulated splenocytes increased significantly when the S-ODN contained a CpG motif. Transcription factor NFkappaB was activated by both CpG S-ODN and CpG O-ODN but interestingly not by GpC S-ODN. This indicates that the NFkappaB signal pathway modulates CpG-mediated immunostimulation, while sequence-independent immune activation by the phosphorothioate backbone is probably signalled via a different pathway.
Collapse
Affiliation(s)
- Jan L Bjersing
- Department of Rheumatology and Inflammation Research, University of Göteborg, Sweden.
| | | | | | | |
Collapse
|
48
|
Abstract
The vectors for gene delivery are usually classified as viral and nonviral vectors. While the viral vectors are very efficient in transducing cells, safety concerns regarding their use in humans make nonviral vectors an attractive alternative. Among the nonviral vectors, the lipoplexes (complexes of cationic liposome/pDNA) are the most studied and represent the most promising approaches for human clinical trials. However, an inflammatory response is invariably associated with administration of the lipoplexes, which must be avoided in the clinical application. Here, we have successfully developed a nonimmunostimulatory vector for gene therapy. The vector possesses dual functions of: 1) efficiently delivering a gene to target cells and 2) codelivering DNA and inflammatory suppressors into the immune cells where the released suppressor can inhibit cytokine production. The inflammatory suppressors successfully delivered by the vector included glucocorticoids, a nonsteroidal anti-inflammatory drug (NSAID), an NF-kappaB inhibitor, and a natural compound from an herbal medicine. Intravenous injection of the vector dramatically suppressed the cytokine production induced by CpG motif pDNA, including TNF-alpha, IL-12 and IFN-gamma. This new gene vector has a great potential in clinical gene therapy. Another potential use of the vector is codelivery of an enhancer candidate, acting at the transcriptional and translational levels to improve the efficiency of gene transfer by the nonviral vector. Moreover, the unique feature of this vector is that it can be used as an easy and powerful tool for in vivo screening of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Feng Liu
- The center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA. or
| | | | | |
Collapse
|
49
|
Zhang J, Wilson A, Alber S, Ma Z, Tang ZL, Satoh E, Mazda O, Watkins S, Huang L, Pitt B, Li S. Prolonged gene expression in mouse lung endothelial cells following transfection with Epstein-Barr virus-based episomal plasmid. Gene Ther 2003; 10:822-6. [PMID: 12704423 PMCID: PMC7091729 DOI: 10.1038/sj.gt.3301958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of a strategy to deliver a gene to pulmonary endothelium will be useful for gene function study and for pulmonary gene therapy. Cationic lipidic vectors are efficient in gene transfer to pulmonary endothelium via the vascular route; however, gene expression is transient and lasts for only a few days. In this study, we show that pulmonary gene transfer via cationic lipidic vectors can be significantly improved using an Epstein-Barr virus (EBV)-based expression plasmid. Systemic administration of cationic liposomes followed by the EBV-based plasmid led to gene expression in the lung that lasted for more than 3 weeks. Prolonged and high levels of gene expression can also be obtained in primary mouse lung endothelial cells (MLEC) following lipofection with an EBV-based plasmid. These results suggest the utility of this gene transfer protocol in studying the expression of cloned genes in lung endothelial cells and in pulmonary gene therapy.
Collapse
Affiliation(s)
- J Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Jing-Shi Zhang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, 633 Salk Hall, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|