1
|
Yamauchi N, Ashida Y, Naito A, Tokuda N, Niibori A, Motohashi N, Aoki Y, Yamada T. Fatigue Resistance and Mitochondrial Adaptations to Isometric Interval Training in Dystrophin-Deficient Muscle: Role of Contractile Load. FASEB J 2025; 39:e70631. [PMID: 40366239 PMCID: PMC12077386 DOI: 10.1096/fj.202500618rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
In normal mouse skeletal muscles, interval training (IT)-mimicking neuromuscular electrical stimulation enhances muscle fatigue resistance and mitochondrial content, with greater gains observed at high (100 Hz stimulation, IT100) compared to low (20 Hz stimulation, IT20) contractile load. In this study, we compared the effects of repeated IT100 and IT20 on fatigue resistance and mitochondrial adaptations in young male mdx52 mice (4- to 6-week-old), an animal model for Duchenne muscular dystrophy. Plantar flexor muscles were stimulated in vivo using supramaximal electrical stimulation to induce isometric contractions every other day for 4 weeks (a total of 15 sessions). In non-trained muscles of mdx52 mice, decreased fatigue resistance was associated with reduced citrate synthase activity, lower peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) protein expression, and diminished levels of mitochondrial respiratory chain complex II, and an increased percentage of Evans Blue dye-positive areas. IT100, but not IT20, markedly improved fatigue resistance and restored all these alterations in mdx52 mice. Furthermore, an acute session of IT100, but not IT20, led to increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and elevated mRNA levels of PGC-1α, which were blocked by the p38 MAPK inhibitor SB203580. These findings suggest that contractile load is a key determinant of isometric IT-induced improvements in fatigue resistance, even in dystrophin-deficient muscles, potentially through a p38 MAPK/PGC-1α-mediated increase in mitochondrial content.
Collapse
Affiliation(s)
- Nao Yamauchi
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
- The Japan Society for the Promotion of Science (JSPS)TokyoJapan
| | - Yuki Ashida
- The Japan Society for the Promotion of Science (JSPS)TokyoJapan
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Azuma Naito
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Nao Tokuda
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
- The Japan Society for the Promotion of Science (JSPS)TokyoJapan
| | - Ayaka Niibori
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Norio Motohashi
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Takashi Yamada
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
- Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Du X, Nakanishi H, Yamada T, Sin Y, Minegishi K, Motohashi N, Aoki Y, Itaka K. Polyplex Nanomicelle-Mediated Pgc-1α4 mRNA Delivery Via Hydrodynamic Limb Vein Injection Enhances Damage Resistance in Duchenne Muscular Dystrophy Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409065. [PMID: 40051178 PMCID: PMC12021044 DOI: 10.1002/advs.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Indexed: 04/26/2025]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, leading to the absence of dystrophin and progressive muscle degeneration. Current therapeutic strategies, such as exon-skipping and gene therapy, face limitations including truncated dystrophin production and safety concerns. To address these issues, a novel mRNA-based therapy is explored using polyplex nanomicelles to deliver mRNA encoding peroxisome proliferator-activated receptor gamma coactivator 1 alpha isoform 4 (PGC-1α4) via hydrodynamic limb vein (HLV) administration. Using an in vivo muscle torque measurement technique, it is observed that nanomicelle-delivered Pgc-1α4 mRNA significantly improved muscle damage resistance and mitochondrial activity in mdx mice. Specifically, HLV administration of Pgc-1α4 mRNA in dystrophic muscles significantly relieved the torque reduction and myofiber injury induced by eccentric contraction (ECC), boosted metabolic gene expression, and enhanced muscle oxidative capacity. In comparison, lipid nanoparticles (LNPs), a widely used mRNA delivery system, does not achieve similar protective effects, likely due to their intrinsic immunogenicity. This foundational proof-of-concept study highlights the potential of mRNA-based therapeutics for the treatment of neuromuscular diseases such as DMD and demonstrates the capability of polyplex nanomicelles as a safe and efficient mRNA delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Xuan Du
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
| | - Hideyuki Nakanishi
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| | - Takashi Yamada
- Department of Physical TherapySapporo Medical UniversitySapporo060‐8556Japan
| | - Yooksil Sin
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| | - Katsura Minegishi
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Norio Motohashi
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Keiji Itaka
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| |
Collapse
|
3
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
4
|
Jama A, Alshudukhi AA, Burke S, Dong L, Kamau JK, Morris B, Alkhomsi IA, Finck BN, Voss AA, Ren H. Exploring lipin1 as a promising therapeutic target for the treatment of Duchenne muscular dystrophy. J Transl Med 2024; 22:664. [PMID: 39014470 PMCID: PMC11253568 DOI: 10.1186/s12967-024-05494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.
Collapse
Affiliation(s)
- Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Abdullah A Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Steve Burke
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Lixin Dong
- Mumetel LLC, University Technology Park at IIT, Chicago, IL, USA
| | - John Karanja Kamau
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Brooklyn Morris
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Ibrahim A Alkhomsi
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Brian N Finck
- Division of Geriatrics & Nutritional Science, Washington University School of Medicine, St. Louis, USA
| | - Andrew Alvin Voss
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA.
| |
Collapse
|
5
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
6
|
Krishna S, Echevarria KG, Reed CH, Eo H, Wintzinger M, Quattrocelli M, Valentine RJ, Selsby JT. A fat- and sucrose-enriched diet causes metabolic alterations in mdx mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R692-R711. [PMID: 37811713 PMCID: PMC11178302 DOI: 10.1152/ajpregu.00246.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | | | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
7
|
Yamauchi N, Tamai K, Kimura I, Naito A, Tokuda N, Ashida Y, Motohashi N, Aoki Y, Yamada T. High-intensity interval training in the form of isometric contraction improves fatigue resistance in dystrophin-deficient muscle. J Physiol 2023; 601:2917-2933. [PMID: 37184335 DOI: 10.1113/jp284532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
Duchenne muscular dystrophy is a genetic muscle-wasting disorder characterized by progressive muscle weakness and easy fatigability. Here we examined whether high-intensity interval training (HIIT) in the form of isometric contraction improves fatigue resistance in skeletal muscle from dystrophin-deficient mdx52 mice. Isometric HIIT was performed on plantar flexor muscles in vivo with supramaximal electrical stimulation every other day for 4 weeks (a total of 15 sessions). In the non-trained contralateral gastrocnemius muscle from mdx52 mice, the decreased fatigue resistance was associated with a reduction in the amount of peroxisome proliferator-activated receptor γ coactivator 1-α, citrate synthase activity, mitochondrial respiratory complex II, LC3B-II/I ratio, and mitophagy-related gene expression (i.e. Pink1, parkin, Bnip3 and Bcl2l13) as well as an increase in the phosphorylation levels of Src Tyr416 and Akt Ser473, the amount of p62, and the percentage of Evans Blue dye-positive area. Isometric HIIT restored all these alterations and markedly improved fatigue resistance in mdx52 muscles. Moreover, an acute bout of HIIT increased the phosphorylation levels of AMP-activated protein kinase (AMPK) Thr172, acetyl CoA carboxylase Ser79, unc-51-like autophagy activating kinase 1 (Ulk1) Ser555, and dynamin-related protein 1 (Drp1) Ser616 in mdx52 muscles. Thus, our data show that HIIT with isometric contractions significantly mitigates histological signs of pathology and improves fatigue resistance in dystrophin-deficient muscles. These beneficial effects can be explained by the restoration of mitochondrial function via AMPK-dependent induction of the mitophagy programme and de novo mitochondrial biogenesis. KEY POINTS: Skeletal muscle fatigue is often associated with Duchenne muscular dystrophy (DMD) and leads to an inability to perform daily tasks, profoundly decreasing quality of life. We examined the effect of high-intensity interval training (HIIT) in the form of isometric contraction on fatigue resistance in skeletal muscle from the mdx52 mouse model of DMD. Isometric HIIT counteracted the reduced fatigue resistance as well as dystrophic changes in skeletal muscle of mdx52 mice. This beneficial effect could be explained by the restoration of mitochondrial function via AMP-activated protein kinase-dependent mitochondrial biogenesis and the induction of the mitophagy programme in the dystrophic muscles.
Collapse
Affiliation(s)
- Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Katsuyuki Tamai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Iori Kimura
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
8
|
Heydemann A, Siemionow M. A Brief Review of Duchenne Muscular Dystrophy Treatment Options, with an Emphasis on Two Novel Strategies. Biomedicines 2023; 11:biomedicines11030830. [PMID: 36979809 PMCID: PMC10044847 DOI: 10.3390/biomedicines11030830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Despite the full cloning of the Dystrophin cDNA 35 years ago, no effective treatment exists for the Duchenne Muscular Dystrophy (DMD) patients who have a mutation in this gene. Many treatment options have been considered, investigated preclinically and some clinically, but none have circumvented all barriers and effectively treated the disease without burdening the patients with severe side-effects. However, currently, many novel therapies are in the pipelines of research labs and pharmaceutical companies and many of these have progressed to clinical trials. A brief review of these promising therapies is presented, followed by a description of two novel technologies that when utilized together effectively treat the disease in the mdx mouse model. One novel technology is to generate chimeric cells from the patient’s own cells and a normal donor. The other technology is to systemically transplant these cells into the femur via the intraosseous route.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence:
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
9
|
Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23094483. [PMID: 35562874 PMCID: PMC9105402 DOI: 10.3390/ijms23094483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α protein (PGC-1α), and different types of fibers of the psoas muscle from mdx mice (DMD experimental model). Wildtype and mdx mice were randomly divided into sedentary and trained groups (n = 24). Trained animals were subjected to 37 sessions of low-intensity running on a motorized treadmill. Subsequently, the psoas muscle was excised and analyzed by immunofluorescence for dystrophin, satellite cells, myosin heavy chain (MHC), and PGC-1α content. The minimal Feret’s diameters of the fibers were measured, and light microscopy was applied to observe general morphological features of the muscles. The training (37 sessions) improved morphological features in muscles from mdx mice and caused an increase in the number of quiescent/activated satellite cells. It also increased the content of PGC-1α in the mdx group. We concluded that low-intensity aerobic exercise (37 sessions) was able to reverse deleterious changes determined by DMD.
Collapse
|
10
|
Kiriaev L, Kueh S, Morley JW, Houweling PJ, Chan S, North KN, Head SI. Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the mdx mouse. Am J Physiol Cell Physiol 2021; 321:C704-C720. [PMID: 34432537 DOI: 10.1152/ajpcell.00122.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration. Previously, using the mdx mouse model of DMD, we have proposed that once the number and complexity of branched fibers present in dystrophic fast-twitch EDL muscle surpasses a stable level, we term the "tipping point," the branches, in and of themselves, mechanically weaken the muscle by rupturing when subjected to high forces during eccentric contractions. Here, we use the slow-twitch soleus muscle from the dystrophic mdx mouse to study prediseased "periambulatory" dystrophy at 2-3 wk, the peak regenerative "adult" phase at 6-9 wk, and "old" at 58-112 wk. Using isolated mdx soleus muscles, we examined contractile function and response to eccentric contraction correlated with the amount and complexity of regenerated branched fibers. The intact muscle was enzymatically dispersed into individual fibers in order to count fiber branching and some muscles were optically cleared to allow laser scanning confocal microscopy. We demonstrate throughout the lifespan of the mdx mouse that dystrophic slow-twitch soleus muscle is no more susceptible to eccentric contraction-induced injury than age-matched littermate controls and that this is correlated with a reduction in the number and complexity of branched fibers compared with fast-twitch dystrophic EDL muscles.
Collapse
MESH Headings
- Age Factors
- Animals
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Kinetics
- Male
- Mice, Inbred mdx
- Muscle Contraction
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Strength
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation
- Mice
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sindy Kueh
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Stephen Chan
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Ng SY, Ljubicic V. Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: Impacts, challenges, and opportunities. EBioMedicine 2020; 61:103032. [PMID: 33039707 PMCID: PMC7648118 DOI: 10.1016/j.ebiom.2020.103032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common and relentless form of muscular dystrophy. The pleiotropic effects of dystrophin deficiency include remarkable impacts on neuromuscular junction (NMJ) structure and function. Some of these alterations contribute to the severe muscle wasting and weakness that distinguish DMD, while others attempt to compensate for them. Experimental approaches that correct NMJ biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes, which suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. The objectives of this review are to 1) survey the distinctions in NMJ structure, function, and gene expression in the dystrophic context as compared to the healthy condition, and 2) summarize the efforts, opportunities and challenges to correct NMJ biology in DMD. This information will expand our basic understanding of neuromuscular biology and may be useful for designing novel NMJ-targeted drug or behavioural strategies to mitigate the dystrophic pathology and other disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada.
| |
Collapse
|
13
|
Spaulding HR, Quindry T, Quindry JC, Selsby JT. Nutraceutical and pharmaceutical cocktails did not preserve diaphragm muscle function or reduce muscle damage in D2-mdx mice. Exp Physiol 2020; 105:989-999. [PMID: 32267561 DOI: 10.1113/ep087887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? We previously demonstrated that quercetin transiently preserved respiratory function in dystrophin-deficient mice. To gain lasting therapeutic benefits, we tested quercetin in combination with nicotinamide riboside, lisinopril and prednisolone in the D2-mdx model. What is the main finding and its importance? We demonstrated that these quercetin-based cocktails did not preserve respiratory or diaphragmatic function or reduce histological damage after 7 months of treatment starting at 4 months of age. ABSTRACT Duchenne muscular dystrophy is characterized by the absence of dystrophin protein and causes muscle weakness and muscle injury, culminating in respiratory failure and cardiomyopathy. Quercetin transiently improved respiratory function but failed to maintain long-term therapeutic benefits in mdx mice. In this study, we combined quercetin with nicotinamide riboside (NR), lisinopril and prednisolone to assess the efficacy of quercetin-based cocktails. We hypothesized that quercetin, NR and lisinopril independently would improve respiratory function and decrease diaphragmatic injury and when combined would have additive effects. To address this hypothesis, in vivo respiratory function, in vitro diaphragmatic function and histological injury were assessed in DBA (healthy), D2-mdx (dystrophic) and D2-mdx mice treated with combinations of quercetin, NR and lisinopril from 4 to 11 months of age. Respiratory function, assessed using whole-body plethysmography, was largely similar between healthy and dystrophin-deficient mice. Diaphragm specific tension was decreased by ∼50% in dystrophic mice compared with healthy mice (P < 0.05), but fatigue resistance was similar between groups. Contractile area was decreased by ∼10% (P < 0.05) and fibrotic area increased from 3.5% in healthy diaphragms to 27% (P < 0.05) in dystrophic diaphragms. Contrary to expectations, these functional and histological parameters of disease were not offset by any intervention. These data suggest that quercetin, NR and lisinopril, independently and in combination, did not prevent diaphragmatic injury or preserve respiratory function.
Collapse
Affiliation(s)
- H R Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - T Quindry
- Health and Human Performance, University of Montana, Missoula, MT, USA
| | - J C Quindry
- Health and Human Performance, University of Montana, Missoula, MT, USA
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Spaulding HR, Ludwig AK, Hollinger K, Hudson MB, Selsby JT. PGC-1α overexpression increases transcription factor EB nuclear localization and lysosome abundance in dystrophin-deficient skeletal muscle. Physiol Rep 2020; 8:e14383. [PMID: 32109352 PMCID: PMC7048376 DOI: 10.14814/phy2.14383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of functional dystrophin protein and results in progressive muscle wasting. Dystrophin deficiency leads to a host of dysfunctional cellular processes including impaired autophagy. Autophagic dysfunction appears to be due, at least in part, to decreased lysosomal abundance mediated by decreased nuclear localization of transcription factor EB (TFEB), a transcription factor responsible for lysosomal biogenesis. PGC-1α overexpression decreased disease severity in dystrophin-deficient skeletal muscle and increased PGC-1α has been linked to TFEB activation in healthy muscle. The purpose of this study was to determine the extent to which PGC-1α overexpression increased nuclear TFEB localization, increased lysosome abundance, and increased autophagosome degradation. We hypothesized that overexpression of PGC-1α would drive TFEB nuclear translocation, increase lysosome biogenesis, and improve autophagosome degradation. To address this hypothesis, we delivered PGC-1α via adeno-associated virus (AAV) vector injected into the right limb of 3-week-old mdx mice and the contralateral limbs received a sham injection. At 6 weeks of age, this approach increased PGC-1α transcript by 60-fold and increased TFEB nuclear localization in gastrocnemii from PGC-1α treated limbs by twofold compared to contralateral controls. Furthermore, lamp2, a marker of lysosome abundance, was significantly elevated in muscles from limbs overexpressing PGC-1α. Lastly, increased LC3II and similar p62 in PGC-1α overexpressing-limbs compared to contralateral limbs are supportive of increased degradation of autophagosomes. These data provide mechanistic insight into PGC-1α-mediated benefits to dystrophin-deficient muscle, such that increased TFEB nuclear localization in dystrophin-deficient muscle leads to increased lysosome biogenesis and autophagy.
Collapse
Affiliation(s)
| | - Amanda K. Ludwig
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | | | - Matthew B. Hudson
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| | | |
Collapse
|
15
|
Spaulding HR, Quindry T, Hammer K, Quindry JC, Selsby JT. Nutraceutical and pharmaceutical cocktails did not improve muscle function or reduce histological damage in D2-mdx mice. J Appl Physiol (1985) 2019; 127:1058-1066. [PMID: 31295065 DOI: 10.1152/japplphysiol.00162.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progressive muscle injury and weakness are hallmarks of Duchenne muscular dystrophy. We showed previously that quercetin (Q) partially protected dystrophic limb muscles from disease-related injury. As quercetin activates PGC-1α through Sirtuin-1, an NAD+-dependent deacetylase, the depleted NAD+ in dystrophic skeletal muscle may limit quercetin efficacy; hence, supplementation with the NAD+ donor, nicotinamide riboside (NR), may facilitate quercetin efficacy. Lisinopril (Lis) protects skeletal muscle and improves cardiac function in dystrophin-deficient mice; therefore, it was included in this study to evaluate the effects of lisinopril used with quercetin and NR. Our purpose was to determine the extent to which Q, NR, and Lis decreased dystrophic injury. We hypothesized that Q, NR, or Lis alone would improve muscle function and decrease histological injury and when used in combination would have additive effects. Muscle function of 11-mo-old DBA (healthy), D2-mdx (dystrophin-deficient), and D2-mdx mice was assessed after treatment with Q, NR, and/or Lis for 7 mo. To mimic typical pharmacology of patients with Duchenne muscular dystrophy, a group was treated with prednisolone (Pred) in combination with Q, NR, and Lis. At 11 mo of age, dystrophin deficiency decreased specific tension and tetanic force in the soleus and extensor digitorum longus muscles and was not corrected by any treatment. Dystrophic muscle was more sensitive to contraction-induced injury, which was partially offset in the QNRLisPred group, whereas fatigue was similar between all groups. Treatments did not decrease histological damage. These data suggest that treatment with Q, NR, Lis, and Pred failed to adequately maintain dystrophic limb muscle function or decrease histological damage.NEW & NOTEWORTHY Despite a compelling rationale and previous evidence to the contrary in short-term investigations, quercetin, nicotinamide riboside, or Lisinopril, alone or in combination, failed to restore muscle function or decrease histological injury in dystrophic limb muscle from D2-mdx mice after long-term administration. Importantly, we also found that in the D2-mdx model, an emerging and relatively understudied model of Duchenne muscular dystrophy dystrophin deficiency caused profound muscle dysfunction and histopathology in skeletal muscle.
Collapse
Affiliation(s)
| | - Tiffany Quindry
- Department of Health and Human Performance, University of Montana, Missoula, Montana
| | - Kayleen Hammer
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - John C Quindry
- Department of Health and Human Performance, University of Montana, Missoula, Montana
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
16
|
González-Sánchez J, Sánchez-Temprano A, Cid-Díaz T, Pabst-Fernández R, Mosteiro CS, Gallego R, Nogueiras R, Casabiell X, Butler-Browne GS, Mouly V, Relova JL, Pazos Y, Camiña JP. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. J Cachexia Sarcopenia Muscle 2018; 9:1063-1078. [PMID: 30216693 PMCID: PMC6240759 DOI: 10.1002/jcsm.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, β-dystroglycan, and α7β1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.
Collapse
Affiliation(s)
- Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Agustín Sánchez-Temprano
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Regina Pabst-Fernández
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | | | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Jesús P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
17
|
Mantuano P, Sanarica F, Conte E, Morgese MG, Capogrosso RF, Cozzoli A, Fonzino A, Quaranta A, Rolland JF, De Bellis M, Camerino GM, Trabace L, De Luca A. Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharmacol 2018; 154:89-103. [PMID: 29684379 DOI: 10.1016/j.bcp.2018.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
The pharmacological stimulation of AMP-activated protein kinase (AMPK) via metabolic enhancers has been proposed as potential therapeutic strategy for Duchenne muscular dystrophy (DMD). Metformin, a widely-prescribed anti-hyperglycemic drug which activates AMPK via mitochondrial respiratory chain, has been recently tested in DMD patients in synergy with nitric oxide (NO)-precursors, with encouraging results. However, preclinical data supporting the use of metformin in DMD are still poor, and its actions on skeletal muscle appear controversial. Therefore, we investigated the effects of a long-term treatment with metformin (200 mg/kg/day in drinking water, for 20 weeks) in the exercised mdx mouse model, characterized by a severe mechanical-metabolic maladaptation. Metformin significantly ameliorated histopathology in mdx gastrocnemius muscle, in parallel reducing TGF-β1 with a recovery score (r.s) of 106%; this was accompanied by a decreased plasma matrix-metalloproteinase-9 (r.s. 43%). In addition, metformin significantly increased mdx diaphragm twitch and tetanic tension ex vivo (r.s. 44% and 36%, respectively), in spite of minor effects on in vivo weakness. However, no clear protective actions on dystrophic muscle metabolism were observed, as shown by the poor metformin effect on AMPK activation measured by western blot, on the expression of mechanical-metabolic response genes analyzed by qPCR, and by the lack of fast-to-slow fiber-type-shift assessed by SDH staining in tibialis anterior muscle. Similar results were obtained in the milder phenotype of sedentary mdx mice. The lack of metabolic effects could be, at least partly, due to metformin inability to increase low mdx muscle levels of l-arginine, l-citrulline and taurine, found by HPLC. Our findings encourage to explore alternative, metabolism-independent mechanisms of action to differently repurpose metformin in DMD, supporting its therapeutic combination with NO-sources.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | | | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
18
|
Pambianco S, Giovarelli M, Perrotta C, Zecchini S, Cervia D, Di Renzo I, Moscheni C, Ripolone M, Violano R, Moggio M, Bassi MT, Puri PL, Latella L, Clementi E, De Palma C. Reversal of Defective Mitochondrial Biogenesis in Limb-Girdle Muscular Dystrophy 2D by Independent Modulation of Histone and PGC-1α Acetylation. Cell Rep 2017; 17:3010-3023. [PMID: 27974213 DOI: 10.1016/j.celrep.2016.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/10/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction occurs in many muscle degenerative disorders. Here, we demonstrate that mitochondrial biogenesis was impaired in limb-girdle muscular dystrophy (LGMD) 2D patients and mice and was associated with impaired OxPhos capacity. Two distinct approaches that modulated histones or peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) acetylation exerted equivalent functional effects by targeting different mitochondrial pathways (mitochondrial biogenesis or fatty acid oxidation[FAO]). The histone deacetylase inhibitor Trichostatin A (TSA) changed chromatin assembly at the PGC-1α promoter, restored mitochondrial biogenesis, and enhanced muscle oxidative capacity. Conversely, nitric oxide (NO) triggered post translation modifications of PGC-1α and induced FAO, recovering the bioenergetics impairment of muscles but shunting the defective mitochondrial biogenesis. In conclusion, a transcriptional blockade of mitochondrial biogenesis occurred in LGMD-2D and could be recovered by TSA changing chromatin conformation, or it could be overcome by NO activating a mitochondrial salvage pathway.
Collapse
Affiliation(s)
- Sarah Pambianco
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy; Department for Innovation in Biological, Agro-food and Forest systems, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - Ilaria Di Renzo
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Michela Ripolone
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | - Raffaella Violano
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | | | - Pier Lorenzo Puri
- Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, 00142 Roma, Italy; Sanford Children's Health Research Center, Sanford Prebys Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lucia Latella
- Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, 00142 Roma, Italy; National Research Council-Institute of Translational Pharmacology, 00179 Roma, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy; IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy.
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy.
| |
Collapse
|
19
|
Carr SJ, Zahedi RP, Lochmüller H, Roos A. Mass spectrometry-based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics Clin Appl 2017. [DOI: 10.1002/prca.201700071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie J. Carr
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| |
Collapse
|
20
|
Ballmann C, Denney T, Beyers RJ, Quindry T, Romero M, Selsby JT, Quindry JC. Long-term dietary quercetin enrichment as a cardioprotective countermeasure in mdx mice. Exp Physiol 2017; 102:635-649. [PMID: 28192862 DOI: 10.1113/ep086091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? The central question of this study is to understand whether dietary quercetin enrichment attenuates physiologic, histological, and biochemical indices of cardiac pathology. What is the main finding and its importance? Novel findings from this investigation, in comparison to prior published studies, suggest that mouse strain-dependent cardiac outcomes in performance and remodelling exist. Unlike Mdx/Utrn-/+ mice, mdx mice receiving lifelong quercetin treatment did not exhibit improvements cardiac function. Similar to prior work in Mdx/Utrn-/+ mice, histological evidence of remodelling suggests that quercetin consumption may have benefited hearts of mdx mice. Positive outcomes may be related to indirect markers that suggest improved mitochondrial wellbeing and to selected indices of inflammation that were lower in hearts from quercetin-fed mice. Duchenne muscular dystrophy causes a decline in cardiac health, resulting in premature mortality. As a potential countermeasure, quercetin is a polyphenol possessing inherent anti-inflammatory and antioxidant effects that activate proliferator-activated γ coactivator 1α (PGC-1α), increasing the abundance of mitochondrial biogenesis proteins. We investigated the extent to which lifelong 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in mdx mice. Dystrophic animals were fed a quercetin-enriched or control diet for 12 months, while control C57 mice were fed a control diet. Cardiac function was assessed via 7 T magnetic resonance imaging at 2, 10 and 14 months. At 14 months, hearts were harvested for histology and Western blotting. The results indicated an mdx strain-dependent decline in cardiac performance at 14 months and that dietary quercetin enrichment did not attenuate functional losses. In contrast, histological analyses provided evidence that quercetin feeding was associated with decreased fibronectin and indirect damage indices (Haematoxylin and Eosin) compared with untreated mdx mice. Dietary quercetin enrichment increased cardiac protein abundance of PGC-1α, cytochrome c, electron transport chain complexes I-V, citrate synthase, superoxide dismutase 2 and glutathione peroxidase (GPX) versus untreated mdx mice. The protein abundance of the inflammatory markers nuclear factor-κB, phosphorylated nuclear factor kappa beta (P-NFκB) and phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (P-IKBα) was decreased by quercetin compared with untreated mdx mice, while preserving nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha( IKBα) compared with mdx mice. Furthermore, quercetin decreased transforming growth factor-β1, cyclooxygenase-2 (COX2) and macrophage-restricted F4/80 protein (F4/80) versus untreated mdx mice. The data suggest that long-term quercetin enrichment does not impact physiological parameters of cardiac function but improves indices of mitochondrial biogenesis and antioxidant enzymes, facilitates dystrophin-associated glycoprotein complex (DGC) assembly and decreases inflammation in dystrophic hearts.
Collapse
Affiliation(s)
| | - Thomas Denney
- MRI Research Center, Auburn University, Auburn, AL, USA
| | | | | | - Matthew Romero
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - John C Quindry
- School of Kinesiology, Auburn University, Auburn, AL, USA
| |
Collapse
|
21
|
Ballmann C, Denney TS, Beyers RJ, Quindry T, Romero M, Amin R, Selsby JT, Quindry JC. Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/− mice. Am J Physiol Heart Circ Physiol 2017; 312:H128-H140. [DOI: 10.1152/ajpheart.00552.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is associated with progressive cardiac pathology; however, the SIRT1/PGC1-α activator quercetin may cardioprotect dystrophic hearts. We tested the extent to which long-term 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in Mdx/Utrn+/− mice. At 2 mo, Mdx/Utrn+/− mice were fed quercetin-enriched (Mdx/Utrn+/−-Q) or control diet (Mdx/Utrn+/−) for 8 mo. Control C57BL/10 (C57) animals were fed a control diet for 10 mo. Cardiac function was quantified by MRI at 2 and 10 mo. Spontaneous physical activity was quantified during the last week of treatment. At 10 mo hearts were excised for histological and biochemical analysis. Quercetin feeding improved various physiological indexes of cardiac function in diseased animals. Mdx/Utrn+/−-Q also engaged in more high-intensity physical activity than controls. Histological analyses of heart tissues revealed higher expression and colocalization of utrophin and α-sarcoglycan. Lower abundance of fibronectin, cardiac damage (Hematoxylin Eosin-Y), and MMP9 were observed in quercetin-fed vs. control Mdx/Utrn+/− mice. Quercetin evoked higher protein abundance of PGC-1α, cytochrome c, ETC complexes I–V, citrate synthase, SOD2, and GPX compared with control-fed Mdx/Utrn+/−. Quercetin decreased abundance of inflammatory markers including NFκB, TGF-β1, and F4/80 compared with Mdx/Utrn+/−; however, P-NFκB, P-IKBα, IKBα, CD64, and COX2 were similar between groups. Dietary quercetin enrichment improves cardiac function in aged Mdx/Utrn+/− mice and increases mitochondrial protein content and dystrophin glycoprotein complex formation. Histological analyses indicate a marked attenuation in pathological cardiac remodeling and indicate that long-term quercetin consumption benefits the dystrophic heart. NEW & NOTEWORTHY The current investigation provides first-time evidence that quercetin provides physiological cardioprotection against dystrophic pathology and is associated with improved spontaneous physical activity. Secondary findings suggest that quercetin-dependent outcomes are in part due to PGC-1α pathway activation.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Romero
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Rajesh Amin
- Harrison School of Pharmacy, Auburn University, Auburn, Alabama; and
| | | | | |
Collapse
|
22
|
Furrer R, Handschin C. Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2017. [DOI: 10.1007/978-3-319-72790-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Spaulding HR, Ballmann CG, Quindry JC, Selsby JT. Long-Term Quercetin Dietary Enrichment Partially Protects Dystrophic Skeletal Muscle. PLoS One 2016; 11:e0168293. [PMID: 27977770 PMCID: PMC5158046 DOI: 10.1371/journal.pone.0168293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) results from a genetic lesion in the dystrophin gene and leads to progressive muscle damage. PGC-1α pathway activation improves muscle function and decreases histopathological injury. We hypothesized that mild disease found in the limb muscles of mdx mice may be responsive to quercetin-mediated protection of dystrophic muscle via PGC-1α pathway activation. To test this hypothesis muscle function was measured in the soleus and EDL from 14 month old C57, mdx, and mdx mice treated with quercetin (mdxQ; 0.2% dietary enrichment) for 12 months. Quercetin reversed 50% of disease-related losses in specific tension and partially preserved fatigue resistance in the soleus. Specific tension and resistance to contraction-induced injury in the EDL were not protected by quercetin. Given some functional gain in the soleus it was probed with histological and biochemical approaches, however, in dystrophic muscle histopathological outcomes were not improved by quercetin and suppressed PGC-1α pathway activation was not increased. Similar to results in the diaphragm from these mice, these data suggest that the benefits conferred to dystrophic muscle following 12 months of quercetin enrichment were underwhelming. Spontaneous activity at the end of the treatment period was greater in mdxQ compared to mdx indicating that quercetin fed mice were more active in addition to engaging in more vigorous activity. Hence, modest preservation of muscle function (specific tension) and elevated spontaneous physical activity largely in the absence of tissue damage in mdxQ suggests dietary quercetin may mediate protection.
Collapse
Affiliation(s)
- Hannah R. Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| | | | - John C. Quindry
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Woodman KG, Coles CA, Lamandé SR, White JD. Nutraceuticals and Their Potential to Treat Duchenne Muscular Dystrophy: Separating the Credible from the Conjecture. Nutrients 2016; 8:E713. [PMID: 27834844 PMCID: PMC5133099 DOI: 10.3390/nu8110713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely "anecdotal" evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD). This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/adverse effects
- Antioxidants/therapeutic use
- Biomedical Research/methods
- Biomedical Research/trends
- Combined Modality Therapy/adverse effects
- Dietary Supplements/adverse effects
- Evidence-Based Medicine
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/diet therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Peer Review, Research/methods
- Peer Review, Research/trends
- Reproducibility of Results
- Severity of Illness Index
Collapse
Affiliation(s)
- Keryn G Woodman
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville 3010, Australia.
| | - Chantal A Coles
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Department of Pediatrics, The University of Melbourne, Parkville 3010, Australia.
| | - Jason D White
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
25
|
Dinulovic I, Furrer R, Di Fulvio S, Ferry A, Beer M, Handschin C. PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle. Skelet Muscle 2016; 6:38. [PMID: 27833743 PMCID: PMC5101792 DOI: 10.1186/s13395-016-0110-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022] Open
Abstract
Background Skeletal muscle tissue has an enormous regenerative capacity that is instrumental for a successful defense against muscle injury and wasting. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) exerts therapeutic effects in several muscle pathologies, but its role in damage-induced muscle regeneration is unclear. Methods Using muscle-specific gain- and loss-of-function models for PGC-1α in combination with the myotoxic agent cardiotoxin (CTX), we explored the role of this transcriptional coactivator in muscle damage and inflammation. Results Interestingly, we observed PGC-1α-dependent effects at the early stages of regeneration, in particular regarding macrophage accumulation and polarization from the pro-inflammatory M1 to the anti-inflammatory M2 type, a faster resolution of necrosis and protection against the development of fibrosis after multiple CTX-induced injuries. Conclusions PGC-1α exerts beneficial effects on muscle inflammation that might contribute to the therapeutic effects of elevated muscle PGC-1α in different models of muscle wasting. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0110-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivana Dinulovic
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Regula Furrer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Sabrina Di Fulvio
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Arnaud Ferry
- Thérapie des maladies du muscle strié INSERM U974 - CNRS UMR7215 - UPMC UM76, Institut de Myologie and University Rene Descartes, 47, bld de l'Hôpital, G.H. Pitié-Salpétrière, 75013 Paris, France
| | - Markus Beer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
26
|
Foltz SJ, Luan J, Call JA, Patel A, Peissig KB, Fortunato MJ, Beedle AM. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle 2016; 6:20. [PMID: 27257474 PMCID: PMC4890530 DOI: 10.1186/s13395-016-0091-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Background Secondary dystroglycanopathies are a subset of muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (αDG). Loss of αDG functional glycosylation prevents it from binding to laminin and other extracellular matrix receptors, causing muscular dystrophy. Mutations in a number of genes, including FKTN (fukutin), disrupt αDG glycosylation. Methods We analyzed conditional Fktn knockout (Fktn KO) muscle for levels of mTOR signaling pathway proteins by Western blot. Two cohorts of Myf5-cre/Fktn KO mice were treated with the mammalian target of rapamycin (mTOR) inhibitor rapamycin (RAPA) for 4 weeks and evaluated for changes in functional and histopathological features. Results Muscle from 17- to 25-week-old fukutin-deficient mice has activated mTOR signaling. However, in tamoxifen-inducible Fktn KO mice, factors related to Akt/mTOR signaling were unchanged before the onset of dystrophic pathology, suggesting that Akt/mTOR signaling pathway abnormalities occur after the onset of disease pathology and are not causative in early dystroglycanopathy development. To determine any pharmacological benefit of targeting mTOR signaling, we administered RAPA daily for 4 weeks to Myf5/Fktn KO mice to inhibit mTORC1. RAPA treatment reduced fibrosis, inflammation, activity-induced damage, and central nucleation, and increased muscle fiber size in Myf5/Fktn KO mice compared to controls. RAPA-treated KO mice also produced significantly higher torque at the conclusion of dosing. Conclusions These findings validate a misregulation of mTOR signaling in dystrophic dystroglycanopathy skeletal muscle and suggest that such signaling molecules may be relevant targets to delay and/or reduce disease burden in dystrophic patients. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0091-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Foltz
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Junna Luan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA 30602 USA ; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602 USA
| | - Ankit Patel
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Kristen B Peissig
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Marisa J Fortunato
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| |
Collapse
|
27
|
Selsby JT, Ballmann CG, Spaulding HR, Ross JW, Quindry JC. Oral quercetin administration transiently protects respiratory function in dystrophin-deficient mice. J Physiol 2016; 594:6037-6053. [PMID: 27094343 DOI: 10.1113/jp272057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINT PGC-1α pathway activation has been shown to decrease disease severity and can be driven by quercetin. Oral quercetin supplementation protected respiratory function for 4-6 months during a 12 month dosing regimen. This transient protection was probably due to a failure to sustain elevated SIRT1 activity and downstream PGC-1α signalling. Quercetin supplementation may be a beneficial treatment as part of a cocktail provided continued SIRT1 activity elevation is achieved. ABSTRACT Duchenne muscular dystrophy (DMD) impacts 1 : 3500 boys and leads to muscle dysfunction culminating in death due to respiratory or cardiac failure. There is an urgent need for effective therapies with the potential for immediate application for this patient population. Quercetin, a flavonoid with an outstanding safety profile, may provide therapeutic relief to DMD patients as the wait for additional therapies continues. This study evaluated the capacity of orally administered quercetin (0.2%) in 2 month old mdx mice to improve respiratory function and end-point functional and histological outcomes in the diaphragm following 12 months of treatment. Respiratory function was protected for the first 4-6 months of treatment but appeared to become insensitive to quercetin thereafter. Consistent with this, end-point functional measures were decreased and histopathological measures were more severe in dystrophic muscle compared to C57 and similar between control-fed and quercetin-fed mdx mice. To better understand the transient nature of improved respiratory function, we measured PGC-1α pathway activity, which is suggested to be up-regulated by quercetin supplementation. This pathway was largely suppressed in dystrophic muscle compared to healthy muscle, and at the 14 month time point dietary quercetin enrichment did not increase expression of downstream effectors. These data support the efficacy of quercetin as an intervention for DMD in skeletal muscle, and also indicate the development of age-dependent quercetin insensitivity when continued supplementation fails to drive the PGC-1α pathway. Continued study is needed to determine if this is related to disease severity, age or other factors.
Collapse
Affiliation(s)
- Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| | - Christopher G Ballmann
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Hannah R Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - John C Quindry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
28
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Abstract
Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.
Collapse
Affiliation(s)
- Joshua T Selsby
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Dan Nonneman
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Katrin Hollinger
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| |
Collapse
|
30
|
De Arcangelis V, Strimpakos G, Gabanella F, Corbi N, Luvisetto S, Magrelli A, Onori A, Passananti C, Pisani C, Rome S, Severini C, Naro F, Mattei E, Di Certo MG, Monaco L. Pathways Implicated in Tadalafil Amelioration of Duchenne Muscular Dystrophy. J Cell Physiol 2016; 231:224-32. [PMID: 26097015 DOI: 10.1002/jcp.25075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk.
Collapse
Affiliation(s)
- Valeria De Arcangelis
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Nicoletta Corbi
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Armando Magrelli
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Onori
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Passananti
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Pisani
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sophie Rome
- CarMen Laboratory (INSERM 1060, INRA 1362, INSA), University of Lyon, Lyon, France
| | - Cinzia Severini
- CNR-IBCN, Rome, Italy.,European Brain Research Institute, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Hollinger K, Selsby JT. PGC-1αgene transfer improves muscle function in dystrophic muscle following prolonged disease progress. Exp Physiol 2015; 100:1145-58. [DOI: 10.1113/ep085339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Katrin Hollinger
- Department of Animal Science; Iowa State University; Ames IA 50011 USA
| | - Joshua T. Selsby
- Department of Animal Science; Iowa State University; Ames IA 50011 USA
| |
Collapse
|
32
|
Guiraud S, Chen H, Burns DT, Davies KE. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 2015; 100:1458-67. [PMID: 26140505 PMCID: PMC4973818 DOI: 10.1113/ep085308] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X-linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene-replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re-establish muscle function.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| |
Collapse
|
33
|
Correia JC, Ferreira DMS, Ruas JL. Intercellular: local and systemic actions of skeletal muscle PGC-1s. Trends Endocrinol Metab 2015; 26:305-14. [PMID: 25934582 DOI: 10.1016/j.tem.2015.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
Physical exercise promotes complex adaptations in skeletal muscle that benefit various aspects of human health. Many of these adaptations are coordinated at the gene expression level by the concerted action of transcriptional regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1) proteins play a prominent role in skeletal muscle transcriptional reprogramming induced by numerous stimuli. PGC-1s are master coactivators that orchestrate broad gene programs to modulate fuel supply and mitochondrial function, thus improving cellular energy metabolism. Recent studies unveiled novel biological functions for PGC-1s that extend well beyond skeletal muscle bioenergetics. Here we review recent advances in our understanding of PGC-1 actions in skeletal muscle, with special focus on their systemic effects.
Collapse
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Duarte M S Ferreira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
34
|
Yadava RS, Foff EP, Yu Q, Gladman JT, Kim YK, Bhatt KS, Thornton CA, Zheng TS, Mahadevan MS. TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 2015; 24:2035-48. [PMID: 25504044 PMCID: PMC4355029 DOI: 10.1093/hmg/ddu617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 01/06/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most prevalent muscular dystrophy in adults, is characterized by progressive muscle wasting and multi-systemic complications. DM1 is the prototype for disorders caused by RNA toxicity. Currently, no therapies exist. Here, we identify that fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor receptor super-family, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and in tissues from DM1 patients, and that its expression correlates with severity of muscle pathology. This is associated with downstream signaling through the NF-κB pathways. In mice with RNA toxicity, genetic deletion of Fn14 results in reduced muscle pathology and better function. Importantly, blocking TWEAK/Fn14 signaling with an anti-TWEAK antibody likewise improves muscle histopathology and functional outcomes in affected mice. These results reveal new avenues for therapeutic development and provide proof of concept for a novel therapeutic target for which clinically available therapy exists to potentially treat muscular dystrophy in DM1.
Collapse
Affiliation(s)
| | - Erin P Foff
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | - Kirti S Bhatt
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA and
| | - Charles A Thornton
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA and
| | - Timothy S Zheng
- Department of Immunology, Biogen Idec, Cambridge, MA 02142, USA
| | | |
Collapse
|
35
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
36
|
Ballmann C, Hollinger K, Selsby JT, Amin R, Quindry JC. Histological and biochemical outcomes of cardiac pathology in mdx mice with dietary quercetin enrichment. Exp Physiol 2014; 100:12-22. [PMID: 25557727 DOI: 10.1113/expphysiol.2014.083360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does dietary quercetin enrichment improve biochemical and histological outcomes in hearts from mdx mice? What is the main finding and what is its importance? Biochemical and histological findings suggest that chronic quercetin feeding of mdx mice may improve mitochondrial function and attenuate tissue pathology. Patients with Duchenne muscular dystrophy suffer from cardiac pathology, which causes up to 40% of all deaths because of fibrosis and cardiac complications. Quercetin is a flavonol with anti-inflammatory and antioxidant effects and is also an activator of peroxisome proliferator-activated receptor γ coactivator 1α capable of antioxidant upregulation, mitochondrial biogenesis and prevention of cardiac complications. We sought to determine the extent to which dietary quercetin enrichment prevents (experiment 1) and rescues cardiac pathology (experiment 2) in mdx mice. In experiment 1, 3-week-old mdx mice were fed control chow (C3w6m, n = 10) or chow containing 0.2% quercetin for 6 months (Q3w6m, n = 10). In experiment 2, 3-month-old mdx mice were fed control chow (C3m6m, n = 10) or 0.2% chow containing 0.2% quercetin for 6 months (Q3m6m, n = 10). Hearts were excised for histological and biochemical analyses. In experiment 1, Western blot targets for mitochondrial biogenesis (cytochrome c, P = 0.007) and antioxidant expression (superoxide dismutase 2, P = 0.014) increased in Q3w6m mice compared with C3w6m. Histology revealed increased utrophin (P = 0.025) and decreased matrix metalloproteinase 9 abundance (P = 0.040) in Q3w6m mice compared with C3w6m. In experiment 2, relative (P = 0.023) and absolute heart weights (P = 0.020) decreased in Q3m6m mice compared with C3m6m. Indications of damage (Haematoxylin- and Eosin-stained sections, P = 0.007) and Western blot analysis of transforming growth factor β1 (P = 0.009) were decreased in Q3m6m mice. Six months of quercetin feeding increased a mitochondrial biomarker, antioxidant protein and utrophin and decreased matrix metalloproteinase 9 in young mice. Given that these adaptations are associated with attenuated cardiac pathology and damage, the present findings may indicate that dietary quercetin enrichment attenuates dystrophic cardiac pathology, but physiological confirmation is needed.
Collapse
|
37
|
De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D. Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 2014; 6:188. [PMID: 25104934 PMCID: PMC4109521 DOI: 10.3389/fnagi.2014.00188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022] Open
Abstract
Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.
Collapse
Affiliation(s)
- Clara De Palma
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Paolo Pellegrino
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Scientific Institute IRCCS Eugenio Medea , Bosisio Parini , Italy
| | - Davide Cervia
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia , Viterbo , Italy
| |
Collapse
|
38
|
Hollinger K, Shanely RA, Quindry JC, Selsby JT. Long-term quercetin dietary enrichment decreases muscle injury in mdx mice. Clin Nutr 2014; 34:515-22. [PMID: 24998094 DOI: 10.1016/j.clnu.2014.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/07/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND & AIMS Duchenne muscular dystrophy results from a mutation in the dystrophin gene, which leads to a dystrophin-deficiency. Dystrophic muscle is marked by progressive muscle injury and loss of muscle fibers. Activation of the PGC-1α pathway has been previously shown to decrease disease-related muscle damage. Oral administration of the flavonol, quercetin, appears to be an effective and safe method to activate the PGC-1α pathway. The aim of this investigation was to determine the extent to which long term dietary quercetin enrichment would decrease muscle injury in dystrophic skeletal muscle. We hypothesized that a quercetin enriched diet would rescue dystrophic muscle from further decline and increase utrophin abundance. METHODS Beginning at three-months of age and continuing to nine-months of age mdx mice (n = 10/group) were assigned to either to mdx-control receiving standard chow or to mdx-quercetin receiving a 0.2% quercetin-enriched diet. At nine-months of age mice were sacrificed and costal diaphragms collected. One hemidiaphragm was used for histological analysis and the second hemidiaphragm was used to determine gene expression via RT-qPCR. RESULTS The diaphragm from the mdx-quercetin group had 24% (p ≤ 0.05) more muscle fibers/area and 34% (p ≤ 0.05) fewer centrally nucleated fibers compared to the mdx-control group. Further, there were 44% (p ≤ 0.05) fewer infiltrating immune cells/area, a corresponding 31% (p ≤ 0.05) reduction in TNF gene expression, and a near 50% reduction in fibrosis. The quercetin-enriched diet increased expression of genes associated with oxidative metabolism but did not increase utrophin protein abundance. CONCLUSIONS Long-term quercetin supplementation decreased disease-related muscle injury in dystrophic skeletal muscle; however the role of PGC-1α pathway activation as a mediator of this response is unclear.
Collapse
Affiliation(s)
- Katrin Hollinger
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - R Andrew Shanely
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Appalachian State University, College of Health Sciences, Boone, NC, USA
| | - John C Quindry
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
39
|
Antioxidant supplement inhibits skeletal muscle constitutive autophagy rather than fasting-induced autophagy in mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:315896. [PMID: 25028602 PMCID: PMC4084590 DOI: 10.1155/2014/315896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 12/13/2022]
Abstract
In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.
Collapse
|
40
|
Banks GB, Combs AC, Odom GL, Bloch RJ, Chamberlain JS. Muscle structure influences utrophin expression in mdx mice. PLoS Genet 2014; 10:e1004431. [PMID: 24922526 PMCID: PMC4055409 DOI: 10.1371/journal.pgen.1004431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/24/2014] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD. Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. Utrophin is structurally similar to dystrophin and improving its expression can prevent skeletal muscle necrosis in the mdx mouse model of DMD. Consequently, improving utrophin expression is a primary therapeutic target for treating DMD. While the downstream mechanisms that influence utrophin expression and stability are well described, the upstream mechanisms are less clear. Here, we found that perturbing the highly ordered structure of striated muscle by genetically deleting desmin from mdx mice increased utrophin expression to levels that prevented skeletal muscle necrosis. Thus, the mdx:desmin double knockout mice may prove valuable in determining the upstream mechanisms that influence utrophin expression to develop a therapy for DMD.
Collapse
Affiliation(s)
- Glen B. Banks
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ariana C. Combs
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
41
|
Camerino GM, Cannone M, Giustino A, Massari AM, Capogrosso RF, Cozzoli A, De Luca A. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet 2014; 23:5720-32. [PMID: 24916377 DOI: 10.1093/hmg/ddu287] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Maria Cannone
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ada Maria Massari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Roberta Francesca Capogrosso
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Anna Cozzoli
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| |
Collapse
|
42
|
Svensson K, Handschin C. Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases. Drug Discov Today 2014; 19:1024-9. [PMID: 24631683 DOI: 10.1016/j.drudis.2014.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Kristoffer Svensson
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
43
|
Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 2014; 11:345-364. [PMID: 24386892 PMCID: PMC4098646 DOI: 10.1517/17425247.2014.871258] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Muscle-directed gene therapy is rapidly gaining attention primarily because muscle is an easily accessible target tissue and is also associated with various severe genetic disorders. Localized and systemic delivery of recombinant adeno-associated virus (rAAV) vectors of several serotypes results in very efficient transduction of skeletal and cardiac muscles, which has been achieved in both small and large animals, as well as in humans. Muscle is the target tissue in gene therapy for many muscular dystrophy diseases, and may also be exploited as a biofactory to produce secretory factors for systemic disorders. Current limitations of using rAAVs for muscle gene transfer include vector size restriction, potential safety concerns such as off-target toxicity and the immunological barrier composing of pre-existing neutralizing antibodies and CD8(+) T-cell response against AAV capsid in humans. AREAS COVERED In this article, we will discuss basic AAV vector biology and its application in muscle-directed gene delivery, as well as potential strategies to overcome the aforementioned limitations of rAAV for further clinical application. EXPERT OPINION Delivering therapeutic genes to large muscle mass in humans is arguably the most urgent unmet demand in treating diseases affecting muscle tissues throughout the whole body. Muscle-directed, rAAV-mediated gene transfer for expressing antibodies is a promising strategy to combat deadly infectious diseases. Developing strategies to circumvent the immune response following rAAV administration in humans will facilitate clinical application.
Collapse
Affiliation(s)
- Dan Wang
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
| | - Li Zhong
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Division of Hematology/Oncology, Department of Pediatrics, Worcester, MA 01605, USA
| | - M Abu Nahid
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
- Sichuan University, West China Hospital, State Key Laboratory of Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
44
|
Chan MC, Rowe GC, Raghuram S, Patten IS, Farrell C, Arany Z. Post-natal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin. Skelet Muscle 2014; 4:2. [PMID: 24447845 PMCID: PMC3914847 DOI: 10.1186/2044-5040-4-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background Duchenne muscle dystrophy (DMD) afflicts 1 million boys in the US and has few effective treatments. Constitutive transgenic expression of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α improves skeletal muscle function in the murine “mdx” model of DMD, but how this occurs, or whether it can occur post-natally, is not known. The leading mechanistic hypotheses for the benefits conferred by PGC-1α include the induction of utrophin, a dystrophin homolog, and/or induction and stabilization of the neuromuscular junction. Methods The effects of transgenic overexpression of PGC-1β, a homolog of PGC-1α in mdx mice was examined using different assays of skeletal muscle structure and function. To formally test the hypothesis that PGC-1α confers benefit in mdx mice by induction of utrophin and stabilization of neuromuscular junction, PGC-1α transgenic animals were crossed with the dystrophin utrophin double knock out (mdx/utrn-/-) mice, a more severe dystrophic model. Finally, we also examined the effect of post-natal induction of skeletal muscle-specific PGC-1α overexpression on muscle structure and function in mdx mice. Results We show here that PGC-1β does not induce utrophin or other neuromuscular genes when transgenically expressed in mouse skeletal muscle. Surprisingly, however, PGC-1β transgenesis protects as efficaciously as PGC-1α against muscle degeneration in dystrophin-deficient (mdx) mice, suggesting that alternate mechanisms of protection exist. When PGC-1α is overexpressed in mdx/utrn-/- mice, we find that PGC-1α dramatically ameliorates muscle damage even in the absence of utrophin. Finally, we also used inducible skeletal muscle-specific PGC-1α overexpression to show that PGC-1α can protect against dystrophy even if activated post-natally, a more plausible therapeutic option. Conclusions These data demonstrate that PGC-1α can improve muscle dystrophy post-natally, highlighting its therapeutic potential. The data also show that PGC-1α is equally protective in the more severely affected mdx/utrn-/- mice, which more closely recapitulates the aggressive progression of muscle damage seen in DMD patients. The data also identify PGC-1β as a novel potential target, equally efficacious in protecting against muscle dystrophy. Finally, the data also show that PGC-1α and PGC-1β protect against dystrophy independently of utrophin or of induction of the neuromuscular junction, indicating the existence of other mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Zolt Arany
- Cardiovascular Institute, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, 02215 Boston, MA, USA.
| |
Collapse
|
45
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
46
|
Hollinger K, Selsby JT. The physiological response of protease inhibition in dystrophic muscle. Acta Physiol (Oxf) 2013; 208:234-44. [PMID: 23648220 DOI: 10.1111/apha.12114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the production of a non-functional dystrophin gene product and a failure to accumulate functional dystrophin protein in muscle cells. This leads to membrane instability, loss of Ca(2+) homoeostasis and widespread cellular injury. Associated with these changes are increased protease activities in a variety of proteolytic systems. As such, there have been numerous investigations directed towards determining the therapeutic potential of protease inhibition. In this review, evidence from genetic and/or pharmacological inhibition of proteases as a treatment strategy for DMD is systematically evaluated. Specifically, we review the potential roles of calpain, proteasome, caspase, matrix metalloproteinase and serine protease inhibition as therapeutic approaches for DMD. We conclude that despite early results to the contrary, inhibition of calpain proteases is unlikely to be successful. Conversely, evidence suggests that inhibition of proteasome, matrix metalloproteinases and serine proteases does appear to decrease disease severity. An important caveat to these conclusions, however, is that the fundamental cause of DMD, dystrophin deficiency, is not corrected by this strategy. Hence, this should not be viewed as a cure, but rather, protease inhibitors should be considered for inclusion in a therapeutic cocktail. Physiological Relevance. Selective modulation of protease activity has the potential to profoundly change intracellular physiology resulting in a possible treatment for DMD. However, alteration of protease activities could also lead to worsening of disease progression by promoting the accumulation of substrates in the cell. The balance of benefit and potential damage caused by protease inhibition in human DMD patients is largely unexplored.
Collapse
Affiliation(s)
- K. Hollinger
- Department of Animal Science; Iowa State University; Ames; IA; USA
| | - J. T. Selsby
- Department of Animal Science; Iowa State University; Ames; IA; USA
| |
Collapse
|