1
|
Mamarabadi M, Kudritzki V, Li Y, Howard IM. Update on Exercise in Persons With Muscle Disease. Muscle Nerve 2025; 71:932-948. [PMID: 39976212 DOI: 10.1002/mus.28356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/21/2025]
Abstract
Myopathies are heterogeneous in their etiology, muscle group involvement, clinical manifestation, and progression. Deficits in myopathy may include muscle weakness, atrophy, stiffness, myalgia, and extra-muscular manifestations. Consequently, these deficits could lead to impaired musculoskeletal function, inadequate engagement in daily activities and reduced participation in social activities. Exercise has been viewed as a potentially efficacious intervention to halt the loss of muscle function and to improve secondary symptoms that result from muscle loss, such as pain and fatigue. The purpose of this review is to discuss research findings within the last 10 years that examine effects of exercise interventions in many types of myopathies in humans. In general, most studies were small scale, and they varied with respect to exercise type, intensity, and outcome measures. Despite the different pathologies, various exercise subtypes of aerobic/endurance or strength/resistance training are generally beneficial and may improve muscle strength and functional outcomes. Exercise therapies are generally safe and well tolerated. Exercise prescription should be part of routine neuromuscular care for patients with myopathy, and ideally with input from a multidisciplinary team, with a focus on providing individualized exercise regimens. Further work is needed to define the optimal intensity and type of exercise to result in the best functional outcomes for persons with myopathy, as well as the effects of combining exercise and novel disease modifying therapies.
Collapse
Affiliation(s)
| | - Virginia Kudritzki
- Rehabilitation Care Services, VA Puget Sound Healthcare System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Yuebing Li
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ileana M Howard
- Rehabilitation Care Services, VA Puget Sound Healthcare System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Strohm L, Mihalikova D, Czarnowski A, Schwaibold Z, Daiber A, Stamm P. Sex-Specific Antioxidant and Anti-Inflammatory Protective Effects of AMPK in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:615. [PMID: 40427496 PMCID: PMC12108612 DOI: 10.3390/antiox14050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular diseases such as coronary heart disease, heart failure, or stroke are the most common cause of death worldwide and are regularly based on risk factors like diabetes mellitus, hypertension, or obesity. At the same time, both diseases and risk factors are significantly influenced by sex hormones. In order to better understand this influence and also specifically improve the therapy of female patients, medical research has recently focused increasingly on gender-specific differences. The goal is to develop personalized, gender-specific therapy concepts for these diseases to further enhance health outcomes. The enzyme adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy metabolism, protecting the cardiovascular system from energy depletion, thereby promoting vascular health and preventing cellular damage. AMPK confers cardioprotective effects by preventing endothelial and vascular dysfunction, and by controlling or regulating oxidative stress and inflammatory processes. For AMPK, sex-specific effects were reported, influencing metabolic and cardiovascular responses. Exercise and metabolic stress generally cause higher AMPK activity in males. At the same time, females exhibit protective mechanisms against insulin resistance or oxidative stress, particularly in conditions like obesity. Additionally, males subject to AMPK deficiency seem to experience greater cardiac and mitochondrial dysfunction. In contrast, females show improvement in cardiovascular function after pharmacological AMPK activation. These differences, influenced by hormones, body composition, and gene expression, highlight the potential to develop personalized, sex-specific AMPK-targeted therapeutic strategies for cardiovascular diseases in the future. Here, we discuss the most actual scientific background, focusing on the protective, gender-specific effects of AMPK, and highlight potential clinical applications.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Zita Schwaibold
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| |
Collapse
|
3
|
Bae JA, Choi M, Ahn S, Ko G, Choe DT, Yim H, Nguyen KC, Kim JS, Hall DH, Lee J. Structural Diversity of Mitochondria in the Neuromuscular System across Development Revealed by 3D Electron Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411191. [PMID: 40047328 PMCID: PMC12120778 DOI: 10.1002/advs.202411191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/31/2025] [Indexed: 05/31/2025]
Abstract
As an animal matures, its neural circuit undergoes alterations, yet the developmental changes in intracellular organelles to facilitate these changes is less understood. Using 3D electron microscopy and deep learning, the study develops semi-automated methods for reconstructing mitochondria in C. elegans and collected mitochondria reconstructions from normal reproductive stages and dauer, enabling comparative study on mitochondria structure within the neuromuscular system. It is found that various mitochondria structural properties in neurons correlate with synaptic connections and these properties are preserved across development in different neural circuits. To test the necessity of these universal mitochondria properties, the study examines the behavior in drp-1 mutants with impaired mitochondria fission and discovers that it causes behavioral deficits. Moreover, it is observed that dauer neurons display distinctive mitochondrial features, and mitochondria in dauer muscles exhibit unique reticulum-like structure. It is proposed that these specialized mitochondria structures may serve as an adaptive mechanism to support stage-specific behavioral and physiological needs.
Collapse
Affiliation(s)
- J. Alexander Bae
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Myung‐kyu Choi
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Soungyub Ahn
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Gwanho Ko
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Daniel T. Choe
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Hyunsoo Yim
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Ken C. Nguyen
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNY10461USA
| | - Jinseop S. Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwon16419Republic of Korea
| | - David H. Hall
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNY10461USA
| | - Junho Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Republic of Korea
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
4
|
Kazeminasab F, Mahboobi MH, Mohebinejad M, Nojoumi M, Belyani S, Camera DM, Moradi S, Bagheri R. The Impact of Exercise Training Plus Dietary Interventions on Ectopic Fat in Population with Overweight/Obesity with and without Chronic Disease: A Systematic Review, Meta-analysis, and Metaregression of Randomized Clinical Trials. Curr Dev Nutr 2025; 9:104574. [PMID: 40182739 PMCID: PMC11964600 DOI: 10.1016/j.cdnut.2025.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 04/05/2025] Open
Abstract
Background The growing prevalence of obesity and related chronic diseases has led to increased interest in interventions targeting ectopic fat reduction to which its accumulation is linked to metabolic dysfunction. Objectives This study aimed to evaluate the effects of combined exercise training combined with dietary interventions compared with dietary interventions alone on ectopic fat [visceral fat area (VFA), liver fat, intramuscular fat (IMF), pancreatic fat, renal sinus fat, and pericardial and epicardial fats] in adults with overweight and obesity, both with and without chronic diseases. Methods Web of Science, Scopus, and PubMed were searched for original articles up to 1 March, 2024, that included exercise compared with control interventions on body weight and ectopic fat in adults with overweight or obesity. Weighted mean differences (WMD) for body weight, liver fat, pancreatic fat, and renal sinus fat and standardized mean differences (SMD) for VFA, IMF, pericardial and epicardial fats, and 95% confidence intervals were determined using random-effects models. Results Thirty-two studies, including 1488 participants and 38 intervention groups, met the inclusion criteria. The combined intervention of exercise and diet did not reduce body weight (WMD = -0.23 kg, P = 0.180), liver fat (WMD = 0.05%, P = 0.730), IMF (SMD = -0.08, P = 0.640), pericardial and epicardial fats (SMD = -0.12, P = 0.280), pancreatic fat (WMD = -0.24%, P = 0.370), and renal sinus fat (WMD = 0.01 cm2, P = 0.170) when compared with a diet-only group. Interestingly, exercise combined with diet significantly reduced VFA in participants with obesity (SMD = -0.12, P = 0.040) and healthy males (SMD = -0.33, P = 0.001) when compared with a diet-only group. Conclusions The findings suggest that combined exercise and dietary interventions did not lead to significant reductions in most ectopic fat depots when compared with diet alone. However, a modest reduction in VFA was observed in participants with obesity and healthy males. These results highlight the nuanced impact of exercise in combination with dietary interventions and the need to consider specific fat depots and participant characteristics in obesity management strategies.The trial was registered at PROSPERO as CRD42024546770.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Mohammad Hossein Mahboobi
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Motahareh Mohebinejad
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Maedeh Nojoumi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Belyani
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Donny M Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, Australia
| | - Sajjad Moradi
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, USA
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
MacGregor K, Ellefsen S, Pillon NJ, Hammarström D, Krook A. Sex differences in skeletal muscle metabolism in exercise and type 2 diabetes mellitus. Nat Rev Endocrinol 2025; 21:166-179. [PMID: 39604583 DOI: 10.1038/s41574-024-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
This Review focuses on currently available literature describing sex differences in skeletal muscle metabolism in humans, as well as highlighting current research gaps within the field. These discussions serve as a call for action to address the current lack of sufficient sex-balanced studies in skeletal muscle research, and the resulting limitations in understanding sex-specific physiological and pathophysiological responses. Although the participation of women in studies has increased, parity between the sexes remains elusive, affecting the validity of conclusions drawn from studies with limited numbers of participants. Changes in skeletal muscle metabolism contribute to the development of metabolic disease (such as type 2 diabetes mellitus), and maintenance of skeletal muscle mass is a key component for health and the ability to maintain an independent life during ageing. Exercise is an important factor in maintaining skeletal muscle health and insulin sensitivity, and offers promise for both prevention and treatment of metabolic disease. With the increased realization of the promise of precision medicine comes the need to increase patient stratification and improve the understanding of responses in different populations. In this context, a better understanding of sex-dependent differences in skeletal muscle metabolism is essential.
Collapse
Affiliation(s)
- Kirstin MacGregor
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stian Ellefsen
- Inland University of Applied Sciences, Lillehammer, Norway
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Krook
- Inland University of Applied Sciences, Lillehammer, Norway.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Allen RJ, Kronemberger A, Shi Q, Pope M, Cuadra-Muñoz E, Son W, Song LS, Anderson EJ, Pereira RO, Lira VA. Altered relaxation and Mitochondria-Endoplasmic Reticulum Contacts Precede Major (Mal)adaptations in Aging Skeletal Muscle and are Prevented by Exercise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633043. [PMID: 39975407 PMCID: PMC11838400 DOI: 10.1101/2025.01.14.633043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sarcopenia, or age-related muscle dysfunction, contributes to morbidity and mortality. Besides decreases in muscle force, sarcopenia is associated with atrophy and fast-to-slow fiber type switching, which is typically secondary to denervation in humans and rodents. However, very little is known about cellular changes preceding these important (mal)adaptations. To this matter, mitochondria and the sarcoplasmic reticulum are critical for tension generation in myofibers. They physically interact at the boundaries of sarcomeres forming subcellular hubs called mitochondria-endo/sarcoplasmic reticulum contacts (MERCs). Yet, whether changes at MERCs ultrastructure and proteome occur early in aging is unknown. Here, studying young adult and older mice we reveal that aging slows muscle relaxation leading to longer excitation-contraction-relaxation (ECR) cycles before maximal force decreases and fast-to-slow fiber switching takes place. We reveal that muscle MERC ultrastructure and mitochondria-associated ER membrane (MAM) protein composition are also affected early in aging and are closely associated with rate of muscle relaxation. Additionally, we demonstrate that regular exercise preserves muscle relaxation rate and MERC ultrastructure in early aging. Finally, we profile a set of muscle MAM proteins involved in energy metabolism, protein quality control, Ca2+ homeostasis, cytoskeleton integrity and redox balance that are inversely regulated early in aging and by exercise. These may represent new targets to preserve muscle function in aging individuals.
Collapse
Affiliation(s)
- Ryan J. Allen
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Ana Kronemberger
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Qian Shi
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marshall Pope
- Proteomics Facility, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Elizabeth Cuadra-Muñoz
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Wangkuk Son
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Serrano J, Kondo S, Link GM, Brown IS, Pratley RE, Baskin KK, Goodpaster BH, Coen PM, Kyriazis GA. A partial loss-of-function variant (Ile191Val) of the TAS1R2 glucose receptor is associated with enhanced responses to exercise training in older adults with obesity: A translational study. Metabolism 2025; 162:156045. [PMID: 39393515 PMCID: PMC11637915 DOI: 10.1016/j.metabol.2024.156045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The TAS1R2 receptor, known for its role in taste perception, has also emerged as a key regulator of muscle physiology. Previous studies have shown that genetic ablation of TAS1R2 in mice enhances muscle fitness mimicking responses to endurance exercise training. However, the translational relevance of these findings to humans remains uncertain. METHODS We explored responses to endurance exercise training in mice and humans with genetic deficiency of TAS1R2. First, we assessed the effects of muscle-specific deletion of TAS1R2 in mice (mKO) or wild type controls (mWT) following 4 weeks of voluntary wheel running (VWR). Next, we investigated the effects of the TAS1R2-Ile191Val (rs35874116) partial loss-of-function variant on responses to a 6-month diet-induced weight loss with exercise training (WLEX), weight loss alone (WL), or education control (CON) interventions in older individuals with obesity. Participants were retrospectively genotyped for the TAS1R2-Ile191Val polymorphism and classified as conventional function (Ile/Ile) or partial loss-of-function (Val carriers: Ile/Val and Val/Val). Body composition, cardiorespiratory fitness, and skeletal muscle mitochondrial function were assessed before and after the intervention. RESULTS In response to VWR, mKO mice demonstrated enhanced running endurance and mitochondrial protein content. Similarly, TAS1R2 Val carriers exhibited distinctive improvements in body composition, including increased muscle mass, along with enhanced cardiorespiratory fitness and mitochondrial function in skeletal muscle following the WLEX intervention compared to Ile/Ile counterparts. Notably, every Val carrier demonstrated substantial responses to exercise training and weight loss, surpassing all Ile/Ile participants in overall performance metrics. CONCLUSIONS Our findings suggest that TAS1R2 partial loss-of-function confers beneficial effects on muscle function and metabolism in humans in response to exercise training, akin to observations in TAS1R2 muscle-deficient mice. Targeting TAS1R2 may help enhancing exercise training adaptations in individuals with compromised exercise tolerance or metabolic disorders, presenting a potential avenue for personalized exercise interventions.
Collapse
Affiliation(s)
- Joan Serrano
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Saki Kondo
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Grace M Link
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ian S Brown
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Paul M Coen
- Translational Research Institute, Advent Health, Orlando, FL, USA.
| | - George A Kyriazis
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Korzeniewski B. P i-based biochemical mechanism of endurance-training-induced improvement of running performance in humans. Eur J Appl Physiol 2025; 125:49-59. [PMID: 39287637 DOI: 10.1007/s00421-024-05560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/10/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Endurance training improves running performance in distances where oxidative phosphorylation (OXPHOS) is the main ATP source. Here, a dynamic computer model is used to assess possible biochemical mechanisms underlying this improvement. METHODS The dynamic computer model is based on the "Pi double-threshold" mechanism of muscle fatigue, according to which the additional ATP usage appears when (1) inorganic phosphate (Pi) exceeds a critical value (Picrit); (2) exercise is terminated because of fatigue, when Pi reaches a peak value (Pipeak); (3) the Pi increase and additional ATP usage increase mutually stimulate each other. RESULTS The endurance-training-induced increase in oxidative phosphorylation (OXPHOS) activity attenuates the reaching of Pipeak by Pi (and thus of V ˙ O2max by V ˙ O2) at increased power output. This in turn allows a greater work intensity, and thus higher speed, to be achieved before exercise is terminated because of fatigue at the end of the 1500 m run. Thus, identical total work is performed in a shorter time. Probably, endurance training also lowers Pipeak, which improves the homeostasis of "bioenergetic" muscle metabolites: ADP, PCr, Pi and H+ ions. CONCLUSIONS The present dynamic computer model generates clear predictions of metabolic changes that limit performance during 1500 m running. It contributes to our mechanistic understanding of training-induced improvement in running performance and stimulates further physiological experimental studies.
Collapse
|
10
|
Hofstätter F, Niedermeier M, Rausch LK, Kopp M, Simpson L, Lawley JS. Effects of time-restricted feeding and meal timing on an 8-week fat oxidation exercise training program-A randomized controlled trial. Physiol Rep 2025; 13:e70194. [PMID: 39838548 PMCID: PMC11750808 DOI: 10.14814/phy2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Time-restricted feeding (TRF) and aerobic exercise are lifestyle interventions to prevent or manage different metabolic diseases. How these interventions interact, including the impact of meal timing, is not well understood. The aim of this study was to examine the influence of TRF on fat oxidation during exercise, whereby participants performed an 8-week fatmax-training program either in the fasted state or after a carbohydrate-based snack. 36 participants were randomized into three groups. (1) Training sessions were performed in the fasted state; (2) Training sessions were performed after consuming a standardized carbohydrate-based snack; (3) Exercise training with an ad libitum diet as a control group. Pre- and post-tests included anthropometric measurements and a fatmax-cycle-ergometry protocol to measure substrate oxidation. Data were analyzed as workload-matched and maximal fat oxidation using a series of mixed ANOVAs. Workload-matched (p = 0.038) and maximal (p < 0.001) fat oxidation improved in all groups. No significant group × time interactions were found in substrate utilization. Time had a significant effect on body weight (p = 0.011), fat mass (p < 0.001), and muscle mass (p < 0.001). Results suggest that fatmax exercise training leads to improvements in fat oxidative capacity independent of fed or fasted state.
Collapse
Affiliation(s)
| | | | - Linda K. Rausch
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Martin Kopp
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Lydia Simpson
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
- Department of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Justin S. Lawley
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
- Institute of Mountain Emergency Medicine EURAC ResearchBolzanoItaly
| |
Collapse
|
11
|
An J, Thorson AS, Wasserman DH, Stafford JM, Zhu L. Sex- and endurance training-mediated cardiovascular protection through lipids during exercise. Trends Endocrinol Metab 2024:S1043-2760(24)00326-6. [PMID: 39743402 DOI: 10.1016/j.tem.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Premenopausal women and endurance-trained individuals of either sex have reduced cardiovascular disease (CVD) risk. Endurance training shifts fuel selection towards fats to spare carbohydrates; interestingly, women prioritize fats as an energy resource more than men do during exercise. Relying on fats during exercise drives whole-body lipolysis and promotes lipid uptake and oxidation capacity in skeletal muscles. These metabolic adaptations during exercise result in protection against diet-induced obesity, a healthy body fat distribution, and reduced plasma triacylglycerol (TG) concentrations. Here, we analyze how sex differences and endurance training mediate changes in skeletal muscles, including exercise-induced lipolysis, lipid uptake and β-oxidation, intramuscular TG storage, and postexercise lipid metabolism, and discuss how regulating this processes affects CVD risk.
Collapse
Affiliation(s)
- Julia An
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Tennessee Valley Health System, Veterans Affairs, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - John M Stafford
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Tennessee Valley Health System, Veterans Affairs, Nashville, TN, USA
| | - Lin Zhu
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Tennessee Valley Health System, Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
12
|
Zhang C, Zheng M, Bai R, Chen J, Yang H, Luo G. Molecular mechanisms of lipid droplets-mitochondria coupling in obesity and metabolic syndrome: insights and pharmacological implications. Front Physiol 2024; 15:1491815. [PMID: 39588271 PMCID: PMC11586377 DOI: 10.3389/fphys.2024.1491815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Abnormal lipid accumulation is a fundamental contributor to obesity and metabolic disorders. Lipid droplets (LDs) and mitochondria (MT) serve as organelle chaperones in lipid metabolism and energy balance. LDs play a crucial role in lipid storage and mobilization, working in conjunction with MT to regulate lipid metabolism within the liver, brown adipose tissue, and skeletal muscle, thereby maintaining metabolic homeostasis. The novelty of our review is the comprehensive description of LD and MT interaction mechanisms. We also focus on the current drugs that target this metabolism, which provide novel approaches for obesity and related metabolism disorder treatment.
Collapse
Affiliation(s)
- Chunmei Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runlin Bai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiale Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gan Luo
- Department of Orthopedics, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
13
|
Abo SMC, Layton AT. Modeling sex-specific whole-body metabolic responses to feeding and fasting. Comput Biol Med 2024; 181:109024. [PMID: 39178806 DOI: 10.1016/j.compbiomed.2024.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
Men generally favor carbohydrate metabolism, while women lean towards lipid metabolism, resulting in significant sex-based differences in energy oxidation across various metabolic states such as fasting and feeding. These differences are influenced by body composition and inherent metabolic fluxes, including increased lipolysis rates in women. However, understanding how sex influences organ-specific metabolism and systemic manifestations remains incomplete. To address these gaps, we developed a sex-specific, whole-body metabolic model for feeding and fasting scenarios in healthy young adults. Our model integrates organ metabolism with whole-body responses to mixed meals, particularly high-carbohydrate and high-fat meals. Our predictions suggest that differences in liver and adipose tissue nutrient storage and oxidation patterns drive systemic metabolic disparities. We propose that sex differences in fasting hepatic glucose output may result from the different handling of free fatty acids, glycerol, and glycogen. We identified a metabolic pathway, possibly more prevalent in female livers, redirecting lipids towards carbohydrate metabolism to support hepatic glucose production. This mechanism is facilitated by the TG-FFA cycle between adipose tissue and the liver. Incorporating sex-specific data into multi-scale frameworks offers insights into how sex modulates human metabolism.
Collapse
Affiliation(s)
- Stéphanie M C Abo
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1, Ontario, Canada.
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1, Ontario, Canada; Cheriton School of Computer Science, Department of Biology, and School of Pharmacy, 200 University Ave W, Waterloo, N2L 3G1, Ontario, Canada.
| |
Collapse
|
14
|
Crabtree A, Neikirk K, Pinette JA, Whiteside A, Shao B, Bedenbaugh J, Vue Z, Vang L, Le H, Demirci M, Ahmad T, Owens TC, Oliver A, Zeleke F, Beasley HK, Lopez EG, Scudese E, Rodman T, Kabugi K, Koh A, Navarro S, Lam J, Kirk B, Mungai M, Sweetwyne M, Koh HJ, Zaganjor E, Damo SM, Gaddy JA, Kirabo A, Murray SA, Cooper A, Williams C, McReynolds MR, Marshall AG, Hinton A. Quantitative assessment of morphological changes in lipid droplets and lipid-mito interactions with aging in brown adipose. J Cell Physiol 2024; 239:e31340. [PMID: 39138923 DOI: 10.1002/jcp.31340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024]
Abstract
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mert Demirci
- Department of Medicine, Division Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Suzanne Navarro
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ben Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mariya Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Loren Y, Norman G, Veronica J. The acute effect of time-restricted feeding (12 & 16 h) and varying exercise intensities on fat-oxidation rate in inactive young adults - a randomized control trial. BMC Sports Sci Med Rehabil 2024; 16:169. [PMID: 39138507 PMCID: PMC11320781 DOI: 10.1186/s13102-024-00959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND AND PURPOSE Time-restricted feeding (TRF) is a dietary pattern that alternates between periods of fasting and feeding, which has gained significant attention in recent years. The 16/8 approach consists of fasting for 16 h and feeding for an 8-h window, while the 12/12 method consists of fasting for 12 h and a 12-h feeding window. Limited research exists comparing the effects of these methods coupled with physical activity (PA). The aim of this investigation was to examine the acute effects between conditions of varying TRF durations (12 and 16 h) and PA intensities on the fat oxidation rate (FOR). It was hypothesized that i) the TRF16 conditions would exhibit higher FORmax and that PA would enhance these effects, and ii) High Intensity Interval Training (HIIT) would result in greater effects on FORmax compared to Low-Moderate Intensity Steady State Continuous Training (MICT) PA. METHODS AND RESULTS Eighteen young adults (age: 23 ± 2.0 yrs., body mass index: 23.5 ± 2.8 kg·m-2) were recruited and participated in the supervised intervention. The discrete component open circuit spirometry system was used to measure oxygen consumption (VO2), and Frayne's equation was used to determine the FOR plus FORmax. ANOVA was used to determine pre/post-intervention differences in FORmax. The FORmax for the TRF16 + HIIT intervention was significantly higher than the TRF12 (mean difference = 0.099 g·min-1, p = 0.011, 95% CI 0.017 to 0.180) and TRF16 fast alone (mean difference = 0.093 g·min-1, p = 0.002, 95% CI 0.027 to 0.159). The FORmax for TRF12 + HIIT intervention was significantly higher than the TRF12 fast alone (mean difference = 0.070 g·min-1, p = 0.023, 95% CI 0.007 to 0.134). The TRF16 + HIIT intervention was also significantly higher than the TRF12 fast alone (mean difference = 0.099 g·min-1, p = 0.011, 95% CI 0.017 to 0.180). CONCLUSION This study contributes to the ever-growing body of literature on the acute effects of TRF and PA on young adult males and females. The findings suggest that the TRF16 + HIIT PA intervention results in the highest FORmax. TRIAL REGISTRATION Retrospective Registration ISRCTN # 10076373 (October 6, 2023).
Collapse
Affiliation(s)
- Yavelberg Loren
- York University, 4700 Keele Street, Room 358, Bethune College, Toronto, ON, M3J 1P3, Canada
| | - Gledhill Norman
- York University, 4700 Keele Street, Room 358, Bethune College, Toronto, ON, M3J 1P3, Canada
| | - Jamnik Veronica
- York University, 4700 Keele Street, Room 358, Bethune College, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
16
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
17
|
Caswell AM, Tripp TR, Kontro H, Edgett BA, Wiley JP, Lun V, MacInnis MJ. The influence of sex, hemoglobin mass, and skeletal muscle characteristics on cycling critical power. J Appl Physiol (1985) 2024; 137:10-22. [PMID: 38779761 DOI: 10.1152/japplphysiol.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Critical power (CP) represents an important threshold for exercise performance and fatiguability. We sought to determine the extent to which sex, hemoglobin mass (Hbmass), and skeletal muscle characteristics influence CP. Before CP determination (i.e., 3-5 constant work rate trials to task failure), Hbmass and skeletal muscle oxidative capacity (τ) were measured and vastus lateralis (VL) muscle biopsy samples were collected from 12 females and 12 males matched for aerobic fitness relative to fat-free mass (FFM) [means (SD); V̇o2max: 59.2 (7.7) vs. 59.5 (7.1) mL·kg·FFM-1·min-1, respectively]. Males had a significantly greater CP than females in absolute units [225 (28) vs. 170 (43) W; P = 0.001] but not relative to body mass [3.0 (0.6) vs. 2.7 (0.6) W·kg·BM-1; P = 0.267] or FFM [3.6 (0.7) vs. 3.7 (0.8) W·kg·FFM-1; P = 0.622]. Males had significantly greater W' (P ≤ 0.030) and greater Hbmass (P ≤ 0.016) than females, regardless of the normalization approach; however, there were no differences in mitochondrial protein content (P = 0.375), τ (P = 0.603), or MHC I proportionality (P = 0.574) between males and females. Whether it was expressed in absolute or relative units, CP was positively correlated with Hbmass (0.444 ≤ r ≤ 0.695; P < 0.05), mitochondrial protein content (0.413 ≤ r ≤ 0.708; P < 0.05), and MHC I proportionality (0.506 ≤ r ≤ 0.585; P < 0.05), and negatively correlated with τ when expressed in relative units only (-0.588 ≤ r ≤ -0.527; P < 0.05). Overall, CP was independent of sex, but variability in CP was related to Hbmass and skeletal muscle characteristics. The extent to which manipulations in these physiological parameters influence CP warrants further investigation to better understand the factors underpinning CP.NEW & NOTEWORTHY In males and females matched for aerobic fitness [maximal oxygen uptake normalized to fat-free mass (FFM)], absolute critical power (CP) was greater in males, but relative CP (per kilogram body mass or FFM) was similar between sexes. CP correlated with hemoglobin mass, mitochondrial protein content, myosin heavy chain type I proportion, and skeletal muscle oxidative capacity. These findings demonstrate the importance of matching sexes for aerobic fitness, but further experiments are needed to determine causality.
Collapse
Affiliation(s)
- Allison M Caswell
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Hilkka Kontro
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brittany A Edgett
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Victor Lun
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Cabre HE, Gould LM, Redman LM, Smith-Ryan AE. Effects of the Menstrual Cycle and Hormonal Contraceptive Use on Metabolic Outcomes, Strength Performance, and Recovery: A Narrative Review. Metabolites 2024; 14:347. [PMID: 39057670 PMCID: PMC11278889 DOI: 10.3390/metabo14070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The effects of female sex hormones on optimal performance have been increasingly recognized as an important consideration in exercise and sport science research. This narrative review explores the findings of studies evaluating the effects of menstrual cycle phase in eumenorrheic women and the use of hormonal contraception (oral contraceptives and hormonal intrauterine devices) on metabolism, muscular strength, and recovery in active females. Ovarian hormones are known to influence metabolism because estrogen is a master regulator of bioenergetics. Importantly, the menstrual cycle may impact protein synthesis, impacting skeletal muscle quality and strength. Studies investigating muscular strength in eumenorrheic women report equivocal findings between the follicular phase and luteal phase with no differences compared to oral contraceptive users. Studies examining recovery measures (using biomarkers, blood lactate, and blood flow) do not report clear or consistent effects of the impact of the menstrual cycle or hormonal contraception use on recovery. Overall, the current literature may be limited by the evaluation of only one menstrual cycle and the use of group means for statistical significance. Hence, to optimize training and performance in females, regardless of hormonal contraception use, there is a need for future research to quantify the intra-individual impact of the menstrual cycle phases and hormonal contraceptive use in active females.
Collapse
Affiliation(s)
- Hannah E. Cabre
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | | | - Leanne M. Redman
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Abbie E. Smith-Ryan
- Human Movement Sciences Curriculum, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
19
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
20
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
21
|
Bórquez JC, Díaz-Castro F, La Fuente FPD, Espinoza K, Figueroa AM, Martínez-Ruíz I, Hernández V, López-Soldado I, Ventura R, Domingo JC, Bosch M, Fajardo A, Sebastián D, Espinosa A, Pol A, Zorzano A, Cortés V, Hernández-Alvarez MI, Troncoso R. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism 2024; 152:155765. [PMID: 38142958 DOI: 10.1016/j.metabol.2023.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
Collapse
Affiliation(s)
- Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Pino-de La Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Karla Espinoza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Figueroa
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile
| | - Inma Martínez-Ruíz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Vanessa Hernández
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Chile
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile.
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Obesity-induced Accelerated Aging (ObAGE), Universidad de Chile, Chile.
| |
Collapse
|
22
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Tripp TR, McDougall RM, Frankish BP, Wiley JP, Lun V, MacInnis MJ. Contraction intensity affects NIRS-derived skeletal muscle oxidative capacity but not its relationships to mitochondrial protein content or aerobic fitness. J Appl Physiol (1985) 2024; 136:298-312. [PMID: 38059287 DOI: 10.1152/japplphysiol.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Barsky ST, Monks DA. Lifespan Effects of Muscle-Specific Androgen Receptor Overexpression on Body Composition of Male and Female Rats. Endocrinology 2024; 165:bqae012. [PMID: 38301268 DOI: 10.1210/endocr/bqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic human skeletal actin-driven AR overexpression (HSAAR) rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent dual-energy x-ray absorptiometry (DXA) scanning and tissue collection at postnatal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in male rats than female rats at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
25
|
Poulsen SL, Moore SJ. Exercise affects fatty acid oxidation and lipid droplets in patients with type 2 diabetes. J Physiol 2024; 602:11-12. [PMID: 37983199 DOI: 10.1113/jp285041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
|
26
|
Schytz CT, Ørtenblad N, Lundby AKM, Jacobs RA, Nielsen J, Lundby C. Skeletal muscle mitochondria demonstrate similar respiration per cristae surface area independent of training status and sex in healthy humans. J Physiol 2024; 602:129-151. [PMID: 38051639 DOI: 10.1113/jp285091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The impact of training status and sex on intrinsic skeletal muscle mitochondrial respiratory capacity remains unclear. We examined this by analysing human skeletal muscle mitochondrial respiration relative to mitochondrial volume and cristae density across training statuses and sexes. Mitochondrial cristae density was estimated in skeletal muscle biopsies originating from previous independent studies. Participants included females (n = 12) and males (n = 41) across training statuses ranging from untrained (UT, n = 8), recreationally active (RA, n = 9), active-to-elite runners (RUN, n = 27) and cross-country skiers (XC, n = 9). The XC and RUN groups demonstrated higher mitochondrial volume density than the RA and UT groups while all active groups (RA, RUN and XC) displayed higher mass-specific capacity of oxidative phosphorylation (OXPHOS) and mitochondrial cristae density than UT. Differences in OXPHOS diminished between active groups and UT when normalising to mitochondrial volume density and were lost when normalising to muscle cristae surface area density. Moreover, active females (n = 6-9) and males (n = 15-18) did not differ in mitochondrial volume and cristae density, OXPHOS, or when normalising OXPHOS to mitochondrial volume density and muscle cristae surface area density. These findings demonstrate: (1) differences in OXPHOS between active and untrained individuals may be explained by both higher mitochondrial volume and cristae density in active individuals, with no difference in intrinsic mitochondrial respiratory capacity (OXPHOS per muscle cristae surface area density); and (2) no sex differences in mitochondrial volume and cristae density or mass-specific and normalised OXPHOS. This highlights the importance of normalising OXPHOS to muscle cristae surface area density when studying skeletal muscle mitochondrial biology. KEY POINTS: Oxidative phosphorylation is the mitochondrial process by which ATP is produced, governed by the electrochemical gradient across the inner mitochondrial membrane with infoldings named cristae. In human skeletal muscle, the mass-specific capacity of oxidative phosphorylation (OXPHOS) can change independently of shifts in mitochondrial volume density, which may be attributed to variations in cristae density. We demonstrate that differences in skeletal muscle OXPHOS between healthy females and males, ranging from untrained to elite endurance athletes, are matched by differences in cristae density. This suggests that higher OXPHOS in skeletal muscles of active individuals is attributable to an increase in the density of cristae. These findings broaden our understanding of the variability in human skeletal muscle OXPHOS and highlight the significance of cristae, specific to mitochondrial respiration.
Collapse
Affiliation(s)
- Camilla Tvede Schytz
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anne-Kristine Meinild Lundby
- Xlab, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Acton Jacobs
- Department of Human Physiology & Nutrition, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, USA
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carsten Lundby
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Department of Health and Exercise Physiology, Inland Norway University of Applied Science, Lillehammer, Norway
| |
Collapse
|
27
|
Olenick AA, Pearson RC, Jenkins NT. Impact of aerobic fitness status, menstrual cycle phase, and oral contraceptive use on exercise substrate oxidation and metabolic flexibility in females. Appl Physiol Nutr Metab 2024; 49:93-104. [PMID: 37657080 DOI: 10.1139/apnm-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The influence of menstrual cycle phase and fitness status on metabolism during high-intensity interval exercise (HIIE) was assessed. Twenty-five females (24.4 (3.6) years) were categorized by normal menstrual cycle (n = 14) vs. oral contraceptive (OC) use (n = 11) and by aerobic fitness, high-fitness females (HFF; n = 13) vs. low-fitness females (LFF; n = 12). HIIE was four sets of four repetitions with a 3 min rest between intervals on a cycle ergometer at a power output halfway between the ventilatory threshold and V̇O2peak and performed during follicular (FOL: days 2-7 or inactive pills) and luteal phases (LUT: day ∼21 or 3rd week of active pills). Substrate oxidation was assessed via indirect calorimetry, blood lactate via finger stick, and recovery of skeletal muscle oxidative metabolism (mV̇O2) via continuous-wave near-infrared spectroscopy. HFF oxidized more fat (g·kg-1) during the full session (FOL: p = 0.050, LUT: p = 0.001), high intervals (FOL: p = 0.048, LUT: p = 0.001), low intervals (FOL: p = 0.032, LUT: p = 0.024), and LUT recovery (p = 0.033). Carbohydrate oxidation area under the curve was greater in HFF during FOL (FOL: p = 0.049, LUT: p = 0.124). Blood lactate was lower in LFF in FOL (p ≤ 0.05) but not in LUT. Metabolic flexibility (Δ fat oxidation g·kg-1·min-1) was greater in HFF than LFF during intervals 2-3 in FOL and 1-4 in LUT (p ≤ 0.05). Fitness status more positively influences exercise metabolic flexibility during HIIE than cycle phase or OC use.
Collapse
Affiliation(s)
- Alyssa A Olenick
- Department of Endocrinology and Metabolism, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Regis C Pearson
- Department of Kinesiology, College of Education, University of Georgia, Athens, GA 30602, USA
| | - Nathan T Jenkins
- Department of Kinesiology, College of Education, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Coe LN, Astorino TA. Sex differences in hemodynamic response to high-intensity interval exercise. Scand J Med Sci Sports 2024; 34:e14495. [PMID: 37724816 DOI: 10.1111/sms.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Sex differences in the cardiorespiratory and hemodynamic response to exercise exist due to differences in heart size, blood volume, and hemoglobin mass, eliciting higher maximal oxygen uptake (VO2max ) in men versus women. Data are equivocal whether sex differences in training responsiveness occur. This study investigated potential sex differences in the hemodynamic response (stroke volume (SV) and cardiac output (CO)) to high-intensity interval exercise (HIIE). Habitually active men (n = 15) and women (n = 13) underwent VO2max testing, followed by three HIIE sessions consisting of the 4 × 4, 10 × 1, and reduced exertion high-intensity training (REHIT), whose order was randomized. During exercise, oxygen uptake (VO2 ) and hemodynamic responses were determined. Results showed no sex difference in peak relative VO2 (p = 0.263), CO (p = 0.277), or SV (p = 0.116), although absolute values were higher in men (p < 0.05). Peak absolute (127.3 ± 20.6 vs. 115.2 ± 16.6 mL/beat, p = 0.004, d = 0.66) and relative SV (111.0 ± 15.5 vs. 100.7 ± 11.1% max, p = 0.005, d = 0.78) were higher with REHIT versus 4 × 4. No sex differences in mean relative VO2 , CO, or SV occurred (p > 0.05). Data showed lower mean VO2 during REHIT versus 4 × 4 (59.3 ± 6.8 vs. 65.8 ± 5.8 %VO2max , p < 0.001, d = 1.05) and 10 × 1 (59.3 ± 6.8 vs. 69.1 ± 7.4 %VO2max , p < 0.001, d = 1.4). Mean CO was lower in REHIT than 10 × 1 (79.8 ± 8.6 vs. 84.0 ± 7.4% max, p = 0.012, d = 0.53). Previously reported differences in VO2max response to HIIE may not be due to unique hemodynamic responses.
Collapse
Affiliation(s)
- Leah Noël Coe
- Department of Kinesiology, California State University, San Marcos, California, USA
| | | |
Collapse
|
29
|
McDougall RM, Tripp TR, Frankish BP, Doyle-Baker PK, Lun V, Wiley JP, Aboodarda SJ, MacInnis MJ. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans. J Physiol 2023; 601:5295-5316. [PMID: 37902588 DOI: 10.1113/jp284958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Critical torque (CT) represents the highest oxidative steady state for intermittent knee extensor exercise, but the extent to which it is influenced by skeletal muscle mitochondria and sex is unclear. Vastus lateralis muscle biopsy samples were collected from 12 females and 12 males -matched for relative maximal oxygen uptake normalized to fat-free mass (FFM) (F: 57.3 (7.5) ml (kg FFM)-1 min-1 ; M: 56.8 (7.6) ml (kg FFM)-1 min-1 ; P = 0.856) - prior to CT determination and performance fatiguability trials. Males had a lower proportion of myosin heavy chain (MHC) I isoform (40.6 (18.4)%) compared to females (59.5 (18.9)%; P = 0.021), but MHC IIa and IIx isoform distributions and protein markers of mitochondrial content were not different between sexes (P > 0.05). When normalized to maximum voluntary contraction (MVC), the relative CT (F: 42.9 (8.3)%; M: 37.9 (9.0)%; P = 0.172) and curvature constant, W' (F: 26.6 (11.0) N m s (N m)-1 ; M: 26.4 (6.5) N m s (N m)-1 ; P = 0.962) were not significantly different between sexes. All protein biomarkers of skeletal muscle mitochondrial content, as well as the proportion of MHC I isoform, positively correlated with relative CT (0.48 < r < 0.70; P < 0.05), and the proportion of MHC IIx isoform correlated positively with relative W' (r = 0.57; P = 0.007). Indices of performance fatiguability were not different between males and females for MVC- and CT-controlled trials (P > 0.05). Greater mitochondrial protein abundance was associated with attenuated declines in potentiated twitch torque for exercise at 60% MVC (P < 0.05); however, the influence of mitochondrial protein abundance on performance fatiguability was reduced when exercise was prescribed relative to CT. Whether these findings translate to whole-body exercise requires additional research. KEY POINTS: The quadriceps critical torque represents the highest intensity of intermittent knee extensor exercise for which an oxidative steady state is attainable, but its relationship with skeletal muscle mitochondrial protein abundance is unknown. Matching males and females for maximal oxygen uptake relative to fat-free mass facilitates investigations of sex differences in exercise physiology, but studies that have compared critical torque and performance fatiguability during intermittent knee extensor exercise have not ensured equal aerobic fitness between sexes. Skeletal muscle mitochondrial protein abundance was correlated with critical torque and fatigue resistance for exercise prescribed relative to maximum voluntary contraction but not for exercise performed relative to the critical torque. Differences between sexes in critical torque, skeletal muscle mitochondrial protein abundance and performance fatiguability were not statistically significant. Our results suggest that skeletal muscle mitochondrial protein abundance may contribute to fatigue resistance by influencing the critical intensity of exercise.
Collapse
Affiliation(s)
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - S Jalal Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Hunter SK, S Angadi S, Bhargava A, Harper J, Hirschberg AL, D Levine B, L Moreau K, J Nokoff N, Stachenfeld NS, Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:2328-2360. [PMID: 37772882 DOI: 10.1249/mss.0000000000003300] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Biological sex is a primary determinant of athletic performance because of fundamental sex differences in anatomy and physiology dictated by sex chromosomes and sex hormones. Adult men are typically stronger, more powerful, and faster than women of similar age and training status. Thus, for athletic events and sports relying on endurance, muscle strength, speed, and power, males typically outperform females by 10%-30% depending on the requirements of the event. These sex differences in performance emerge with the onset of puberty and coincide with the increase in endogenous sex steroid hormones, in particular testosterone in males, which increases 30-fold by adulthood, but remains low in females. The primary goal of this consensus statement is to provide the latest scientific knowledge and mechanisms for the sex differences in athletic performance. This review highlights the differences in anatomy and physiology between males and females that are primary determinants of the sex differences in athletic performance and in response to exercise training, and the role of sex steroid hormones (particularly testosterone and estradiol). We also identify historical and nonphysiological factors that influence the sex differences in performance. Finally, we identify gaps in the knowledge of sex differences in athletic performance and the underlying mechanisms, providing substantial opportunities for high-impact studies. A major step toward closing the knowledge gap is to include more and equitable numbers of women to that of men in mechanistic studies that determine any of the sex differences in response to an acute bout of exercise, exercise training, and athletic performance.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic and Human Performance Center, Marquette University, Milwaukee, WI
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Joanna Harper
- Loughborough University, Loughborough, UNITED KINGDOM
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, SWEDEN
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, CO
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Stéphane Bermon
- Health and Science Department, World Athletics, Monaco and the LAMHESS, University Côte d'Azur, Nice, FRANCE
| |
Collapse
|
31
|
Schleh MW, Ahn C, Ryan BJ, Chugh OK, Luker AT, Luker KE, Gillen JB, Ludzki AC, Van Pelt DW, Pitchford LM, Zhang T, Rode T, Howton SM, Burant CF, Horowitz JF. Both moderate- and high-intensity exercise training increase intramyocellular lipid droplet abundance and modify myocellular distribution in adults with obesity. Am J Physiol Endocrinol Metab 2023; 325:E466-E479. [PMID: 37729021 PMCID: PMC10864005 DOI: 10.1152/ajpendo.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
32
|
Kugler BA, Lourie J, Berger N, Lin N, Nguyen P, DosSantos E, Ali A, Sesay A, Rosen HG, Kalemba B, Hendricks GM, Houmard JA, Sesaki H, Gona P, You T, Yan Z, Zou K. Partial skeletal muscle-specific Drp1 knockout enhances insulin sensitivity in diet-induced obese mice, but not in lean mice. Mol Metab 2023; 77:101802. [PMID: 37690520 PMCID: PMC10511484 DOI: 10.1016/j.molmet.2023.101802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Dynamin-related protein 1 (Drp1) is the key regulator of mitochondrial fission. We and others have reported a strong correlation between enhanced Drp1 activity and impaired skeletal muscle insulin sensitivity. This study aimed to determine whether Drp1 directly regulates skeletal muscle insulin sensitivity and whole-body glucose homeostasis. METHODS We employed tamoxifen-inducible skeletal muscle-specific heterozygous Drp1 knockout mice (mDrp1+/-). Male mDrp1+/- and wildtype (WT) mice were fed with either a high-fat diet (HFD) or low-fat diet (LFD) for four weeks, followed by tamoxifen injections for five consecutive days, and remained on their respective diet for another four weeks. In addition, we used primary human skeletal muscle cells (HSkMC) from lean, insulin-sensitive, and severely obese, insulin-resistant humans and transfected the cells with either a Drp1 shRNA (shDrp1) or scramble shRNA construct. Skeletal muscle and whole-body insulin sensitivity, skeletal muscle insulin signaling, mitochondrial network morphology, respiration, and H2O2 production were measured. RESULTS Partial deletion of the Drp1 gene in skeletal muscle led to improved whole-body glucose tolerance and insulin sensitivity (P < 0.05) in diet-induced obese, insulin-resistant mice but not in lean mice. Analyses of mitochondrial structure and function revealed that the partial deletion of the Drp1 gene restored mitochondrial dynamics, improved mitochondrial morphology, and reduced mitochondrial Complex I- and II-derived H2O2 (P < 0.05) under the condition of diet-induced obesity. In addition, partial deletion of Drp1 in skeletal muscle resulted in elevated circulating FGF21 (P < 0.05) and in a trend towards increase of FGF21 expression in skeletal muscle tissue (P = 0.095). In primary myotubes derived from severely obese, insulin-resistant humans, ShRNA-induced-knockdown of Drp1 resulted in enhanced insulin signaling, insulin-stimulated glucose uptake and reduced cellular reactive oxygen species (ROS) content compared to the shScramble-treated myotubes from the same donors (P < 0.05). CONCLUSION These data demonstrate that partial loss of skeletal muscle-specific Drp1 expression is sufficient to improve whole-body glucose homeostasis and insulin sensitivity under obese, insulin-resistant conditions, which may be, at least in part, due to reduced mitochondrial H2O2 production. In addition, our findings revealed divergent effects of Drp1 on whole-body metabolism under lean healthy or obese insulin-resistant conditions in mice.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Jared Lourie
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Nicolas Berger
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Nana Lin
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Paul Nguyen
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Edzana DosSantos
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Abir Ali
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Amira Sesay
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - H Grace Rosen
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Baby Kalemba
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Gregory M Hendricks
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, East Carolina University, Greenville, NC, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Philimon Gona
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Tongjian You
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Zhen Yan
- Fralin Biomedical Research Institute Center for Exercise Medicine Research, Virginia Tech Carilion, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kai Zou
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
33
|
Korzeniewski B. Training-Induced Increase in V·O 2max and Critical Power, and Acceleration of V·O 2 on-Kinetics Result from Attenuated P i Increase Caused by Elevated OXPHOS Activity. Metabolites 2023; 13:1111. [PMID: 37999207 PMCID: PMC10673597 DOI: 10.3390/metabo13111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/25/2023] Open
Abstract
Computer simulations using a dynamic model of the skeletal muscle bioenergetic system, involving the Pi-double-threshold mechanism of muscle fatigue, demonstrate that the training-induced increase in V·O2max, increase in critical power (CP) and acceleration of primary phase II of the V·O2 on kinetics (decrease in t0.63) is caused by elevated OXPHOS activity acting through a decrease in and slowing of the Pi (inorganic phosphate) rise during the rest-to-work transition. This change leads to attenuation of the reaching by Pi of Pipeak, peak Pi at which exercise is terminated because of fatigue. The delayed (in time and in relation to V·O2 increase) Pi rise for a given power output (PO) in trained muscle causes Pi to reach Pipeak (in very heavy exercise) after a longer time and at a higher V·O2; thus, exercise duration is lengthened, and V·O2max is elevated compared to untrained muscle. The diminished Pi increase during exercise with a given PO can cause Pi to stabilize at a steady state less than Pipeak, and exercise can continue potentially ad infinitum (heavy exercise), instead of rising unceasingly and ultimately reaching Pipeak and causing exercise termination (very heavy exercise). This outcome means that CP rises, as the given PO is now less than, and not greater than CP. Finally, the diminished Pi increase (and other metabolite changes) results in, at a given PO (moderate exercise), the steady state of fluxes (including V·O2) and metabolites being reached faster; thus, t0.63 is shortened. This effect of elevated OXPHOS activity is possibly somewhat diminished by the training-induced decrease in Pipeak.
Collapse
|
34
|
Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol (1985) 2023; 135:763-774. [PMID: 37616334 PMCID: PMC10642518 DOI: 10.1152/japplphysiol.00405.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
This study investigated how different exercise training modalities influence skeletal muscle mitochondrial dynamics. Healthy [average body mass index (BMI): 25.8 kg/m2], sedentary younger and older participants underwent 12 wk of supervised high-intensity aerobic interval training (HIIT; n = 13), resistance training (RT; n = 14), or combined training (CT; n = 11). Mitochondrial structure was assessed using transmission electron microscopy (TEM). Regulators of mitochondrial fission and fusion, cardiorespiratory fitness (V̇o2peak), insulin sensitivity via a hyperinsulinemic-euglycemic clamp, and muscle mitochondrial respiration were assessed. TEM showed increased mitochondrial volume, number, and perimeter following HIIT (P < 0.01), increased mitochondrial number following CT (P < 0.05), and no change in mitochondrial abundance after RT. Increased mitochondrial volume associated with increased mitochondrial respiration and insulin sensitivity following HIIT (P < 0.05). Increased mitochondrial perimeter associated with increased mitochondrial respiration, insulin sensitivity, and V̇o2peak following HIIT (P < 0.05). No such relationships were observed following CT or RT. OPA1, a regulator of fusion, was increased following HIIT (P < 0.05), whereas FIS1, a regulator of fission, was decreased following HIIT and CT (P < 0.05). HIIT also increased the ratio of OPA1/FIS1 (P < 0.01), indicative of the balance between fission and fusion, which positively correlated with improvements in respiration, insulin sensitivity, and V̇o2peak (P < 0.05). In conclusion, HIIT induces a larger, more fused mitochondrial tubular network. Changes indicative of increased fusion following HIIT associate with improvements in mitochondrial respiration, insulin sensitivity, and V̇o2peak supporting the idea that enhanced mitochondrial fusion accompanies notable health benefits of HIIT.NEW & NOTEWORTHY We assessed the effects of 12 wk of supervised high-intensity interval training (HIIT), resistance training, and combined training (CT) on skeletal muscle mitochondrial abundance and markers of fission and fusion. HIIT increased mitochondrial area and size and promoted protein changes indicative of increased mitochondrial fusion, whereas lessor effects were observed after CT and no changes were observed after RT. Furthermore, increased mitochondrial area and size after HIIT associated with improved mitochondrial respiration, cardiorespiratory fitness, and insulin sensitivity.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
- Department of Health and Human Performance, University of Wisconsin-River Falls, River Falls, Wisconsin, United States
| | - Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Suvyaktha Simha
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Katherine A Klaus
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
35
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Miner GE, So CM, Edwards W, Ragusa JV, Wine JT, Wong Gutierrez D, Airola MV, Herring LE, Coleman RA, Klett EL, Cohen S. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev Cell 2023; 58:1250-1265.e6. [PMID: 37290445 PMCID: PMC10525032 DOI: 10.1016/j.devcel.2023.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina M So
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan T Wine
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Wong Gutierrez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1320. [PMID: 37512131 PMCID: PMC10384171 DOI: 10.3390/medicina59071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Physical exercise is an important therapeutic modality for treating and managing diabetes. High-intensity interval training (HIIT) is considered one of the best non-drug strategies for preventing and treating type 2 diabetes mellitus (T2DM) by improving mitochondrial biogenesis and function. This study aimed to determine the effects of 12 weeks of HIIT training on the expression of tumor suppressor protein-p53, mitochondrial cytochrome c oxidase (COX), and oxidative stress in patients with T2DM. Methods: A total of thirty male sedentary patients aged (45-60 years) were diagnosed with established T2DM for more than five years. Twenty healthy volunteers, age- and sex-matched, were included in this study. Both patients and control subjects participated in the HIIT program for 12 weeks. Glycemic control variables including p53 (U/mL), COX (ng/mL), total antioxidant capacity (TAC, nmole/µL), 8-hydroxy-2'-deoxyguanosine (8-OHdG, ng/mL), as well as genomic and mitochondrial DNA content were measured in both the serum and muscle tissues of control and patient groups following exercise training. Results: There were significant improvements in fasting glucose levels. HbA1c (%), HOMA-IR (mUmmol/L2), fasting insulin (µU/mL), and C-peptide (ng/mL) were reported in T2DM and healthy controls. A significant decrease was also observed in p53 protein levels. COX, 8-OhdG, and an increase in the level of TAC were reported in T2DM following 12 weeks of HIIT exercise. Before and after exercise, p53; COX, mt-DNA content, TAC, and 8-OhdG showed an association with diabetic control parameters such as fasting glucose (FG), glycated hemoglobin (HbA1C, %), C-peptide, fasting insulin (FI), and homeostatic model assessment for insulin resistance (HOMA-IR) in patients with T2DM. These findings support the positive impact of HIIT exercise in improving regulation of mitochondrial biogenesis and subsequent control of diabetes through anti-apoptotic and anti-oxidative pathways. Conclusions: A 12-week HIIT program significantly improves diabetes by reducing insulin resistance; regulating mitochondrial biogenesis; and decreasing oxidative stress capacity among patients and healthy controls. Also; p53 protein expression; COX; 8-OhdG; and TAC and mt-DNA content were shown to be associated with T2DM before and after exercise training.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| |
Collapse
|
38
|
Yue M, Hu B, Li J, Chen R, Yuan Z, Xiao H, Chang H, Jiu Y, Cai K, Ding B. Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production. EMBO J 2023; 42:e112542. [PMID: 37218505 PMCID: PMC10308351 DOI: 10.15252/embj.2022112542] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance β-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.
Collapse
Affiliation(s)
- Mengzhen Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bing Hu
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Jiajia Li
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hurong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
| | - Kun Cai
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Cell Architecture Research InstituteHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
39
|
Pedersen ZO, Pedersen BS, Larsen S, Dysgaard T. A Scoping Review Investigating the "Gene-Dosage Theory" of Mitochondrial DNA in the Healthy Skeletal Muscle. Int J Mol Sci 2023; 24:8154. [PMID: 37175862 PMCID: PMC10179410 DOI: 10.3390/ijms24098154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.
Collapse
Affiliation(s)
- Zandra Overgaard Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Britt Staevnsbo Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tina Dysgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
40
|
Margolis LM, Marlatt KL, Berryman CE, Howard EE, Murphy NE, Carrigan CT, Harris MN, Beyl RA, Ravussin E, Pasiakos SM, Rood JC. Metabolic Adaptations and Substrate Oxidation are Unaffected by Exogenous Testosterone Administration during Energy Deficit in Men. Med Sci Sports Exerc 2023; 55:661-669. [PMID: 36563086 PMCID: PMC11801180 DOI: 10.1249/mss.0000000000003089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION/PURPOSE The effects of testosterone on energy and substrate metabolism during energy deficit are unknown. The objective of this study was to determine the effects of weekly testosterone enanthate (TEST; 200 mg·wk -1 ) injections on energy expenditure, energy substrate oxidation, and related gene expression during 28 d of energy deficit compared with placebo (PLA). METHODS After a 14-d energy balance phase, healthy men were randomly assigned to TEST ( n = 24) or PLA ( n = 26) for a 28-d controlled diet- and exercise-induced energy deficit (55% below total energy needs by reducing energy intake and increasing physical activity). Whole-room indirect calorimetry and 24-h urine collections were used to measure energy expenditure and energy substrate oxidation during balance and deficit. Transcriptional regulation of energy and substrate metabolism was assessed using quantitative reverse transcription-polymerase chain reaction from rested/fasted muscle biopsy samples collected during balance and deficit. RESULTS Per protocol design, 24-h energy expenditure increased ( P < 0.05) and energy intake decreased ( P < 0.05) in TEST and PLA during deficit compared with balance. Carbohydrate oxidation decreased ( P < 0.05), whereas protein and fat oxidation increased ( P < 0.05) in TEST and PLA during deficit compared with balance. Change (∆; deficit minus balance) in 24-h energy expenditure was associated with ∆activity factor ( r = 0.595), but not ∆fat-free mass ( r = 0.147). Energy sensing (PRKAB1 and TP53), mitochondria (TFAM and COXIV), fatty acid metabolism (CD36/FAT, FABP, CPT1b, and ACOX1) and storage (FASN), and amino acid metabolism (BCAT2 and BCKHDA) genes were increased ( P < 0.05) during deficit compared with balance, independent of treatment. CONCLUSIONS These data demonstrate that increased physical activity and not exogenous testosterone administration is the primary determinate of whole-body and skeletal muscle metabolic adaptations during diet- and exercise-induced energy deficit.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | | | | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | | - Robbie A Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Stefan M Pasiakos
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | |
Collapse
|
41
|
Dalton BE, Mazara N, Debenham MIB, Zwambag DP, Noonan AM, Weersink E, Brown SHM, Power GA. The relationship between single muscle fibre and voluntary rate of force development in young and old males. Eur J Appl Physiol 2023; 123:821-832. [PMID: 36484861 DOI: 10.1007/s00421-022-05111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.5 yrs) and old (n = 8; 70.1 ± 2.8 yrs) males performed maximal voluntary isometric contractions (MVC) and electrically evoked twitches of the knee extensors to assess RFD. Then, percutaneous muscle biopsies were taken from the vastus lateralis and chemically permeabilized, to assess single fibre function. RESULTS At the joint level, older males were ~ 30% weaker and had ~ 43% and ~ 40% lower voluntary RFD values at 0-100 and 0-200 ms, respectively, than the younger ones (p ≤ 0.05). MVC torque was related to every voluntary RFD epoch in the young (p ≤ 0.001), but only the 0-200 ms epoch in the old (p ≤ 0.005). Twitch RFD was ~ 32% lower in the old compared to young (p < 0.05). There was a strong positive relationship between twitch RFD and voluntary RFD during the earliest time epochs in the young (≤ 100 ms; p ≤ 0.01). While single fibre RFD was unrelated to joint-level RFD in the young, older adults trended (p = 0.052-0.055) towards significant relationships between joint-level RTD and Type I single fibre RFD at the 0-30 ms (r2 = 0.48) and 0-50 ms (r2 = 0.49) time epochs. CONCLUSION Electrically evoked twitches are good predictors of early voluntary RFD in young, but not older adults. Only the older adults showed a potential relationship between single fibre (Type I) and joint-level rate of force development.
Collapse
Affiliation(s)
- Benjamin E Dalton
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Nicole Mazara
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- Faculty of Education, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mathew I B Debenham
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Derek P Zwambag
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Alex M Noonan
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Erin Weersink
- Sports Medicine Clinic, Health and Performance Centre, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Stephen H M Brown
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
42
|
Afonso MB, Islam T, Magusto J, Amorim R, Lenoir V, Simões RF, Teixeira J, Silva LC, Wendum D, Jéru I, Vigouroux C, Castro RE, Oliveira PJ, Prip‐Buus C, Ratziu V, Gautheron J, Rodrigues CMP. RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease. Hepatology 2023; 77:1319-1334. [PMID: 36029129 PMCID: PMC10026966 DOI: 10.1002/hep.32756] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. APPROACH AND RESULTS Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1 -associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3-/- hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3-/- hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. CONCLUSIONS Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tawhidul Islam
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Julie Magusto
- Institute of Cardiometabolism and Nutrition, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint‐Antoine, Paris, France
| | - Ricardo Amorim
- CNC ‐ Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Véronique Lenoir
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Rui F. Simões
- CNC ‐ Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC ‐ Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Liana C. Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dominique Wendum
- Sorbonne Université, Inserm, Centre de Recherche Saint‐Antoine, Paris, France
- Service d'Anatomo‐Pathologie, Service d'Hépatologie, Centre de Référence Maladie Rare Maladies Inflammatoires des Voies Biliaires‐Hépatites Auto‐immunes, Paris, France
| | - Isabelle Jéru
- Institute of Cardiometabolism and Nutrition, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint‐Antoine, Paris, France
- Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint‐Antoine, Paris, France
| | - Corinne Vigouroux
- Institute of Cardiometabolism and Nutrition, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint‐Antoine, Paris, France
- Centre National de Référence des Pathologies Rares de l'Insulino‐Sécrétion et de l'Insulino‐Sensibilité, Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint‐Antoine, Paris, France
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo J. Oliveira
- CNC ‐ Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carina Prip‐Buus
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Vlad Ratziu
- Institute of Cardiometabolism and Nutrition, Paris, France
- Department of Hepatology, Assistance Publique‐Hôpitaux de Paris, Pitié‐Salpêtrière Hospital, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche des Cordeliers, and ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jérémie Gautheron
- Institute of Cardiometabolism and Nutrition, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint‐Antoine, Paris, France
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Nijholt KT, Voorrips SN, Sánchez-Aguilera PI, Westenbrink BD. Exercising heart failure patients: cardiac protection through preservation of mitochondrial function and substrate utilization? CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
44
|
Han M, Bushong EA, Segawa M, Tiard A, Wong A, Brady MR, Momcilovic M, Wolf DM, Zhang R, Petcherski A, Madany M, Xu S, Lee JT, Poyurovsky MV, Olszewski K, Holloway T, Gomez A, John MS, Dubinett SM, Koehler CM, Shirihai OS, Stiles L, Lisberg A, Soatto S, Sadeghi S, Ellisman MH, Shackelford DB. Spatial mapping of mitochondrial networks and bioenergetics in lung cancer. Nature 2023; 615:712-719. [PMID: 36922590 PMCID: PMC10033418 DOI: 10.1038/s41586-023-05793-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.
Collapse
Affiliation(s)
- Mingqi Han
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Eric A Bushong
- Department of Neurosciences, University of California San Diego (UCSD), San Diego, CA, USA
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, USA
| | | | | | - Alex Wong
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Morgan R Brady
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dane M Wolf
- University of Cambridge, Cambridge, UK
- Imperial College, London, UK
| | - Ralph Zhang
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Matthew Madany
- Department of Neurosciences, University of California San Diego (UCSD), San Diego, CA, USA
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Jason T Lee
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Imaging Program, Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Travis Holloway
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Adrian Gomez
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Maie St John
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Head and Neck Surgery, DGSOM UCLA, Los Angeles, CA, USA
| | - Steven M Dubinett
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, DGSOM UCLA, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Endocrinology, DGSOM UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Endocrinology, DGSOM UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Aaron Lisberg
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department Hematology and Oncology, DGSOM UCLA, Los Angeles, CA, USA
| | - Stefano Soatto
- Department of Computer Science, UCLA, Los Angeles, CA, USA
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Mark H Ellisman
- Department of Neurosciences, University of California San Diego (UCSD), San Diego, CA, USA
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Stokie JR, Abbott G, Howlett KF, Hamilton DL, Shaw CS. Intramuscular lipid utilization during exercise: a systematic review, meta-analysis, and meta-regression. J Appl Physiol (1985) 2023; 134:581-592. [PMID: 36656983 DOI: 10.1152/japplphysiol.00637.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intramuscular lipid (IMCL) utilization during exercise was controversial as numerous studies did not observe a decline in IMCL content post-exercise when assessed in muscle biopsies using biochemical techniques. Contemporary techniques including immunofluorescence microscopy and 1H-magnetic resonance spectroscopy (1H-MRS) offer advantages over biochemical techniques. The primary aim of this systematic review, meta-analysis, and meta-regression was to examine the net degradation of IMCL in response to an acute bout of cycling exercise in humans, as assessed with different analytical approaches. A secondary aim was to explore the factors influencing IMCL degradation including feeding status, exercise variables, and participant characteristics. A total of 44 studies met the inclusion criteria using biochemical, immunofluorescence, and 1H-MRS techniques. A meta-analysis was completed using a random effects model and percentage change in IMCL content calculated from the standardized mean difference. Cycling exercise resulted in a net degradation of IMCL regardless of technique (total effect -23.7%, 95% CI = -28.7 to -18.7%) and there was no difference when comparing fasted versus fed-state exercise (P > 0.05). IMCL degradation using immunofluorescence techniques detected larger effects in type I fibers compared with whole muscle using biochemical techniques (P = 0.003) and in type I fibers compared with type II fibers (P < 0.001). Although IMCL degradation was associated with exercise duration, V̇o2max, and BMI, none of these factors independently related to the change in IMCL content. These findings provide strong evidence that the analytical approach can influence the assessment of IMCL degradation in human skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Jayden R Stokie
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David L Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
46
|
Rochette E, Saidi O, Merlin É, Duché P. Physical activity as a promising alternative for young people with juvenile idiopathic arthritis: Towards an evidence-based prescription. Front Immunol 2023; 14:1119930. [PMID: 36860845 PMCID: PMC9969142 DOI: 10.3389/fimmu.2023.1119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in young people. Although biologics now enable most children and adolescents with JIA to enjoy clinical remission, patients present lower physical activity and spend more time in sedentary behavior than their healthy counterparts. This impairment probably results from a physical deconditioning spiral initiated by joint pain, sustained by apprehension on the part of both the child and the child's parents, and entrenched by lowered physical capacities. This in turn may exacerbate disease activity and lead to unfavorable health outcomes including increased risks of metabolic and mental comorbidities. Over the past few decades, there has been growing interest in the health benefits of increased overall physical activity as well as exercise interventions in young people with JIA. However, we are still far from evidence-based physical activity and / or exercise prescription for this population. In this review, we give an overview of the available data supporting physical activity and / or exercise as a behavioral, non-pharmacological alternative to attenuate inflammation while also improving metabolism, disease symptoms, poor sleep, synchronization of circadian rhythms, mental health, and quality of life in JIA. Finally, we discuss clinical implications, identify gaps in knowledge, and outline a future research agenda.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Oussama Saidi
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Étienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
| | - Pascale Duché
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| |
Collapse
|
47
|
Lipid-droplet associated mitochondria promote fatty-acid oxidation through a distinct bioenergetic pattern in male Wistar rats. Nat Commun 2023; 14:766. [PMID: 36765117 PMCID: PMC9918515 DOI: 10.1038/s41467-023-36432-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Mitochondria empower the liver to regulate lipid homeostasis by enabling fatty acid oxidation during starvation and lipogenesis during nutrient-rich conditions. It is unknown if mitochondria can seamlessly regulate these two distinct processes or if two discrete populations of mitochondria achieve these two functions in the liver. For the first time in the liver, we report the isolation of two distinct populations of mitochondria from male Wistar rats on an ad-libitum diet: cytoplasmic mitochondria and lipid droplet-associated mitochondria. Our studies show that while lipid droplet mitochondria exhibit higher fatty acid oxidation and are marked by enhanced levels of pACC2, MFN2, and CPT1 activity, cytoplasmic mitochondria are associated with higher respiration capacity. Notably, lipid droplet-associated mitochondria isolated from a non-alcoholic fatty liver disease (NAFLD) rat model are compromised for fatty acid oxidation. We demonstrate the importance of functional segregation of mitochondria as any aberration in lipid droplet-associated mitochondria may lead to NAFLD.
Collapse
|
48
|
Takahashi K, Kitaoka YU, Matsunaga Y, Hatta H. Effects of Endurance Training on Metabolic Enzyme Activity and Transporter Proteins in Skeletal Muscle of Ovariectomized Mice. Med Sci Sports Exerc 2023; 55:186-198. [PMID: 36170569 DOI: 10.1249/mss.0000000000003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Estrogen deficiency or insufficiency can occur under several conditions, leading to negative health outcomes. To establish an effective countermeasure against estrogen loss, we investigated the effects of endurance training on ovariectomy (OVX)-induced metabolic disturbances. METHODS Female Institute of Cancer Research mice underwent OVX or sham operations. On day 7 of recovery, the mice were randomized to remain either sedentary or undergo 5 wk of treadmill running (15-20 m·min -1 , 60 min, 5 d·wk -1 ). During week 5 of the training, all animals performed a treadmill running test (15 m·min -1 , 60 min). RESULTS After the experimental period, OVX resulted in greater gains in body mass, fat mass, and triglyceride content in the gastrocnemius muscle. OVX enhanced phosphofructokinase activity in the plantaris muscle and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. OVX decreased the protein content of NDUFB8, a mitochondrial respiratory chain subunit, but did not decrease other mitochondrial proteins or enzyme activities. Endurance training significantly enhanced mitochondrial enzyme activity and protein content in the skeletal muscles. Although OVX increased the respiratory exchange ratio during the treadmill running test, and postexercise blood lactate levels, endurance training normalized these parameters. CONCLUSIONS The present findings suggest that endurance training is a viable strategy to counteract the negative metabolic consequences in hypoestrogenism.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo, JAPAN
| | - Y U Kitaoka
- Department of Human Sciences, Kanagawa University, Kanagawa, JAPAN
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, Tokyo, JAPAN
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, JAPAN
| |
Collapse
|
49
|
Landen S, Hiam D, Voisin S, Jacques M, Lamon S, Eynon N. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J Physiol 2023; 601:419-434. [PMID: 34762308 DOI: 10.1113/jp279499] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/01/2021] [Indexed: 02/04/2023] Open
Abstract
Sex differences in exercise physiology, such as substrate metabolism and skeletal muscle fatigability, stem from inherent biological factors, including endogenous hormones and genetics. Studies investigating exercise physiology frequently include only males or do not take sex differences into consideration. Although there is still an underrepresentation of female participants in exercise research, existing studies have identified sex differences in physiological and molecular responses to exercise training. The observed sex differences in exercise physiology are underpinned by the sex chromosome complement, sex hormones and, on a molecular level, the epigenome and transcriptome. Future research in the field should aim to include both sexes, control for menstrual cycle factors, conduct large-scale and ethnically diverse studies, conduct meta-analyses to consolidate findings from various studies, leverage unique cohorts (such as post-menopausal, transgender, and those with sex chromosome abnormalities), as well as integrate tissue and cell-specific -omics data. This knowledge is essential for developing deeper insight into sex-specific physiological responses to exercise training, thus directing future exercise physiology studies and practical application.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
50
|
Pérez-Rodríguez M, Huertas JR, Villalba JM, Casuso RA. Mitochondrial adaptations to calorie restriction and bariatric surgery in human skeletal muscle: a systematic review with meta-analysis. Metabolism 2023; 138:155336. [PMID: 36302454 DOI: 10.1016/j.metabol.2022.155336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We performed a meta-analysis to determine the changes induced by calorie restriction (CR) and bariatric surgery on human skeletal muscle mitochondria. METHODS A systematic search of Medline and Web of Science was conducted. Controlled trials exploring CR (≥14 days) and mitochondrial function and/or content assessment were included. Moreover, studies analyzing weight loss following gastric surgery were included for comparison purposes. Human muscle data from 28 studies assessing CR (520 muscle samples) and from 10 studies assessing bariatric surgery (155 muscle samples) were analyzed in a random effect meta-analysis with three a priori chosen covariates. MAIN RESULTS We report a decrease (p < 0.05) (mean (95 % CI)) in maximal mitochondrial state 3 respiration in response to CR (-0.44 (-0.85, -0.03)) but not in response to surgery (-0.33 (-1.18, 0.52)). No changes in mitochondrial content were reported after CR (-0.05 (-0.12, 0.13)) or in response to surgery (0.23 (-0.05, 0.52)). Moreover, data from CR subjects showed a reduction in complex IV (CIV) activity (-0.29 (-0.56, -0.03)) but not in CIV content (-0.21 (-0.63, 0.22)). Similar results were obtained when the length of the protocol, the initial body mass index, and the estimated energy deficit were included in the model as covariates. CONCLUSION The observation of reduced maximal mitochondrial state 3, uncoupled respiration, and CIV activity without altering mitochondrial content suggests that, in human skeletal muscle, CR mainly modulates intrinsic mitochondrial function.
Collapse
Affiliation(s)
- Miguel Pérez-Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | | | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | - Rafael A Casuso
- Department of Physiology, University of Granada, Spain; Department of Health Sciences, Universidad Loyola Andalucía, Spain.
| |
Collapse
|