1
|
Wu K, Shang S, Bao L, Zhao Y, Guan Z, Xu J, Sun H, Yuan W, Fu Y, Peng L, Zhao C. Retinoic acid ameliorates low-grade endotoxemia-induced mastitis by limiting inflammatory responses in mice. Microb Pathog 2023; 185:106426. [PMID: 37879450 DOI: 10.1016/j.micpath.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mastitis is a serious disease for humans and animals, which causes huge economic losses in the dairy industry and is hard to prevent due to the complex and unclear pathogenesis. Subacute ruminal acidosis (SARA) has contributed to the development of mastitis by inducing ruminal dysbiosis and subsequent low-grade endotoxemia (LGE), however, how ruminal metabolic changes regulate this progress is still unclear. Our previous study revealed that cows with SARA had increased ruminal retinoic acid (RA) levels, a metabolic intermediate of vitamin A that plays an essential role in mucosal immune responses. Hence, the aim of this study was to investigate the protective effect of RA on LGE-induced mastitis and the underlying mechanisms in mice. The results showed that RA alleviated LGE-induced mastitis, as evidenced by RA significantly reduced the increase in mammary proinflammatory cytokines and improved blood-milk barrier injury caused by LGE. In addition, RA increased the expression of tight junction proteins, including ZO-1, occludin and claudin-3. Furthermore, we found that RA limited the mammary inflammatory responses by inhibiting the activation of NF-κB and NLRP3 signaling pathways. These findings suggest that RA effectively alleviates LGE-induced mastitis and implies a potential strategy for the treatment and prevention of mastitis and other diseases.
Collapse
Affiliation(s)
- Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhihang Guan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Weijie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Luyuan Peng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
2
|
Zhu X, Mou Z, Han W, Chen L. All-trans retinoic acid inhibits oxidative stress via ACE2/Ang (1-7)/MasR pathway in renal tubular epithelial cells stimulated with high glucose. Drug Dev Res 2023; 84:1008-1017. [PMID: 37114746 DOI: 10.1002/ddr.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
The aim of this study was to investigate the effects of all-trans retinoic acid (atRA) on oxidative stress in renal tubular epithelial cells induced by high glucose (HG) and its potential mechanism. We investigated the effects of atRA in HG-induced renal epithelial cell line HK-2. Seven groups were designed for this experiment: negative control, mannitol, high-glucose (HG), HG combined with a low concentration of atRA, HG combined with a middle concentration of atRA, HG combined with a high concentration of atRA, and HG combined with captopril. After 48 h of incubation, oxidative stress factor expression in the supernatant was detected by enzyme-linked immunosorbent assay. Reactive oxygen species and cell apoptosis expression were assessed by flow cytometry. NADPH oxidase, fibrosis factor, and angiotensin-converting enzyme 2/angiotensin (1-7)/mas receptor (ACE2/Ang (1-7)/MasR) pathway-related protein expressions were determined by western blot analysis. The expressions of oxidative stress factors, NADPH oxidase components, and fibrosis factors were significantly higher after HG treatment. Apoptosis of HK2 cells in the HG group was also significantly higher. AtRA could reverse the above abnormal changes in a concentration-dependent manner. HG significantly promoted the expression of ACE, Ang II, and Ang II type 1 receptor (AT1R), whereas it inhibited the expression of ACE2, Ang (1-7), and MasR. With the elevation of concentration, atRA could gradually suppress the expression of ACE, Ang II, and AT1R, but facilitate ACE2, Ang (1-7), and MasR. These results were statistically significant. AtRA could significantly inhibit oxidative stress and apoptosis of renal tubular epithelial cells induced by HG. The mechanism may inhibit the ACE/Ang II/AT1R pathway and/or activate ACE2/Ang (1-7)/MasR pathway.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixiang Mou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Han
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lan Chen
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Abstract
While the uses of retinoids for cancer treatment continue to evolve, this review focuses on other therapeutic areas in which retinoids [retinol (vitamin A), all-trans retinoic acid (RA), and synthetic retinoic acid receptor (RAR)α-, β-, and γ-selective agonists] are being used and on promising new research that suggests additional uses for retinoids for the treatment of disorders of the kidneys, skeletal muscles, heart, pancreas, liver, nervous system, skin, and other organs. The most mature area, in terms of US Food and Drug Administration-approved, RAR-selective agonists, is for treatment of various skin diseases. Synthetic retinoid agonists have major advantages over endogenous RAR agonists such as RA. Because they act through a specific RAR, side effects may be minimized, and synthetic retinoids often have better pharmaceutical properties than does RA. Based on our increasing knowledge of the multiple roles of retinoids in development, epigenetic regulation, and tissue repair, other exciting therapeutic areas are emerging. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
| |
Collapse
|
4
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
5
|
Forouzani-Haghighi B, Karimzadeh I. Isotretinoin and the Kidney: Opportunities and Threats. Clin Cosmet Investig Dermatol 2020; 13:485-494. [PMID: 32801824 PMCID: PMC7395703 DOI: 10.2147/ccid.s259048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022]
Abstract
Retinoids are one of the most effective drugs in inducing complete or prolonged remission of severe acne vulgaris, but the adverse reactions associated with the use of them are raising a concern about the potential effect of these drugs on internal organs function such as the kidney. The aim of this review is to comprehensively gather data about isotretinoin, both potential adverse and beneficial effects on the kidney based on the current experimental and clinical findings. Very few studies, including five case reports, described that systemic oral isotretinoin within usual doses (40 mg/day or 0.5 mg/kg⁄day) within 1 to 4 months of treatment might be associated with different types of renal dysfunctions. These include acute interstitial nephritis, nephrotic syndrome, and hematuria with dysuria. The adverse reactions of systemic isotretinoin on the kidney and urinary system are unlikely and rare. In contrast, six experimental studies demonstrated the beneficial effects of either oral or parenteral low- (2 or 5 mg/kg/day) or high- (10, 20, 25, 40 mg/kg/day) dose isotretinoin on the kidney in the rat models of glomerulonephritis, obstructive nephropathy or allograft nephropathy. The nephroprotective functions of isotretinoin in these studies were attributed to its anti-proliferative, anti-fibrotic, and anti-inflammatory actions. However, clinical studies are warranted to elucidate the possible beneficial effects of isotretinoin in preventing or attenuating kidney injury in different settings.
Collapse
Affiliation(s)
- Bahareh Forouzani-Haghighi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wu J, Zheng C, Wan X, Shi M, McMillan K, Maique J, Cao C. Retinoic Acid Alleviates Cisplatin-Induced Acute Kidney Injury Through Activation of Autophagy. Front Pharmacol 2020; 11:987. [PMID: 32719599 PMCID: PMC7348052 DOI: 10.3389/fphar.2020.00987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin-induced acute kidney injury (CIAKI) is a common complication in patients receiving cisplatin-based chemotherapy. But the effective therapies for CIAKI are not available. Retinoic acid (RA), the main derivative of vitamin A, has the potential to reduce inflammation and fibrosis in renal injury. However, the effect and mechanism of RA on CIAKI are still unclear. The aim of this study is to investigate whether RA can alleviate CIAKI through activation of autophagy. In this study, we evaluated the effect of RA, RA’s effect on autophagy and apoptosis after cisplatin-induced injury on renal tubular epithelial cells (RTECs) by LDH assay, immunoblotting and TUNEL staining. Then we established Atg5flox/flox:Cagg-Cre mice in which Cagg-Cre is tamoxifen inducible, and Atg5 is conditional deleted after tamoxifen injection. The effect of RA and RA’s effect on autophagy on CIAKI model were evaluated by biochemical assessment, hematoxylin and eosin (HE) staining, and immunoblotting in the control and autophagy deficient mice. In vitro, RA protected RTECs against cisplatin-induced injury, activated autophagy, and inhibited cisplatin-induced apoptosis. In vivo, RA attenuated cisplatin-induced tubular damage, shown by improved renal function, decreased renal cast formation, decreased NGAL expression, and activated autophagy in the control mice. Furthermore, the nephrotoxicity of cisplatin was aggravated, and the protective effect of RA was attenuated in autophagy deficient mice, indicating that RA works in an autophagy-dependent manner on CIAKI. RA activates autophagy and alleviates CIAKI in vivo and in vitro.Thus RA may be a renoprotective adjuvant for cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Junxia Wu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Canbin Zheng
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xin Wan
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjun Shi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kathryn McMillan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jenny Maique
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zarei L, Mahdavi Rad S, Abdollahzade Fard A. Co-administration of retinoic acid and atorvastatin mitigates high-fat diet induced renal damage in rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:133-138. [PMID: 31338146 PMCID: PMC6626641 DOI: 10.30466/vrf.2019.74079.1996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/21/2018] [Indexed: 11/01/2022]
Abstract
Obesity causes many problems such as cardiovascular and chronic kidney diseases. The aim of this study was to evaluate the efficacy of retinoic acid and atorvastatin co-administration in kidneys protection against high-fat diet induced damage. Twenty-five male Wistar rats (200.00 ± 20.00 g) were divided into five groups: 1) Control (standard diet), 2) High-fat diet (cholesterol 1.00%, 75 days), 3) High-fat diet + atorvastatin (20.00 mg kg-1 per day, orally, on the 30th day, for 45 consecutive days), 4) High-fat diet + retinoic acid (5 mg kg-1 per day, orally, on the 30th day, for 45 consecutive days), and 5) High fat diet + atorvastatin and retinoic acid. At the end, blood and tissue samples were collected for biochemical and histological analyses. The results showed that atorvastatin and retinoic acid alone and in combination decreased cholesterol and low-density lipoprotein and increased high-density lipoprotein in high-fat diet. Also, atorvastatin - caused total antioxidant capacity increase and protein carbonyl content decrease the in the renal tissue. Atorvastatin also prevented high-fat diet-induced renal histological injury. Treatment with atorvastatin significantly mitigates high-fat diet-induced renal changes probably due to its potent antioxidant and lipid-lowering effects. The effect of retinoic acid in renal protection in a high-fat diet is far less than that of atorvastatin. The protective effect of the combination of these two agents in the high-fat diet on the kidneys seems to be due to the effect of atorvastatin.
Collapse
Affiliation(s)
- Leila Zarei
- Department of Anatomical Sciences, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saied Mahdavi Rad
- Student Research Committee, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Abdollahzade Fard
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Nakamura J, Sato Y, Kitai Y, Wajima S, Yamamoto S, Oguchi A, Yamada R, Kaneko K, Kondo M, Uchino E, Tsuchida J, Hirano K, Sharma K, Kohno K, Yanagita M. Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury. Kidney Int 2019; 95:526-539. [PMID: 30661714 DOI: 10.1016/j.kint.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
Tubular injury and interstitial fibrosis are the hallmarks of chronic kidney disease. While recent studies have verified that proximal tubular injury triggers interstitial fibrosis, the impact of fibrosis on tubular injury and regeneration remains poorly understood. We generated a novel mouse model expressing diphtheria toxin receptor on renal fibroblasts to allow for the selective disruption of renal fibroblast function. Administration of diphtheria toxin induced upregulation of the tubular injury marker Ngal and caused tubular proliferation in healthy kidneys, whereas administration of diphtheria toxin attenuated tubular regeneration in fibrotic kidneys. Microarray analysis revealed down-regulation of the retinol biosynthesis pathway in diphtheria toxin-treated kidneys. Healthy proximal tubules expressed retinaldehyde dehydrogenase 2 (RALDH2), a rate-limiting enzyme in retinoic acid biosynthesis. After injury, proximal tubules lost RALDH2 expression, whereas renal fibroblasts acquired strong expression of RALDH2 during the transition to myofibroblasts in several models of kidney injury. The retinoic acid receptor (RAR) RARγ was expressed in proximal tubules both with and without injury, and αB-crystallin, the product of an RAR target gene, was strongly expressed in proximal tubules after injury. Furthermore, BMS493, an inverse agonist of RARs, significantly attenuated tubular proliferation in vitro. In human biopsy tissue from patients with IgA nephropathy, detection of RALDH2 in the interstitium correlated with older age and lower kidney function. These results suggest a role of retinoic acid signaling and cross-talk between fibroblasts and tubular epithelial cells during tubular injury and regeneration, and may suggest a beneficial effect of fibrosis in the early response to injury.
Collapse
Affiliation(s)
- Jin Nakamura
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; TMK Project, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichiro Kitai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Wajima
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin
| | - Shinya Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akiko Oguchi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Yamada
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiichi Kaneko
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makiko Kondo
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eiichiro Uchino
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junichi Tsuchida
- TMK Project, Kyoto University Graduate School of Medicine, Kyoto, Japan; Research Unit/Nephrological & Endocrinological Science, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Keita Hirano
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio
| | - Kenji Kohno
- Graduate School of Biological Sciences, Institute for Research Initiatives, Nara Institute of Science and Technology, Nara, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
9
|
Tamaki M, Tominaga T, Fujita Y, Koezuka Y, Ichien G, Murakami T, Kishi S, Yamamoto K, Abe H, Nagai K, Doi T. All-trans retinoic acid suppresses bone morphogenetic protein 4 in mouse diabetic nephropathy through a unique retinoic acid response element. Am J Physiol Endocrinol Metab 2019; 316:E418-E431. [PMID: 30601699 DOI: 10.1152/ajpendo.00218.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) causes mesangial matrix expansion, which results in glomerulosclerosis and renal failure. Collagen IV (COL4) is a major component of the mesangial matrix that is positively regulated by bone morphogenetic protein 4 (BMP4)/suppressor of mothers against decapentaplegic (Smad1) signaling. Because previous studies showed that retinoids treatment had a beneficial effect on kidney disease, we investigated the therapeutic potential of retinoids in DN, focusing especially on the regulatory mechanism of BMP4. Diabetes was induced with streptozotocin in 12-wk-old male Crl:CD1(ICR) mice, and, 1 mo later, we initiated intraperitoneal injection of all-trans retinoic acid (ATRA) three times weekly. Glomerular matrix expansion, which was associated with increased BMP4, phosphorylated Smad1, and COL4 expression, worsened in diabetic mice at 24 wk of age. ATRA administration alleviated DN and downregulated BMP4, phosopho-Smad1, and COL4. In cultured mouse mesangial cells, treatment with ATRA or a retinoic acid receptor-α (RARα) agonist significantly decreased BMP4 and COL4 expression. Genomic analysis suggested two putative retinoic acid response elements (RAREs) for the mouse Bmp4 gene. Chromatin immunoprecipitation analysis and reporter assays indicated a putative RARE of the Bmp4 gene, located 11,488-11,501 bp upstream of exon 1A and bound to RARα and retinoid X receptor (RXR), which suppressed BMP4 expression after ATRA addition. ATRA suppressed BMP4 via binding of a RARα/RXR heterodimer to a unique RARE, alleviating glomerular matrix expansion in diabetic mice. These findings provide a novel regulatory mechanism for treatment of DN.
Collapse
Affiliation(s)
- Masanori Tamaki
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yui Fujita
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | | | | | - Taichi Murakami
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Seiji Kishi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | | | - Hideharu Abe
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
- Research Institute for Production Development , Kyoto , Japan
| |
Collapse
|
10
|
Siligato R, Cernaro V, Nardi C, De Gregorio F, Gembillo G, Costantino G, Conti G, Buemi M, Santoro D. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Expert Opin Investig Drugs 2018; 27:839-879. [PMID: 30360670 DOI: 10.1080/13543784.2018.1540587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Minimal change disease (MCD) and Focal and segmental glomerulosclerosis (FSGS) are two of the major causes of nephrotic syndrome (NS) in children and adults. According to KDIGO (Kidney Disease: Improving Global Outcomes) guidelines, the treatment of adult primary MCD and FSGS should be based on immunosuppressants and antiproteinuric drugs. Recently, Rituximab, a humanized monoclonal antibody (mAb) has emerged as a potential treatment for steroid or calcineurin inhibitor-dependent patients; it has however demonstrated lower efficacy in those with nephrotic syndrome that is resistant to the above indicated drugs. AREAS COVERED Analysis of ongoing and already completed clinical trials, retrieved from clinicaltrials.gov, clinicaltrialsregister.eu and PubMed involving new therapies for nephrotic syndrome secondary to MCD and FSGS. EXPERT OPINION The most promising drugs under investigation for MCD and FSGS are mAbs. We are hopeful that new therapeutic options to treat multi-drug resistant MCD and FSGS will emerge from currently ongoing studies. What appears certain is the difficulty in enrolling patients affected by orphan renal diseases and the selection of valid endpoints in clinical trials, such as kidney failure.
Collapse
Affiliation(s)
- Rossella Siligato
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Valeria Cernaro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Chiara Nardi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Francesca De Gregorio
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Guido Gembillo
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giuseppe Costantino
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giovanni Conti
- b Unit of Pediatric Nephrology and Rheumatology , University of Messina , Messina , Italy
| | - Michele Buemi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Domenico Santoro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| |
Collapse
|
11
|
Trasino SE, Tang XH, Shevchuk MM, Choi ME, Gudas LJ. Amelioration of Diabetic Nephropathy Using a Retinoic Acid Receptor β2 Agonist. J Pharmacol Exp Ther 2018; 367:82-94. [PMID: 30054312 PMCID: PMC6123666 DOI: 10.1124/jpet.118.249375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Vitamin A (VA) and its derivatives, known as retinoids, play critical roles in renal development through retinoic acid receptor β2 (RARβ2). Disruptions in VA signaling pathways are associated with the onset of diabetic nephropathy (DN). Despite the known role of RARβ2 in renal development, the effects of selective agonists for RARβ2 in a high-fat diet (HFD) model of DN are unknown. Here we examined whether AC261066 (AC261), a highly selective agonist for RARβ2, exhibited therapeutic effects in a HFD model of DN in C57BL/6 mice. Twelve weeks of AC261 administration to HFD-fed mice was well tolerated with no observable side effects. Compared with HFD-fed mice, HFD + AC261-treated mice had improved glycemic control and reductions in proteinuria and urine albumin-to-creatinine ratio. Several cellular hallmarks of DN were mitigated in HFD + AC261-treated mice, including reductions in tubule lipid droplets, podocyte (POD) effacement, endothelial cell collapse, mesangial expansion, and glomerular basement membrane thickening. Mesangial and tubule interstitial expression of the myofibroblast markers α-smooth muscle actin (α-SMA) and type IV collagen (Col-IV) was lower in HFD + AC261-treated mice compared with HFD alone. Ultrastructural and immunohistochemistry analyses showed that, compared with HFD-fed mice, HFD + AC261-treated mice showed preservation of POD foot process and slit-diaphragm morphology, an increase in the levels of slit-diagram protein podocin, and the transcription factor Wilms tumor-suppressor gene 1 in PODs. Given the need for novel DN therapies, our results warrant further studies of the therapeutic properties of AC261 in DN.
Collapse
Affiliation(s)
- Steven E Trasino
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Xiao-Han Tang
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Maria M Shevchuk
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Mary E Choi
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Lorraine J Gudas
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| |
Collapse
|
12
|
Sierra-Mondragón E, Molina-Jijón E, Namorado-Tónix C, Rodríguez-Muñoz R, Pedraza-Chaverri J, Reyes JL. Data on nephroprotective effect of all-trans retinoic acid in early diabetic nephropathy. Data Brief 2018; 20:784-789. [PMID: 30211275 PMCID: PMC6129741 DOI: 10.1016/j.dib.2018.08.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 02/02/2023] Open
Abstract
Data showed in this report are related to the research article entitled "All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-кB during the initiation of diabetic nephropathy" by Sierra-Mondragon et al. (2018) [1]. Diabetic nephropathy (DN) has become the main cause of renal failure. Inflammatory molecules such as cytokines, chemokines and growth factors play a key role in DN-induced renal injury Pichler et al. (2016) [2]. Results illustrate the effect of all-trans retinoic acid (ATRA), an active metabolite of vitamin A, on the renal alterations related to diabetes, among them glomerular and tubular dysfunction, and its effect on renal inflammation in different nephron segments: glomeruli, proximal and distal tubules in an initial stage of DN. Data were obtained by physical-biochemical measurements and Western blot assays performed on isolated glomeruli, proximal and distal tubules from rat kidneys.
Collapse
Affiliation(s)
- Edith Sierra-Mondragón
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México CDMX 07360, Mexico
| | - Eduardo Molina-Jijón
- Glomerular Disease Therapeutic Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States
| | - Carmen Namorado-Tónix
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México CDMX 07360, Mexico
| | - Rafael Rodríguez-Muñoz
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México CDMX 07360, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), México CDMX 04510, Mexico
| | - José L. Reyes
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México CDMX 07360, Mexico
| |
Collapse
|
13
|
All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy. J Nutr Biochem 2018; 60:47-60. [PMID: 30193155 DOI: 10.1016/j.jnutbio.2018.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1β, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-β1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.
Collapse
|
14
|
Dai Y, Chen A, Liu R, Gu L, Sharma S, Cai W, Salem F, Salant DJ, Pippin JW, Shankland SJ, Moeller MJ, Ghyselinck NB, Ding X, Chuang PY, Lee K, He JC. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int 2017; 92:1444-1457. [PMID: 28756872 PMCID: PMC5696080 DOI: 10.1016/j.kint.2017.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 04/06/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022]
Abstract
Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the number of crescentic lesions in nephritic wild-type mice, while this protection was largely lost in mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA significantly restored the expression of podocyte differentiation markers in nephritic wild-type mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of cell injury, proliferation, and parietal epithelial cell markers in nephritic wild-type mice, all of which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA treatment led to the coexpression of podocyte and parietal epithelial cell markers in a small subset of glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal epithelial cells toward a podocyte phenotype. In vitro, RA directly inhibited the proliferation of parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage tracing of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into podocytes.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anqun Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ruijie Liu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Leyi Gu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuchita Sharma
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weijing Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David J Salant
- Department of Medicine/Nephrology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Jeffrey W Pippin
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Stuart J Shankland
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Marcus J Moeller
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Y Chuang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J Peters VAMC, Bronx, New York, USA.
| |
Collapse
|
15
|
Chiasson VL, Pakanati AR, Hernandez M, Young KJ, Bounds KR, Mitchell BM. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice. Hypertension 2017; 70:183-191. [PMID: 28584011 DOI: 10.1161/hypertensionaha.117.09374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Abstract
The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4+/FoxP3+ regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice.
Collapse
Affiliation(s)
- Valorie L Chiasson
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Abhinandan R Pakanati
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Marcos Hernandez
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Kristina J Young
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Kelsey R Bounds
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Brett M Mitchell
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple.
| |
Collapse
|
16
|
Miziołek B, Bergler-Czop B, Stańkowska A, Brzezińska-Wcisło L. The safety of isotretinoin in patients with lupus nephritis: a comprehensive review. Cutan Ocul Toxicol 2016; 36:77-84. [PMID: 27160965 DOI: 10.3109/15569527.2016.1169284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oral isotretinoin (13-cis-retinoinc acid) is a derivative of vitamin A and belongs to the first generation of retinoids, which act as synthetic isomers of retinoic acid (RA). It is a very effective agent in a treatment of acne vulgaris; however, multiple side effects related to therapy with retinoids preclude the use of isotretinoin in less severe acne vulgaris. A significant limitation for the administration of isotretinoin appears in case of concomitant kidney disease with a special attention regarding the safety of the agent in patients with lupus nephritis (LN). The aim of this review is an assessment of the safety of isotretinoin for the treatment of acne vulgaris in patients with LN. We searched both MEDLINE and SCOPUS databases, as well as several dermatological textbooks, to present all limitations and benefits of therapy with isotretinoin or its isomer (ATRA) for patients with kidney diseases. Several mouse models of SLE revealed a significant modulatory influence of retinoids on autoimmune injury of the glomerular unit. Retinoids were demonstrated to affect mononuclear cell infiltrations of renal tissue allowing for a reduction in the overall glomerular damage. Presumptively, they can affect a synthesis of autoantibodies significantly limiting their deposition in the glomerular unit. Moreover, retinoids were also shown to affect the synthesis of different cytokines specific both for lymphocytes Th1 (IL-2, IL-12, INFγ) ant Th2 (IL-4, IL-10). The influence of retinoids on the course of LN seems to be more multidimensional than only restricted to immune aspects and these synthetic RA isomers manifest also antiproteinuric activity in comparable extent to steroidal agents. The agents were demonstrated to counteract a loss of podocytes after the injury of the glomerular unit. They can promote a differentiation of renal progenitor cells (RPCs) within the Bowman capsule into mature podocytes leading to regeneration of podocyte number. Additionally, retinoids can probably protect podocytes from injury limiting their apoptosis, as well as reducing foot process effacement. Although, an endogenous production of RA isomers increases after the injury of the glomerular unit aiming to the restoration of podocyte number, it can be significantly impaired by a loss of albumins into urine. RA isomers are progressively sequestered by albumin within the Bowman's space and therefore, they are quickly eliminated with urine. It was demonstrated that the administration of exogenous RA isomers (retinoids) can bypass the activity of albumins enhancing the regeneration of podocytes. Finally, retinoids can regulate the production of vasoactive substances influencing on different vascular functions in the kidney. They can beneficially change a balance of angiotensin metabolites through by down-regulation of angiotensin-converting enzyme type 1 and the enhancement of an expression of angiotensin-converting enzyme type 2. Another studies revealed that retinoids could also alter the activity of renal endothelin pathway; however, the significance of this effect requires further elucidation. Taken all these presented effects of retinoids in the kidney into consideration, we can conclude that isotretinoin can be the safe treatment option of acne vulgaris in patients with LN.
Collapse
Affiliation(s)
- Bartosz Miziołek
- b Department of Dermatology , Andrzej Mielęcki Silesian Independent Public Clinical Hospital in Katowice , Katowice , Poland
| | - Beata Bergler-Czop
- a Department of Dermatology , School of Medicine in Katowice, Medical University of Silesia in Katowice , Katowice , Poland and
| | - Anna Stańkowska
- b Department of Dermatology , Andrzej Mielęcki Silesian Independent Public Clinical Hospital in Katowice , Katowice , Poland
| | - Ligia Brzezińska-Wcisło
- a Department of Dermatology , School of Medicine in Katowice, Medical University of Silesia in Katowice , Katowice , Poland and
| |
Collapse
|
17
|
Mallipattu SK, He JC. The podocyte as a direct target for treatment of glomerular disease? Am J Physiol Renal Physiol 2016; 311:F46-51. [PMID: 27097894 DOI: 10.1152/ajprenal.00184.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
The Centers for Disease Control and Prevention estimates more than 10% of adults in the United States, over 20 million Americans, have chronic kidney disease (CKD). A failure to maintain the glomerular filtration barrier directly contributes to the onset of CKD. The visceral epithelial cells, podocytes, are integral to the maintenance of this renal filtration barrier. Direct podocyte injury contributes to the onset and progression of glomerular diseases such as minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), diabetic nephropathy, and HIV-associated nephropathy (HIVAN). Since podocytes are terminally differentiated with minimal capacity to self-replicate, they are extremely sensitive to cellular injury. In the past two decades, our understanding of the mechanism(s) by which podocyte injury occurs has greatly expanded. With this newfound knowledge, therapeutic strategies have shifted to identifying targets directed specifically at the podocyte. Although the systemic effects of these agents are important, their direct effect on the podocyte proves to be essential in ameliorating glomerular disease. In this review, we highlight the mechanisms by which these agents directly target the podocyte independent of its systemic effects.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and Renal Section, James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
18
|
High dietary fat–induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism. Nutr Res 2016; 36:262-70. [DOI: 10.1016/j.nutres.2015.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
|
19
|
Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP. Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 2015; 27:495-508. [PMID: 26109319 DOI: 10.1681/asn.2014111108] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) has been used therapeutically to reduce injury and fibrosis in models of AKI, but little is known about the regulation of this pathway and what role it has in regulating injury and repair after AKI. In these studies, we show that RA signaling is activated in mouse and zebrafish models of AKI, and that these responses limit the extent of injury and promote normal repair. These effects were mediated through a novel mechanism by which RA signaling coordinated the dynamic equilibrium of inflammatory M1 spectrum versus alternatively activated M2 spectrum macrophages. Our data suggest that locally synthesized RA represses proinflammatory macrophages, thereby reducing macrophage-dependent injury post-AKI, and activates RA signaling in injured tubular epithelium, which in turn promotes alternatively activated M2 spectrum macrophages. Because RA signaling has an essential role in kidney development but is repressed in the adult, these findings provide evidence of an embryonic signaling pathway that is reactivated after AKI and involved in reducing injury and enhancing repair.
Collapse
Affiliation(s)
- Takuto Chiba
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| | | | | | | | | | | | | | | | - Haichun Yang
- Pathology, Vanderbilt University, Nashville, Tennessee
| | - Catherine E Alford
- Department of Pathology and Laboratory Medicine, Veteran Affairs Tennessee Valley Health Authority, Nashville, Tennessee; and
| | | | | | | | - Neil A Hukriede
- Departments of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| |
Collapse
|
20
|
Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. Front Med (Lausanne) 2015; 2:16. [PMID: 25853135 PMCID: PMC4370041 DOI: 10.3389/fmed.2015.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University , New York, NY , USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Renal Section, James J. Peters VA Medical Center , New York, NY , USA
| |
Collapse
|
21
|
Rankin AC, Hendry BM, Corcoran JP, Xu Q. An in vitro model for the pro-fibrotic effects of retinoids: mechanisms of action. Br J Pharmacol 2014; 170:1177-89. [PMID: 23992207 DOI: 10.1111/bph.12348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/21/2013] [Accepted: 07/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinoids, including all-trans retinoic acid (tRA), have dose-dependent pro-fibrotic effects in experimental kidney diseases. To understand and eventually prevent such adverse effects, it is important to establish relevant in vitro models and unravel their mechanisms. EXPERIMENTAL APPROACH Fibrogenic effects of retinoids were assessed in NRK-49F renal fibroblasts using picro-Sirius red staining for collagens and quantified by spectrophotometric analysis of the eluted stain. Other methods included RT-qPCR, immunoassays and matrix metalloproteinase (MMP) activity assays. KEY RESULTS With or without TGF-β1, tRA was dose-dependently pro-fibrotic, notably increasing collagen accumulation. tRA and TGF-β1 additively suppressed expression of mRNA for MMP2, 3 and 13 and suppressed MMP activity. tRA, in the presence of TGF-β1, induced plasminogen activator inhibitor-1 (PAI-1) mRNA and they additively induced PAI-1 protein expression. A PAI-1 inhibitor, a pan-retinoic acid receptor (RAR) antagonist and a pan-retinoid X receptor (RXR) antagonist each partially prevented the pro-fibrotic effect of tRA. The dose-dependent pro-fibrotic effects of a pan-RXR agonist were similar to those of tRA. A pan-RAR agonist showed weaker, less dose-dependent pro-fibrotic effects and the pro-fibrotic effects of RARα and RARβ-selective agonists were even smaller. An RARγ-selective agonist did not affect fibrogenesis. CONCLUSIONS AND IMPLICATIONS An in vitro model for the pro-fibrotic effects of retinoids was established in NRK-49F cells. It was associated with reduced MMP activity and increased PAI-1 expression, and was probably mediated by RXR and RAR. To avoid or antagonize the pro-fibrotic activity of tRA, further studies on RAR isotype-selective agonists and PAI-1 inhibitors might be of value.
Collapse
Affiliation(s)
- A C Rankin
- Department of Renal Medicine, King's College London, London, UK
| | | | | | | |
Collapse
|
22
|
Li X, Dai Y, Chuang PY, He JC. Induction of retinol dehydrogenase 9 expression in podocytes attenuates kidney injury. J Am Soc Nephrol 2014; 25:1933-41. [PMID: 24652806 DOI: 10.1681/asn.2013111150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The intracellular concentration of retinoic acid is determined by two sequential oxidation reactions that convert retinol to retinoic acid. We recently demonstrated that retinoic acid synthesis is significantly impaired in glomeruli of HIV-1 transgenic mice (Tg26), a murine model of HIV-associated nephropathy. This impaired retinoic acid synthesis correlates with reduced renal expression of retinol dehydrogenase 9, which catalyzes the rate-limiting step of retinoic acid synthesis by converting retinol to retinal. Because retinoic acid has renal protective effects and can induce podocyte differentiation, we hypothesized that restoration of retinoic acid synthesis could slow the progression of renal disease. Herein, we demonstrate that overexpression of retinol dehydrogenase 9 in cultured podocytes induces the expression of podocyte differentiation markers. Furthermore, we confirm that podocyte-specific overexpression of retinol dehydrogenase 9 in mice with established kidney disease due to either HIV-associated nephropathy or adriamycin-induced nephropathy decreases proteinuria, attenuates kidney injury, and restores podocyte differentiation markers. Our data suggest that restoration of retinoic acid synthesis could be a new approach to treat kidney disease.
Collapse
Affiliation(s)
- Xuezhu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Yan Dai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
23
|
Gisser JM, Cohen AR, Yin H, Gariepy CE. A novel bidirectional interaction between endothelin-3 and retinoic acid in rat enteric nervous system precursors. PLoS One 2013; 8:e74311. [PMID: 24040226 PMCID: PMC3767828 DOI: 10.1371/journal.pone.0074311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/02/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung's aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. METHODS Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. RESULTS Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. CONCLUSIONS A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations.
Collapse
Affiliation(s)
- Jonathan M. Gisser
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| | - Ariella R. Cohen
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Han Yin
- The Biostatistics Shared Resources, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cheryl E. Gariepy
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
24
|
Zhou TB, Drummen GPC, Qin YH. The controversial role of retinoic acid in fibrotic diseases: analysis of involved signaling pathways. Int J Mol Sci 2012; 14:226-243. [PMID: 23344030 PMCID: PMC3565260 DOI: 10.3390/ijms14010226] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/03/2012] [Accepted: 12/10/2012] [Indexed: 02/02/2023] Open
Abstract
Fibrotic diseases, such as liver, pulmonary and renal fibrosis, are common end-stage conditions and represent a major global health problem. Furthermore, effective therapeutic measures are presently unavailable. Extracellular matrix accumulation is the most prominent characteristic in the pathogenesis of fibrotic disease. Retinoic acid, including all-trans retinoic acid, 9-cis and 13-cis retinoic acid, play important roles in various physiological processes, such as in embryonic development, reproduction, vision, cell growth, differentiation, apoptosis and inflammation. Present studies report that retinoic acid treatment may affect various processes involved in the onset and progression of fibrotic disease. However, the therapeutic effects of retinoic acid in such diseases remain controversial. Several reports indicate that retinoic acid positively affects the progression of fibrosis and alleviates the accumulation of the extracellular matrix, whereas other studies report the opposite; that retinoic acid exacerbates fibrosis and induces extracellular matrix accumulation. Signaling pathways might be an important influencing factor and differences in signaling events might be responsible for the contradictory role of retinoic acid in fibrotic diseases. Since there was no review available that investigated the role of retinoic acid and the signaling pathways involved, we retrospectively studied the literature and provide a comprehensive analysis of retinoic acid's role in fibrotic diseases, and provide an overview of the signal transduction pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mail:
| | - Gregor P. C. Drummen
- Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio & Nano-Solutions, Helmutstr. 3A, Düsseldorf 40472, Germany; E-Mail:
| | - Yuan-Han Qin
- Department of Pediatric Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mail:
| |
Collapse
|
25
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
26
|
Mallipattu SK, Liu R, Zheng F, Narla G, Ma'ayan A, Dikman S, Jain MK, Saleem M, D'Agati V, Klotman P, Chuang PY, He JC. Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J Biol Chem 2012; 287:19122-35. [PMID: 22493483 DOI: 10.1074/jbc.m112.345983] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Podocyte injury resulting from a loss of differentiation is the hallmark of many glomerular diseases. We previously showed that retinoic acid (RA) induces podocyte differentiation via stimulation of the cAMP pathway. However, many podocyte maturity markers lack binding sites for RA-response element or cAMP-response element (CREB) in their promoter regions. We hypothesized that transcription factors induced by RA and downstream of CREB mediate podocyte differentiation. We performed microarray gene expression studies in human podocytes treated with and without RA to identify differentially regulated genes. In comparison with known CREB target genes, we identified Krüppel-like factor 15 (KLF15), a kidney-enriched nuclear transcription factor, that has been previously shown to mediate cell differentiation. We confirmed that RA increased KLF15 expression in both murine and human podocytes. Overexpression of KLF15 stimulated expression of differentiation markers in both wild-type and HIV-1-infected podocytes. Also, KLF15 binding to the promoter regions of nephrin and podocin was increased in RA-treated podocytes. Although KLF15(-/-) mice at base line had minimal phenotype, lipopolysaccharide- or adriamycin-treated KLF15(-/-) mice had a significant increase in proteinuria and podocyte foot process effacement with a reduction in the expression of podocyte differentiation markers as compared with the wild-type treated mice. Finally, KLF15 expression was reduced in glomeruli isolated from HIV transgenic mice as well as in kidney biopsies from patients with HIV-associated nephropathy and idiopathic focal segmental glomerulosclerosis. These results indicate a critical role of KLF15 in mediating podocyte differentiation and in protecting podocytes against injury.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Novel retinoic acid receptor alpha agonists for treatment of kidney disease. PLoS One 2011; 6:e27945. [PMID: 22125642 PMCID: PMC3220717 DOI: 10.1371/journal.pone.0027945] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN.
Collapse
|
28
|
Kishimoto K, Kinoshita K, Hino S, Yano T, Nagare Y, Shimazu H, Nozaki Y, Sugiyama M, Ikoma S, Funauchi M. Therapeutic effect of retinoic acid on unilateral ureteral obstruction model. Nephron Clin Pract 2011; 118:e69-78. [PMID: 21228601 DOI: 10.1159/000322409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/22/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Retinoic acids, a group of natural and synthetic vitamin A derivatives, have potent anti-proliferative, anti-inflammatory and anti-fibrotic properties. We investigated the therapeutic effect of all-trans-retinoic acid (ATRA) on unilateral ureteral obstruction (UUO) model mice. METHODS First, to evaluate the prophylactic effect, we administered 0.5 mg of ATRA for 3 days before UUO (UUO ATRA). Then, to evaluate the therapeutic effects, we administered 0.5 mg of ATRA 3 days after UUO (Day 3 ATRA). We compared the histological changes and immunostaining of macrophages, α-smooth muscle actin (α-SMA) and collagen I, and mRNA expression of monocyte chemotactic protein-1 (MCP-1), transforming growth factor (TGF)-β(1) and TGF-β R-II by RT-PCR 7 days after UUO. RESULTS In the UUO ATRA and Day 3 ATRA groups, we observed a significant improvement in histological and immunological findings, including macrophage infiltration and improved expression of MCP-1, TGF-β(1), α-SMA and collagen I compared with the UUO Day 7 group. CONCLUSION ATRA treatment is not only an effective prophylactic strategy, but also a therapeutic strategy for the treatment of progressive renal fibrosis in diseased kidneys.
Collapse
Affiliation(s)
- Kazuya Kishimoto
- Department of Nephrology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ratnam KK, Feng X, Chuang PY, Verma V, Lu TC, Wang J, Jin Y, Farias EF, Napoli JL, Chen N, Kaufman L, Takano T, D'Agati VD, Klotman PE, He JC. Role of the retinoic acid receptor-α in HIV-associated nephropathy. Kidney Int 2010; 79:624-634. [PMID: 21150871 DOI: 10.1038/ki.2010.470] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All-trans retinoic acid protects against the development of HIV-associated nephropathy (HIVAN) in HIV-1 transgenic mice (Tg26). In vitro, all-trans retinoic acid inhibits HIV-induced podocyte proliferation and restores podocyte differentiation markers by activating its receptor-α (RARα). Here, we report that Am580, a water-soluble RARα-specific agonist, attenuated proteinuria, glomerosclerosis, and podocyte proliferation, and restored podocyte differentiation markers in kidneys of Tg26 mice. Furthermore, RARα-/- Tg26 mice developed more severe kidney and podocyte injury than did RARα+/- Tg26 mice. Am580 failed to ameliorate kidney injury in RARα-/- Tg26 mice, confirming our hypothesis that Am580 acts through RARα. Although the expression of RARα-target genes was suppressed in the kidneys of Tg26 mice and of patients with HIVAN, the expression of RARα in the kidney was not different between patients with HIVAN and minimal change disease. However, the tissue levels of retinoic acid were reduced in the kidney cortex and isolated glomeruli of Tg26 mice. Consistent with this, the expression of two key enzymes in the retinoic acid synthetic pathway, retinol dehydrogenase type 1 and 9, and the overall enzymatic activity for retinoic acid synthesis were significantly reduced in the glomeruli of Tg26 mice. Thus, a defect in the endogenous synthesis of retinoic acid contributes to loss of the protection by retinoic acid in HIVAN. Hence, RARα agonists may be potential agents for the treatment of HIVAN.
Collapse
Affiliation(s)
- Krishna K Ratnam
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaobei Feng
- RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter Y Chuang
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | - Vikram Verma
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | - Ting-Chi Lu
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | - Jinshan Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Yuanmeng Jin
- RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eduardo F Farias
- Division of Hematology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Joseph L Napoli
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Nan Chen
- RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lewis Kaufman
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Paul E Klotman
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | - John C He
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA; Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA; James J. Peters VA Medical Center, New York, New York, USA.
| |
Collapse
|
30
|
Ratelade J, Arrondel C, Hamard G, Garbay S, Harvey S, Biebuyck N, Schulz H, Hastie N, Pontoglio M, Gubler MC, Antignac C, Heidet L. A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Hum Mol Genet 2010; 19:1-15. [PMID: 19797313 DOI: 10.1093/hmg/ddp462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Wilms tumor-suppressor gene WT1, a key player in renal development, also has a crucial role in maintenance of the glomerulus in the mature kidney. However, molecular pathways orchestrated by WT1 in podocytes, where it is highly expressed, remain unknown. Their defects are thought to modify the cross-talk between podocytes and other glomerular cells and ultimately lead to glomerular sclerosis, as observed in diffuse mesangial sclerosis (DMS) a nephropathy associated with WT1 mutations. To identify podocyte WT1 targets, we generated a novel DMS mouse line, performed gene expression profiling in isolated glomeruli and identified excellent candidates that may modify podocyte differentiation and growth factor signaling in glomeruli. Scel, encoding sciellin, a protein of the cornified envelope in the skin, and Sulf1, encoding a 6-O endosulfatase, are shown to be expressed in wild-type podocytes and to be strongly down-regulated in mutants. Co-expression of Wt1, Scel and Sulf1 was also found in a mesonephric cell line, and siRNA-mediated knockdown of WT1 decreased Scel and Sulf1 mRNAs and proteins. By ChIP we show that Scel and Sulf1 are direct WT1 targets. Cyp26a1, encoding an enzyme involved in the degradation of retinoic acid, is shown to be up-regulated in mutant podocytes. Cyp26a1 may play a role in the development of glomerular lesions but does not seem to be regulated by WT1. These results provide novel clues in our understanding of normal glomerular function and early events involved in glomerulosclerosis.
Collapse
|
31
|
Okamura M, Takano Y, Saito Y, Yao J, Kitamura M. Induction of nephrin gene expression by selective cooperation of the retinoic acid receptor and the vitamin D receptor. Nephrol Dial Transplant 2009; 24:3006-12. [DOI: 10.1093/ndt/gfp243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Li K, Zeng S, Gao J, Chen L, Wang Y. The effect of vitamin A deficiency in maternal rats on tumor formation in filial rats. J Pediatr Surg 2009; 44:565-70. [PMID: 19302860 DOI: 10.1016/j.jpedsurg.2008.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE We established a vitamin A-deficient (VAD) model of pregnant rats to evaluate the effect of vitamin A deficiency in maternal rats on tumor formation in filial rats. METHODS Ten pregnant Wistar rats were divided into 2 groups: (1) VAD group, 6 rats were given nonvitamin A diet from 2 weeks before mating till delivery and (2) normal diet (ND) group, 4 rats were given normal diet. Twenty random neonatal rats from each group were killed on the next day of delivery. The rest neonates were given normal diet for 1 year until killed. Serum levels of vitamin A, morphology of the kidney, incidence of tumor formation, and retinoid X receptor (RXR) alpha messenger RNA (mRNA) expression in renal tissue were assessed for the filial rats. RESULTS Fifty-six and 49 neonatal rats were born for VAD group and ND group, respectively. The detection rate of nephrogenic rests (NRs) from neonates in VAD group (50%) was significantly higher than that in ND group (20%; P < .05). The incidence of nephroblastoma was 13.9% in filial rats of VAD group and 0% for ND group. The detection rate of NRs for filial rats of VAD group (30.6%) was significantly higher than that of ND group (6.9%; P < .01). The expression of RXRalpha mRNA in tumor tissue of the filial rats of VAD group (3.17 +/- 0.15) was significantly lower than that in kidney tissue of ND group (3.58 +/- 0.20; P < .01). CONCLUSION Deficiency in vitamin A for pregnant rats resulted in renal dysplasia, increased NRs, and higher incidence of nephroblastoma.
Collapse
Affiliation(s)
- Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, 201102 Shanghai, PR, China
| | | | | | | | | |
Collapse
|
33
|
Liu X, Lü L, Tao BB, Zhu YC. All-trans retinoic acid inhibits the increases in fibronectin and PAI-1 induced by TGF-beta1 and Ang II in rat mesangial cells. Acta Pharmacol Sin 2008; 29:1035-41. [PMID: 18718172 DOI: 10.1111/j.1745-7254.2008.00849.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM To investigate the effect of all-trans RA (atRA) on the increases in plasminogen activator inhibitor-1 (PAI-1) and fibronectin that are induced by transforming growth factor-beta1 (TGF-beta1) and angiotensin II (Ang II) in cultured rat glomerular mesangial cells. METHODS Subconfluent glomerular mesangial cells were serum-starved for 48 h and pretreated with atRA with subsequent stimulation of TGF-beta1 and Ang II. Protein expressions of cell-associated fibronectin and PAI-1 in glomerular mesangial cells were evaluated by Western blot analysis. mRNA expression of RA receptors in glomerular mesangial cells was examined by RT-PCR. RESULTS Retinoic acid receptor-alpha, -gamma (RAR-alpha, -gamma) and retinoid X receptor-alpha, -beta, -gamma (RXR-alpha, -beta, -gamma) mRNA were expressed in rat glomerular mesangial cells. atRA pretreatment effectively reduced fibronectin expression in glomerular mesangial cells stimulated with TGF-beta 1 or Ang II for 48 h. TGF-beta 1 stimulated PAI-1 expression reached a maximum at 5 h. atRA didn't affect the early (5 h) PAI-1 induction by TGF-beta 1, but markedly attenuated the sustained (48 h) PAI-1 induction. atRA also decreased the prolonged effect of Ang II on PAI-1 expression. CONCLUSION These results indicate that atRA inhibits the increases in fibronectin that are induced by TGF-beta1 and Ang II in cultured glomerular mesangial cells. The data also suggest that this effect of atRA is associated with a change in PAI-1 levels.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Medicine of the Ministry of Education, Fudan University Shanghai Medical College, Shanghai 200032, China
| | | | | | | |
Collapse
|
34
|
Retinoic acid utilizes CREB and USF1 in a transcriptional feed-forward loop in order to stimulate MKP1 expression in human immunodeficiency virus-infected podocytes. Mol Cell Biol 2008; 28:5785-94. [PMID: 18625721 DOI: 10.1128/mcb.00245-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef-induced podocyte proliferation and dedifferentiation via mitogen-activated protein kinase 1,2 (MAPK1,2) activation plays a role in human immunodeficiency virus (HIV) nephropathy pathogenesis. All-trans retinoic acid (atRA) reverses the HIV-induced podocyte phenotype by activating cyclic AMP (cAMP)/protein kinase A (PKA) and inhibiting MAPK1,2. Here we show that atRA, through cAMP and PKA, triggers a feed-forward loop involving CREB and USF1 to induce biphasic stimulation of MKP1. atRA stimulated CREB and USF1 binding to the MKP1 gene promoter, as shown by gel shifting and chromatin immunoprecipitation assays. CREB directly mediated the early phase of atRA-induced MKP1 stimulation; whereas the later phase was mediated by CREB indirectly through induction of USF1. These findings were confirmed by a reporter gene assay using the MKP1 promoter with mutation of CRE or Ebox binding sites. Consistent with these findings, the biological effects of atRA on podocytes were inhibited by silencing either MKP1, CREB, or USF1 with small interfering RNA. atRA also induced CREB phosphorylation and MKP1 expression and reduced MAPK1,2 phosphorylation in kidneys of HIV type 1-infected transgenic mice. We conclude that atRA induces sustained activation of MKP1 to suppress Nef-induced activation of the Src-MAPK1,2 pathway, thus returning the podocyte to a more differentiated state. The mechanism involves a feed-forward loop where activation of one transcription factor (TF) (CREB) leads to induction of a second TF (USF1).
Collapse
|
35
|
He JC, Lu TC, Fleet M, Sunamoto M, Husain M, Fang W, Neves S, Chen Y, Shankland S, Iyengar R, Klotman PE. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J Am Soc Nephrol 2006; 18:93-102. [PMID: 17182884 PMCID: PMC3197239 DOI: 10.1681/asn.2006070727] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HIV-associated nephropathy is characterized by renal podocyte proliferation and dedifferentiation. This study found that all-trans retinoic acid (atRA) reverses the effects of HIV-1 infection in podocytes. Treatment with atRA reduced cell proliferation rate by causing G1 arrest and restored the expression of the differentiation markers (synaptopodin, nephrin, podocin, and WT-1) in HIV-1-infected podocytes. It is interesting that both atRA and 9-cis RA increased intracellular cAMP levels in podocytes. Podocytes expressed most isoforms of retinoic acid receptors (RAR) and retinoid X receptors (RXR) with the exception of RXRgamma. RARalpha antagonists blocked atRA-induced cAMP production and its antiproliferative and prodifferentiation effects on podocytes, suggesting that RARalpha is required. For determination of the effect of increased intracellular cAMP on HIV-infected podocytes, cells were stimulated with either forskolin or 8-bromo-cAMP. Both compounds inhibited cell proliferation significantly and restored synaptopodin expression in HIV-infected podocytes. The effects of atRA were abolished by Rp-cAMP, an inhibitor of the cAMP/protein kinase A pathway and were enhanced by rolipram, an inhibitor of phosphodiesterase 4, suggesting that the antiproliferative and prodifferentiation effects of atRA on HIV-infected podocytes are cAMP dependent. Furthermore, both atRA and forskolin suppressed HIV-induced mitogen-activated protein kinase 1 and 2 and Stat3 phosphorylation. In vivo, atRA reduced proteinuria, cell proliferation, and glomerulosclerosis in HIV-1-transgenic mice. These findings suggest that atRA reverses the abnormal phenotype in HIV-1-infected podocytes by stimulating RARalpha-mediated intracellular cAMP production. These results demonstrate the mechanism by which atRA reverses the proliferation of podocytes that is induced by HIV-1.
Collapse
Affiliation(s)
- John Cijiang He
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamauchi K, Takano Y, Kasai A, Hayakawa K, Hiramatsu N, Enomoto N, Yao J, Kitamura M. Screening and identification of substances that regulate nephrin gene expression using engineered reporter podocytes. Kidney Int 2006; 70:892-900. [PMID: 16820792 DOI: 10.1038/sj.ki.5001625] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Downregulation of nephrin in podocytes leads to development of proteinuria in human and experimental kidney diseases. However, little is understood about pathophysiologic substances that regulate nephrin expression. In this report, we established conditionally immortalized reporter podocytes REPON for sensitive, continuous monitoring of nephrin gene expression. A murine podocyte cell line harboring a temperature-sensitive simian virus 40 large T antigen was stably transfected with a gene encoding secreted alkaline phosphatase (SEAP) under the control of the 5.4 or 8.3 kb nephrin gene promoter. The established reporter cells REPON5.4 and REPON8.3 were exposed to various pathophysiologic substances, and culture media were subjected to SEAP assay to identify regulators of nephrin gene expression. Among the bioactive substances tested, three physiological ligands of nuclear receptors including all-trans-retinoic acid, 1,25-dihydroxyvitamin D3, and dexamethasone significantly activated the nephrin gene promoter in a dose-dependent manner. These effects were observed in both REPON5.4 and REPON8.3 and were associated with upregulation of nephrin mRNA. The effects of these substances were synergistic, and the maximum effect was observed by combination of three agents. In contrast, inflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha as well as phorbol ester significantly downregulated the activity of the nephrin promoter as well as nephrin gene expression. These results elucidated the bidirectional regulation of nephrin by distinct pathophysiologic substances and may provide molecular bases for explaining how proteinuria is induced under pathologic situations and why some ligands for nuclear receptors have the anti-proteinuric potential.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Among factors related to disturbed calcium-phosphate metabolism in chronic kidney disease, the following must be mainly considered as potential culprits in the progression of renal dysfunction: hyperphosphatemia, hyperparathyroidism, lack of active vitamin D, and possibly excess of the phosphaturic hormone FGF 23. Early experimental work suggested a parathyroid hormone (PTH)-independent beneficial role of phosphate restriction on progression in rats (animals with physiologic hyperphosphatemia), so that the generalization of the data is uncertain. Recent observational studies also found a correlation between S-phosphate and progression, but it remains uncertain whether the relationship is causal. There is very little direct experimental or clinical evidence for a role of PTH in accelerating progression, although the PTH1 receptor is expressed in podocytes and PTH affects podocyte function (i.e., Kf). It is undoubtedly a candidate that requires more sophisticated investigation. Recently, it has been shown that progression is significantly attenuated by calcimimetics (and equally by parathyroidectomy), but it is currently impossible to exclude a confounding effect of lower blood pressure values. The most solid evidence for an impact on progression exists for active vitamin D. In the past, it was widely assumed that vitamin D was "nephrotoxic." In retrospect, nephrotoxicity was the result of hypercalcemia. Recent evidence is overwhelming that 1,25(OH)2D3 and its analogues attenuate progression in noninflammatory and inflammatory models of chronic kidney disease. The main target cells identified so far are podocytes and mesangial cells. It is currently unknown whether the novel phosphaturic hormones have an impact on progression.
Collapse
Affiliation(s)
- Eberhard Ritz
- Department of Internal Medicine, Ruperto Carola University, Heidelberg, Germany.
| | | | | |
Collapse
|
38
|
Nelson PJ, Shankland SJ. Therapeutics in renal disease: the road ahead for antiproliferative targets. Nephron Clin Pract 2005; 103:e6-15. [PMID: 16340240 PMCID: PMC1440889 DOI: 10.1159/000090138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Discovery into the molecular basis of renal disease is occurring at an unprecedented rate. With the advent of the NIH Roadmap, there is a greater expectation of translating this knowledge into new treatments. Here, we review the therapeutic strategy to preserve renal function in proliferative renal diseases by directly inhibiting the mitogenic pathways within renal parenchymal cells that promote G0 to G1/S cell-cycle phase progression. Reductionist methodologies have identified several antiproliferative molecular targets, and promising preclinical testing of leading small-molecule drugs to modulate these targets has now led to landmark clinical trials. Yet, this advancement into targeted therapy highlights important differences between the therapeutic goals of molecular nephrology versus molecular oncology and, by extension, the poorly understood role of alternative target activity in drug efficacy. Systems research to clarify these issues should accelerate the development of this promising therapeutic strategy.
Collapse
Affiliation(s)
- Peter J Nelson
- Division of Nephrology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
39
|
Wen X, Li Y, Hu K, Dai C, Liu Y. Hepatocyte growth factor receptor signaling mediates the anti-fibrotic action of 9-cis-retinoic acid in glomerular mesangial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:947-957. [PMID: 16192631 PMCID: PMC1603682 DOI: 10.1016/s0002-9440(10)61185-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2005] [Indexed: 01/03/2023]
Abstract
Retinoic acid (RA), an active metabolite of vitamin A, plays a critical role in the regulation of cell proliferation, survival, and differentiation. RA action is primarily mediated through its receptors, ligand-dependent transcription factors of the steroid/thyroid/vitamin D nuclear receptor superfamily. Recent studies indicate that administration of RA mitigates progressive kidney disease, underscoring its renoprotective potential. In this study, we investigated the effects of 9-cis-RA on glomerular mesangial cell activation induced by transforming growth factor (TGF)-beta1 using an in vitro cell culture system. In human mesangial cells 9-cis-RA suppressed TGF-beta1-induced alpha-smooth muscle actin, fibronectin, and plasminogen activator inhibitor-1 expression, but it did not significantly affect cell proliferation and survival. Interestingly, 9-cis-RA induced hepatocyte growth factor (HGF) mRNA expression and protein secretion, stimulated HGF promoter activity, and activated c-met receptor phosphorylation. Similar to HGF, 9-cis-RA induced expression of the Smad transcriptional co-repressor TGIF in mesangial cells. Overexpression of exogenous TGIF by transfection or 9-cis-RA treatment suppressed trans-activation of the TGF-beta-responsive promoter. Moreover, conditional ablation of the c-met receptor completely abolished the anti-fibrotic effect of 9-cis-RA and abrogated TGIF induction. Collectively, these results indicate that 9-cis-RA possesses anti-fibrotic ability by antagonizing TGF-beta1 in mesangial cells and that 9-cis-RA activity is likely mediated through a mechanism dependent on HGF/c-met receptor signaling.
Collapse
Affiliation(s)
- Xiaoyan Wen
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Chiang WC, Teng CM, Lin SL, Chen YM, Tsai TJ, Hsieh BS. YC-1-inhibited proliferation of rat mesangial cells through suppression of cyclin D1-independent of cGMP pathway and partially reversed by p38 MAPK inhibitor. Eur J Pharmacol 2005; 517:1-10. [PMID: 15950964 DOI: 10.1016/j.ejphar.2005.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the effect of 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1), a guanylate cyclase activator, upon the proliferation of rat mesangial cells and its underlying mechanism. YC-1 inhibited cell proliferation and DNA synthesis in a dose- and time-dependent manner. Flow cytometry cell-cycle studies revealed that YC-1 prevented the entry of cells from G1 into S phase. The expression of cyclin D1 and the kinase activity of cyclin D1/cyclin-dependent kinase (CDK)4 were lower within YC-1-treated cells, revealed by Western blotting, Northern blotting and kinase assays. YC-1 did not increase the intracellular cGMP concentration in mesangial cells. Inhibitors of soluble guanylate cyclase, protein kinase G, or protein kinase A also did not reverse the inhibitory effect elicited by YC-1, while co-treatment with p38 mitogen-activated protein kinase (MAPK) inhibitor could partially reverse the suppressive effect. YC-1 inhibited proliferation of mesangial cells and induced cell-cycle arrest by the reduction of cyclin D1 synthesis and cyclin D1/CDK4 kinase activity. This effect acts partially through p38 MAPK signal transduction activation and is independent of cGMP-signaling pathways.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Adams J, Kiss E, Arroyo ABV, Bonrouhi M, Sun Q, Li Z, Gretz N, Schnitger A, Zouboulis CC, Wiesel M, Wagner J, Nelson PJ, Gröne HJ. 13-cis retinoic acid inhibits development and progression of chronic allograft nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:285-98. [PMID: 15972972 PMCID: PMC1603446 DOI: 10.1016/s0002-9440(10)62973-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic allograft nephropathy is characterized by chronic inflammation and fibrosis. Because retinoids exhibit anti-proliferative, anti-inflammatory, and anti-fibrotic functions, the effects of low and high doses of 13-cis-retinoic acid (13cRA) were studied in a chronic Fisher344-->Lewis transplantation model. In 13cRA animals, independent of dose (2 or 20 mg/kg body weight/day) and start (0 or 14 days after transplantation) of 13cRA administration, serum creatinine was significantly lower and chronic rejection damage was dramatically reduced, including subendothelial fibrosis of preglomerular vessels and chronic tubulointerstitial damage. The number of infiltrating mononuclear cells and their proliferative activity were significantly diminished. The mRNA expression of chemokines (MCP-1/CCL2, MIP-1alpha/CCL3, IP-10/CXCL10, RANTES/CCL5) and proteins associated with fibrosis (plasminogen activator inhibitor-1, transforming growth factor-beta1, and collagens I and III) were strikingly lower in treated allografts. In vitro, activated peritoneal macrophages of 13cRA-treated rats showed a pronounced decrease in protein secretion of inflammatory cytokines (eg, tumor necrosis factor-alpha, interleukin-6). The suppression of the proinflammatory chemokine RANTES/CCL5 x 13cRA in fibroblasts could be mapped to a promoter module comprising IRF-1 and nuclear factor-kappaB binding elements, but direct binding of retinoid receptors to promoter elements could be excluded. In summary, 13cRA acted as a potent immunosuppressive and anti-fibrotic agent able to prevent and inhibit progression of chronic allograft nephropathy.
Collapse
Affiliation(s)
- Judith Adams
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Han SY, So GA, Jee YH, Han KH, Kang YS, Kim HK, Kang SW, Han DS, Han JY, Cha DR. Effect of retinoic acid in experimental diabetic nephropathy. Immunol Cell Biol 2005; 82:568-76. [PMID: 15550114 DOI: 10.1111/j.1440-1711.2004.01287.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the pathogenetic mechanism of diabetic nephropathy has not been elucidated, an inflammatory mechanism has been suggested to contribute to its progression. Monocyte chemoattractant peptide (MCP)-1 attracts macrophages and T cells, and ultimately injures renal tissue. In early diabetic nephropathy, urinary excretion of MCP-1 was elevated, and increased as renal damage became more severe. Podocytes are expected to have an inflammatory role in diabetic nephropathy, as the surface expression of chemokine receptors such as CCR and CXCR on these cells has been recently reported. Although retinoid (retinal), a known anti-inflammatory agent, has been reported to be beneficial in some experimental models of renal disease, it has not been determined to prevent disease progression in diabetic nephropathy. We investigated the effects of all-trans retinoic acid on the production of MCP-1 under high glucose conditions in cultured mouse podocytes. We also evaluated whether all-trans retinoic acid inhibits inflammatory changes and improves renal function during the early stages of diabetic nephropathy in streptozotocin-induced diabetic rats. In cultured podocytes, high glucose stimuli rapidly upregulated the MCP-1 mRNA transcript and protein release. Treatment with retinoic acid tended to suppress the MCP-1 gene transcript, and significantly inhibited MCP-1 protein synthesis induced by high glucose stimulation. Urinary protein excretion and the urinary albumin : creatinine ratio (ACR) were significantly higher in diabetic rats 4 weeks after the induction of diabetes mellitus compared with control rats, and retinoic acid treatment markedly decreased both proteinuria and urinary ACR (proteinuria: 1.25+/-0.69 vs 0.78+/-0.72 mg/mgCr, P=0.056; urinary ACR: 0.47+/-0.25 vs 0.21+/-0.06 mg/mgCr, P=0.088). Urinary excretion of MCP-1 was rapidly increased 2 days after induction of diabetes mellitus in diabetic rats, and further increased until rats were 4 weeks of age, compared with control rats. Retinoic acid treatment resulted in 30% reduction of the urinary level of MCP-1 compared with vehicle-treated diabetic rats (119.3+/-74.2 vs 78.1+/-62.7 pg/mgCr, P=0.078). Immunohistochemistry revealed a significant increase in staining for MCP-1 and anti-monocyte/macrophage (ED-1) protein in the diabetic kidney, and retinoic acid treatment significantly suppressed intrarenal MCP-1 and ED-1 protein synthesis. In conclusion, podocytes are involved in the inflammatory reaction under diabetic circumstances, and these reactions were suppressed by retinoic acid. Retinoic acid also suppressed inflammatory changes in the diabetic rat kidney, and decreased proteinuria in diabetic rats. These results suggest that retinoic acid may have renoprotective effects in the early stages of diabetic nephropathy through an anti-inflammatory activity.
Collapse
Affiliation(s)
- Sang-Youb Han
- Department of Internal Medicine, Inje University, Ilsan-Gu, Koyang City, Kyungki-Do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamauchi T, Ishibashi A, Shikata K, Tokuhara N, Seino KI, Kobayashi S, Nagai M. Effect of E6060 [4-{5-[7-fluoro-4-(trifluoromethyl)benzo[b]furan-2-yl]-1H-2-pyrrolyl}benzoic acid], a novel subtype-selective retinoid, on lupus-like nephritis in female (NZBxNZW)F1 mice. J Pharmacol Exp Ther 2005; 312:938-44. [PMID: 15615868 DOI: 10.1124/jpet.104.075598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disease amelioration by retinoids in various nephritic models has been reported from either immunological or pathophysiologic viewpoints. It has also been reported that retinoids exert immunosuppressive effects in a retinoic acid receptor (RAR)-alpha-dependent manner. In particular, synthetic retinoid agonists with selectivity to RAR-alpha have been reported to have a remarkable disease-ameliorating effect in some immune disease models via their potent immunosuppressive activities; however, there has been no report in which the effect of RAR-alpha-selective agonists in the nephritic models was examined. In this report, we investigated the effect of a newly synthesized RAR-alpha-selective retinoid agonist, E6060 [4-{5-[7-fluoro-4-(trifluoromethyl)benzo[b]furan-2-yl]-1H-2-pyrrolyl}benzoic acid], on the disease progression in a murine lupus nephritis model. Female (NZBxNZW)F1 mice were prophylactically treated with E6060 from 5 months of age, and their nephritic (proteinuria, blood urea nitrogen) and immunological parameters (serum anti-DNA autoantibodies and total serum immunoglobulins) were monitored with age up to 10 months old. E6060 at 0.03 and 0.1 mg/kg (once daily, p.o.) significantly improved survival rate and prevented the development of proteinuria in (NZBxNZW)F1 mice. Anti-DNA autoantibodies and total serum IgG were also significantly reduced in the E6060-treated mice. Among IgG isotypes, IgG2a was substantially reduced by E6060 treatment, indicating reduced T helper 1 responses in E6060-treated mice. In accordance with this possibility, elevation of serum interleukin-12 (p40) in old female (NZBxNZW)F1 mice was significantly inhibited by E6060 treatment. Our data suggest that the RAR-alpha-selective retinoid E6060 is a promising candidate of new remedy for lupus nephritis in systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Toshihiko Yamauchi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba Science City, Ibaraki, 300-2635, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Chiara M, Menegatti E, Di Simone D, Davit A, Bellis D, Sferch D, De Rosa G, Giachino O, Sena LM, Roccatello D. Mycophenolate mofetil and roscovitine decrease cyclin expression and increase p27(kip1) expression in anti Thy1 mesangial proliferative nephritis. Clin Exp Immunol 2005; 139:225-35. [PMID: 15654821 PMCID: PMC1809292 DOI: 10.1111/j.1365-2249.2004.02684.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2004] [Indexed: 11/29/2022] Open
Abstract
The response of mesangial cells to a phlogistic challenge includes cell proliferation and mesangial matrix expansion. Cell proliferation is a highly regulated process which includes enhancing factors such as cyclins, cyclin dependent kinases, and inhibitory proteins, such as p27(kip1). The aim of the study was to evaluate the effects of Mycophenolate mofetil (MMF), and roscovitine (R), on the cell cycle regulatory system when administered in the florid phase of the experimental model of mesangial proliferative nephritis induced by the anti Thy-1 antigen monoclonal antibody. Three days after nephritis induction, different groups were given MMF and R. Rats treated with MMF or R showed a slight decrease in mesangial proliferation and matrix expansion. Samples of cortical tissue were tested by 'real time' RT-PCR in order to study gene expression of cyclins B, D1, D2, D3, E, and the cyclin inhibitor p27(kip1). Localization of mRNA was evaluated by in situ hybridization. Real time RT-PCR analysis showed a significant decrease in cyclins B, D1, D2, and D3 in rats treated with either MMF or R as compared to controls. Both MMF and R treatment induced a significant increase in p27(kip1) mRNA expression. In situ hybridization showed a mesangial-endothelial expression pattern in glomeruli. The number of labelled cells per glomerulus, the number of positive glomeruli in each examined slide as well as cyclin D2 and D3 signal intensity was significantly lower in rats treated with MMF or R as compared to controls, whereas MMF or R treatment up-regulated p27(kip1) mRNA expression. Immunohistochemical evaluation of p27(kip1) aimed to examine the influence of MMF or R on protein expression confirmed up-regulation.
Collapse
Affiliation(s)
- M Chiara
- Cattedre e Scuola di Specializzazione di Patologia Clinica, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xu Q, Lucio-Cazana J, Kitamura M, Ruan X, Fine LG, Norman JT. Retinoids in nephrology: Promises and pitfalls. Kidney Int 2004; 66:2119-31. [PMID: 15569301 DOI: 10.1111/j.1523-1755.2004.66002.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Retinoids, a family of vitamin A metabolites or analogs, play an important role in regulating cell proliferation, differentiation, and apoptosis. METHODS The biological importance of retinoids in the kidney and the potential of retinoids in the treatment of renal diseases are reviewed. RESULTS Vitamin A deficiency and mutations of retinoid nuclear receptors cause abnormalities in fetal kidneys, which might predispose to adult diseases such as hypertension. Further, the therapeutic value of retinoids in animal models of kidney diseases, such as lupus nephritis, puromycin aminonucleoside nephrosis, anti-glomerular basement membrane nephritis, mesangioproliferative nephritis, and acute renal allograft rejection has been unveiled recently. Retinoids target mesangial cells, podocytes, tubular epithelial cells, interstitial fibroblasts, as well as lymphocytes and macrophages. The anti-inflammation, anti-coagulation effects, and the proliferation- and immunity-modulating actions of retinoids, have been widely appreciated. Our recent in vitro data revealed a direct antifibrotic effect and a cytoprotective effect of retinoids in various renal cell types. In animal studies, the adverse effects of retinoids are generally minimal; however, the clinical use of retinoids in other diseases points to some major side effects. In addition, in vitro, retinoids can induce lipid accumulation in smooth muscle cells and macrophages and increase expression of some proinflammatory molecules, indicating that their clinical toxicity profile in the setting of renal diseases needs to be better understood. CONCLUSION Retinoids not only are important in renal development, but also show promise as a new generation of renal medication and deserve to be tested in clinical trials to clarify their full potential.
Collapse
Affiliation(s)
- Qihe Xu
- Department of Medicine, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Pérez de Lema G, Lucio-Cazaña FJ, Molina A, Luckow B, Schmid H, de Wit C, Moreno-Manzano V, Banas B, Mampaso F, Schlöndorff D. Retinoic acid treatment protects MRL/lpr lupus mice from the development of glomerular disease. Kidney Int 2004; 66:1018-28. [PMID: 15327395 DOI: 10.1111/j.1523-1755.2004.00850.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Retinoic acid (tRA) is an active metabolite of vitamin A with potent anti-inflammatory properties. We analyzed the effects of tRA on the development of lupus nephritis in MRL/lpr mice. METHODS MRL/lpr mice received chow supplemented with vehicle or tRA (daily 10 mg/kg) from 8 to 14 weeks until their sacrifice. MRL/wt mice served as an additional control. RESULTS tRA-treated MRL/lpr mice showed reduced lymphoadenopathy and splenomegaly as compared to vehicle-treated controls. Treatment reduced proteinuria to almost basal levels. Plasma IgG and anti-DNA antibodies increased comparably in both vehicle and tRA-treated mice. Vehicle-treated mice showed characteristic renal lesions. In contrast tRA-treated mice showed almost normal glomerular histology with a pronounced reduction in endocapillary cell proliferation. T-cell and macrophage infiltrates were reduced after tRA treatment within glomeruli and interstitium as compared to vehicle-treated animals. In spite of this, immune complex and complement deposition were comparable in both groups. Adoptively transferred T cells from vehicle-treated to tRA-treated MRL/lpr mice did not induce renal lesions or proteinuria. These beneficial effects of tRA treatment were associated with reduced renal expression of chemokines and inflammatory cytokines. Surprisingly, renal transforming growth factor-beta (TGF-beta) mRNA levels of tRA-treated mice were elevated, possibly indicating that TGF-beta acts as an anti-inflammatory signal in this lupus model. CONCLUSION tRA treatment reduces lymphoproliferation and glomerulonephritis in MRL/lpr mice. This occurs in spite of unaltered anti-DNA titers and glomerular immune complex deposition, and cannot be overcome by T-cell transfer from nephritic MRL/lpr mice.
Collapse
|
47
|
Liebler S, Uberschär B, Kübert H, Brems S, Schnitger A, Tsukada M, Zouboulis CC, Ritz E, Wagner J. The renal retinoid system: time-dependent activation in experimental glomerulonephritis. Am J Physiol Renal Physiol 2004; 286:F458-65. [PMID: 14583434 DOI: 10.1152/ajprenal.00173.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoids reduce renal damage in rat experimental glomerulonephritis. It is unknown, however, how local and systemic retinoid pathways respond to renal injury. We used a rat model of artificially induced acute anti-Thy1.1-nephritis (THY-GN). We examined the extrarenal and glomerular expression of the retinol (RoDH) and retinal (RalDH) dehydrogenases 1 and 2 as well as the expression of the retinoic acid (RAR) and retinoid X (RXR) receptor subtypes α, β, and γ. Furthermore, we investigated serum and glomerular retinoid concentration patterns. On days 3, 7, and 14, we compared nonnephritic rats (control group; CON) to THY-GN rats with respect to systolic blood pressure and glomerular cell count per cross section. Systolic blood pressure and glomerular cell count were significantly higher in THY-GN rats on days 7 and 14 ( P < 0.001). We found a 60% reduction in expression levels for retinoid receptors and dehydrogenases in nephritic glomeruli on day 3, but a threefold increase on day 7 ( P < 0.001 vs. CON). The same applies to RARα protein. Hepatic expression of retinoid receptors was not influenced. On day 14, glomerular expression levels for retinoid receptors and retinoid-metabolizing enzymes had returned to a normal level, glomerular cell count being still increased. Administering 13- cis retinoic acid (isotretinoin) lowered blood pressure and glomerular cell count in nephritic rats but failed to influence the glomerular expression of retinoid receptors or retinoid-metabolizing enzymes. Our data document a stimulation of glomerular retinoid-synthesizing enzymes and expression of retinoid receptors in the early repair phase of THY-GN, suggesting activation of this system in acute renal disease.
Collapse
Affiliation(s)
- Sabine Liebler
- Department of Nephrology, University Hospital, University of Heidelberg, Bergheimer Strasse 56a, D-69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schaier M, Liebler S, Schade K, Shimizu F, Kawachi H, Grone HJ, Chandraratna R, Ritz E, Wagner J. Retinoic acid receptor alpha and retinoid X receptor specific agonists reduce renal injury in established chronic glomerulonephritis of the rat. J Mol Med (Berl) 2004; 82:116-25. [PMID: 14712350 DOI: 10.1007/s00109-003-0510-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 10/30/2003] [Indexed: 10/26/2022]
Abstract
Retinoids, derivatives of vitamin A, inhibit mesangial cell proliferation, glomerular inflammation, and extracellular matrix deposition in acute anti-Thy1.1 glomerulonephritis (Thy-GN) of the rat. We examined a model, chronic mesangioproliferative Thy-GN (MoAb 1-22-3), which is more akin to human disease. Treatment started on day 23 when Thy-GN had already been established. Nonnephritic control and Thy-GN rats were treated orally for 67 days with vehicle or with two doses of either the retinoic acid receptor alpha-specific agonist AGN 195183 (RARalpha agonist) or the retinoid X receptor specific agonist AGN 194204 (RXR agonist). Doses of either the RARalpha or the RXR agonist significantly reduced albuminuria and normalized blood pressure during the course of treatment. The glomerulosclerosis index, glomerular cell and interstitial cell counts, and area of the interstitial space were significantly lower in nephritic rats treated with the RARalpha agonist or RXR agonist than with vehicle. The RARalpha and RXR agonist significantly reduced the infiltration of the glomerulus by macrophages. The increase in glomerular TGFbeta1 and prepro-ET(1) gene expression in vehicle-treated nephritic rats was significantly attenuated by RARalpha or RXR agonists. Glomerular expression of RXRalpha and RARalpha receptor mRNA was significantly greater in vehicle-treated nephritic rats than in nonnephritic controls. Treatment with RARalpha or RXR agonists tended to normalize retinoid-receptor gene expression. Our data indicate that both RARalpha agonists and RXR agonists reduce renal damage in rats with established chronic glomerulonephritis. Receptor-specific retinoids may provide a novel therapeutic approach for the treatment of chronic glomerulonephritis.
Collapse
MESH Headings
- Albuminuria/metabolism
- Animals
- Biomarkers/analysis
- Blood Pressure/drug effects
- Chronic Disease
- Creatinine/metabolism
- Creatinine/urine
- Fatty Acids, Unsaturated/therapeutic use
- Gene Expression/drug effects
- Glomerulonephritis, Membranoproliferative/drug therapy
- Glomerulonephritis, Membranoproliferative/metabolism
- Glomerulonephritis, Membranoproliferative/pathology
- Isoantibodies/toxicity
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/therapy
- Kidney Glomerulus/pathology
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Retinoids/metabolism
- Retinoids/therapeutic use
- Tetrahydronaphthalenes/pharmacology
- Tetrahydronaphthalenes/therapeutic use
- Transcription Factors/agonists
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, University Hospital, University of Heidelberg, Bergheimer Strasse 56a, 69115, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schaier M, Jocks T, Grone HJ, Ritz E, Wagner J. Retinoid agonist isotretinoin ameliorates obstructive renal injury. J Urol 2003; 170:1398-402. [PMID: 14501777 DOI: 10.1097/01.ju.0000084620.64255.b3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Interstitial fibrosis is a major cause of end stage renal failure. Retinoids, which are involved in tissue repair and fibrosis, inhibit inflammatory and proliferative pathways. Therefore, we studied the dose dependent effects of the retinoid receptor agonist isotretinoin 13-cis retinoic acid in the unilateral ureteral obstruction model (UUO). MATERIALS AND METHODS Sham operated control rats were compared with UUO rats treated with vehicle (UUO-Veh), or low (5 mg/kg body weight (UUO-LD) or high (25 mg/kg) (UUO-HD) dose isotretinoin. Kidneys were evaluated using reverse transcriptase-polymerase chain reaction and immunohistology 7 days after UUO. Renal injury and fibrosis were quantified by immunostaining and expression measurements of the genes involved in renal fibrosis. RESULTS In UUO-Veh kidneys the interstitial area was expanded 5-fold but only 3-fold in UUO-HD and 3.5-fold in UUO-LD rats. Interstitial cell counts were 3-fold higher in UUO-Veh rats but significantly less in UUO-HD or UUO-LD animals. Tubular and interstitial cell proliferation was significantly higher in UUO-Veh rats compared with sham operated control plus vehicle animals but less so in UUO-LD and UUO-HD rats. In UUO-Veh rats interstitial infiltration by monocytes/macrophages was higher compared with unobstructed controls. It was significantly less after isotretinoin treatment. In UUO-Veh rats mRNA for procollagen I, and transforming growth factor-beta1 and II receptor was significantly increased. It was significantly less after treatment with isotretinoin. Fibronectin and collagen I immunostaining was also decreased by isotretinoin. CONCLUSIONS Since isotretinoin limits proliferation, inflammation and fibrosis after UUO, retinoids should be further investigated as potentially promising therapeutic agents for renal disease.
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, University Hospital Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
50
|
Kiss E, Adams J, Gröne HJ, Wagner J. Isotretinoin ameliorates renal damage in experimental acute renal allograft rejection. Transplantation 2003; 76:480-9. [PMID: 12923432 DOI: 10.1097/01.tp.0000066354.31050.5a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Retinoic acids, derivatives of vitamin A, act through retinoid receptors that are expressed in renal and immunocompetent cells (B and T cells; monocytes and macrophages). In experimental models of glomerulonephritis and renal interstitial disease, retinoids were shown to reduce both glomerular and tubular damage and inflammation. We therefore examined whether retinoids reduce cellular rejection and renal damage in a model of acute renal allograft rejection. METHODS Kidneys of Fisher rats (F344, RT11v1) were orthotopically grafted to Lewis rats (RT11). Animals were killed 7 or 14 days after transplantation. Rats undergoing transplantation were treated with isotretinoin (13 cis-retinoic acid) at a low dose of 2 mg/kg body weight per day (LD isotretinoin) or at a high dose of 20 mg/kg body weight per day (HD isotretinoin) or with vehicle. RESULTS At day 14, albuminuria was reduced by approximately 70% (vehicle: 1.1+/-0.2 mg/24 hr vs. LD isotretinoin: 0.32+/-0.1 mg/24 hr; P<0.001). At days 7 and 14 serum creatinine levels were significantly higher in the vehicle-treated group than in the LD and HD isotretinoin-treated rats (P<0.05). Both LD and HD isotretinoin significantly reduced acute vascular injury compared with vehicle-treated rats (score at day 14: LD isotretinoin 20.1+/-5.1 vs. vehicle 57.8+/-9.9, P<0.01), acute glomerular injury (score: LD isotretinoin 6.8+/-1.0 vs. vehicle 10.6+/-0.9 P<0.05), and the number of glomerular monocytes and macrophages and cytotoxic T cells. Isotretinoin also significantly lessened tubulointerstitial damage, tubulointerstitial cell proliferation, and the number of cells infiltrating the tubulointerstitium. CONCLUSIONS Isotretinoin significantly ameliorated functional, vascular, glomerular, and tubulointerstitial lesions in acute graft rejection. Although the current study did not definitely eliminate the possibility that isotretinoin only delayed the rejection process, retinoic acid derivatives may provide a new approach in the treatment of acute rejection injury.
Collapse
Affiliation(s)
- Eva Kiss
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|