1
|
Leszczynski EC, Schwartz NE, McPeek AC, Currie KD, Ferguson DP, Garland T. Selectively breeding for high voluntary physical activity in female mice does not bestow inherent characteristics that resemble eccentric remodeling of the heart, but the mini-muscle phenotype does. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:205-212. [PMID: 37753423 PMCID: PMC10518799 DOI: 10.1016/j.smhs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p = 0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p = 0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p = 0.000 6), fractional shortening percentage (p < 0.000 1), and ventricular mass at dissection (p < 0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V ˙ O2max.
Collapse
Affiliation(s)
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Ashley C. McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | | | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
2
|
Sun S, Ma S, Cai Y, Wang S, Ren J, Yang Y, Ping J, Wang X, Zhang Y, Yan H, Li W, Esteban CR, Yu Y, Liu F, Izpisua Belmonte JC, Zhang W, Qu J, Liu GH. A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body. Innovation (N Y) 2023; 4:100380. [PMID: 36747595 PMCID: PMC9898793 DOI: 10.1016/j.xinn.2023.100380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Exercise benefits the whole organism, yet, how tissues across the body orchestrally respond to exercise remains enigmatic. Here, in young and old mice, with or without exercise, and exposed to infectious injury, we characterized the phenotypic and molecular adaptations to a 12-month exercise across 14 tissues/organs at single-cell resolution. Overall, exercise protects tissues from infectious injury, although more effectively in young animals, and benefits aged individuals in terms of inflammaging suppression and tissue rejuvenation, with structural improvement in the central nervous system and systemic vasculature being the most prominent. In vascular endothelial cells, we found that readjusting the rhythmic machinery via the core circadian clock protein BMAL1 delayed senescence and facilitated recovery from infectious damage, recapitulating the beneficial effects of exercise. Our study underscores the effect of exercise in reconstituting the youthful circadian clock network and provides a foundation for further investigating the interplay between exercise, aging, and immune challenges across the whole organism.
Collapse
Affiliation(s)
- Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Ping
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuebao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | - Yan Yu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
3
|
Rai M, Curley M, Coleman Z, Demontis F. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell 2022; 21:e13603. [PMID: 35349763 PMCID: PMC9124314 DOI: 10.1111/acel.13603] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Protein quality control ensures the degradation of damaged and misfolded proteins. Derangement of proteostasis is a primary cause of aging and age-associated diseases. The ubiquitin-proteasome and autophagy-lysosome play key roles in proteostasis but, in addition to these systems, the human genome encodes for ~600 proteases, also known as peptidases. Here, we examine the role of proteases in aging and age-related neurodegeneration. Proteases are present across cell compartments, including the extracellular space, and their substrates encompass cellular constituents, proteins with signaling functions, and misfolded proteins. Proteolytic processing by proteases can lead to changes in the activity and localization of substrates or to their degradation. Proteases cooperate with the autophagy-lysosome and ubiquitin-proteasome systems but also have independent proteolytic roles that impact all hallmarks of cellular aging. Specifically, proteases regulate mitochondrial function, DNA damage repair, cellular senescence, nutrient sensing, stem cell properties and regeneration, protein quality control and stress responses, and intercellular signaling. The capacity of proteases to regulate cellular functions translates into important roles in preserving tissue homeostasis during aging. Consequently, proteases influence the onset and progression of age-related pathologies and are important determinants of health span. Specifically, we examine how certain proteases promote the progression of Alzheimer's, Huntington's, and/or Parkinson's disease whereas other proteases protect from neurodegeneration. Mechanistically, cleavage by proteases can lead to the degradation of a pathogenic protein and hence impede disease pathogenesis. Alternatively, proteases can generate substrate byproducts with increased toxicity, which promote disease progression. Altogether, these studies indicate the importance of proteases in aging and age-related neurodegeneration.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Michelle Curley
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Zane Coleman
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Fabio Demontis
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| |
Collapse
|
4
|
Biro PA, Thomas F, Ujvari B, Beckmann C. A novel perspective suggesting high sustained energy expenditure may be net protective against cancer. Evol Med Public Health 2022; 10:170-176. [PMID: 35498120 PMCID: PMC9040660 DOI: 10.1093/emph/eoac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Energy expenditure (EE) is generally viewed as tumorigenic, due to production of reactive oxygen species (ROS) that can damage cells and DNA. On this basis, individuals within a species that sustain high EE should be more likely to develop cancer. Here, we argue the opposite, that high EE may be net protective effect against cancer, despite high ROS production. This is possible because individuals that sustain high EE have a greater energetic capacity (=greater energy acquisition, expenditure and ability to up-regulate output), and can therefore allocate energy to multiple cancer-fighting mechanisms with minimal energetic trade-offs. Our review finds that individuals sustaining high EE have greater antioxidant production, lower oxidative stress, greater immune function and lower cancer incidence. Our hypothesis and literature review suggest that EE may indeed be net protective against cancer, and that individual variation in energetic capacity may be a key mechanism to understand the highly individual nature of cancer risk in contemporary human populations and laboratory animals.
Lay summary The process of expending energy generates reactive oxygen species that can lead to oxidative stress, cell and DNA damage, and the accumulation of this damage is thought to be a major contributor to many ageing related diseases that include cancer. Here, we challenge this view, proposing how and why high energy expenditure (EE) may actually be net protective against cancer, and provide literature support for our hypothesis. We find individuals with high sustained EE have greater energetic capacity and thus can invest more in repair to counter oxidative stress, and more in immune function, both of which reduce cancer risk. Our hypothesis provides a novel mechanism to understand the highly individual nature of cancer, why taller individuals are more at risk, why physically active individuals have lower cancer risk, and why regular exercise can reduce cancer risk.
Collapse
Affiliation(s)
- Peter A Biro
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong 3216, Australia
- Corresponding author. Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong 3216, Australia. Tel: +61 434 8569 921; E-mail:
| | - Frédéric Thomas
- CREEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong 3216, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong 3216, Australia
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
5
|
Han G, Hong SH, Lee SJ, Hong SP, Cho C. Transcriptome Analysis of Testicular Aging in Mice. Cells 2021; 10:2895. [PMID: 34831115 PMCID: PMC8616291 DOI: 10.3390/cells10112895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Male reproductive aging, or andropause, is associated with gradual age-related changes in testicular properties, sperm production, and erectile function. The testis, which is the primary male reproductive organ, produces sperm and androgens. To understand the transcriptional changes underlying male reproductive aging, we performed transcriptome analysis of aging testes in mice. A total of 31,386 mRNAs and 9387 long non-coding RNAs (lncRNAs) were identified in the mouse testes of diverse age groups (3, 6, 12, and 18 months old) by total RNA sequencing. Of them, 1571 mRNAs and 715 lncRNAs exhibited changes in their levels during testicular aging. Most of these aging-related transcripts exhibited slight and continuous expression changes during aging, whereas some (9.6%) showed larger expression changes. The aging-related transcripts could be classified into diverse expression patterns, in which the transcripts changed mainly at 3-6 months or at 12-18 months. Our subsequent in silico analysis provided insight into the potential features of testicular aging-related mRNAs and lncRNAs. We identified testis-specific aging-related transcripts (121 mRNAs and 25 lncRNAs) by comparison with a known testis-specific transcript profile, and then predicted the potential reproduction-related functions of the mRNAs. By selecting transcripts that are altered only between 3 and 18 months, we identified 46 mRNAs and 34 lncRNAs that are stringently related to the terminal stage of male reproductive aging. Some of these mRNAs were related to hormonal regulation. Finally, our in silico analysis of the 34 aging-related lncRNAs revealed that they co-localized with 19 testis-expressed protein-coding genes, 13 of which are considered to show testis-specific or -predominant expression. These nearby genes could be potential targets of cis-regulation by the aging-related lncRNAs. Collectively, our results identify a number of testicular aging-related mRNAs and lncRNAs in mice and provide a basis for the future investigation of these transcripts in the context of aging-associated testicular dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.H.); (S.-H.H.); (S.-J.L.); (S.-P.H.)
| |
Collapse
|
6
|
Pei Z, Yang C, Guo Y, Dong M, Wang F. Effect of different exercise training intensities on age-related cardiac damage in male mice. Aging (Albany NY) 2021; 13:21700-21711. [PMID: 34520392 PMCID: PMC8457595 DOI: 10.18632/aging.203513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Aging is the most important risk factor for cardiovascular diseases. Although exercise is known to be beneficial for the health of aging heart, the optimal exercise training intensity to prevent natural aging-induced cardiac damage has not been defined. In this study, we used 32-week-old male mice and randomly divided them into three groups, namely, untrained (UNT) mice, moderate-intensity exercise training (MET) mice, and high-intensity interval training (HIIT) mice. Mice in the two exercise training groups were subjected to exercise 5 days per week for 24 consecutive weeks. Metabolic characteristics, cardiac function and morphology, myocardial remodeling, myocardial fibrosis (collagen III, α-SMA, and TGF-β), oxidative stress (NRF2, HO-1, SOD, and NOX4), and apoptosis (BAX, Bak, Bcl-2, and Bcl-XL) were analyzed 24 weeks after the different treatments. MET improved cardiac function and reduced myocardial remodeling, myocardial fibrosis, and oxidative stress in the aging heart. MET treatment exerted an anti-apoptotic effect in the heart of the aging mice. Importantly, HIIT did not protect against cardiac damage during the natural aging process. These findings suggest that MET may be one of the main methods to prevent cardiac damage induced by natural aging.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.,School of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Dong
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Huang X, Ouyang Q, Ran M, Zeng B, Deng L, Hu S, Yang M, Li G, Deng T, He M, Li T, Yang H, Zhang G, Zhang H, Zeng C, Wang J. The immune and metabolic changes with age in giant panda blood by combined transcriptome and DNA methylation analysis. Aging (Albany NY) 2020; 12:21777-21797. [PMID: 33188156 PMCID: PMC11623972 DOI: 10.18632/aging.103990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022]
Abstract
Giant panda (Ailuropoda melanoleuca) is an endangered mammalian species. Exploring immune and metabolic changes that occur in giant pandas with age is important for their protection. In this study, we systematically investigated the physiological and biochemical indicators in blood, as well as the transcriptome, and methylation profiles of young, adult, and old giant pandas. The white blood cell (WBC), neutrophil (NEU) counts and hemoglobin (HGB) concentrations increased significantly with age (young to adult), and some indicators related to blood glucose and lipids also changed significantly with age. In the transcriptome analysis, differentially expressed genes (DEGs) were found in comparisons of the young and adult (257), adult and old (20), young and old (744) groups. Separation of the DEGs into eight profiles according to the expression trend using short time-series expression miner (STEM) software revealed that most DEGs were downregulated with age. Functional analysis showed that most DEGs were associated with disease and that these DEGs were also associated with the immune system and metabolism. Furthermore, gene methylation in giant pandas decreased globally with age, and the expression of CCNE1, CD79A, IL1R1, and TCF7 showed a highly negative correlation with their degree of methylation. These results indicate that the giant panda's immune function improves gradually with age (young to adult), and that changes in the methylation profile are involved in the effects of age on immune and metabolic functions. These results have important implications for the understanding and conservation of giant pandas.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingxia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guo Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Tao Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Haidi Yang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Guiquan Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Heming Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
8
|
Hillis DA, Yadgary L, Weinstock GM, Pardo-Manuel de Villena F, Pomp D, Fowler AS, Xu S, Chan F, Garland T. Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics 2020; 216:781-804. [PMID: 32978270 PMCID: PMC7648575 DOI: 10.1534/genetics.120.303668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans and laboratory rodents. In the "High Runner" selection experiment, four replicate lines of Mus domesticus were bred for high voluntary wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic ability, including Sorl1, Dach1, and Cdh10 Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing candidate genes that may explain phenotypic changes observed in previous studies.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California 92521
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Alexandra S Fowler
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| |
Collapse
|
9
|
Mühlfeld C, Pfeiffer C, Schneider V, Bornemann M, Schipke J. Voluntary activity reverses spermidine-induced myocardial fibrosis and lipid accumulation in the obese male mouse. Histochem Cell Biol 2020; 155:75-88. [PMID: 33108533 PMCID: PMC7847856 DOI: 10.1007/s00418-020-01926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Obesity due to high calorie intake induces cardiac hypertrophy and dysfunction, thus contributing to cardiovascular morbidity and mortality. Recent studies in aging suggest that oral supplementation with the natural polyamine spermidine has a cardioprotective effect. Here, the hypothesis was tested that spermidine or voluntary activity alone or in combination protect the heart from adverse effects induced by obesity. Therefore, C57Bl/6 mice (n = 8–10 per group) were subjected to control or high fat diet (HFD) and were left untreated, or either received spermidine via drinking water or were voluntarily active or both. After 30 weeks, the mice were killed and the left ventricle of the hearts was processed for light and electron microscopy. Design-based stereology was used to estimate parameters of hypertrophy, fibrosis, and lipid accumulation. HFD induced cardiac hypertrophy as demonstrated by higher volumes of the left ventricle, cardiomyocytes, interstitium, myofibrils and cardiomyocyte mitochondria. These changes were not influenced by spermidine or voluntary activity. HFD also induced myocardial fibrosis and accumulation of lipid droplets within cardiomyocytes. These HFD effects were enhanced in spermidine treated animals but not in voluntarily active mice. This was even the case in voluntarily active mice that received spermidine. In conclusion, the data confirm the induction of left ventricular hypertrophy by high-fat diet and suggest that—under high fat diet—spermidine enhances cardiomyocyte lipid accumulation and interstitial fibrosis which is counteracted by voluntary activity.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Clara Pfeiffer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Vanessa Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Melanie Bornemann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
10
|
The effect of voluntary wheel running on the antioxidant status is dependent on sociability conditions. Pharmacol Biochem Behav 2020; 198:173018. [PMID: 32827504 PMCID: PMC7438373 DOI: 10.1016/j.pbb.2020.173018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to investigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and emotionality. PA intervention produces antioxidant responses dependent on sociability conditions. SIS induces mitochondria function and antioxidant defense abnormalities. Running produces antidepressant-like behavior and does not change the ambulation. The distance travelled on the running wheel is correlated with immobility time in the TST. The lipoperoxidation index is negatively correlated with time spent on the running wheel.
Collapse
|
11
|
Gillon A, Steel C, Cornwall J, Sheard P. Increased nuclear permeability is a driver for age-related motoneuron loss. GeroScience 2020; 42:833-847. [PMID: 32002784 PMCID: PMC7286994 DOI: 10.1007/s11357-020-00155-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the loss of skeletal muscle mass with age, the precise cause of which remains unclear. Several studies have shown that sarcopenia is at least partly driven by denervation which, in turn, is related to loss of motor nerve cells. Recent data suggests degradation of the nucleocytoplasmic barrier and nuclear envelope transport process are contributors to nerve loss in a number of neurodegenerative diseases. Having recently shown that important components of the nuclear barrier are lost with advancing age, we now ask whether these emergent defects accompany increased nuclear permeability, chromatin disorganization and lower motoneuron loss in normal ageing, and if so, whether exercise attenuates these changes. Immunohistochemistry was used on young adult, old and exercised mouse tissues to examine nucleocytoplasmic transport regulatory proteins and chromatin organization. We used a nuclear permeability assay to investigate the patency of the nuclear barrier on extracts of the spinal cord from each group. We found increased permeability in nuclei isolated from spinal cords of old animals that correlated with both mislocalization of essential nuclear transport proteins and chromatin disorganization, and also found that in each case, exercise attenuated the age-associated changes. Findings suggest that the loss of nuclear barrier integrity in combination with previously described defects in nucleocytoplasmic transport may drive increased nuclear permeability and contribute to age-related motoneuron death. These events may be significant indirect drivers of skeletal muscle loss.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Centre for Early Learning in Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
12
|
Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, Alhadeff AL, Perron IJ, Yao R, Purdy CS, DeFelice DM, Wakai MH, Tomasiewicz J, Lin A, Meyer E, Peng Y, Arriola Apelo SI, Puglielli L, Betley JN, Paschos GK, Baur JA, Lamming DW. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 2019; 18:e13014. [PMID: 31373126 PMCID: PMC6718533 DOI: 10.1111/acel.13014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jacqueline A. Brinkman
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Mark Morrison
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Mohammed I. Alotaibi
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kathryn A. Carbajal
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Amber L. Alhadeff
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Rebecca Yao
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Cole S. Purdy
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Denise M. DeFelice
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Matthew H. Wakai
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Jay Tomasiewicz
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amy Lin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Emma Meyer
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yajing Peng
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sebastian I. Arriola Apelo
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Luigi Puglielli
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - J. Nicholas Betley
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Georgios K. Paschos
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- The Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
13
|
|
14
|
Manzanares G, Brito-da-Silva G, Gandra PG. Voluntary wheel running: patterns and physiological effects in mice. ACTA ACUST UNITED AC 2018; 52:e7830. [PMID: 30539969 PMCID: PMC6301263 DOI: 10.1590/1414-431x20187830] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
Exercise can prevent and improve the pathophysiology of diseases and promote healthy aging. Thus, understanding the mechanisms that regulate the beneficial effects of exercise may lead to the development of new strategies to enhance quality of life and to counteract chronic diseases. Voluntary wheel running is an interesting model to study the effects of exercise in mice. Compared to forced treadmill exercise, voluntary wheel running presents several advantages such as: 1) running pattern is similar to natural running behavior of mice; 2) it is performed under non-stressed conditions, according to the rhythmicity of the animal; 3) it does not require direct interference from the researcher, and can be easily applied in long-term studies. Mice run spontaneously when given access to running wheels, for a total distance of ∼4 to 20 km per day and a total activity time of ∼3 to 7 hours a day. Hence, voluntary wheel running can result in robust endurance-like adaptation in skeletal and cardiac muscles and protect from sarcopenia. However, due to the lack of control over exercise parameters in voluntary exercise models, it is important for the researcher to understand the patterns and variability of wheel running in mice, as well as the factors that can affect voluntary running activity. Overall, voluntary wheel running in mice is a very interesting approach to study the chronic adaptation to exercise, analyze the effects of exercise, and test exercise capacity in different experimental models.
Collapse
Affiliation(s)
- G Manzanares
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| | - G Brito-da-Silva
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| | - P G Gandra
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| |
Collapse
|
15
|
Song R, Sarnoski EA, Acar M. The Systems Biology of Single-Cell Aging. iScience 2018; 7:154-169. [PMID: 30267677 PMCID: PMC6153419 DOI: 10.1016/j.isci.2018.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a leading cause of human morbidity and mortality, but efforts to slow or reverse its effects are hampered by an incomplete understanding of its multi-faceted origins. Systems biology, the use of quantitative and computational methods to understand complex biological systems, offers a toolkit well suited to elucidating the root cause of aging. We describe the known components of the aging network and outline innovative techniques that open new avenues of investigation to the aging research community. We propose integration of the systems biology and aging fields, identifying areas of complementarity based on existing and impending technological capabilities.
Collapse
Affiliation(s)
- Ruijie Song
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ethan A Sarnoski
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - Murat Acar
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|
16
|
Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol (Oxf) 2018; 222. [PMID: 28371392 DOI: 10.1111/apha.12881] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise-induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.
Collapse
Affiliation(s)
- J. Denham
- School of Science and Technology; University of New England; Armidale NSW Australia
| |
Collapse
|
17
|
Stegeman R, Weake VM. Transcriptional Signatures of Aging. J Mol Biol 2017; 429:2427-2437. [PMID: 28684248 DOI: 10.1016/j.jmb.2017.06.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
Abstract
Genome-wide studies of aging have identified subsets of genes that show age-related changes in expression. Although the types of genes that are age regulated vary among different tissues and organisms, some patterns emerge from these large data sets. First, aging is associated with a broad induction of stress response pathways, although the specific genes and pathways involved differ depending on cell type and species. In contrast, a wide variety of functional classes of genes are downregulated with age, often including tissue-specific genes. Although the upregulation of age-regulated genes is likely to be governed by stress-responsive transcription factors, questions remain as to why particular genes are susceptible to age-related transcriptional decline. Here, we discuss recent findings showing that splicing is misregulated with age. While defects in splicing could lead to changes in protein isoform levels, they could also impact gene expression through nonsense-mediated decay of intron-retained transcripts. The discovery that splicing is misregulated with age suggests that other aspects of gene expression, such as transcription elongation, termination, and polyadenylation, must also be considered as potential mechanisms for age-related changes in transcript levels. Moreover, the considerable variation between genome-wide aging expression studies indicates that there is a critical need to analyze the transcriptional signatures of aging in single-cell types rather than whole tissues. Since age-associated decreases in gene expression could contribute to a progressive decline in cellular function, understanding the mechanisms that determine the aging transcriptome provides a potential target to extend healthy cellular lifespan.
Collapse
Affiliation(s)
- R Stegeman
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - V M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
McMullan RC, Kelly SA, Hua K, Buckley BK, Faber JE, Pardo-Manuel de Villena F, Pomp D. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging. Physiol Rep 2016; 4:4/21/e13011. [PMID: 27905293 PMCID: PMC5112492 DOI: 10.14814/phy2.13011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age‐related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long‐term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long‐term patterns of exercise during aging and its physiological effects in a well‐controlled environment. One‐year‐old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long‐term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex‐dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long‐term exercise may serve as a preventive measure against age‐related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long‐term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype‐by‐environment interactions.
Collapse
Affiliation(s)
- Rachel C McMullan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio
| | - Kunjie Hua
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brian K Buckley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E Faber
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Barton GP, Sepe JJ, McKiernan SH, Aiken JM, Diffee GM. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart. Front Physiol 2016; 7:352. [PMID: 27601998 PMCID: PMC4993773 DOI: 10.3389/fphys.2016.00352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart.
Collapse
Affiliation(s)
- Gregory P Barton
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Joseph J Sepe
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Susan H McKiernan
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Judd M Aiken
- Departments of Agriculture, Food, and Nutritional Sciences, University of Alberta-Edmonton Edmonton, AB, Canada
| | - Gary M Diffee
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
20
|
Walton RD, Jones SA, Rostron KA, Kayani AC, Close GL, McArdle A, Lancaster MK. Interactions of Short-Term and Chronic Treadmill Training With Aging of the Left Ventricle of the Heart. J Gerontol A Biol Sci Med Sci 2015; 71:1005-13. [PMID: 26248561 PMCID: PMC4945880 DOI: 10.1093/gerona/glv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
With aging, there is a decline in cardiac function accompanying increasing risk of arrhythmias. These effects are likely to be mechanistically associated with age-associated changes in calcium regulation within cardiac myocytes. Previous studies suggest that lifelong exercise can potentially reduce age-associated changes in the heart. Although exercise itself is associated with changes in cardiac function, little is known about the interactions of aging and exercise with respect to myocyte calcium regulation. To investigate this, adult (12 months) and old (24 months) C57/Bl6 mice were trained using moderate-intensity treadmill running. In response to 10 weeks’ training, comparable cardiac hypertrophic responses were observed, although aging independently associated with additional cardiac hypertrophy. Old animals also showed increased L- and T-type calcium channels, the sodium–calcium exchange, sarcoendoplasmic reticulum calcium ATPase, and collagen (by 50%, 92%, 66%, 88%, and 113% respectively). Short-term exercise training increased D-type and T-type calcium channels in old animals only, whereas an increase in sodium–calcium exchange was seen only in adult animals. Long-term (12 months) training generally opposed the effects of aging. Significant hypertrophy remained in long-term trained old animals, but levels of sarcoendoplasmic reticulum calcium ATPase, sodium–calcium exchange, and collagen were not significantly different from those found in the adult trained animals.
Collapse
Affiliation(s)
| | | | | | - Anna C Kayani
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | - Graeme L Close
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | - Anne McArdle
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | | |
Collapse
|
21
|
Sadowska J, Gębczyński AK, Konarzewski M. Effect of reproduction on the consistency of the between-line type divergence in laboratory mice selected on Basal metabolic rate. Physiol Biochem Zool 2015; 88:328-35. [PMID: 25860830 DOI: 10.1086/680167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Artificial selection experiments are an effective tool for testing evolutionary hypotheses, because they allow one to separate genetic and environmental variances of the phenotype. However, it is unclear whether trait divergence typically selected early in life persists over an animal's life and altered physiological states, such as reproduction. Here we analyzed the long-term consistency of the between-line type divergence in basal metabolic rate (BMR) selected at 12 wk of age in laboratory mice. We measured BMR in nonreproducing and reproducing females at the age of 22 wk and then at 27 wk of age. Our results show that within both the reproducing group and the control group, the between-line type separation in BMR is consistently retained over time and reproductive status. Metabolically active internal organs (heart, liver, kidneys, and small intestine) also consistently differed in size between the two line types with no significant long-term effect of reproduction. The observed consistency of the between-line type divergence in BMR suggests the existence of the persistent effect of the selection on metabolic traits applied early in life. Moreover, BMR variation achieved by means of artificial selection is considerably higher than that found in natural/unmanipulated populations. The latter may therefore be characterized by insufficient variance to statistically resolve correlations involving BMR.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | | | | |
Collapse
|
22
|
Lee MC, Rakwal R, Shibato J, Inoue K, Chang H, Soya H. DNA microarray-based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity. Physiol Rep 2014; 2:2/11/e12206. [PMID: 25413326 PMCID: PMC4255813 DOI: 10.14814/phy2.12206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain‐derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR‐enhanced hippocampal functions; a high‐throughput whole‐genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11‐fold compared to WR, resulting in muscular adaptation for the fast‐twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up‐regulated (>1.5‐fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down‐regulated (<0.75‐fold change) genes. Functional categorization using both pathway‐ or specific‐disease‐state‐focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down‐regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary‐RWR‐related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions. New information on the voluntary RWR influenced transcriptome in rat hippocampus. Selected gene candidates may be a critical role in the development of hippocampal adaptations in RWR.
Collapse
Affiliation(s)
- Min Chul Lee
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Randeep Rakwal
- Organization for Educational Initiatives, University of Tsukuba, TsukubaIbaraki, Japan
| | - Junko Shibato
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan Department of Anatomy, Showa University School of Medicine, ShinagawaTokyo, Japan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan
| | - Hyukki Chang
- Human Movement Science, College of Natural Science, Seoul Women's University, Nowon-guSeoul, Korea
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan
| |
Collapse
|
23
|
Isoflavone exposure throughout suckling results in improved adult bone health in mice. J Dev Orig Health Dis 2014; 3:271-5. [PMID: 25102148 DOI: 10.1017/s2040174412000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to isoflavones (ISO), abundant in soy protein infant formula, for the first 5 days of life results in higher bone mineral density (BMD), greater trabecular connectivity and higher peak load of lumbar vertebrae (LV) at adulthood. The effect of lengthening the duration of exposure to ISO on bone development has not been studied. This study determined if providing ISO for the first 21 days of life, which more closely mimics the duration that infants are fed soy protein formula, results in higher BMD, improved bone structure and greater strength in femurs and LV than a 5-day protocol. Female CD-1 mice were randomized to subcutaneous injections of ISO (7 mg/kg body weight/day) or corn oil from postnatal day 1 to 21. BMD, structure and strength were measured at the femur and LV at 4 months of age, representing young adulthood. At the LV, exposure to ISO resulted in higher (P < 0.05) BMD, trabecular connectivity and peak load compared with control (CON). Exposure to ISO also resulted in higher (P < 0.05) whole femur BMD, higher (P < 0.05) bone volume/total volume and lower (P < 0.05) trabecular separation at the femur neck, as well as greater (P < 0.05) peak load at femur midpoint and femur neck compared with the CON group. Exposure to ISO throughout suckling has favorable effects on LV outcomes, and, unlike previous studies using 5-day exposure to ISO, femur outcomes are also improved. Duration of exposure should be considered when using the CD-1 mouse to model the effect of early life exposure of infants to ISO.
Collapse
|
24
|
Comparison of gene and protein expressions in rats residing in standard cages with those having access to an exercise wheel. BIOMED RESEARCH INTERNATIONAL 2014; 2014:950516. [PMID: 24719897 PMCID: PMC3955688 DOI: 10.1155/2014/950516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Accepted: 01/14/2014] [Indexed: 11/17/2022]
Abstract
Lifelong physical inactivity is associated with morbidity in adulthood, possibly influenced by changes in gene and protein expressions occurring earlier in life. mRNA (Affymetrix gene array) and proteomic (2D-DIGE MALDI-TOF/MS) analyses were determined in cardiac tissue of young (3 months) and old (16 months) Sprague-Dawley rats housed with no access to physical activity (SED) versus an exercise wheel (EX). Unfavorable phenotypes for body weight, dyslipidemia, and tumorogenesis appeared more often in adult SED versus EX. No differentially expressed genes (DEGs) occurred between groups at 3 or 16 months. Within groups, SED and EX shared 215 age-associated DEGs. In SED, ten unique DEGs occurred with age; three had cell adhesion functions (fn1, lgals3, ncam2). In EX, five unique DEGs occurred with age; two involved hypothalamic, pituitary, and gonadal hormone axis (nrob2, xpnpep2). Protein expression involved in binding, sugar metabolic processes, and vascular regulation declined with age in SED (KNT1, ALBU, GPX1, PYGB, LDHB, G3P, PYGM, PGM1, ENOB). Protein expression increased with age in EX for ATP metabolic processes (MYH6, MYH7, ATP5J, ATPA) and vascular function (KNT1, ALBU, GPX1). Differences in select gene and protein expressions within sedentary and active animals occurred with age and contributed to distinct health-related phenotypes in adulthood.
Collapse
|
25
|
Garcia-Valles R, Gomez-Cabrera MC, Rodriguez-Mañas L, Garcia-Garcia FJ, Diaz A, Noguera I, Olaso-Gonzalez G, Viña J. Life-long spontaneous exercise does not prolong lifespan but improves health span in mice. LONGEVITY & HEALTHSPAN 2013; 2:14. [PMID: 24472376 PMCID: PMC3922914 DOI: 10.1186/2046-2395-2-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/05/2013] [Indexed: 11/26/2022]
Abstract
Background Life expectancy at birth in the first world has increased from 35 years at the beginning of the 20th century to more than 80 years now. The increase in life expectancy has resulted in an increase in age-related diseases and larger numbers of frail and dependent people. The aim of our study was to determine whether life-long spontaneous aerobic exercise affects lifespan and healthspan in mice. Results Male C57Bl/6J mice, individually caged, were randomly assigned to one of two groups: sedentary (n = 72) or spontaneous wheel-runners (n = 72). We evaluated longevity and several health parameters including grip strength, motor coordination, exercise capacity (VO2max) and skeletal muscle mitochondrial biogenesis. We also measured the cortical levels of the brain-derived neurotrophic factor (BDNF), a neurotrophin associated with brain plasticity. In addition, we measured systemic oxidative stress (malondialdehyde and protein carbonyl plasma levels) and the expression and activity of two genes involved in antioxidant defense in the liver (that is, glutathione peroxidase (GPx) and manganese superoxide dismutase (Mn-SOD)). Genes that encode antioxidant enzymes are considered longevity genes because their over-expression may modulate lifespan. Aging was associated with an increase in oxidative stress biomarkers and in the activity of the antioxidant enzymes, GPx and Mn-SOD, in the liver in mice. Life-long spontaneous exercise did not prolong longevity but prevented several signs of frailty (that is, decrease in strength, endurance and motor coordination). This improvement was accompanied by a significant increase in the mitochondrial biogenesis in skeletal muscle and in the cortical BDNF levels. Conclusion Life-long spontaneous exercise does not prolong lifespan but improves healthspan in mice. Exercise is an intervention that delays age-associated frailty, enhances function and can be translated into the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Av, Blasco Ibañez, 15, Valencia 46010, Spain.
| |
Collapse
|
26
|
Hou L, Huang J, Green CD, Boyd-Kirkup J, Zhang W, Yu X, Gong W, Zhou B, Han JDJ. Systems biology in aging: linking the old and the young. Curr Genomics 2013; 13:558-65. [PMID: 23633915 PMCID: PMC3468888 DOI: 10.2174/138920212803251418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/05/2022] Open
Abstract
Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging.
Collapse
Affiliation(s)
- Lei Hou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China ; Center of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Budiono BP, See Hoe LE, Peart JN, Sabapathy S, Ashton KJ, Haseler LJ, Headrick JP. Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1091-100. [DOI: 10.1152/ajpregu.00406.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise triggers hormesis, conditioning hearts against damaging consequences of subsequent ischemia-reperfusion (I/R). We test whether “low-stress” voluntary activity modifies I/R tolerance and molecular determinants of cardiac survival. Male C57BL/6 mice were provided 7-day access to locked (7SED) or rotating (7EX) running-wheels before analysis of cardiac prosurvival (Akt, ERK 1/2) and prodeath (GSK3β) kinases, transcriptomic adaptations, and functional tolerance of isolated hearts to 25-min ischemia/45-min reperfusion. Over 7 days, 7EX mice increased running from 2.1 ± 0.2 to 5.3 ± 0.3 km/day (mean speed 38 ± 2 m/min), with activity improving myocardial I/R tolerance: 7SED hearts recovered 43 ± 3% of ventricular force with diastolic contracture of 33 ± 3 mmHg, whereas 7EX hearts recovered 63 ± 5% of force with diastolic dysfunction reduced to 23 ± 2 mmHg ( P < 0.05). Cytosolic expression (total protein) of Akt and GSK3β was unaltered, while ERK 1/2 increased 30% in 7EX vs. 7SED hearts. Phosphorylation of Akt and ERK 1/2 was unaltered, whereas GSK3β phosphorylation increased ∼90%. Microarray interrogation identified significant changes (≥1.3-fold expression change, ≤5% FDR) in 142 known genes, the majority (92%) repressed. Significantly modified paths/networks related to inflammatory/immune function (particularly interferon-dependent), together with cell movement, growth, and death. Of only 14 induced transcripts, 3 encoded interrelated sarcomeric proteins titin, α-actinin, and myomesin-2, while transcripts for protective actin-stabilizing ND1-L and activator of mitochondrial biogenesis ALAS1 were also induced. There was no transcriptional evidence of oxidative heat-shock or other canonical “stress” responses. These data demonstrate that relatively brief voluntary activity substantially improves cardiac ischemic tolerance, an effect independent of shifts in Akt, but associated with increased total ERK 1/2 and phospho-inhibition of GSK3β. Transcriptomic data implicate inflammatory/immune and sarcomeric modulation in activity-dependent protection.
Collapse
Affiliation(s)
- Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Louise E. See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Surendran Sabapathy
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Luke J. Haseler
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| |
Collapse
|
28
|
Abstract
This commentary focuses on the issues of statistical power, the usefulness of hypothesis-free approaches such as in genome-wide association explorations, the necessity of expanding the research beyond common DNA variants, the advantage of combining transcriptomics with genomics, and the complexities inherent to the search for links between genotype and phenotype in exercise genomics research.
Collapse
Affiliation(s)
- Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
29
|
Padrão AI, Ferreira R, Vitorino R, Alves RMP, Figueiredo P, Duarte JA, Amado F. Effect of lifestyle on age-related mitochondrial protein oxidation in mice cardiac muscle. Eur J Appl Physiol 2011; 112:1467-74. [DOI: 10.1007/s00421-011-2100-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
30
|
Boyle AJ, Shih H, Hwang J, Ye J, Lee B, Zhang Y, Kwon D, Jun K, Zheng D, Sievers R, Angeli F, Yeghiazarians Y, Lee R. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol 2011; 46:549-59. [PMID: 21377520 DOI: 10.1016/j.exger.2011.02.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/25/2011] [Accepted: 02/15/2011] [Indexed: 11/16/2022]
Abstract
Aging is associated with an increased incidence of heart failure, but the existence of an age-related cardiomyopathy remains controversial. Differences in strain, age and technique of measuring cardiac function differ between experiments, confounding the interpretation of these studies. Additionally, the structural and genetic profile at the onset of heart failure has not been extensively studied. We therefore performed serial echocardiography, which allows repeated assessment of left ventricular (LV) function, on a cohort of the same mice every 3 months as they aged and demonstrated that LV systolic dysfunction becomes apparent at 18 months of age. These aging animals had left ventricular hypertrophy and fibrosis, but did not have inducible ventricular tachyarrhythmias. Gene expression profiling of left ventricular tissue demonstrated 40 differentially expressed probesets and 36 differentially expressed gene ontology terms, largely related to inflammation and immunity. At this early stage of cardiac dysfunction, we observed increased cardiomyocyte expression of the pro-apoptotic activated caspase-3, but no actual increase in apoptosis. The aging hearts also have higher levels of anti-apoptotic and autophagic factors, which may have rendered protection from apoptosis. In conclusion, we describe the functional, structural and genetic changes in murine hearts as they first develop cardiomyopathy of aging.
Collapse
Affiliation(s)
- Andrew J Boyle
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA 94143, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Simonsen ML, Alessio HM, White P, Newsom DL, Hagerman AE. Acute physical activity effects on cardiac gene expression. Exp Physiol 2010; 95:1071-80. [PMID: 20696783 DOI: 10.1113/expphysiol.2010.054858] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Regular bouts of physical activity may cause changes in gene expression that accumulate over time and ultimately affect phenotypes, such as body weight, blood lipid profile and tumour development. Furthermore, acute activity may affect gene expression and phenotypes differently depending on whether the individual is regularly inactive or active. One-month-old male Sprague-Dawley rats (n = 72) were equally divided into SED (standard laboratory cage, n = 24), PA (large activity box, n = 24) and EX groups (exercise wheel inside standard cage, n = 24). At 3 months of age, half the animals from each group were killed at rest and the other half following 30 min of physical activity. The RNA was extracted from cardiac tissue, and microarray analysis was performed on 27,000 genes. Select gene results were validated using quantitative PCR. No gene expression differences occurred when comparing all 3-month-old groups at rest. A relatively small percentage of genes (1.9%) were differentially expressed (P < 0.05) following acute swimming activity in all groups, but only 37 unique and identifiable genes reached or exceeded twofold differences in expression. The genes Atf3, Fos, Apold1 and Pxdn were expressed differently among SED, PA and EX following acute activity, with a clear separation of the magnitude in gene expression with SED > PA > EX. Differences in gene expression levels in young physically inactive and active animals following acute activity have different regulatory roles in gene networks that affect health-related phenotypes.
Collapse
Affiliation(s)
- Michelle L Simonsen
- Department of Kinesiology and Health, Miami University, Oxford, OH 45045, USA
| | | | | | | | | |
Collapse
|
32
|
Huffman DM, Moellering DR, Grizzle WE, Stockard CR, Johnson MS, Nagy TR. Effect of exercise and calorie restriction on biomarkers of aging in mice. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1618-27. [PMID: 18321952 PMCID: PMC4332519 DOI: 10.1152/ajpregu.00890.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike calorie restriction, exercise fails to extend maximum life span, but the mechanisms that explain this disparate effect are unknown. We used a 24-wk protocol of treadmill running, weight matching, and pair feeding to compare the effects of exercise and calorie restriction on biomarkers related to aging. This study consisted of young controls, an ad libitum-fed sedentary group, two groups that were weight matched by exercise or 9% calorie restriction, and two groups that were weight matched by 9% calorie restriction + exercise or 18% calorie restriction. After 24 wk, ad libitum-fed sedentary mice were the heaviest and fattest. When weight-matched groups were compared, mice that exercised were leaner than calorie-restricted mice. Ad libitum-fed exercise mice tended to have lower serum IGF-1 than fully-fed controls, but no difference in fasting insulin. Mice that underwent 9% calorie restriction or 9% calorie restriction + exercise, had lower insulin levels; the lowest concentrations of serum insulin and IGF-1 were observed in 18% calorie-restricted mice. Exercise resulted in elevated levels of tissue heat shock proteins, but did not accelerate the accumulation of oxidative damage. Thus, failure of exercise to slow aging in previous studies is not likely the result of increased accrual of oxidative damage and may instead be due to an inability to fully mimic the hormonal and/or metabolic response to calorie restriction.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Partial persistence of exercise-induced myocardial angiogenesis following 4-week detraining in the rat. Histochem Cell Biol 2008; 129:479-87. [DOI: 10.1007/s00418-007-0373-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2007] [Indexed: 10/22/2022]
|
34
|
Misra V, Lee H, Singh A, Huang K, Thimmulappa RK, Mitzner W, Biswal S, Tankersley CG. Global expression profiles from C57BL/6J and DBA/2J mouse lungs to determine aging-related genes. Physiol Genomics 2007; 31:429-40. [PMID: 17726092 DOI: 10.1152/physiolgenomics.00060.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study identified gene expression profiles that provided evidence for genomic mechanisms underlying the pathophysiology of aging lung. Aging lungs from C57BL/6 (B6) and DBA/2 (D2) mouse strains differ in physiology and morphometry. Lungs were harvested from B6 mice at 2, 18, and 26 mo and from D2 mice at 2 and 18 mo of age. Purified RNA was subjected to oligonucleotide microarray analyses, and differential expression analyses were performed for comparison of various data sets. A significant majority of differentially expressed genes were upregulated with aging in both strains. Aging D2 lungs uniquely exhibited upregulation in stress-response genes including xenobiotic detoxification cascades. In contrast, aging B6 lungs showed downregulation of heat shock-response genes. Age-dependent downregulation of genes common to both B6 and D2 strains included several collagen genes (e.g., Col1a1 and Col3a1). There was a greater elastin gene (Eln) expression in D2 mice at 2 mo, and Eln was uniquely downregulated with age in this strain. The matrix metalloproteinase 14 gene (Mmp14), critical to alveolar structural integrity, was also downregulated with aging in D2 mice only. Several polymorphisms in the regulatory and untranslated regions of Mmp14 were identified between strains, suggesting that variation in Mmp14 gene regulation contributes to accelerated aging of lungs in D2 mice. In summary, lungs of B6 and D2 mice age with variable rates at the gene expression level, and these quantifiable genomic differences provide a template for understanding the variability in age-dependent changes in lung structure and function.
Collapse
Affiliation(s)
- Vikas Misra
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The proportion of the population that is elderly continues to increase, leading to an increasing need to address problems chiefly associated with old age. Progressive ageing of the heart is associated with an increasing incidence of arrhythmias and disorders of the normal origin of the heartbeat, the sinoatrial node. This intrinsic pacemaker of the heart has an increasing tendency with age to lose its dominant role in pacing the heart, and regulation of heart rate becomes erratic. This 'sick sinus syndrome' is associated with fainting, palpitations, shortness of breath and sudden death. Current treatment of this condition is by implantation of an artificial pacemaker, an intervention increasingly required with age. The current evidence suggests that the normal heartbeat fails due to changes in the expression of critical proteins that ensure the correct production and conduction of the cardiac action potential. Depletion of a protein directly responsible for providing electrical connections between the cells of the heart, connexin 43, appears to leave the normal cardiac pacemaker disconnected and unable to drive the heart. This process may be associated with age-dependent changes in stress-related signalling. Simple interventions such as exercise could impact on the processes hypothesized to be involved and may offer a means to preserve the stability of the electrical activity of the heart into old age without pharmacological manipulation.
Collapse
Affiliation(s)
- Sandra A Jones
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
36
|
Judge S, Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 2007; 292:C1983-92. [PMID: 17344313 DOI: 10.1152/ajpcell.00285.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging.
Collapse
Affiliation(s)
- Sharon Judge
- Dept. of Medicine, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | | |
Collapse
|
37
|
Buehlmeyer K, Doering F, Daniel H, Kindermann B, Schulz T, Michna H. Alteration of gene expression in rat colon mucosa after exercise. Ann Anat 2007; 190:71-80. [PMID: 18342145 DOI: 10.1016/j.aanat.2007.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/14/2007] [Indexed: 01/01/2023]
Abstract
The development of colon cancer is highly influenced by lifestyle factors such as nutrition and physical inactivity. Detailed biological mechanisms are thus far unclear. The purpose of this study was to investigate the effects of regular treadmill exercise on gene expression in rat colon mucosa. For this purpose, 6-week-old male Wistar rats completed a stress-free voluntary treadmill exercise period of 12 weeks. Sedentary rats served as a control group. In the colon mucosa, steady-state mRNA expression levels of approximately 10,000 genes were compared between both groups by micro-array analysis (MWG rat 10K array). A total of 8846 mRNAs were detected above background level. Regular exercise led to a decreased expression of 47 genes at a threshold-factor of 2.0. Three genes were found to be up-regulated in the exercise group. The identified genes encode proteins involved in signal transduction (n=11), transport (n=8), immune system (n=7), cytoskeleton (n=6), protein targeting (n=6), metabolism (n=5), transcription (n=3) and vascularization (n=2). Among the genes regulated by regular exercise, the betaine-homocysteine methyltransferase 2 (BHMT2) seems to be of particular interest. Physical activity may protect against aberrant methylation by repressing the BHMT2 gene and thus contribute to a decreased risk of developing colon cancer. We have also identified vascular endothelial growth factor (VEGF), angiopoietin-2 (ANG-2) and calcium-independent phospholipase a2 (iPL-A2), all of them with markedly reduced transcript levels in the mucosa of active rats. In summary, our experiment presents the first gene expression pattern in rat colon mucosa following regular treadmill activity and represents an important step in understanding the molecular mechanisms responsible for the preventive effect of physical activity on the development of colon cancer.
Collapse
Affiliation(s)
- K Buehlmeyer
- Technical University Munich, Institute of Public Health Research, Connollystrasse 32, 80809 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A. Resistance exercise reverses aging in human skeletal muscle. PLoS One 2007; 2:e465. [PMID: 17520024 PMCID: PMC1866181 DOI: 10.1371/journal.pone.0000465] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/25/2007] [Indexed: 01/07/2023] Open
Abstract
Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training.
Collapse
Affiliation(s)
- Simon Melov
- Buck Institute for Age Research, Novato, California, United States of America
- * To whom correspondence should be addressed. E-mail: (SM); (MT)
| | - Mark A. Tarnopolsky
- McMaster University, Department of Pediatrics and Medicine, Hamilton, Canada
- * To whom correspondence should be addressed. E-mail: (SM); (MT)
| | - Kenneth Beckman
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Krysta Felkey
- Buck Institute for Age Research, Novato, California, United States of America
| | - Alan Hubbard
- Buck Institute for Age Research, Novato, California, United States of America
| |
Collapse
|
39
|
Marini M, Lapalombella R, Margonato V, Ronchi R, Samaja M, Scapin C, Gorza L, Maraldi T, Carinci P, Ventura C, Veicsteinas A. Mild exercise training, cardioprotection and stress genes profile. Eur J Appl Physiol 2007; 99:503-510. [PMID: 17206441 DOI: 10.1007/s00421-006-0369-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
To improve current knowledge of the molecular mechanisms underlying exercise-induced cardioprotection in a rat model of mild exercise training, Sprague-Dawley rats were trained to run on a treadmill up to 55% of their maximal oxygen uptake for 1 h/day, 3 days/week, 14 weeks, with age-matched sedentary controls (n = 20/group). Rats were sacrificed 48 h after the last training session. Despite lack of cardiac hypertrophy, training decreased blood hemoglobin (7.94 +/- 0.21 mM vs. 8.78 +/- 0.23 mM, mean +/- SE, P = 0.01) and increased both plasma malondialdehyde (0.139 +/- 0.005 mM vs. 0.085 +/- 0.009 mM, P = 0.05) and the activity of Mn-superoxide dismutase (11.6 +/- 0.6 vs. 16.5 +/- 1.6 mU/microg, P = 0.01), whereas total superoxide dismutase activity was unaffected. When subjected to 30-min ischemia followed by 90-min reperfusion, hearts from trained rats (n = 5) displayed reduced infarct size as compared to controls (37.26 +/- 0.92% vs. 49.09 +/- 2.11% of risk area, P = 0.04). The biochemical analyses in the myocardium, which included gene expression profiles, real-time PCR, Western blot and determination of enzymatic activity, showed training-induced upregulation of the following mRNAs and/or proteins: growth-arrest and DNA-damage induced 153 (GADD153/CHOP), heme-oxygenase-1 (HO-1), cyclooxygenase-2 (Cox-2), heat-shock protein 70/72 (HSP70/72), whereas heat-shock protein 60 (HSP60) and glucose-regulated protein 75 (GRP75) were decreased. As a whole, these data indicate that mild exercise training activates a second window of myocardial protection against ischemia/reperfusion by upregulating a number of protective genes, thereby warranting further investigation in man.
Collapse
Affiliation(s)
- Marina Marini
- Department of Histology, Embryology, and Applied Biology, University of Bologna, Via Belmeloro, 8, 40126, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fu C, Hickey M, Morrison M, McCarter R, Han ES. Tissue specific and non-specific changes in gene expression by aging and by early stage CR. Mech Ageing Dev 2006; 127:905-16. [PMID: 17092546 PMCID: PMC1764499 DOI: 10.1016/j.mad.2006.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/07/2006] [Accepted: 09/29/2006] [Indexed: 01/06/2023]
Abstract
Aging alters the expression of a variety of genes. Calorie restriction (CR), which extends life span in laboratory rodents, also changes gene expression. This study investigated changes in gene expression across three different tissues from the same mouse to examine how aging and early stage CR influence gene expression in different tissues of an organism. Expression profiling of heart, liver, and hypothalamus tissues was done in young (4-6 months) ad libitum fed (AL), young CR (2.5-4.5 months of CR), and old (26-28 months) AL male C57BL/6 mice. Aging significantly altered the expressions of 309, 1819, and 1085 genes in heart, liver, and hypothalamus tissues, respectively. In nine genes, aging altered expression across all three tissues although the regulation directions did not agree across all three tissues for some genes. Early stage CR in young mice significantly changed the expressions of 192, 839, and 100 genes in heart, liver, and hypothalamus tissues, respectively, and seven genes altered expression across all three tissues; three were up regulated and four were down regulated. The results of Gene Ontology (GO) Biological Process analysis indicated up regulation of antigen processing/presentation genes by aging and down regulation of stress response genes by early stage CR in all three tissues. The comparison of the results of aging and short term CR studies showed there were 389 genes, 18 GO biological processes, and 20 GO molecular functions in common.
Collapse
Affiliation(s)
- Chunxiao Fu
- Department of Biological Science, The University of Tulsa, 600 S. College Ave. Tulsa, OK 74104, USA
| | - Morgen Hickey
- Department of Biological Science, The University of Tulsa, 600 S. College Ave. Tulsa, OK 74104, USA
| | - Melissa Morrison
- Department of Biological Science, The University of Tulsa, 600 S. College Ave. Tulsa, OK 74104, USA
| | - Roger McCarter
- Center for Developmental and Health Genetics, The Pennsylvania State University, 101 Amy Gardner House, University Park, PA 16802, USA
| | - Eun-Soo Han
- Department of Biological Science, The University of Tulsa, 600 S. College Ave. Tulsa, OK 74104, USA
- *Corresponding author: Eun-Soo Han, Tel: (918) 631-2310, Fax: (918) 631-2762, e-mail:
| |
Collapse
|
41
|
Rinaldi B, Corbi G, Boccuti S, Filippelli W, Rengo G, Leosco D, Rossi F, Filippelli A, Ferrara N. Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol 2006; 41:764-70. [PMID: 16822632 DOI: 10.1016/j.exger.2006.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/26/2006] [Accepted: 05/16/2006] [Indexed: 11/17/2022]
Abstract
The aim of this study was to test the effects of age and chronic exercise training on antioxidant and heat shock protein (Hsp) expression by comparing the hearts of young (Y), sedentary old (SO) and trained old (TO) rats. In SO rats, there were: (a) changes in myocardial structure and function; (b) increased malondialdehyde levels; (c) no changes in superoxide-dismutase (SOD) enzymes; (d) reduced Hsp70 expression; and (e) increased Hsp27 expression. In TO rats, SOD enzymes and Hsp70 expression were increased and Hsp27 was further increased. Malondialdehyde level did not differ between TO and SO rats, which shows that chronic exercise did not affect the peroxidation index. In summary, by increasing Hsp27 and Hs70 levels, prolonged exercise partially counterbalanced the heart age-related effects in the antioxidant system without altering peroxidation levels. These findings suggest that the beneficial effects on aged-related cardiovascular changes could be connected to the "anti-oxidant" effects of prolonged exercise training.
Collapse
Affiliation(s)
- Barbara Rinaldi
- Department of Experimental Medicine and Excellence Center of Cardiovascular Disease, Second University of Naples, Naples 80138, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ascensão A, Ferreira R, Magalhães J. Exercise-induced cardioprotection--biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 2006; 117:16-30. [PMID: 16860886 DOI: 10.1016/j.ijcard.2006.04.076] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/06/2006] [Accepted: 04/28/2006] [Indexed: 11/21/2022]
Abstract
Myocardial injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Regular exercise has been confirmed as a pragmatic countermeasure to protect against cardiac injury. Specifically, endurance exercise has been proven to provide cardioprotection against cardiac insults in both young and old animals. Proposed mechanisms to explain the cardioprotective effects of exercise are mediated, at least partially, by redox changes and include the induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of other cardioprotective molecules. Understanding the molecular basis for exercise-induced cardioprotection is important in developing exercise strategies to protect the heart during and after insults. Data suggest that these positive modulator effects occur at different levels of cellular organization, being mitochondria fundamental organelles that are sensitive to disturbances imposed by exercise on basal homeostasis. At present, which of these protective mechanisms is essential for exercise-induced cardioprotection remains unclear. This review analyzes the biochemical, morphological and functional outcomes of acute and chronic exercise on the overall cardiac muscle tissue and in isolated mitochondria. Some redox-based mechanisms behind the cross-tolerance effects particularly induced by endurance training, against certain stressors responsible for the impairments in cardiac homeostasis caused by aging, diabetes, drug administration or ischemia-reperfusion are also outlined. Further work should be addressed in order to clarify the precise regulatory mechanisms by which physical exercise augments heart tolerance against many cardiotoxic agents.
Collapse
Affiliation(s)
- António Ascensão
- Department of Sports Biology, Research Center in Physical Activity, Health and Leisure, Faculty of Sport Sciences, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal.
| | | | | |
Collapse
|
43
|
Bronikowski AM, Morgan TJ, Garland T, Carter PA. THE EVOLUTION OF AGING AND AGE-RELATED PHYSICAL DECLINE IN MIC SELECTIVELY BRED FOR HIGH VOLUNTARY EXERCISE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01228.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Abstract
Whether or not oxidative stress is the cause of the aging process, as proposed by the oxidative stress theory of aging remains unknown; but accumulated evidence overwhelmingly identifies increased oxidative stress with age as a source of damage to cellular structure and function. From an evolutionary perspective, the utilization of oxygen as a life supporting means makes oxidative stress an inescapable part of an organism's biological system. The inseparability of oxidative stress from the biological system can be viewed as an adaptive response that all aerobic organisms undergo to ward-off the potentially harmful effects of oxygen and its derivatives, including free radicals. The organism's adaptive mechanisms include an intricate network of defenses that regulate and guard against any over-acting oxidative reactions to ensure its survival. This review discusses and illustrates several adaptive responses at various levels (from gene regulation to physical exercise) that organisms use as part of their survival strategy.
Collapse
Affiliation(s)
- Byung Pal Yu
- Department of Physiology, University of Texas Health Science Center at San Antonio, 78229, USA.
| | | |
Collapse
|
45
|
Reinwald S, Weaver CM. Soy isoflavones and bone health: a double-edged sword? JOURNAL OF NATURAL PRODUCTS 2006; 69:450-9. [PMID: 16562857 DOI: 10.1021/np058104g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Numerous publications and research studies on isoflavones have prompted a nationwide increase in the consumption of soy-based foods and supplements in the United States. Isoflavones are natural endocrine active compounds generally considered to promote health and prevent or slow the onset of certain chronic diseases such as osteoporosis. The beneficial effects of soy isoflavones on bone may, however, be life-stage specific and dependent on the estrogen receptor number and endogenous hormone milieu. Perimenopausal and early menopausal women may therefore be more receptive to the therapeutic effects of isoflavones on bone loss prior to the diminution of estrogen receptors that occurs in the postmenopausal years, whereas laboratory studies in developmental age range animals have demonstrated the potential for adverse effects following exposure to high levels of soy isoflavones. Clinical studies in developing humans that either support or refute findings in animal studies are lacking. The effects of chronic consumption of high levels of soy isoflavones at each life stage to assess risk-benefit ratios should be a high priority of research.
Collapse
Affiliation(s)
- Susan Reinwald
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907-2009, USA
| | | |
Collapse
|
46
|
Using whole-genome transcriptional analyses to identify molecular mechanisms of aging. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddmec.2006.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Bronikowski AM, Morgan TJ, Garland T, Carter PA. THE EVOLUTION OF AGING AND AGE-RELATED PHYSICAL DECLINE IN MICE SELECTIVELY BRED FOR HIGH VOLUNTARY EXERCISE. Evolution 2006. [DOI: 10.1554/05-590.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1564-72. [PMID: 16051717 DOI: 10.1152/ajpregu.00396.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence suggests that mitochondrial dysfunction and oxidant production, in association with an accumulation of oxidative damage, contribute to the aging process. Regular physical activity can delay the onset of morbidity, increase mean lifespan, and reduce the risk of developing several pathological states. No studies have examined age-related changes in oxidant production and oxidative stress in both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria in combination with lifelong exercise. Therefore, we investigated whether long-term voluntary wheel running in Fischer 344 rats altered hydrogen peroxide (H2O2) production, antioxidant defenses, and oxidative damage in cardiac SSM and IFM. At 10–11 wk of age, rats were randomly assigned to one of two groups: sedentary and 8% food restriction (sedentary; n = 20) or wheel running and 8% food restriction (runners; n = 20); rats were killed at 24 mo of age. After the age of 6 mo, running activity was maintained at an average of 1,145 ± 248 m/day. Daily energy expenditure determined by doubly labeled water technique showed that runners expended on average ∼70% more energy per day than the sedentary rats. Long-term voluntary wheel running significantly reduced H2O2production from both SSM (−10.0%) and IFM (−9.6%) and increased daily energy expenditure (kJ/day) significantly in runners compared with sedentary controls. Additionally, MnSOD activity was significantly lowered in SSM and IFM from wheel runners, which may reflect a reduction in mitochondrial superoxide production. Activities of the other major antioxidant enzymes (glutathione peroxidase and catalase) and glutathione levels were not altered by wheel running. Despite the reduction in mitochondrial oxidant production, no significant differences in oxidative stress levels (4-hydroxy-2-nonenal-modified proteins, protein carbonyls, and malondialdehyde) were detected between the two groups. The health benefits of chronic exercise may be, at least partially, due to a reduction in mitochondrial oxidant production; however, we could not detect a significant reduction in several selected parameters of oxidative stress.
Collapse
Affiliation(s)
- Sharon Judge
- Univ. of Florida, College of Medicine, Dept. of Aging and Geriatric Research, Genomics and Biomarkers Core Institute on Aging, Biochemistry of Aging Laboratory, Gainesville, FL 32608, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Corton JC, Brown-Borg HM. Peroxisome Proliferator-Activated Receptor Coactivator 1 in Caloric Restriction and Other Models of Longevity. J Gerontol A Biol Sci Med Sci 2005; 60:1494-509. [PMID: 16424281 DOI: 10.1093/gerona/60.12.1494] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary restriction of calories (caloric restriction [CR]) increases longevity in phylogenetically diverse species. CR retards or prevents age-dependent deterioration of tissues and an array of spontaneous and chemically induced diseases associated with obesity including cardiovascular disease, diabetes, and cancer. An understanding of the molecular mechanisms that underlie the beneficial effects of CR will help identify novel dietary, pharmacological, and lifestyle strategies for slowing the rate of aging and preventing these diseases as well as identify factors which modulate chemical toxicity. Here, we review the involvement of transcriptional coactivator proteins, peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 (PGC-1) alpha and beta, and regulated nuclear receptors (NR) in mediating the phenotypic changes found in models of longevity which include rodent CR models and mouse mutants in which insulin and/or insulin-like growth factor-I signaling is attenuated. PGC-1alpha is transcriptionally or posttranslationally regulated in mammals by: 1) forkhead box "other" (FoxO) transcription factors through an insulin/insulin-like growth factor-I -dependent pathway, 2) glucagon-stimulated cellular AMP (cAMP) response element binding protein, 3) stress-activated kinase signaling through p38 mitogen-activated protein kinase, and 4) the deacetylase and longevity factor sirtuin 1 (SIRT1). PGC-1alpha and PGC-1beta regulate the ligand-dependent and -independent activation of a large number of NR including PPARalpha and constitutive activated receptor (CAR). These NR regulate genes involved in nutrient and xenobiotic transport and metabolism as well as resistance to stress. CR reverses age-dependent decreases in PGC-1alpha, PPARalpha, and regulated genes. Strategies that target one or multiple PGC-1-regulated NR could be used to mimic the beneficial health effects found in models of longevity.
Collapse
Affiliation(s)
- J Christopher Corton
- United States Environmental Protection Agency, Division of Environmental Carcinogenesis, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
50
|
Hepple RT, Baker DJ, Kaczor JJ, Krause DJ. Long‐term caloric restriction abrogates the age‐related decline in skeletal muscle aerobic function. FASEB J 2005; 19:1320-2. [PMID: 15955841 DOI: 10.1096/fj.04-3535fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the effect of long-term caloric restriction (CR) on the age-associated decline of skeletal muscle aerobic function. Skeletal muscle maximal aerobic performance (VO2max) was assessed in ad libitum (AL) and CR rats aged 8-10 months and 35 months using a pump-perfused hindlimb model to match oxygen delivery to muscle mass between groups. Whereas there was a 46% decline in muscle mass-specific VO2max between 8-10 mo (524+/-13 micromol x min(-1) x 100 g(-1); mean+/- SE) and 35 mo (281+/-54 micromol x min(-1) x 100 g(-1)) in AL rats, not only did CR rats begin at the same point in 8-10 mo old rats (490+/-42 micromol x min(-1) x 100 g(-1)), we found no decline in 35 mo old CR animals (484+/-49 micromol x min(-1) x 100 g(-1)). Interestingly, although most markers of oxidative capacity began at a lower point in young adult CR animals, CR rats exhibited a higher in situ activity of complex IV at VO2max. This activity allows the young adult CR animals to exhibit normal aerobic capacity despite the lower oxidative enzyme activities. In stark contrast to the 19-41% decline in activities of citrate synthase, complexes I-III, and complex IV in homogenates prepared from the plantaris muscle and mixed region of gastrocnemius muscle with aging in AL rats, no age-related decline was found in CR animals. Thus, our results showed that CR preserves aerobic function in aged skeletal muscles by facilitating a higher in situ function of complex IV and by preventing the age-related decline in mitochondrial oxidative capacity.
Collapse
|