1
|
Kong F, Zhao Q, Wen W, He P, Shao L. Allelopathic effects and mechanism of kaempferol on controlling Microcystis aeruginosa blooms. MARINE POLLUTION BULLETIN 2025; 217:118116. [PMID: 40359702 DOI: 10.1016/j.marpolbul.2025.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/04/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
Microcystis aeruginosa blooms usually caused serious damage to local ecological environment. Utilization of allelochemicals for mitigating harmful algal blooms (HABs) are regarded as an eco-friendly way. In the previous studies, kaempferol (KAE) has showed allelopathic effect on algae. However, the mechanism of KAE on M. aeruginosa is still largely uncharacterized until now. In the present study, the effects and mechanism of KAE on M. aeruginosa were investigated in terms of growth indicators, cell membrane, photosynthesis, respiration, and enzymic system. The results indicated that KAE can significantly inhibit the growth of M. aeruginosa and the inhibitory effect be concentration-dependent. Besides, a high inhibition rate of 96.69 % was detected while exposure to 20 mg·L-1 KAE for 96 h. Statistical analysis revealed that the EC50 of KAE on M. aeruginosa at 48 and 96 h was 15.83 mg·L-1 and 11.99 mg·L-1, respectively. After exposure to KAE, photosynthetic fluorescence parameters of M. aeruginosa, including the maximum photochemical quantum yield (Fv/Fm), the actual photochemical quantum yield (YII), the maximum relative electron transfer rate (rETRmax), and light use efficiency (α), were all decreased. Additionally, superoxide dismutase (SOD) activities significantly increased as a response to oxidative stress. In comparison, the activities of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC) and Na+-K+ ATPase decreased significantly. Besides, the nucleic acid and protein content in the solution increased, and the respiration rate of algae decreased significantly. By measuring the concentration of intracellular and extracellular microcystin (MCs), we found that exposure to KAE did not promote the leakage of MCs. Our results revealed that KAE is a promising antialgal natural chemical for HABs controlling.
Collapse
Affiliation(s)
- Fanchao Kong
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianming Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wenke Wen
- Shanghai Yuetian Biotechnology Co., Ltd., Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Cao L, Chen C, Pi W, Zhang Y, Xue S, Yong VW, Xue M. Exploring medical gas therapy in hemorrhagic stroke treatment: A narrative review. Nitric Oxide 2025; 156:94-106. [PMID: 40127886 DOI: 10.1016/j.niox.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Hemorrhagic stroke (HS) is a neurological disorder caused by the rupture of cerebral blood vessels, resulting in blood seeping into the brain parenchyma and causing varying degrees of neurological impairment, including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). Current treatment methods mainly include hematoma evacuation surgery and conservative treatment. However, these methods have limited efficacy in enhancing neurological function and prognosis. The current challenge in treating HS lies in inhibiting the occurrence and progression of secondary brain damage after bleeding, which is a key factor affecting the prognosis of HS patients. Studies have shown that medical gas therapy is gaining more attention and has demonstrated various levels of neuroprotective effects on central nervous system disorders, such as hyperbaric oxygen, hydrogen sulfide, nitric oxide, carbon monoxide, and other inhalable gas molecules. These medical gas molecules primarily improve brain tissue damage and neurological dysfunction by regulating inflammation, oxidative stress, apoptosis, and other processes. However, many of these medical gasses also possess neurotoxic properties. Therefore, the use of medical gases in HS deserves further exploration and research. In this review, we will elucidate the therapeutic effects and study the advances in medical gas molecules in HS.
Collapse
Affiliation(s)
- Liang Cao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Chen Chen
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Sara Xue
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Hafez MH, Gad SB, El-Sayed YS. Quercetin-mediated restoration of high-fat diet-induced male reproductive dysfunction through modifying spermatogenesis and unraveling 3β-HSD, 17β-HSD, and StAR pathways. BMC Pharmacol Toxicol 2025; 26:90. [PMID: 40264244 PMCID: PMC12016373 DOI: 10.1186/s40360-025-00918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
PURPOSE We explored the astounding potential of quercetin (QRT) to counteract the determinantal impacts of a high-fat diet (HFD) on testicular function in rat model. The goal was to understand how QRT, and its mechanisms of action can protect testicular health from HFD. METHODS Rats were divided into four groups receiving a control diet, QRT supplement (100 mg/kg), HFD, or HFD plus QRT for 8 weeks. Afterward, assessments were conducted, and reproductive organs were analyzed for hormone levels, gene expression, and subjected to biochemical, histopathological, and immunohistochemical analyses. RESULTS The HFD caused substantial declines in testicular weight, accessory sex glands and epididymis. The HFD also negatively impacted sperm characteristics including reduced motility, viability, and count, along with impaired morphology. Additionally, the HFD decreased testosterone levels in the testes and serum, impaired antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, and reduced expression of key steroid metabolism enzymes 17β-hydroxysteroid dehydrogenase (17β-HSD), 3β-hydroxysteroid dehydrogenase (3β-HSD), and steroidogenic acute regulatory protein (StAR) involved in testosterone synthesis. These changes were paired with enhanced testicular lipid peroxidation, nitrite, and the inflammatory marker tumor necrosis factor-alpha (TNF-α), reflecting the damaging еffеcts of the HFD. Examination of testicular tissues verified structural damage and significantly fewer proliferating cell nuclear antigen (PCNA)-positive spermatogenic cells in seminiferous tubules of HFD-fed group, confirming HFD's adverse еffеcts. CONCLUSION QRT supplementation was able to curb the harmful impacts of the HFD on testicular spermatogenesis and steroidogenesis through its antioxidant, anti-inflammatory and androgen boosting properties.
Collapse
Affiliation(s)
- Mona H Hafez
- Physiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Shereen B Gad
- Physiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Yasser S El-Sayed
- Veterinary Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
4
|
Li S, Wang S, Zhang L, Ka Y, Zhou M, Wang Y, Tang Z, Zhang J, Wang W, Liu W. Research progress on pharmacokinetics, anti-inflammatory and immunomodulatory effects of kaempferol. Int Immunopharmacol 2025; 152:114387. [PMID: 40054326 DOI: 10.1016/j.intimp.2025.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Chronic inflammation (an abnormal state) and autoimmune disease (AD) can both cause multiple organ damage. AD is a heterogeneous group of diseases due to immune dysfunction. Chronic inflammation is closely related to AD and is an important part of AD. With the increasing prevalence of AD, researchers are constantly exploring new drugs with small side effects, considerable curative effects, and lower costs. Kaempferol, a flavonoid, possesses a range of biological functions, including antioxidant, anti-inflammatory, anti-neoplastic, and immunomodulatory capabilities. This compound is prevalent in a variety of plant sources, such as vegetables, fruits, and medicinal herbs traditionally used in Chinese medicine. A plethora of empirical evidence from animal-based research supports the assertion that this particular substance exhibits both anti-inflammatory and immunomodulatory effects, with the curative effect being significant and application prospects. This article mainly summarizes and discusses the pharmacokinetics, drug delivery system, and the mechanism of kaempferol on immune cells, cytokines, signaling pathways, and other aspects. This paper summarizes the existing kaempferol drug delivery system, analyzes the possibility and limitations of kaempferol as a new anti-inflammatory and immunomodulatory drug, and discusses how to apply it in clinical practice. Therefore, kaempferol can more effectively exert its anti-inflammatory and immune-modulating effects, thereby demonstrating therapeutic potential in clinical settings, while reducing patient burden.
Collapse
Affiliation(s)
- Suiran Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lei Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Meijiao Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Zhuo Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jiamin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Li N, Yang M, Feng M, Xu X, Li Y, Zhang Y, Xian CJ, Li T, Zhai Y. Locally Delivered Hydrogel with Sustained Release of Flavonol Compound Kaempferol Mitigates Inflammatory Progression of Periodontitis and Enhances the Gut Microflora Composition in Rats. ACS Biomater Sci Eng 2025; 11:1646-1659. [PMID: 39988771 DOI: 10.1021/acsbiomaterials.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
OBJECTIVE This study aimed to investigate the effects of a sustained-release composite containing gelatin methacryloyl (Gel) and kaempferol (Ka, K) on experimental periodontitis symptoms in rats. METHODS Forty 6-week-old male rats were randomly assigned to four treatment groups in a specific pathogen-free (SPF) environment: Control group (C), periodontitis model group (M), Gel alone group (G), and Gel_Ka composite-treated group (G_K). Treatment effects on the periodontal status of bilateral maxillary second molars in each rat group were assessed by micro-CT imaging and histology. Immunohistochemistry staining was employed to examine the effects on expression levels of inflammatory factors IL-6 and MMP9 (associated with M1 macrophages) and of the anti-inflammatory factor CD206 (associated with M2 macrophages). Additionally, treatment effects on oral and intestinal microbial communities were analyzed through 16S rDNA sequencing. RESULTS Local injection treatment with the G_K composite hydrogel effectively suppressed alveolar bone resorption and reduced periodontal attachment loss and inflammation infiltration in rats with periodontitis. It reduced the expression of inflammatory factors MMP9 and IL-6 but increased the anti-inflammatory factor CD206, and it also increased the abundance of gut microbial communities producing short-chain fatty acids. CONCLUSION Local treatment with the sustained-release G_K hydrogel composite demonstrates a substantial antiperiodontitis effect in rats by locally attenuating inflammation and is associated with enhancing the microbial composition of intestinal flora, thus aiding in mitigating the inflammatory progression of experimental periodontitis.
Collapse
Affiliation(s)
- Ningli Li
- School of Stomatology, Henan University, Kaifeng 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Kaifeng 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Miaomiao Feng
- School of Stomatology, Henan University, Kaifeng 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Xiaoran Xu
- School of Stomatology, Henan University, Kaifeng 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yingying Li
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Tiejun Li
- School of Stomatology, Henan University, Kaifeng 475000, China
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
6
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
7
|
Park SH, Seo JH, Kim MY, Yun HJ, Kang BK, Kim JH, Heo SV, Lee YH, Park HR, Choi MS, Lee JH. Enhanced Antitumor Activity of Korean Black Soybean Cultivar 'Soman' by Targeting STAT-Mediated Aerobic Glycolysis. Antioxidants (Basel) 2025; 14:228. [PMID: 40002413 PMCID: PMC11852074 DOI: 10.3390/antiox14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Black soybeans have numerous health benefits owing to their high polyphenolic content, antioxidant activity, and antitumor effects. We previously reported that the Korean black soybean cultivar 'Soman' possesses higher anthocyanin and isoflavone contents and superior antioxidant potential than other Korean black soybean cultivars and landraces (Seoritae) do. Here, we investigated and compared the antitumor effects of Soman and Seoritae and aimed to elucidate the possible mechanisms of action. Soman inhibited cancer cell proliferation and was more potent than Seoritae. Mechanistically, Soman inhibited the phosphorylation of the signal transducer and activator of transcription (STAT1, 3, and 5) in a reactive oxygen species (ROS)-independent manner, subsequently decreasing glycolytic enzyme expression and the activities of pyruvate kinase and lactate dehydrogenase. Thus, Soman suppressed glucose uptake, lactate production, and ATP production in cancer cells. Additionally, it inhibited tumor growth in a B16F10 murine melanoma syngeneic model, accompanied by reduced STAT1 phosphorylation and decreased proliferation in Soman-treated mice, more potently than observed in Seoritae-treated mice. These findings showed that Soman exerted superior antitumor activities by suppressing STAT-mediated aerobic glycolysis and proliferation. Overall, our findings demonstrate the potent, tumor-suppressive role of Soman in human cancer and uncover a novel molecular mechanism for its therapeutic effects in cancer treatment.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; (S.H.P.); (H.J.Y.)
| | - Jeong Hyun Seo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Min Young Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Hye Jin Yun
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; (S.H.P.); (H.J.Y.)
| | - Beom Kyu Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Jun Hoi Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Su Vin Heo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Yeong Hoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Hye Rang Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Man Soo Choi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Jong-Ho Lee
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; (S.H.P.); (H.J.Y.)
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
8
|
Chib S, Dutta BJ, Chalotra R, Abubakar M, Kumar P, Singh TG, Singh R. Role of Flavonoids in Mitigating the Pathological Complexities and Treatment Hurdles in Alzheimer's Disease. Phytother Res 2025; 39:747-775. [PMID: 39660432 DOI: 10.1002/ptr.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
With the passage of time, people step toward old age and become more prone to several diseases associated with the age. One such is Alzheimer's disease (AD) which results into neuronal damage and dementia with the progression of age. The existing therapeutics has been hindered by various enkindles like less eminent between remote populations, affordability issues and toxicity profiles. Moreover, lack of suitable therapeutic option further worsens the quality of life in older population. Developing an efficient therapeutic intervention to cure AD is still a challenge for medical fraternity. Recently, alternative approaches attain the attention of researchers to focus on plant-based therapy in mitigating AD. In this context, flavonoids gained centrality as a feasible treatment in modifying various neurological deficits. This review mainly focuses on the pathological facets and economic burden of AD. Furthermore, we have explored the possible mechanism of flavonoids with the preclinical and clinical aspects for curing AD. Flavonoids being potential therapeutic, target the pathogenic factors of AD such as oxidative stress, inflammation, metal toxicity, Aβ accumulation, modulate neurotransmission and insulin signaling. In this review, we emphasized on potential neuroprotective effects of flavonoids in AD pathology, with focus on both experimental and clinical findings. While preclinical studies suggest promising therapeutic benefits, clinical data remains limited and inconclusive. Thus, further high-quality clinical trials are necessary to validate the efficacy of flavonoids in AD. The study aim is to promote the plant-based therapies and encourage people to add flavonoids to regular diet to avail the beneficial effects in preventive therapy for AD.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Md Abubakar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
9
|
Chervet A, Nehme R, Defois-Fraysse C, Decombat C, Blavignac C, Auxenfans C, Evrard B, Michel S, Filaire E, Berthon JY, Dreux-Zigha A, Delort L, Caldefie-Chézet F. Development and characterization of a chicory extract fermented by Akkermansia muciniphila: An in vitro study on its potential to modulate obesity-related inflammation. Curr Res Food Sci 2025; 10:100974. [PMID: 39906505 PMCID: PMC11791162 DOI: 10.1016/j.crfs.2025.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity, the fifth leading cause of death globally and linked to chronic low-grade inflammation and development of numerous severe pathologies, is a major public health problem. Fermented foods, probiotics, and postbiotics emerge as promising avenues for combating obesity and inflammation. The aim of our study was to develop and characterize phyto-postbiotics corresponding to prebiotic compounds fermented by gut bacteria, which could act on obesity and related-inflammation. Chicory extract fermented by Akkermansia muciniphila (C-Akm) was selected as the most antioxidant of 20 fermented extracts. The identification of metabolites derived from C-Akm extract has enabled us to detect mostly amino acids, acids, and some polyphenols (daidzein and genistein). The anti-inflammatory and anti-obesity activities of C-Akm extract were studied by testing the extract (50 μg/mL) on the polarization of THP-1 into macrophages, the secretion of pro-inflammatory cytokines in LPS-stimulated PBMCs, and the secretion of leptin and adiponectin in adipospheroids derived from human adipose stem cells. Finally, the extract was examined in 3D co-culture model mimicking inflamed obese adipose tissue. We found that C-Akm extract decreased ROS generation, TNF-α and Il-6 gene expression in polarized macrophages, INFγ and IL-17A secretion in LPS-stimulated PBMCs stimulated with LPS. It also decreased leptin expression while increasing adiponectin and HSL expression levels in both adipocytes and co-cultures. In addition, C-Akm extract stimulated adiponectin secretion in the co-culture model. Finally, our in vitro investigations demonstrated the potential benefits of C-Akm extract in the prevention and treatment of obesity-related inflammation.
Collapse
Affiliation(s)
- A. Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - R. Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | | | - C. Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - C. Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - C. Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, 69000, Lyon, France
| | - B. Evrard
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - S. Michel
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - E. Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - J.-Y. Berthon
- Greentech, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - A. Dreux-Zigha
- Greencell, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - L. Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - F. Caldefie-Chézet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
10
|
Al Amin M, Dehbia Z, Nafady MH, Zehravi M, Kumar KP, Haque MA, Baig MS, Farhana A, Khan SL, Afroz T, Koula D, Tutone M, Nainu F, Ahmad I, Emran TB. Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem 2025; 480:43-73. [PMID: 38568359 DOI: 10.1007/s11010-023-04922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2025]
|
11
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
12
|
Solanki S, Vig H, Khatri N, Singh BP, Khan MS, Devgun M, Wal P, Wal A. Naringenin: A Promising Immunomodulator for Anti-inflammatory, Neuroprotective and Anti-cancer Applications. Antiinflamm Antiallergy Agents Med Chem 2025; 24:1-25. [PMID: 39076091 DOI: 10.2174/0118715230320007240708074939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Inflammatory, immune, and neurodegenerative diseases constitute a category of persistent and debilitating conditions affecting millions worldwide, with intertwined pathophysiological pathways. Recent research has spotlighted naturally occurring compounds like naringenin for potential therapeutic applications across multiple ailments. OBJECTIVES This review offers an encompassing exploration of naringenin's anti-inflammatory, immune-protective, and neuroprotective mechanisms, elucidating its pharmacological targets, signal transduction pathways, safety profile, and insights from clinical investigations. METHODS Data for this review were amassed through the scrutiny of various published studies via search engines such as PubMed and Google Scholar. Content from reputable publishers including Bentham Science, Taylor and Francis, Nature, PLOS ONE, among others, was referenced. RESULTS Naringenin exhibits substantial anti-inflammatory effects by restraining the NF-κB signaling pathway. It activates Nrf2, renowned for its anti-inflammatory properties, inducing the release of hemeoxynase-1 by macrophages. Furthermore, naringenin treatment downregulates the expression of Th1 cytokines and inflammatory mediators. It also impedes xanthine oxidase, counteracts reactive oxygen species (ROS), scavenges superoxide radicals, mitigates the accessibility of oxygen-induced K+ erythrocytes, and reduces lipid peroxidation. Naringenin's antioxidant prowess holds promise for addressing neurological conditions. CONCLUSION Extensive research has been undertaken to establish the anti-inflammatory, immunomodulatory, and neuroprotective attributes of naringenin across various medical domains, lending credence to its pharmacological utility. The principal obstacle to naringenin's adoption as a therapeutic agent remains the dearth of in vivo data. Efforts should focus on rendering naringenin delivery patient-friendly, economically viable, and technologically advanced.
Collapse
Affiliation(s)
- Sarita Solanki
- Department of Pharmacy, University of Kota, Kota Rajasthan, India
| | - Himangi Vig
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| | - Nidhi Khatri
- Department of Pharmacy, University of Kota, Kota Rajasthan, India
| | | | | | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| |
Collapse
|
13
|
Kang MH, Kim SH, Park JH, Yeom SH, Park JE, Kim JW. Effect of Ixeris dentata extract on anti-inflammatory by inhibition of Nf-kb and cytokine levels. Food Sci Biotechnol 2025; 34:227-236. [PMID: 39758732 PMCID: PMC11695659 DOI: 10.1007/s10068-024-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 01/07/2025] Open
Abstract
Chronic inflammation is persistent disease caused by unregulated activation of Nf-kb pathway and production of pro-inflammatory cytokines, induced by accumulation of reactive oxygen species above thresholds. The purpose of this study was to evaluate the anti-oxidant, anti-lipidemia, inhibition Nf-kb pathway, and reduction of pro-inflammatory cytokine activities of Ixeris dentata extract (IDE) to demonstrate its inhibitory ability against chronic inflammatory in RAW264.7. Polyphenol content, radical scavenging activity, and lipase activity inhibition of IDE were 9.2 ± 0.2 GAE mg/g dry matter, 84.7%, and 72.4%, respectively, showing high effects against anti-oxidant and lipolysis inhibitory. Furthermore, anti-inflammatory effects of IDE on LPS-induced RAW 264.7 were investigated, and expression of inflammatory genes such as Cox-2, Inos, Tnf-α, Il-6, Nf-kb, and Il-1β were decreased by 36.5%-83.4%. Studies have confirmed that IDE has excellent antioxidant, lipolysis inhibitory, and anti-inflammatory effects, and Ixeris dentata can be used as natural ingredients for food and medicine to prevent.
Collapse
Affiliation(s)
- Min Ho Kang
- Department of Food Science, Sun Moon University, 70, Sunmoon-ro 221 Beon-Gil, Tangjeong-Myeon, Asansi, Chungcheongnam-do Korea
| | - So Hee Kim
- Department of Food Science, Sun Moon University, 70, Sunmoon-ro 221 Beon-Gil, Tangjeong-Myeon, Asansi, Chungcheongnam-do Korea
| | - Jae Hoon Park
- Department of Food Science, Sun Moon University, 70, Sunmoon-ro 221 Beon-Gil, Tangjeong-Myeon, Asansi, Chungcheongnam-do Korea
| | - Suh Hee Yeom
- Department of Food Science, Sun Moon University, 70, Sunmoon-ro 221 Beon-Gil, Tangjeong-Myeon, Asansi, Chungcheongnam-do Korea
| | - Jung Eun Park
- Department of Food Science, Sun Moon University, 70, Sunmoon-ro 221 Beon-Gil, Tangjeong-Myeon, Asansi, Chungcheongnam-do Korea
| | - Jin Woo Kim
- Department of Food Science, Sun Moon University, 70, Sunmoon-ro 221 Beon-Gil, Tangjeong-Myeon, Asansi, Chungcheongnam-do Korea
- Center for Next-Generation Semiconductor Technology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-Myeon, Asan-si, 336-708 Chungnam Korea
- FlexPro Biotechnology, Natural Science 128, 70 Sunmoon-ro 221, Tangjeong-Myeon, Asan-si, 336-708 Korea
| |
Collapse
|
14
|
Belhouala K, Korkmaz C, Taş Küçükaydın M, Küçükaydın S, Duru ME, Benarba B. Eco-Friendly Species Evernia prunastri (L.) Ach.: Phenolic Profile, Antioxidant, Anti-inflammatory, and Anticancer Properties. ACS OMEGA 2024; 9:45719-45732. [PMID: 39583657 PMCID: PMC11579742 DOI: 10.1021/acsomega.3c10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 11/26/2024]
Abstract
Growing in prominence is the utilization of natural product-based therapies, especially edibles used in traditional medicine, as more people seek natural and holistic approaches to health and well-being. This research aimed to determine the phenolic compounds, and antioxidant, anti-inflammatory, and anticancer effects of aqueous and methanolic extracts from Evernia prunastri (L.) Ach., a common spice in Algeria. HPLC-DAD was used to establish the phenolic profile, whereas the antioxidant activity was determined by DPPH, FRAP, phosphomolybdate, and hydrogen peroxide (H2O2) assays. Human red blood cell (HRBC) stabilization, albumin denaturation, and proteinase inhibition procedures were performed to investigate the anti-inflammatory activities, and an MTT assay was used to demonstrate the cytotoxic effect against three human cancer cell lines (HT-29, PC-3, A549) and human nontumor (CCD18-Co) cells. Our results showed that the major phenolics detected were mostly phenylpropanoids with domination of rosmarinic acid (79.17 mg/g), caffeic acid (46.52 mg/g), trans-cinnamic acid (29.23 mg/g), and chlorogenic acid (23.68 mg/g). In addition, six flavonoids were identified (1.98-11.34 mg/g), namely, luteolin, myricetin, kaempferol, rutin, apigenin, and quercetin. Other compounds were relatively present in both extracts, gallic acid and 3-hydroxybenzoic acid (phenolic acids), except pyrocatechol (benzenediol), which was slightly detected in the aqueous extract (0.91 mg/g). Moreover, both E. prunastri extracts showed strong antioxidant activity, with a higher antioxidant potential, as shown by the methanolic extract. Likewise, both reduced HRBC hemolysis damage and moderately suppressed protein denaturation, which reflected their anti-inflammatory potential. Interestingly, the methanolic extract significantly reduced the growth of HT-29, PC-3, and A549 cells by 67.03, 75.56, and 62.96% respectively. No cytotoxic effects were observed in the nontumor cells. The methanolic extract had the lowest IC50 values of 100 ± 0.04, 146 ± 0.05, and 112 ± 0.06 μg/mL against HT-29, PC-3, and A549 cell lines, respectively. In conclusion, E. prunastri, especially its methanolic extract, could be considered as a promising source of antioxidant and anticancer molecules.
Collapse
Affiliation(s)
- Khadidja Belhouala
- Laboratory
Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Mascara 29001, Algeria
| | - Cansu Korkmaz
- Department
of Biology, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Meltem Taş Küçükaydın
- Department
of Chemistry, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Selçuk Küçükaydın
- Department
of Medical Services and Techniques, Köyceğiz Vocational
School of Health Services, Muğla
Sıtkı Koçman University, 48800 Köyceğiz/Muğla, Turkey
| | - Mehmet Emin Duru
- Department
of Chemistry, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Bachir Benarba
- Laboratory
Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Mascara 29001, Algeria
- Thematic
Research Agency in Health and Life Sciences (ATRSSV), 31000 Oran, Algeria
| |
Collapse
|
15
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
16
|
Erdayandi GE, Yilmaz O, Kerimoglu G, Sahin E, Dogan SY. Can intra-articular daidzein injection reduce oxidative damage and early osteoarthritis in a rabbit temporomandibular joint model? BMC Oral Health 2024; 24:1193. [PMID: 39379866 PMCID: PMC11460211 DOI: 10.1186/s12903-024-04990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Oxidative damage and inflammatory cytokines in osteoarthritis (OA) exacerbate the disease course. Daidzein (DZ) has antioxidant and anti-inflammatory effects. This study evaluated the early histopathological effects of intra-articular daidzein injection on experimentally induced osteoarthritis in rabbit TMJs. METHODS The predictor variable was intra-articular injection of DZ or a saline control. 50 µl of 3 mg/mL MIA solution was injected into the right TMJ of 16 New Zealand rabbits to induce experimental OA. One rabbit was sacrificed after 4 weeks to confirm the formation of the OA model and the OA model was obtained. The remaining 15 rabbits were randomly divided into 2 groups: an experimental group (9 rabbits) and a control group (6 rabbits). On days 1, 7, 14, and 21; 50 µl of saline solution was applied to the right TMJ of the control group and 50 µl daidzein solution (1.8 mg/ml) was applied to the right TMJ to the experimental group. After one week from the date of the last injection, the rabbits were sacrificed, and histopathological and biochemical evaluations were performed. The Shapiro-Wilk test was used to evaluate whether the variables in the study conformed to normal distribution. Mean ± SD (standard deviation) or median (interquartile range (IQR)) was used to show the descriptive statistics of the variables. T-test and Mann Whitney U test were used to compare the control and experimental groups for biochemical changes. The chi-square test was used to show the distribution of histopathological changes variables obtained within the scope of the study based on control and experimental groups. A P-value < 0.05 was considered significant for all evaluations. RESULTS There were 8 and 6 animate treated with DZ and saline, respectively. There was no statistically significant difference between groups in articular cartilage (p = 0.3), osteochondral junction (p = 0.3), subchondral bone structure (p = 1.0) or chondrocyte appearance (p = 0.4). The experimental group showed significantly lower mean values for Total Oxidant Status (TOS) (p = 0.002) and Oxidative Stress Index (OSI) (p = 0.007). CONCLUSIONS An intra-articular DZ injection appears to show limited reduction of oxidative damage and early OA in the rabbit TMJ. DZ might represent a promising natural compound with beneficial effects in the management of TMJ-OA.
Collapse
Affiliation(s)
- Gokce Elif Erdayandi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey.
| | - Onur Yilmaz
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Sahin
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sedanur Yilmaz Dogan
- Department of Histology and Embryology, Kanuni Sultan Suleyman Training and Research Hospital, Trabzon, Turkey
| |
Collapse
|
17
|
Pratama DAOA, Fernanda A, Raissa R, Permata FS, Nordin ML. Black soybean extract inhibits rat mammary carcinogenesis through BRCA1 and TNF-α expression: In silico and in vivo study. Open Vet J 2024; 14:2678-2686. [PMID: 39545186 PMCID: PMC11560253 DOI: 10.5455/ovj.2024.v14.i10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/03/2024] [Indexed: 11/17/2024] Open
Abstract
Background Mammary gland carcinoma is a malignant type of cancer that occurs in mammae tissue. Dimethylbenzene (α) anthracene (DMBA) is a carcinogenic agent that causes mammary cancer by damaging cellular DNA. Flavonoids found in the black soybean (Glycine max L. Merr) exhibit anti-carcinogenic effects. Aim This study evaluated the anticarcinogenic effects of black soybean extract. Methods The activity of flavonoid compounds in black soybean was determined in silico. Five groups of rats, four in each group, were established, consisting of a negative control, a positive control, and three treatment groups. Treatment included black soybean extract administration (i.e., T1 = 200, T2 = 400, and T3 = 800 mg of black soybean extract/kg body weight for 10 days). The observed parameters included the immunohistochemical analysis of Breast Cancer 1(BRCA1) and TNF-α. Results Based on an in silico study, compounds from black soybeans are non-toxic. Functional annotation analysis revealed that most of the target proteins have a role in biological processes associated with cancer development. An in vivo analysis using an animal mammae cancer model indicated that black soybean extracts inhibited mammae cancer progression by attenuating TNF-α and BRCA1 expression. Conclusion The most effective dosage of black soybean extract was 200 mg/kg body weight. An increase in BRCA1 and TNF-α expression may be related to the effects of catechin, daidzein, genistein, and glycitein, which are present in black soybeans.
Collapse
Affiliation(s)
- Dyah Ayu OA Pratama
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java, 65151, Indonesia
| | - Annesia Fernanda
- Undergraduate Student, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java, 65151, Indonesia
| | - Ricadonna Raissa
- Departement of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java, 65151, Indonesia
| | - Fajar Shodiq Permata
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java, 65151, Indonesia
| | - Muhammad Luqman Nordin
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
- Animal and Wildlife Research Group, Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| |
Collapse
|
18
|
Piazza S, Bani C, Colombo F, Mercogliano F, Pozzoli C, Martinelli G, Petroni K, Roberto Pilu S, Sonzogni E, Fumagalli M, Sangiovanni E, Restani P, Dell'Agli M, Di Lorenzo C. Pigmented corn as a gluten-free source of polyphenols with anti-inflammatory and antioxidant properties in CaCo-2 cells. Food Res Int 2024; 191:114640. [PMID: 39059931 DOI: 10.1016/j.foodres.2024.114640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
A high number of varieties from corn (Zea mays L.) have been consumed for long time all over the world, however pigmented varieties are recently gaining renewed attention due to their beneficial effects and polyphenolic content. The natural lack of gluten makes corn suitable for consumption by celiac population, who need to control their inflammatory state through an appropriate gluten-free diet. The biological effects of polyphenols from pigmented corn are poorly investigated in the context of celiac disease. In this work, we analyzed through HPLC-DAD the phenolic composition of two Italian purple and red varieties ("Scagliolo Rosso" and "Rostrato di Rovetta", respectively) comparing their effects in human intestinal epithelial cells (CaCo-2 cells). The possible impact of gastro-intestinal digestion following oral consumption was assessed as well. The phenolic profile showed the presence of phenolic acids in both varieties, while anthocyanins were identified in Scagliolo Rosso only. After simulated digestion, the level of polyphenols did not significantly change and paralleled with an increased scavenging activity. In CaCo-2 cells, stimulated by a proinflammatory cocktail containing gliadin-derived peptides (IL-1β, IFN-γ, digested gliadin), pigmented corn extracts inhibited the release of CXCL-10 and sICAM-1, with mechanisms partially ascribed to NF-κB impairment. At the same concentration (200 μg/mL), ROS production and catalase depletion were reverted through Nrf-2-independent mechanisms. Our data suggest that polyphenols from pigmented corns might help in controlling the inflammatory and oxidative state of people with celiac disease at intestinal level, at concentrations potentially achievable through a gluten-free diet.
Collapse
Affiliation(s)
- Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Corinne Bani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Francesca Colombo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Francesca Mercogliano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Carola Pozzoli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Salvatore Roberto Pilu
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisa Sonzogni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy.
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
19
|
Yadav T, Yadav HKS, Raizaday A, Alam MS. The treatment of psoriasis via herbal formulation and nano-polyherbal formulation: A new approach. BIOIMPACTS : BI 2024; 15:30341. [PMID: 40256226 PMCID: PMC12008506 DOI: 10.34172/bi.30341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 04/22/2025]
Abstract
Psoriasis is a chronic condition that can strike at any age. This sickness is associated with inflammatory problems that impact all humans in the world. Psoriasis is more common in Scandinavians than in Asian and African populations due to a combination of factors such as age, gender, geographic location, ethnicity, genetic and environmental factors. Immune stimulation, genetic contribution, antimicrobial peptides, and other significant triggers such as medicines, immunizations, infections, trauma, stress, obesity, alcohol intake, smoking, air pollution, sun exposure, and particular disorders cause psoriasis. Numerous clinical research investigations are now underway, and therapeutic alternatives are available. However, these therapies only improve symptoms and do not accomplish a complete cure; they also have dangerous and undesirable side effects. Natural products have gained popularity recently due to their great effectiveness, safety, and low toxicity. Natural formulations of various nanocarriers like liposomes, lipospheres, nanogels, emulgel, nanostructured lipid carriers, nanosponge, nanofibers, niosomes, nanomiemgel, nanoemulsions, nanospheres, cubosomes, microneedles, nanomicelles, ethosomes, nanocrystals, and foams, have significantly contributed and encouraged advancement in psoriasis disease treatment. These phytochemical-loaded new nanoformulations address several issues associated with natural products in conventional dosage forms, such as instability, poor solubility, and limited bioavailability. This article reviews some of the intriguing phytochemicals, as well as their possible molecular target locations and mechanisms of action, which may assist in the development of more specific and selective antipsoriatic medicines. Exploring and understanding phytochemicals' functions will allow for more site-specific psoriasis treatment techniques. This review concluded the psoriasis disease with phytoconstituent loaded herbal or polyherbal nanocarriers and their mechanistic approach.
Collapse
Affiliation(s)
- Tejpal Yadav
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | | | - Abhay Raizaday
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida, Uttar Pradesh, India
| | - Md Sabir Alam
- SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana-122505, India
| |
Collapse
|
20
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
21
|
Tahmasebi A, Jamali B, Atabaki V, Sarker SD, Nahar L, Min HJ, Lee CW. A comprehensive review of the botany, ethnopharmacology, phytochemistry, and pharmacological activities of two Iranian Rydingia species (Lamiaceae). Fitoterapia 2024; 176:106026. [PMID: 38768794 DOI: 10.1016/j.fitote.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Rydingia michauxii and R. persica, respectively, known as Kase Gol and Goldar in Persian, belong to the family Lamiaceae and they are well known herbal medicine in Iran for the treatment of various diseases, particularly diabetes. This review aims to appraise the phytochemistry, ethnopharmacology, and pharmacological activities of Rydingia species growing in Iran and assess their potential in clinical applications. Besides, it critically evaluates existing literature and looks into the perspective for further research and utilization. All available scientific literature was consulted using the database searches involving Google Scholar, PubMed, and Web of Science applying the keyword Rydingia and its Syn; Otostegia. Only the search results that are associated with the Iranian species R. michauxii and R. persica are included in this review. α-pinene, carvacrol, caryophyllene oxide, diisooctyl phthalate, dillapiole, eugenol, hexadecanoic acid, and pentacosane are the major constituents of the essential oils of the Rydingia species. Additionally, these species produce bioactive flavonoids, phenolic acids, steroids, and terpenoids. Extracts and active compounds from Rydingia species have been reported to possess various pharmacological activities including antidiabetic, anti-inflammatory, antimalarial, antimicrobial, antioxidant, cytotoxic, and lipid-lowering properties. Based on the information available to date on the Iranian Rydingia species, it will be worth subjecting these species to further developmental work involving preclinical and clinical trials.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran; Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran; Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| | - Babak Jamali
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
22
|
Liu H, Shi J, Liu F, Zhang L. Integrating network pharmacology and experimental verification to reveal the anti-inflammatory ingredients and molecular mechanism of pycnogenol. Front Pharmacol 2024; 15:1408304. [PMID: 38989153 PMCID: PMC11233470 DOI: 10.3389/fphar.2024.1408304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction: Pycnogenol (PYC), a standardized extract from French maritime pine, has traditionally been used to treat inflammation. However, its primary active components and their mechanisms of action have not yet been determined. Methods: This study employed UPLC-MS/MS (Ultra-high performance liquid chromatography-tandem mass spectrometry) and network pharmacology to identify the potential active components of PYC and elucidate their anti-inflammatory mechanisms by cell experiments. Results: 768 PYC compounds were identified and 19 anti-inflammatory compounds were screened with 85 target proteins directly involved in the inflammation. PPI (protein-protein interaction) analysis identified IL6, TNF, MMP9, IL1B, AKT1, IFNG, CXCL8, NFKB1, CCL2, IL10, and PTGS2 as core targets. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis suggested that the compound in PYC might exert anti-inflammatory effects through the IL17 and TNF signal pathways. Cell experiments determined that PYC treatment can reduce the expression of IL6 and IL1β to relieve inflammation in LPS (lipopolysaccharide)-induced BV2 cells. Conclusion: PYC could affect inflammation via multi-components, -targets, and -mechanisms.
Collapse
Affiliation(s)
| | | | | | - Litao Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
23
|
Shin SK, Kwon EY. Kaempferol ameliorates metabolic syndrome by inhibiting inflammation and oxidative stress in high-fat diet-induced obese mice. Nutr Res Pract 2024; 18:325-344. [PMID: 38854471 PMCID: PMC11156765 DOI: 10.4162/nrp.2024.18.3.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Kaempferol (Ka) is one of the most widely occurring flavonoids found in large amounts in various plants. Ka has anti-obesity, antioxidant, and anti-inflammatory effects. Despite the numerous papers documenting the efficacy of Ka, some controversy remains. Therefore, this study examined the impact of Ka using 3T3-L1 and high-fat diet-induced obese mice. MATERIALS/METHODS 3T3-L1 cells were treated with 50 μM Ka from the initiation of 3T3-L1 differentiation at D0 until the completion of differentiation on D8. Thirty male mice (C57BL/6J, 4 weeks old) were divided into 3 groups: normal diet (ND), high-fat diet (HFD), and HFD + 0.02% (w/w) Ka (Ka) group. All mice were fed their respective diets ad libitum for 16 weeks. The mice were sacriced, and the plasma and hepatic lipid levels, white adipose tissue weight, hepatic glucose level, lipid level, and antioxidant enzyme activities were analyzed, and immunohistochemistry staining was performed. RESULTS Ka suppressed the hypertrophy of 3T3-L1 cells, and the Ka-supplemented mice showed a significant decrease in perirenal, retroperitoneal, mesenteric, and subcutaneous fat compared to the HFD group. Ka supplementation in high-fat diet-induced obese mice also improved the overall blood lipid concentration (total cholesterol, non-high-density lipoprotein-cholesterol, phospholipids, and apolipoprotein B). Ka supplementation in high-fat-induced obesity mice reduced hepatic steatosis and insulin resistance by modulating the hepatic lipid (glucose-6-phosphate dehydrogenase, fatty acid synthase, malic enzyme, phosphatidate phosphohydrolase, and β-oxidation) activities and glucose (glucokinase, phosphoenolpyruvate carboxykinase, and G6pase)-regulating enzymes. Ka supplementation ameliorated the erythrocyte and hepatic mitochondrial H2O2 and inflammation levels (plasma tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6, and interferon-gamma and fibrosis of liver and epididymal fat). CONCLUSION Ka may be beneficial for preventing diet-induced obesity, inflammation, oxidative stress, and diabetes.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
24
|
Muchtaromah B, Firdaus AMK, Ansori ANM, Duhita MR, Minarno EB, Hayati A, Ahmad M, Analisa I. Effect of pegagan ( Centella asiatica) nanoparticle coated with chitosan on the cytokine profile of chronic diabetic mice. NARRA J 2024; 4:e697. [PMID: 38798839 PMCID: PMC11125306 DOI: 10.52225/narra.v4i1.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Diabetes is closely related to immune response problems when it occurs chronically. Pegagan (Centella asiatica) is a medicinal plant with active compounds. Madecassoside is beneficial in treating diabetes, and nanoparticle technology is expected to enhance the medicinal potential and availability of pegagan compounds. The aim of this study was to determine the effect of chitosan-coated pegagan nanoparticles on the cytokine profile of chronic diabetic mice, which included CD4+TNF-α+, CD8+TNF-α+, CD4+IFN-γ+, CD8+IFN-γ+ and IL-6+. An experimental study with a randomized complete block design (CRD) consisting of six treatments with seven replicates was conducted. The groups were: healthy mice as negative control; diabetic mice treated with distilled water as positive control and diabetic mice treated with nanoparticle coated with chitosan (NPC) 20 mg/kg, 30 mg/kg, 40 mg/kg, and metformin 130 mg/kgBW. The data were tested using one-way analysis of variance (ANOVA) with a significance level of 5% and continued with the Duncan's multiple range test. The results showed that pegagan NPC could significantly reduce the relative number of CD4+TNF-α+, CD8+TNF-α+, CD4+IFN-γ+ and CD8+IFN-γ+ and IL-6 in the dose of 20 mg/kg, 30 mg/kg and 40 mg/kg (p<0.05). The treatment dose of 20 mg/kg reduced CD4+TNF-α+, CD8+TNF-α+, CD4+IFN-γ+, CD8+IFN-γ+ to the levels of healthy mice and a dose of 30 mg/kg could reduce IL-6 as in healthy mice. These findings suggest that chitosan-coated pegagan nanoparticles are a promising therapy for diabetes, as they have the potential to modulate the immune response associated with chronic diabetes.
Collapse
Affiliation(s)
- Bayyinatul Muchtaromah
- Master Program of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Ana MK. Firdaus
- Master Program of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Arif NM. Ansori
- Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Division of Research and Development, Jalan Tengah, Surabaya, Indonesia
| | - Maharani R. Duhita
- Master Program of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Eko B. Minarno
- Master Program of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Alfiah Hayati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Mujahidin Ahmad
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Izza Analisa
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| |
Collapse
|
25
|
Ethier R, Krishnamurthy A, Jeffrey M, Tompkins TA. Profiling of Metabolites in a Fermented Soy Dietary Supplement Reinforces its Role in the Management of Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300770. [PMID: 38522032 DOI: 10.1002/mnfr.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Indexed: 03/25/2024]
Abstract
SCOPE Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.
Collapse
Affiliation(s)
- Richard Ethier
- Richard Ethier Consulting, Montreal, Quebec, H4C 2J9, Canada
| | - Arun Krishnamurthy
- Purity-IQ Inc., Suite# 102, 150 Research Lane, Guelph, Ontario, N1G 4T2, Canada
| | - Michael Jeffrey
- Faculty of Science, Engineering & Information Technology, Durham College, Oshawa, Ontario, L1G 0C5, Canada
| | - Thomas A Tompkins
- Lallemand Bio-Ingredients, 1620 rue Prefontaine, Montreal, Quebec, H1W 2N8, Canada
| |
Collapse
|
26
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
27
|
Lim SH, Yong GJM, Chia CY, Man SM, Subramanian GS, Oh G, Cheong EJY, Kiryukhin MV. Mucin coated protein-polyphenol microcarriers for daidzein delivery. Food Funct 2024; 15:2645-2654. [PMID: 38362621 DOI: 10.1039/d3fo03356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Daidzein, an isoflavone found abundantly in legumes, may benefit from bypassing upper gut absorption to reach the colon where it can be metabolized into the potent estrogen equol by the gut microbiome. To achieve this, we developed mucin coated protein-tannin multilayer microcarriers. Highly porous functionalized calcium carbonate (FCC) microparticles efficiently absorbed daidzein from a dimethyl sulfoxide solution, with a loading capacity of 21.6 ± 1.8 wt% as measured by ultra-high pressure liquid chromatography - mass spectrometry (UPLC-MS). Daidzein-containing FCC microparticles were then coated with a bovine serum albumin (BSA)-tannin n-layer film terminated with mucin ((BSA-TA)n-mucin) by layer-by-layer deposition from corresponding aqueous solutions followed by FCC decomposition with HCl. Raman spectroscopy confirmed mucin-tannin complexation involving both hydrophobic interactions and hydrogen bonding. The resulting multilayer microcarriers contained 54 wt% of nanocrystalline daidzein as confirmed by X-ray diffraction and UPLC-MS. Preliminary screening of several types of mucin coatings using an in vitro INFOGEST digestion model demonstrated that mucin type III from porcine stomach provided the highest protection against upper intestinal digestion. (BSA-TA)8-mucin and (BSA-TA)4-mucin microcarriers retained 71 ± 16.4% and 68 ± 4.6% of daidzein, respectively, at the end of the small intestinal phase. Mucin-free (BSA-TA)8 retained a lower daidzein amount of 46%. Daidzein release and further conversion into equol were observed during in vitro colonic studies with fecal microbiota from a healthy non-equol-producing donor and Slackia equolifaciens. The developed approach has potential for encapsulating other hydrophobic nutraceuticals or therapeutics, enhancing their bioaccessibility in the colon.
Collapse
Affiliation(s)
- Su Hui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Germaine Jia Min Yong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
- Asian Microbiome Library Pte. Ltd, 89 Science Park Dr, #03-09, Singapore 118261
| | - Cheryl Yingxue Chia
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Shu Mei Man
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Gomathy Sandhya Subramanian
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Geraldine Oh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Eleanor Jing Yi Cheong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Maxim V Kiryukhin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia 143025.
| |
Collapse
|
28
|
Liu J, Li F, Ouyang Y, Su Z, Chen D, Liang Z, Zhang Z, Lin R, Luo T, Guo L. Naringin-induced M2 macrophage polarization facilitates osteogenesis of BMSCs and improves cranial bone defect healing in rat. Arch Biochem Biophys 2024; 753:109890. [PMID: 38246327 DOI: 10.1016/j.abb.2024.109890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Osteoimmunology has uncovered the critical role of the immune microenvironment in the bone healing process, with macrophages playing a central part in generating immune responses via chemokine production. Naringin, a flavanone glycoside extracted from various plants, has been shown to promote osteoblast differentiation, thereby enhancing bone formation and mitigating osteoporosis progression. Current research on the osteogenic mechanism primarily focuses on the direct impact of naringin on mesenchymal stem cells, while its indirect immunoregulatory effects remain elusive. In this study, we investigated the bone defect-enhancing effects of varying naringin concentrations in vivo using a cranial bone defect model in Sprague-Dawley rats. We assessed the osteoimmune modulation capacity of naringin by exposing lipopolysaccharide (LPS)-induced RAW 264.7 macrophages to different doses of naringin. To further elucidate the underlying osteogenic enhancement mechanism, Bone Marrow Stromal Cells (BMSCs) derived from mice were treated with conditioned media from naringin-treated macrophages. Our findings indicated that naringin promotes M2 phenotype polarization in macrophages, as evidenced by the downregulation of pro-inflammatory cytokines Inducible Nitric Oxide Synthase (iNOS), interleukin (IL)-1β, and Tumor Necrosis Factor (TNF)-α, and the upregulation of anti-inflammatory cytokine Transforming growth factor (TGF)-β. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in osteoblast differentiation and anti-inflammatory response pathways in naringin-pretreated macrophages, with the cytokines signaling pathway being upregulated. The conditioned media from naringin-treated macrophages stimulated the expression of osteogenic-related genes Alkaline phosphatase (Alp), osteocalcin (Ocn), osteopontin (Opn), and Runt-related transcription factor (Runx) 2, as well as protein expression in BMSCs. In conclusion, naringin alleviates macrophage inflammation by promoting M2 phenotype polarization, which in turn enhances the osteogenic differentiation of BMSCs, contributing to its bone healing effects in vivo. These results suggest that naringin holds significant potential for improving bone defect healing through osteoimmune modulation.
Collapse
Affiliation(s)
- Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Fuyao Li
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ruofei Lin
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Luo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
30
|
Lauricella M, Di Liberto D. Special Issue: "Inflammatory Signaling Pathways Involved in Gastrointestinal Diseases". Int J Mol Sci 2024; 25:1287. [PMID: 38279287 PMCID: PMC10816278 DOI: 10.3390/ijms25021287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammation is a defensive response of the innate and adaptive immune systems against injury and/or harmful microorganisms to restore homeostasis [...].
Collapse
Affiliation(s)
- Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
31
|
Ahirrao P, Deshmukh KN, Menon T, Jachak SM. Enhanced Anti-inflammatory Effect of Puerarin through Optimized Release and Bioavailability via PDLG-Loaded Nanoparticles. Biol Pharm Bull 2024; 47:2154-2164. [PMID: 39756930 DOI: 10.1248/bpb.b24-00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Puerarin (PU), a bioactive constituent reported to possess therapeutic effectiveness, but it suffers a drawback of poor bioavailability. In the present study, the PU nanoparticles (PU-NPs) were prepared using solvent-diffusion-evaporation method and optimized using Box-Behnken design (BBD), a response surface methodology for obtaining the optimal material ratio of PU-NPs. Further, PU and PU-NPs were evaluated to assess their cytotoxic effect and in vitro efficiency of inflammatory responses using lipopolysaccharide-sensitive macrophage cell line (RAW264.7). Also, PU-NPs were assessed for, in vivo anti-inflammatory activity using a carrageenan-induced rat paw edema model and an oral pharmacokinetic release study. PU-NPs formulation exhibited smaller particle sizes, an increase in the amorphous structure stability, and a higher dissolution rate, as compared to PU. The relative bioavailability of PU-NPs increased up to five-fold compared to PU suspension, as demonstrated by the parameters like the area under the curve (AUC), t1/2, and the mean residence time (MRT). It mitigates enhanced cell viability and lowers the production of pro-inflammatory mediators [nitric oxide (NO), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6)]. Moreover, PU-NPs showed a marked reduction in the development of paw edema at low doses compared to PU in an in vivo carrageenan-induced rat paw edema model. The results of the study affirm the potential of PU-NPs compared to PU in enhancing in vitro and in vivo anti-inflammatory responses by prolonging release and enhancing relative bioavailability.
Collapse
Affiliation(s)
- Pallavi Ahirrao
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy
| | - Kirti Nandkumar Deshmukh
- Department of Natural products, National Institute of Pharmaceutical Education and Research (NIPER)
| | - Tanika Menon
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy
| | - Sanjay M Jachak
- Department of Natural products, National Institute of Pharmaceutical Education and Research (NIPER)
| |
Collapse
|
32
|
Zhou Y, Li QX, Liao ZZ, Liu Y, Ouyang Y, Jiang WJ, Tang MT, Hu JF, Zhang W. Anti-inflammatory effect and component analysis of Chaihu Qingwen granules. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116763. [PMID: 37315646 DOI: 10.1016/j.jep.2023.116763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As prevalent acute respiratory condition in clinical practice, acute lung injury has a quick start and severe symptoms which can harm patients physically. Chaihu Qingwen granules (CHQW) is a classic formula for the treatment of respiratory diseases. Clinical observation shows that CHQW has good efficacy in treating colds, coughs, and fevers. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effect of CHQW on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats and to explore its potential mechanism, as well as to clarify its substance composition. MATERIALS AND METHODS Male SD rats were randomly divided into the blank group, the model group, the ibuprofen group, the Lianhua Qingwen capsule group and the CHQW group (2, 4 and 8 g/kg, respectively). The LPS-induced acute lung injury (ALI) model in rats was established after pre-administration. The histopathological changes in the lung and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum of ALI rats were observed. The inflammation-related proteins toll-like receptor 4 (TLR4), inhibitory kappa B alpha (IκBα), phospho-IκBα (p-IκBα), nuclear-factor-kappa B (NF-κB), and NLR family pyrin domain containing 3(NLRP3) expression levels were measured by western blotting analysis and immunohistochemical analysis. The chemical composition of CHQW was identified by liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). RESULTS CHQW significantly ameliorated lung tissue pathological injury in LPS-induced ALI rats and decreased the release of inflammatory cytokines (interleukin-1β, interleukin-17 and tumor necrosis factor-α) in BALF and serum. In addition, CHQW decreased the expression of TLR4, p-IκBα and NF-κB proteins, increased the level of IκBα, regulated the TLR4/NF-κB signaling pathway, and inhibited the activation of NLRP3. The chemical components of CHQW were analyzed by LC-Q-TOF-MS, and a total of 48 components were identified by combining information from the literature, mainly flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides. CONCLUSION The results of this study showed that the pretreatment of CHQW had a strong protective effect on LPS-induced ALI in rats, reducing lung tissue lesions and decreasing inflammatory cytokines released in BALF and serum. The protective mechanism of CHQW may be related to the inhibition of the TLR4/NF-κB signaling pathway and NLRP3 activation. The main active ingredients of CHQW are flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Qing-Xian Li
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Zheng-Zheng Liao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Wen-Jing Jiang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Meng-Ting Tang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jin-Fang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Wei Zhang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
33
|
Baig TA, Haniffa HM, Siddiqui H, Shah SF, Jabeen A. A new acyl derivative of sulfadimethoxine inhibits phagocyte oxidative burst and ameliorates inflammation in a mice model of zymosan-induced generalised inflammation. Inflammopharmacology 2023; 31:3303-3316. [PMID: 37971604 DOI: 10.1007/s10787-023-01372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Chronic inflammation and oxidative stress play a pivotal role in the pathophysiology of most challenging illnesses, including cancer, Alzheimer's, cardiovascular and autoimmune diseases. The present study aimed to investigate the anti-inflammatory potential of a new sulfadimethoxine derivative N-(4-(N-(2,6-dimethoxypyrimidin-4-yl) sulfamoyl) phenyl) dodecanamide (MHH-II-32). The compound was characterised by applying 1H-, 13C-NMR, EI-MS and HRFAB-MS spectroscopic techniques. The compound inhibited zymosan-induced oxidative bursts from whole blood phagocytes and isolated polymorphonuclear cells with an IC50 value of (2.5 ± 0.4 and 3.4 ± 0.3 µg/mL), respectively. Furthermore, the inhibition of nitric oxide with an IC50 (3.6 ± 2.2 µg/mL) from lipopolysaccharide-induced J774.2 macrophages indicates its in vitro anti-inflammatory efficacy. The compound did not show toxicity towards normal fibroblast cells. The observational findings, gross anatomical analysis of visceral organs and serological tests revealed the non-toxicity of the compound at the highest tested intraperitoneal (IP) dose of 100 mg/kg in acute toxicological studies in Balb/c mice. The compound treatment (100 mg/kg) (SC) significantly (P < 0.001) downregulated the mRNA expression of inflammatory markers TNF-α, IL-1β, IL-2, IL-13, and NF-κB, which were elevated in zymosan-induced generalised inflammation (IP) in Balb/c mice while upregulated the expression of anti-inflammatory cytokine IL-10, which was reduced in zymosan-treated mice. No suppressive effect was observed at the dose of 25 mg/kg. Ibuprofen was taken as a standard drug. The results revealed that the new acyl derivative of sulfadimethoxine has an immunomodulatory effect against generalised inflammatory response with non-toxicity both in vitro and in vivo, and has therapeutic potential for various chronic inflammatory illnesses.
Collapse
Affiliation(s)
- Tariq Ahmad Baig
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon M Haniffa
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Chemical Sciences, Faculty of Applied Sciences, South Eastern University, Sammanthurai, 32200, Sri Lanka
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
34
|
Khan MT, Khan MIUR, Ahmad E, Yousaf MR, Oneeb M. Synergistic effect of extracellular adenosine triphosphate and quercetin on post-thaw quality and fertilization potential of Lohi ram sperm. Cryobiology 2023; 113:104593. [PMID: 37844752 DOI: 10.1016/j.cryobiol.2023.104593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
This study determined the individual and combined effects of extracellular adenosine triphosphate (ATP) and quercetin (QUE) on the quality of post-thawed sperm and the fertilization potential of Lohi rams. In experiment 1, semen samples from four Lohi rams were pooled and extended with different concentrations of ATP or QUE (control; no ATP or QUE, 1 or 2 mM ATP and 10 or 20 μM QUE). In experiment 2, pooled semen samples were extended with various combinations of ATP and QUE (control; no ATP and QUE, 1 mM ATP + 10 μM QUE, 1 mM ATP + 20 μM QUE, 2 mM ATP + 10 μM QUE and 2 mM ATP + 20 μM QUE). All samples in both experiments were cryopreserved and analyzed for post-thawed sperm quality. In experiment 3, the best combination of ATP and QUE from experiment 2 was to extend semen, which was then used for laparoscopic insemination in estrus-synchronized ewes (n = 83). The results of experiment 1 showed that 1 mM ATP and 20 μM QUE treatments resulted in higher total motility, progressive motility, viability, plasma membrane intactness (PMI), and motion kinetics (VCL, VSL, VAP, LIN, and STR) compared to other treatments (p < 0.05). In experiment 2, the 1 mM ATP +10 μM QUE-treated group exhibited significantly higher total and progressive motility, PMI, and motion kinetics (VSL, VCL, VAP, STR, and BCF) compared to the control group (p < 0.05). In experiment 3, the fertilizing potential of sperms treated with 1 mM ATP +10 μM QUE was greater than that of untreated controls (58.1% vs. 27.5%, respectively, p-value = 0.012). In conclusion, the quality of post-thawed ram semen is enhanced when the extender is supplemented with extracellular 1 mM ATP and 20 μM QUE, whether used separately or in combination with 1 mM ATP and 10 μM QUE. Furthermore, the inclusion of 1 mM ATP and 10 μM QUE together in the extender significantly improves in vivo fertility in Lohi ram.
Collapse
Affiliation(s)
- Muhammad Tayyab Khan
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Ejaz Ahmad
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakriya University Multan, Pakistan.
| | - Muhammad Rizwan Yousaf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Oneeb
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
35
|
Kassab RB, Elhenawy AA, AbdulrahmanTheyab, Hawsawi YM, Al-Amer OM, Oyouni AAA, Habotta OA, Althagafi HA, Alharthi F, Lokman MS, Alsharif KF, Albrakati A, Al-Ghamdy AO, Elmahallawy EK, Elhefny MA, Hassan KE, Albarakati AJA, Abdel Moneim AE, Moustafa AA. Modulation of inflammatory, oxidative, and apoptotic stresses mediates the renoprotective effect of daidzein against glycerol-induced acute kidney injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119016-119033. [PMID: 37919499 DOI: 10.1007/s11356-023-30461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1β (IL-1β), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys' Branch), Nasr City, Cairo, Egypt
| | - AbdulrahmanTheyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia
| | - Osama M Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ali O Al-Ghamdy
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Kalid E Hassan
- Pathology Department, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, 11795, Egypt
| | - Ahmed A Moustafa
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, 11795, Egypt
- Urology Department, Tulane University, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| |
Collapse
|
36
|
Strugała-Danak P, Spiegel M, Gabrielska J. Malvidin and Its Mono- and Di-Glucosides Forms: A Study of Combining Both In Vitro and Molecular Docking Studies Focused on Cholinesterase, Butyrylcholinesterase, COX-1 and COX-2 Activities. Molecules 2023; 28:7872. [PMID: 38067599 PMCID: PMC10708353 DOI: 10.3390/molecules28237872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Malvidin, one of the six most prominent anthocyanins found in various fruits and vegetables, may possess a wide range of health-promoting properties. The biological activity of malvidin and its glycosides is not entirely clear and has been relatively less frequently studied compared to other anthocyanins. Therefore, this study aimed to determine the relationship between the structural derivatives of malvidin and their anti-cholinergic and anti-inflammatory activity. The study selected malvidin (Mv) and its two sugar derivatives: malvidin 3-O-glucoside (Mv 3-glc) and malvidin 3,5-O-diglucoside (Mv 3,5-diglc). The anti-inflammatory activity was assessed by inhibiting the enzymes, specifically COX-1 and COX-2. Additionally, the inhibitory effects on cholinesterase activity, particularly acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), were evaluated. Molecular modeling was also employed to examine and visualize the interactions between enzymes and anthocyanins. The results revealed that the highest inhibitory capacity at concentration 100 µM was demonstrated by Mv 3-glc in relation to AChE (26.3 ± 3.1%) and BChE (22.1 ± 3.0%), highlighting the crucial role of the glycoside substituent at the C3 position of the C ring in determining the inhibitory efficiency of these enzymes. In addition, the glycosylation of malvidin significantly reduced the anti-inflammatory activity of these derivatives compared to the aglycone form. The IC50 parameter demonstrates the following relationship for the COX-1 enzyme: Mv (12.45 ± 0.70 µM) < Mv 3-glc (74.78 ± 0.06 µM) < Mv 3,5-diglc (90.36 ± 1.92 µM). Similarly, for the COX-2 enzyme, we have: Mv (2.76 ± 0.16 µM) < Mv 3-glc (39.92 ± 3.02 µM) < Mv 3.5-diglc (66.45 ± 1.93 µM). All tested forms of malvidin exhibited higher activity towards COX-2 compared to COX-1, indicating their selectivity as inhibitors of COX-2. Theoretical calculations were capable of qualitatively replicating most of the noted patterns in the experimental data, explaining the impact of deprotonation and glycosylation on inhibitory activity. It can be suggested that anthocyanins, such as malvidins, could be valuable in the development of treatments for inflammatory conditions and Alzheimer's disease and deserve further study.
Collapse
Affiliation(s)
- Paulina Strugała-Danak
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical Technology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Janina Gabrielska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
37
|
Rodriguez-Canales M, Medina-Romero YM, Rodriguez-Monroy MA, Nava-Solis U, Bolaños-Cruz SI, Mendoza-Romero MJ, Campos JE, Hernandez-Hernandez AB, Chirino YI, Cruz-Sanchez T, Garcia-Tovar CG, Canales-Martinez MM. Activity of propolis from Mexico on the proliferation and virulence factors of Candida albicans. BMC Microbiol 2023; 23:325. [PMID: 37924042 PMCID: PMC10625287 DOI: 10.1186/s12866-023-03064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND This research evaluated the anti-Candida albicans effect of Mexican propolis from Chihuahua. Chemical composition of the ethanolic extract of propolis was determined by GC-MS, HPLC-DAD, and HPLC-MS. The presence of anthraquinone, aromatic acid, fatty acids, flavonoids, and carbohydrates was revealed. RESULTS The anti-Candida activity of propolis was determined. The inhibitions halos were between 10.0 to 11.8 mm; 25% minimum inhibitory concentration (0.5 mg/ml) was fungistatic, and 50% minimum inhibitory concentration (1.0 mg/ml) was fungicidal. The effect of propolis on the capability of C. albicans to change its morphology was evaluated. 25% minimum inhibitory concentration inhibited to 50% of germ tube formation. Staining with calcofluor-white and propidium iodide was performed, showing that the propolis affected the integrity of the cell membrane. INT1 gene expression was evaluated by qRT-PCR. Propolis significantly inhibited the expression of the INT1 gene encodes an adhesin (Int1p). Chihuahua propolis extract inhibited the proliferation of Candida albicans, the development of the germ tube, and the synthesis of adhesin INT1. CONCLUSIONS Given the properties demonstrated for Chihuahua propolis, we propose that it is a candidate to be considered as an ideal antifungal agent to help treat this infection since it would not have the toxic effects of conventional antifungals.
Collapse
Affiliation(s)
- Mario Rodriguez-Canales
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico.
| | - Yoli Mariana Medina-Romero
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Marco Aurelio Rodriguez-Monroy
- Biomedical Research Laboratory in Natural Products, Medicine Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de Mexico, C.P. 54090, Mexico
| | - Uriel Nava-Solis
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Sandra Isabel Bolaños-Cruz
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Maria Jimena Mendoza-Romero
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Jorge E Campos
- Molecular Biochemistry Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, México
| | - Ana Bertha Hernandez-Hernandez
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Yolanda I Chirino
- Laboratory 10, Carcinogenesis and Toxicology, Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de Mexico, C.P. 54090, Mexico
| | - Tonatiuh Cruz-Sanchez
- Propolis Analysis Service Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli, Edo. de México, C.P. 54714, México
| | - Carlos Gerardo Garcia-Tovar
- Laboratory of Veterinary Morphology and Cell Biology, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, México
| | - Maria Margarita Canales-Martinez
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico.
| |
Collapse
|
38
|
Hammoodi HZ, Al-Shawi NN. Neuroprotective effects of daidzein against ifosfamide-induced neurotoxicity in male rats: role of selected inflammatory and apoptotic markers. J Med Life 2023; 16:1628-1632. [PMID: 38406792 PMCID: PMC10893576 DOI: 10.25122/jml-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/13/2023] [Indexed: 02/27/2024] Open
Abstract
Ifosfamide (IFO), an alkylating chemotherapy agent, is known for its association with neurotoxicity and encephalopathy. This trial was designed to evaluate the protective action of daidzein (DZN) against IFO-induced neurotoxicity in male rats by determining the difference in certain inflammatory and apoptotic markers in the brain tissue of rats. Twenty-eight Wistar rats, weighing 120-150 g, were divided into four groups of seven rats: Group 1 (Control) received no treatment; Group 2 was orally administered DZN (100 mg/kg/day) for seven days; Group 3 received a single intraperitoneal (IP) dose of IFO (500 mg/kg); Group 4 received oral DZN (100 mg/kg/day) for one week prior to a single IP dose of IFO on the seventh day. Twenty-four hours post-treatment, serum and brain tissue samples were collected for analysis. The results indicated a significant increase in serum inflammatory markers (TNF-alpha, IL-6, and iNOS) and the anti-inflammatory marker (IL-10), along with elevated caspase-3 enzyme activity in the brain tissue of the IFO-treated group compared to the control group. Conversely, pre-treatment with DZN significantly reduced serum inflammatory markers and caspase-3 levels in tissue. The findings suggest that daidzein has anti-inflammatory and anti-apoptotic properties, potentially offering protection against IFO-induced neurotoxicity in rats.
Collapse
Affiliation(s)
- Hiba Zaki Hammoodi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Nada Naji Al-Shawi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
39
|
Attia H, Alzoubi A, Al-anazi N, Alshanwani A, El-Orabi N, Alanteet A, Mohamad R, Ali R. Protective effects of cardamom aqueous extract against tamoxifen-induced pancreatic injury in female rats. Toxicol Res 2023; 39:721-737. [PMID: 37779590 PMCID: PMC10541358 DOI: 10.1007/s43188-023-00198-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
Tamoxifen (TAM) is a commonly used drug for breast cancer treatment. Although effective, TAM has deleterious effects on many organs. The toxic effects of TAM on the pancreas and the underlying mechanisms however, have not fully investigated. In the present study, we investigated the effects of TAM on the pancreatic tissue in female rats. We also examined whether cardamom aqueous extract (CAE) protects against TAM-induced pancreatic injury. TAM-intoxicated rats were injected with 45 mg/kg of TAM for 10 days, whereas rats in the CAE-treated group were administered 10 mL/kg of CAE for 20 days, starting 10 days prior to TAM administration. Treatment with TAM resulted in severe degeneration of the pancreatic acini and marked increases in the serum levels of pancreatic lipase, α-amylase, glucose, fatty acids and triglycerides along with decreased insulin serum levels. TAM led to oxidative stress as evident from a significant increase in the pancreatic levels of lipid peroxides and nitric oxide along with the depletion of reduced glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, inflammation was indicated by a significant increase in tumor necrosis factor-α and interleukin-6 levels, enhanced expression of the macrophage recruitment marker; CD68 as well as up-regulated protein levels of toll-like receptor 4 and nuclear factor kappa B and increased p-p38/MAPK ratio; which are important signals in the production of inflammatory cytokines. TAM also markedly increased the pancreatic levels of caspase-3 and BAX reflecting its apoptotic effects. The CAE treatment ameliorated all the biochemical and histological changes induced by TAM. The present study revealed, for the first time, that TAM has toxic effects on the pancreatic tissue through oxidative stress, inflammation and apoptotic effects. The present study also provides evidence that CAE exerts cytoprotective effects against these deleterious effects induced by TAM in the pancreatic tissue. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00198-w.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495 Saudi Arabia
| | - Afraa Alzoubi
- College of Pharmacy, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Nour Al-anazi
- College of Pharmacy, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Aliah Alshanwani
- Department of Physiology, College of Medicine, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | - Alaa Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495 Saudi Arabia
| | - Raeesa Mohamad
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Rehab Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495 Saudi Arabia
| |
Collapse
|
40
|
Kurtz JA, Vandusseldorp TA, Uken B, Otis J. Quercetin in Sports and Exercise: A review. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2023; 16:1334-1384. [PMID: 38288402 PMCID: PMC10824311 DOI: 10.70252/gqok2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
This paper systematically reviews the latest evidence regarding Quercetin's (Q) effect following exercise performance, aerobic and anaerobic exercise, muscle-damaging bouts and highlights blood biomarkers associated with muscle damage and recovery. Google Scholar, Web of Science, and MedLine (PubMed) searches were conducted through July-December 2021. Peer-reviewed studies that investigated Q as a single ingredient or in combination with other ingredients at dosages of 500 mg - 3000 mg, ranging from 15 min-to-1 h prior to exercise bout or chronic dose (7 days - 8 weeks) of consumption were included. A total of 34 studies met the inclusion criteria for the review. Key results include significant performance improvements in the following: VO2max (n = 2), time to exhaustion (n = 4 articles), fatigue decrement (n = 1 article), muscle damage (n = 3 articles), strength, torque velocity, and neuromuscular performance (n = 3 articles), redox potential (n = 1 article), repeated sprint performance and oxygen extraction (n = 1). Q also caused a change in systemic biomarkers: decrease in creatine kinase (n = 2), c-reactive protein (n = 4), lactate dehydrogenase (n = 4), inflammatory markers (n = 3), lipid peroxidation (n = 3) in aerobic and anaerobic performance. Varied findings exist regarding the efficacy of Q supplementation on exercise performance and recovery outcomes. The source of Q, training status of subjects, and exercise protocol performed may contribute to the effectiveness of Q as an antioxidant, anti-inflammatory, or ergogenic agent in exercise.
Collapse
Affiliation(s)
- Jennifer A Kurtz
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| | - Trisha A Vandusseldorp
- Bonafide Health, LLC, Harrison, NY, USA; Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Brent Uken
- Department of Health Science, Rocky Mountain University, Provo, UT, USA
| | - Jeff Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
41
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
42
|
Chen GY, Liu XY, Yan XE, Yu X, Liu Y, Luo J, Tao QW. Total Flavonoids of Rhizoma Drynariae Treat Osteoarthritis by Inhibiting Arachidonic Acid Metabolites Through AMPK/NFκB Pathway. J Inflamm Res 2023; 16:4123-4140. [PMID: 37750171 PMCID: PMC10518150 DOI: 10.2147/jir.s418345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023] Open
Abstract
Objective Previous clinical studies have found that total flavonoids of Rhizoma Drynariae (TFRD) have a good therapeutic effect on osteoarthritis (OA), but its therapeutic mechanism needs further research. Methods OA rat model was established by Hulth method and was intervened by TFRD. Pathological assessments were conducted to assess the protective effect of TFRD on cartilage. Serum metabolomics and network pharmacology were detected to predict the mechanism of TFRD treating OA. In further experiments, molecular biology experiment was carried out to confirm the predicted mechanisms in vivo and in vitro. Results TFRD can effectively reduce chondrocyte apoptosis and cartilage degeneration in OA model rats. Serum metabolomics revealed that the intervention effect may be closely related to arachidonic acid metabolism pathway. Network pharmacologic prediction showed that COX-2 was the key target of TFRD in treating OA, and its mechanism might be related with NFκB, apoptosis, AMPK and arachidonic acid metabolism pathway. In vivo experiments indicated that TFRD can inhibit the abnormal expression of COX-2 mRNA in OA model rats. In the in vitro studies, the expression of COX-2 mRNA and protein increased, AMPK phosphorylation was inhibited, and NFκB signaling pathway was activated in IL-1β-induced chondrocytes, and these changes can be reversed by TFRD. After the activation of AMPK signaling pathway or the block-down of NFκB signaling pathway, the effect of TFRD on COX-2 mRNA expression was significantly weakened. Conclusion TFRD can inhibit COX-2-mediated arachidonic acid metabolites, and its mechanism is closely related to AMPK/NFκB pathway, which may be a key mechanism in the treatment of OA.
Collapse
Affiliation(s)
- Guang-Yao Chen
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Xiao-Yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xue-Er Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - XinBo Yu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Qing-Wen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
43
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
44
|
Tirani SA, Lotfi K, Mirzaei S, Asadi A, Akhlaghi M, Saneei P. The relation between dietary phytochemical index and metabolic health status in overweight and obese adolescents. Sci Rep 2023; 13:12059. [PMID: 37491451 PMCID: PMC10368731 DOI: 10.1038/s41598-023-39314-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/23/2023] [Indexed: 07/27/2023] Open
Abstract
Previous studies have rarely investigated dietary phytochemicals consumption in relation to metabolic health of adolescents. The current study was performed to investigate dietary phytochemical index (DPI) in relation to metabolic health status in overweight and obese adolescents. This cross-sectional study was conducted among 203 adolescents with overweight or obesity. Dietary intakes of participants were obtained through a validated 147-item food frequency questionnaire. DPI was calculated [(dietary energy derived from phytochemical-rich foods (kcal)/total daily energy intake (kcal)) ⨯100]. Glycemic and lipid profiles, blood pressure, and anthropometric indices were also measured. A metabolically unhealthy overweight/obesity (MUO) profile was determined based on the International Diabetes Federation (IDF) and IDF/Homeostasis Model Assessment Insulin Resistance (HOMA-IR) definitions. Study subjects had a mean age of 13.98 years and 50.2% of them were girls. According to IDF and IDF/HOMA-IR criteria, 38.9% (37 boys, and 42 girls) and 33% (35 boys, and 32 girls) of the study participants were respectively MUO. According to IDF and IDF/HOMA-IR definitions, adolescents in the third DPI tertile had respectively 61% (maximally-adjusted OR = 0.39, 95%CI 0.16-0.91) and 67% (maximally-adjusted OR = 0.33, 95%CI 0.13-0.83) lower odds of being MUO, compared to the first tertile. Stratified analysis by sex indicated that DPI was inversely related to MUO phenotype based on IDF criteria in girls (maximally-adjusted OR = 0.25, 95%CI 0.06-0.98), but not in boys. The current study found that adolescents with a higher dietary intake of phytochemicals have lower odds of being MUO, particularly among girls. However, further large-scale prospective cohort studies are required to confirm this finding.
Collapse
Affiliation(s)
- Shahnaz Amani Tirani
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Students' Research Committee, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Mirzaei
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Asadi
- Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran.
| |
Collapse
|
45
|
Ahmadi B, Ramezani Ahmadi A, Jafari M, Morshedzadeh N. The association of dietary phytochemical index and nonalcoholic fatty liver disease. Food Sci Nutr 2023; 11:4010-4019. [PMID: 37457157 PMCID: PMC10345673 DOI: 10.1002/fsn3.3389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023] Open
Abstract
Consumption of phytochemical-rich foods relates to the prevention of chronic diseases. In this study we assessed the dietary phytochemical index (PI) in metabolic parameters, liver enzymes, and severity of fibrosis among nonalcoholic fatty liver disease patients. This cross-sectional study was conducted on 210 patients with NAFLD. Fibrosis-4 index (FLB4), nonalcoholic fatty liver disease fibrosis score (NFS), FBS, lipids profile, AST, ALT, ALP, and GGT were measured. PI was calculated through the information obtained from a validated semi-quantitative food frequency. Multiple regression models were used to estimate mean difference changes in the evaluated variables associated with various dietary PI. Participants' mean ± SD of age and BMI were 39.23 ± 10.52 and 24.40 ± 2.64, respectively. We found that DPI is inversely associated with serum TG, TC, and LDL-C and directly associated with serum HDL-C and a higher score in DPI is associated with lower scores in NFS and FIB-4. Multivariate linear regression showed that there is an inverse association between DPI and AST, ALT, ALP, GGT, NFS, and FIB-4. Higher dietary PI could impact on reduction of NAFLD progression and improvement of metabolic parameters.
Collapse
Affiliation(s)
- Bijan Ahmadi
- Gastroenterology and Hepatology Research CenterKerman University of Medical SciencesKermanIran
| | | | - Mohamadreza Jafari
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | - Nava Morshedzadeh
- Gastroenterology and Hepatology Research CenterKerman University of Medical SciencesKermanIran
| |
Collapse
|
46
|
Yi YS. Regulatory Roles of Flavonoids in Caspase-11 Non-Canonical Inflammasome-Mediated Inflammatory Responses and Diseases. Int J Mol Sci 2023; 24:10402. [PMID: 37373549 DOI: 10.3390/ijms241210402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory responses by inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many studies have successfully demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-canonical inflammasomes and further provides insight into developing flavonoid-based therapeutics as potential nutraceuticals against human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
47
|
Jing Y, Ruan L, Jiang G, Nie L, Shavandi A, Sun Y, Xu J, Shao X, Zhu J. Regenerated silk fibroin and alginate composite hydrogel dressings loaded with curcumin nanoparticles for bacterial-infected wound closure. BIOMATERIALS ADVANCES 2023; 149:213405. [PMID: 37004308 DOI: 10.1016/j.bioadv.2023.213405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
It is important to treat a bacterial-infected wound with a hydrogel dressing due to its excellent biocompatibility and extracellular matrix mimicking structure. In this work, the antibacterial curcumin nanoparticles (Cur-NPs) loaded silk fibroin and sodium alginate (SF/SA) composite hydrogels have been developed as dressings for bacterial-infected wound closure. The as-prepared composite hydrogel dressings exhibited excellent biocompatibility and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro. In addition, the composite hydrogel dressings showed good tissue adhesive strength because of their high viscosity and abundance of amino groups distributed on SF, which can form multi-aldehyde polysaccharides with the tissue surface. The porous 3D structure of the composite hydrogel dressings facilitated the absorption of exudate from the wound site and promoted the fusion of cellular nutrients and metabolites. In the full-thickness skin defect model with and without bacterial infection, the Cur-NPs loaded SF/SA composite hydrogel dressings prominently improves the closure of bacterial-infected wounds by improving cell proliferation, anti-inflammatory properties, vascular remodeling, and collagen deposition.
Collapse
Affiliation(s)
- Yanting Jing
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Liming Ruan
- Department of Dermatology, Beilun People's Hospital, Ningbo, 315800, China.
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China.
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F. D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F. D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jingjing Xu
- Department of Dermatology, Beilun People's Hospital, Ningbo, 315800, China
| | - Xia Shao
- Department of Dermatology, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo 315806, China
| | - Junlan Zhu
- The Precision Medicine Laboratory, Beilun People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
48
|
López J, Vega-Gálvez A, Ah-Hen KS, Rodríguez A, Quispe-Fuentes I, Delporte C, Valenzuela-Barra G, Arancibia Y, Zambrano A. Evaluation of the antioxidant, anti-inflammatory, and anti-tumoral properties of bioactive compounds extracted from murta berries ( Ugni molinae T.) dried by different methods. FRONTIERS IN PLANT SCIENCE 2023; 14:1095179. [PMID: 37275254 PMCID: PMC10234425 DOI: 10.3389/fpls.2023.1095179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/21/2023] [Indexed: 06/07/2023]
Abstract
This study evaluated the effects of different drying methods (freeze drying, vacuum drying, infrared drying, convective drying, and sun drying) on the biological properties of berries from the Chilean murta (Ugni molinae Turcz) shrub. Physical-chemical properties (proximal composition, dietary fiber, sugars) were determined. Total phenolic content through the method of Folin-Ciocalteau, the profile of phenol compounds was determined by HPLC, and antioxidant potential by DPPH and ORAC assays were also evaluated. The topic anti-inflammatory effect was evaluated by mice´s ear edema, and in vitro anti-tumoral activity was tested by MTT assay. The chemical properties of dried berries differed significantly based on the drying method: freeze-dried murta berries showed increased total phenolic content extracted over fresh and dried samples. In addition, this lyophilized extract stood out in its antioxidant potential, in both assays evaluated (DPPH and ORAC), compared to the other drying methods. Notwithstanding, vacuum- and infrared-dried murta also showed a higher ORAC value. Antioxidant potential was significantly associated with phenolic compounds catechin and pyrogallol, which were the most abundant phenolic compounds present in all samples. The anti-inflammatory activity was most effective under freeze-drying and vacuumdrying conditions. Moreover, vacuum drying and infrared drying best preserved the anti-tumoral effect on cancer cells.
Collapse
Affiliation(s)
- Jéssica López
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Antonio Vega-Gálvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Kong S. Ah-Hen
- Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia, Chile
| | - Angela Rodríguez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Issis Quispe-Fuentes
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, La Serena, Chile
| | - Carla Delporte
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Yennyfer Arancibia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Angara Zambrano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
49
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
50
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA. Iranian traditional medicinal plants for management of chronic heart failure: A review. Medicine (Baltimore) 2023; 102:e33636. [PMID: 37171363 PMCID: PMC10174410 DOI: 10.1097/md.0000000000033636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic heart failure is a public health problem with a high prevalence worldwide and an important topic in clinical cardiology. Despite of advances in the drug treatment strategy for heart failure, the number of deaths from this condition continues to rise. It will be a renewed focus on preventing heart failure using proven and perhaps novel drugs. Management will also focus on comorbid conditions that may influence the progression of the disease. Traditional medicine has a potential to introduce different approaches for treatment of some disorders. We here reviewed top medicinal plants, according to traditional medicine to experimental studies, and their potency for the treatment of chronic heart failure based on the evidence of their functions.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|