1
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
2
|
Vilbois S, Xu Y, Ho PC. Metabolic interplay: tumor macrophages and regulatory T cells. Trends Cancer 2024; 10:242-255. [PMID: 38135571 DOI: 10.1016/j.trecan.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The tumor microenvironment (TME) contains a complex cellular ecosystem where cancer, stromal, vascular, and immune cells interact. Macrophages and regulatory T cells (Tregs) are critical not only for maintaining immunological homeostasis and tumor growth but also for monitoring the functional states of other immune cells. Emerging evidence reveals that metabolic changes in macrophages and Tregs significantly influence their pro-/antitumor functions through the regulation of signaling cascades and epigenetic reprogramming. Hence, they are increasingly recognized as therapeutic targets in cancer immunotherapy. Specific metabolites in the TME may also affect their pro-/antitumor functions by intervening with the metabolic machinery. We discuss how metabolites influence the immunosuppressive phenotypes of tumor-associated macrophages (TAMs) and Tregs. We then describe how TAMs and Tregs, independently or collaboratively, utilize metabolic mechanisms to suppress the activity of CD8+ T cells. Finally, we highlight promising metabolic interventions that can improve the outcome of current cancer therapies.
Collapse
Affiliation(s)
- Stefania Vilbois
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yingxi Xu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
3
|
The SMML, Schreurs RRCE, Drewniak A, Bakx R, de Meij TGJ, Budding AE, Poort L, Cense HA, Heij HA, van Heurn LWE, Gorter RR, Bunders MJ. Enhanced Th17 responses in the appendix of children with complex compared to simple appendicitis are associated with microbial dysbiosis. Front Immunol 2024; 14:1258363. [PMID: 38239362 PMCID: PMC10794624 DOI: 10.3389/fimmu.2023.1258363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Appendicitis is one of the most common causes of acute abdominal surgery in children. The clinical course of appendicitis ranges from simple to complex appendicitis. The mechanisms underlying the heterogeneity of appendicitis in children remain largely unclear. Dysregulated T cell responses play an important role in several inflammatory diseases of the intestine, but the extend of T cell dysregulation in appendicitis in children is less well known. Methods To characterize appendiceal T cells in simple and complex appendicitis we performed in-depth immunophenotyping of appendiceal-derived T cells by flow cytometry and correlated this to appendiceal-derived microbiota analyses of the same patient. Results Appendix samples of twenty children with appendicitis (n = 8 simple, n = 12 complex) were collected. T cells in complex appendicitis displayed an increased differentiated phenotype compared to simple appendicitis, including a loss of both CD27 and CD28 by CD4+ T cells and to a lesser extent by CD8+ T cells. Frequencies of phenotypic tissue-resident memory CD69+CD4+ T cells and CD69+CD8+ T cells were decreased in children with complex compared to simple appendicitis, indicating disruption of local tissue-resident immune responses. In line with the increased differentiated phenotype, cytokine production of in particular IL-17A by CD4+ T cells was increased in children with complex compared to simple appendicitis. Furthermore, frequencies of IL-17A+ CD4+ T cells correlated with a dysregulation of the appendiceal microbiota in children with complex appendicitis. Conclusion In conclusion, disruption of local T cell responses, and enhanced pro-inflammatory Th17 responses correlating to changes in the appendiceal microbiota were observed in children with complex compared to simple appendicitis. Further studies are needed to decipher the role of a dysregulated network of microbiota and Th17 cells in the development of complex appendicitis in children.
Collapse
Affiliation(s)
- Sarah-May M. L. The
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Renée R. C. E. Schreurs
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Paediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Agata Drewniak
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Roel Bakx
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
| | - Tim G. J. de Meij
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Huib A. Cense
- Department of Surgery, Red Cross Hospital, Beverwijk, Netherlands
| | - Hugo A. Heij
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L. W. Ernest van Heurn
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
| | - Ramon R. Gorter
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
| | - Madeleine J. Bunders
- Leibniz Institute of Virology, Hamburg, Germany
- Third Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Beltrán SM, Bobo J, Habib A, Kodavali CV, Edwards L, Mamindla P, Taylor RE, LeDuc PR, Zinn PO. Characterization of neural mechanotransduction response in human traumatic brain injury organoid model. Sci Rep 2023; 13:13536. [PMID: 37598247 PMCID: PMC10439953 DOI: 10.1038/s41598-023-40431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The ability to model physiological systems through 3D neural in-vitro systems may enable new treatments for various diseases while lowering the need for challenging animal and human testing. Creating such an environment, and even more impactful, one that mimics human brain tissue under mechanical stimulation, would be extremely useful to study a range of human-specific biological processes and conditions related to brain trauma. One approach is to use human cerebral organoids (hCOs) in-vitro models. hCOs recreate key cytoarchitectural features of the human brain, distinguishing themselves from more traditional 2D cultures and organ-on-a-chip models, as well as in-vivo animal models. Here, we propose a novel approach to emulate mild and moderate traumatic brain injury (TBI) using hCOs that undergo strain rates indicative of TBI. We subjected the hCOs to mild (2 s[Formula: see text]) and moderate (14 s[Formula: see text]) loading conditions, examined the mechanotransduction response, and investigated downstream genomic effects and regulatory pathways. The revealed pathways of note were cell death and metabolic and biosynthetic pathways implicating genes such as CARD9, ENO1, and FOXP3, respectively. Additionally, we show a steeper ascent in calcium signaling as we imposed higher loading conditions on the organoids. The elucidation of neural response to mechanical stimulation in reliable human cerebral organoid models gives insights into a better understanding of TBI in humans.
Collapse
Affiliation(s)
- Susana M Beltrán
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| | - Justin Bobo
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Chowdari V Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Priyadarshini Mamindla
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA.
| | - Pascal O Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA.
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA.
| |
Collapse
|
5
|
Gong Z, Jia H, Xue L, Li D, Zeng X, Wei M, Liu Z, Tong MCF, Chen GG. The emerging role of transcription factor FOXP3 in thyroid cancer. Rev Endocr Metab Disord 2022; 23:421-429. [PMID: 34463908 DOI: 10.1007/s11154-021-09684-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Transcription factor FOXP3 is a crucial regulator in the development and function of regulatory T cells (Treg) that are essential for immunological tolerance and homeostasis. Numerous studies have indicated the correlation of tumor infiltrating FOXP3+ Treg upregulation with poor prognostic parameters in thyroid cancer, including lymph node metastases, extrathyroidal extension, and multifocality. Most immune-checkpoint molecules are expressed in Treg. The blockage of such signals with checkpoint inhibitors has been approved for several solid tumors, but not yet for thyroid cancer. Thyroid abnormalities may be induced by checkpoint inhibitors. For example, hypothyroidism, thyrotoxicosis, painless thyroiditis, or even thyroid storm are more frequently associated with anti-PD-1 antibodies (pembrolizumab and nivolumab). Therefore, Targeting FOXP3+ Treg may have impacts on checkpoint molecules and the growth of thyroid cancer. Several factors may impact the role and stability of FOXP3, such as alternative RNA splicing, mutations, and post-translational modification. In addition, the role of FOXP3+ Treg in the tumor microenvironment is also affected by the complex regulatory network formed by FOXP3 and its transcriptional partners. Here we discussed how the expression and function of FOXP3 were regulated and how FOXP3 interacted with its targets in Treg, aiming to help the development of FOXP3 as a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Hao Jia
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lingbin Xue
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang, ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang, ENT Hospital, Shenzhen, China
| | - Minghui Wei
- Department of Head & Neck Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
6
|
Lee J, Kim D, Min B. Tissue Resident Foxp3+ Regulatory T Cells: Sentinels and Saboteurs in Health and Disease. Front Immunol 2022; 13:865593. [PMID: 35359918 PMCID: PMC8963273 DOI: 10.3389/fimmu.2022.865593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells are a CD4 T cell subset with unique immune regulatory function that are indispensable in immunity and tolerance. Their indisputable importance has been investigated in numerous disease settings and experimental models. Despite the extensive efforts in determining the cellular and molecular mechanisms operating their functions, our understanding their biology especially in vivo remains limited. There is emerging evidence that Treg cells resident in the non-lymphoid tissues play a central role in regulating tissue homeostasis, inflammation, and repair. Furthermore, tissue-specific properties of those Treg cells that allow them to express tissue specific functions have been explored. In this review, we will discuss the potential mechanisms and key cellular/molecular factors responsible for the homeostasis and functions of tissue resident Treg cells under steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dongkyun Kim
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Booki Min
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Booki Min,
| |
Collapse
|
7
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
8
|
Yu R, Xiao Y, Xu W, Zhang T, Wang Y, Hu H. Case Report: Eosinophilic gastritis with pyloric stenosis in immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Front Pediatr 2022; 10:1039341. [PMID: 36479284 PMCID: PMC9720107 DOI: 10.3389/fped.2022.1039341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare X-linked recessive immunodeficiency caused by mutations in the forkhead box protein 3 (FOXP3) gene. IPEX is characterized by the onset of intractable diarrhea, type 1 diabetes mellitus (T1DM), and eczema in the early stages of life. The typical clinic triad for IPEX is not always seen. Here, we report a 15-year-old male patient with atypical IPEX syndrome complicated with severe eosinophilic gastritis (EG) and pyloric stenosis. The patient had noticeable eczema during the first year of life and had a history of food allergies. At the age of 3 years, the patient was diagnosed with EG, Helicobacter pylori (HP) infection, pyloric stenosis with recurrent vomiting, and failure to thrive. The patient did not respond to long-term symptomatic treatments in the following years, including methylprednisolone, proton pump inhibitors (PPI), L-glutamine and sodium gualenate granules, anti-HP therapy, and balloon dilation. At the age of 12 years, the patient received surgical interventions, including a laparoscopic jejunostomy feeding tube placement, gastrojejunal anastomosis bypass, and jejunal-jejunal end-to-side anastomosis. Intractable diarrhea and T1DM were not present in the patient. At the age of 14 years, the patient was diagnosed with IPEX syndrome due to a c.748-750del (p.Lys250del) mutation in the leucine zipper domain of the FOXP3 protein. The patient underwent matched sibling peripheral blood hematopoietic stem cell transplantation (HSCT) and showed good evolution after 3 months of HSCT. In summary, this case report provides information of unusual gastrointestinal findings in IPEX syndrome and highlights the need for increased awareness and early diagnosis of IPEX syndrome, which is vital for improving the patient's outcome.
Collapse
Affiliation(s)
- Ronghua Yu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuhen Xu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Hu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Ibrahim AHM, Megaley AFM, Sallam AMA. Variation in the ovine FOXP3 gene and its effect on growth traits in Egyptian Barki sheep. Anim Biotechnol 2021:1-7. [PMID: 34727013 DOI: 10.1080/10495398.2021.1996387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to detect the FOXP3 gene polymorphisms in Barki sheep at a variable region covering exon 13, intron 13 and the coding sequence in exon 14 and to test the association of these polymorphisms with growth traits. 122 Barki lambs were phenotyped for various growth traits, viz., birth weight (BW), weaning weight (WW), pre-weaning daily gain in weight (ADG1), post-weaning daily gain in weight (ADG2) and marketing bodyweight (MW). The polymerase chain reaction - single-strand conformational polymorphisms (PCR-SSCP) and DNA sequencing methods were used to identify the genetic variants in the FOXP3 gene. The associations between the variation in FOXP3 gene and growth traits were tested using a general linear model. Two variants (F1 and F2 with gene frequencies of 0.64 and 0.36, respectively), and three genotypes (F1F1, F1F2 and F2F2 with frequencies of 0.37, 0.53 and 0.10, respectively) were detected. The association of FOXP3 genotype was significant (p < 0.05) with ADG2 and MW. It is concluded that FOXP3 genotype might be helpful for sheep breeders to produce fast-growing lambs. However, further studies are needed in a large population to confirm the association we found.
Collapse
Affiliation(s)
- Adel H M Ibrahim
- Department of Animal Breeding, Desert Research Center, Cairo, Egypt
| | | | - Ahmed M A Sallam
- Department of Animal Breeding, Desert Research Center, Cairo, Egypt
| |
Collapse
|
10
|
Gupta S, Adhikary S, Hui SP. Decoding the proregenerative competence of regulatory T cells through complex tissue regeneration in zebrafish. Clin Exp Immunol 2021; 206:346-353. [PMID: 34529822 DOI: 10.1111/cei.13661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs ) are specific subtype of T cells that play a central role in sustaining self-antigen tolerance and restricting inflammatory tissue damage. More recently, additional direct functions of Tregs in mammalian tissue repair have emerged, but the regenerative potential of Tregs in non-mammalian vertebrates has not been explored despite the latter possessing a highly developed adaptive immune system. Why complex organs such as the caudal fin, heart, brain, spinal cord and retina regenerate in certain non-mammalian vertebrates, but not in mammals, is an interesting but unresolved question in the field of regenerative biology. Inflammation has traditionally been thought to be an impediment to regeneration due to the formation of scars. Regenerative decline in higher organisms has been speculated to be the evolutionary advent of adaptive immunity. Recent studies, however, have shown that the innate inflammatory response in non-mammalian organisms is required for organ regeneration. It has also been found that highly advanced adaptive immunity is no longer incompatible with regeneration and for that, Tregs are important. Zebrafish regulatory T cells (zTregs ) migrate rapidly to the injury site in damaged organs, where they facilitate the proliferation of regeneration precursor cells by generating tissue-specific regenerative factors by a process distinct from the canonical anti-inflammatory pathway. We review both reparative and proregenerative roles of Tregs in mammals and zebrafish, respectively, and also give an overview of the forkhead box protein 3 (FoxP3) -dependent immunosuppressive function of Tregs in zebrafish, which makes it a useful model organism for future Treg biology and research.
Collapse
Affiliation(s)
- Samudra Gupta
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, ABN Seal College, Cooch Behar, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| |
Collapse
|
11
|
Tawinwung S, Junsaeng D, Utthiya S, Khemawoot P. Immunomodulatory effect of standardized C. asiatica extract on a promotion of regulatory T cells in rats. BMC Complement Med Ther 2021; 21:220. [PMID: 34479568 PMCID: PMC8418037 DOI: 10.1186/s12906-021-03394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background ECa 233 is a standardized extract of C. asiatica containing the triterpenoid glycosides, madecassoside to asiaticoside in the ratio of (1.5 ± 0.5):1. Anti-inflammatory activities of ECa 233 have been reported; however the immunomodulatory effects of ECa 233 on regulatory T cells, which have a pivotal role in immune regulation, has not been elucidated. Therefore, we investigated the effects of ECa 233 on regulatory T cells that may provide benefits in autoimmune and chronic inflammatory diseases. Methods ECa 233 was prepared as oral suspension in 0.5% carboxymethylcellulose and administered to male Wistar rats via oral gavage. The pharmacokinetics and toxicity of ECa 233 were evaluated. Splenic lymphocytes were isolated and analyzed by flow cytometry and qPCR to determine the immunomodulatory effects of ECa 233 on regulatory T cells. Results All rats had good tolerability to ECa 233 and other test preparations. The pharmacokinetic study showed low oral bioavailability for both triterpenoids, with the maximum plasma concentration reached at 4 h for asiaticoside and at 0.5 h for madecassoside. Multiple oral administration of ECa 233 reduced the frequency of T cells, particularly CD8 T cells in rats. ECa 233 enhanced the percentage of regulatory T cells, characterized by high expression of CD25+ and upregulation of FoxP3 gene. Conclusions The present study demonstrated that ECa 233 possesses immunosuppressive properties by enhancing regulatory T cells. These results provide in vivo evidence for the anti-inflammatory action of ECa 233, in line with previously reports, and the potential uses of ECa 233 in the treatment of chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dhirarin Junsaeng
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Japan
| | - Supanut Utthiya
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand.
| |
Collapse
|
12
|
Zheng HB, de la Morena MT, Suskind DL. The Growing Need to Understand Very Early Onset Inflammatory Bowel Disease. Front Immunol 2021; 12:675186. [PMID: 34122435 PMCID: PMC8187749 DOI: 10.3389/fimmu.2021.675186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Very Early Onset Inflammatory Bowel Disease (VEO-IBD) represents a cohort of inflammatory bowel disease (IBD) patients diagnosed before 6 years of age. Unlike IBD diagnosed at older ages, VEO-IBD can be associated with underlying primary immunodeficiencies. VEO-IBD has been linked to monogenic variations in over 70 genes involved in multiple pathways of immunity. As sequencing technologies and platforms evolve and become readily available, an increasing number of genes linked to VEO-IBD have emerged. Although monogenic defects are rare in VEO-IBD, diagnosis of these variants can often dictate specific treatment. In this mini-review, we set out to describe monogenic variants previously characterized in multiple patients in the literature that contribute to VEO-IBD, diagnostic tools, unique treatment modalities for specific genetic diagnoses, and future directions in the field of VEO-IBD. Although this mini-review is by no means comprehensive of all the novel monogenic variants linked to VEO-IBD, we hope to provide relevant information that is readily accessible to clinicians and educators.
Collapse
Affiliation(s)
- Hengqi B Zheng
- Division of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - M Teresa de la Morena
- Department of Pediatrics, University of Washington, Seattle, WA, United States.,Division of Immunology, Seattle Children's Hospital, Seattle, WA, United States
| | - David L Suskind
- Division of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Chikoti S, Mahwish UN, Raju SB, Gaddam S, Jahan P. Gender bias in the genetic vulnerability towards type 2 diabetes and diabetic nephropathy: Role of forkhead box Protein3 transcription factor gene variants. Gene 2021; 774:145426. [PMID: 33444682 DOI: 10.1016/j.gene.2021.145426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022]
Abstract
Forkhead Box Protein3 Transcription Factor (FOXP3) gene is an essential role player in the function and differentiation of regulatory T cells. Polymorphisms/mutations in FOXP3 gene cause Treg cell dysfunction, promote autoimmunity and inflammation. Based on this presumption, we screened 600 subjects from south India (equal number of diabetic (T2DM), diabetic nephropathy (T2DN) and healthy controls) for promoter and intronic (rs3761548C/A and rs2294021C/T) polymorphisms of FOXP3 gene. PCR-RFLP method used for genotyping, revealed an association of promoter SNP for both T2DM (OR = 2.41, 95% C.I = 1.67-3.49; p < 0.0001) and T2DN (OR = 2.16, 95% C.I = 1.45-3.24; p < 0.005). While intronic polymorphism with T2DN (OR = 1.91, 95% C.I = 1.28-2.84; p < 0.05). Further, in females rs3761548C/A showed 2.6 and 5.5-fold; rs2294021C/T showed 2.2- and 2.5-fold predisposition towards T2DM and T2DN respectively. Males exhibited a twofold risk (OR = 2.01, 95% C.I = 1.22-3.30; p < 0.05) towards T2DM with promoter and no association with intronic polymorphism. The combined genotypes in females with AA-CC; AA-TT predisposed and CA-CC; CA-CT protected heading towards T2DM and T2DN respectively, suggesting irrespective of type of allele at intronic locus AA and CA at promoter locus promote or protect the individual for diabetes and diabetic nephropathy, further confirmed by MLR. To our knowledge, the current study is the first of its kind that revealed an association of these polymorphisms of FOXP3 gene and gender influence on T2DM and T2DN among South Indians. Functional and cell-based studies on Treg cells are warranted to confirm our results that help to develop FOXP3/Treg based therapeutic interventions. Lack of data on Treg cells is the limitation of this study.
Collapse
Affiliation(s)
- Swetha Chikoti
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Sree Bhushan Raju
- Department of Nephrology, Nizam Institute of Medical Sciences, Hyderabad, India
| | | | - Parveen Jahan
- School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| |
Collapse
|
14
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
15
|
Abstract
IL-6 is involved both in immune responses and in inflammation, hematopoiesis, bone metabolism and embryonic development. IL-6 plays roles in chronic inflammation (closely related to chronic inflammatory diseases, autoimmune diseases and cancer) and even in the cytokine storm of corona virus disease 2019 (COVID-19). Acute inflammation during the immune response and wound healing is a well-controlled response, whereas chronic inflammation and the cytokine storm are uncontrolled inflammatory responses. Non-immune and immune cells, cytokines such as IL-1β, IL-6 and tumor necrosis factor alpha (TNFα) and transcription factors nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play central roles in inflammation. Synergistic interactions between NF-κB and STAT3 induce the hyper-activation of NF-κB followed by the production of various inflammatory cytokines. Because IL-6 is an NF-κB target, simultaneous activation of NF-κB and STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the IL-6-STAT3 axis. This positive feedback loop is called the IL-6 amplifier (IL-6 Amp) and is a key player in the local initiation model, which states that local initiators, such as senescence, obesity, stressors, infection, injury and smoking, trigger diseases by promoting interactions between non-immune cells and immune cells. This model counters dogma that holds that autoimmunity and oncogenesis are triggered by the breakdown of tissue-specific immune tolerance and oncogenic mutations, respectively. The IL-6 Amp is activated by a variety of local initiators, demonstrating that the IL-6-STAT3 axis is a critical target for treating diseases.
Collapse
Affiliation(s)
- Toshio Hirano
- National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Wright WE, Li C, Zheng CX, Tucker HO. FOXP1 Interacts with MyoD to Repress its Transcription and Myoblast Conversion. JOURNAL OF CELLULAR SIGNALING 2021; 2:9-26. [PMID: 33554216 PMCID: PMC7861563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Forkhead transcription factors (TFs) often dimerize outside their extensive family, whereas bHLH transcription factors typically dimerize with E12/E47. Based on structural similarities, we predicted that a member of the former, Forkhead Box P1 (FOXP1), might heterodimerize with a member of the latter, MYOD1 (MyoD). Data shown here support this hypothesis and further demonstrate the specificity of this forkhead/myogenic interaction among other myogenic regulatory factors. We found that FOXP1-MyoD heterodimerization compromises the ability of MyoD to bind to E-boxes and to transactivate E box- containing promoters. We observed that FOXP1 is required for the full ability of MyoD to convert fibroblasts into myotubules. We provide a model in which FOXP1 displaces ID and E12/E47 to repress MyoD during the proliferative phase of myoblast differentiation. These data identify FOXP1 as a hitherto unsuspected transcriptional repressor of MyoD. We suggest that isolation of paired E-box and forkhead sites within 1 turn helical spacings provides potential for cooperative interactions among heretofore distinct classes of transcription factors.
Collapse
Affiliation(s)
- Woodring E. Wright
- Department of Cell Biology, UT Southwestern Medical School,
Dallas TX 75235, USA
| | - Chuan Li
- Department of Microbiology, University of Texas
Southwestern Medical Center, Dallas TX 75235, USA
| | - Chang-xue Zheng
- Department of Molecular Biosciences, the University of
Texas at Austin, Austin TX 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, the University of
Texas at Austin, Austin TX 78712, USA,Correspondence should be addressed to Haley O.
Tucker;
| |
Collapse
|
18
|
Grover P, Goel PN, Piccirillo CA, Greene MI. FOXP3 and Tip60 Structural Interactions Relevant to IPEX Development Lead to Potential Therapeutics to Increase FOXP3 Dependent Suppressor T Cell Functions. Front Pediatr 2021; 9:607292. [PMID: 33614551 PMCID: PMC7888439 DOI: 10.3389/fped.2021.607292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T (Treg) cells play a role in the maintenance of immune homeostasis and are critical mediators of immune tolerance. The Forkhead box P3 (FOXP3) protein acts as a regulator for Treg development and function. Mutations in the FOXP3 gene can lead to autoimmune diseases such as Immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome in humans, often resulting in death within the first 2 years of life and a scurfy like phenotype in Foxp3 mutant mice. We discuss biochemical features of the FOXP3 ensemble including its regulation at various levels (epigenetic, transcriptional, and post-translational modifications) and molecular functions. The studies also highlight the interactions of FOXP3 and Tat-interacting protein 60 (Tip60), a principal histone acetylase enzyme that acetylates FOXP3 and functions as an essential subunit of the FOXP3 repression ensemble complex. Lastly, we have emphasized the role of allosteric modifiers that help stabilize FOXP3:Tip60 interactions and discuss targeting this interaction for the therapeutic manipulation of Treg activity.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Drijvers JM, Sharpe AH, Haigis MC. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 2020; 9:e62420. [PMID: 33170123 PMCID: PMC7655106 DOI: 10.7554/elife.62420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Average age and obesity prevalence are increasing globally. Both aging and obesity are characterized by profound systemic metabolic and immunologic changes and are cancer risk factors. The mechanisms linking age and body weight to cancer are incompletely understood, but recent studies have provided evidence that the anti-tumor immune response is reduced in both conditions, while responsiveness to immune checkpoint blockade, a form of cancer immunotherapy, is paradoxically intact. Dietary restriction, which promotes health and lifespan, may enhance cancer immunity. These findings illustrate that the systemic context can impact anti-tumor immunity and immunotherapy responsiveness. Here, we review the current knowledge of how age and systemic metabolic state affect the anti-tumor immune response, with an emphasis on CD8+ T cells, which are key players in anti-tumor immunity. A better understanding of the underlying mechanisms may lead to novel therapies enhancing anti-tumor immunity in the context of aging or metabolic dysfunction.
Collapse
Affiliation(s)
- Jefte M Drijvers
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
20
|
Gong Z, Jia H, Yu J, Liu Y, Ren J, Yang S, Hu B, Liu L, Lai PBS, Chen GG. Nuclear FOXP3 inhibits tumor growth and induced apoptosis in hepatocellular carcinoma by targeting c-Myc. Oncogenesis 2020; 9:97. [PMID: 33116119 PMCID: PMC7595121 DOI: 10.1038/s41389-020-00283-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
The status of FOXP3 and its isoforms in hepatocellular carcinoma (HCC) is unclear. We aimed to investigate the expression and function of FOXP3 and its isoforms in HCC. The study was performed on 84 HCC patients, HCC cell lines and a mouse tumor model. The levels of FOXP3 and its isoforms were determined by nested PCR, quantitative real-time PCR and immunohistochemistry (IHC) staining. The correlation between their levels and clinicopathologic characteristics was analyzed. The full length of FOXP3 (FOXP3) and exon 3-deleted FOXP3 (FOXP3Δ3) were found to be the major isoforms in HCC. The levels of FOXP3Δ3 mRNA and protein in HCC tumor samples were not significantly different from their adjacent normal tissues. The high expression of FOXP3 protein in HCC patients showed a good overall survival. The overexpression of FOXP3 significantly reduced tumor cell proliferation, migration and invasion. The immunofluorescence result indicated that FOXP3 needed to be translocated into the nucleus to exert its inhibitory function. The luciferase assay demonstrated that FOXP3 could be synergistic with Smad2/3/4 to inhibit the oncogene c-Myc. The co-immunoprecipitation results further revealed that FOXP3 could interact with Smad2/3/4. The chromatin immunoprecipitation (ChIP) assay showed that both FOXP3 and Smad2/3/4 bound the promoter of the c-Myc to inhibit it. The in vivo mouse tumor model study confirmed the inhibitory effect of FOXP3. Collectively, the expression of tumor FOXP3 can inhibit the growth of HCC via suppressing c-Myc directly or indirectly via interacting with Smad2/3/4. Therefore, FOXP3 is a tumor suppressor in HCC.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Jia
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jianqing Yu
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Liu
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524025, Guangdong, China
| | - Jianwei Ren
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 524000, Guangdong Province, China
| | - Paul B S Lai
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
22
|
Moorman CD, Bastian AG, DeOca KB, Mannie MD. A GM-CSF-neuroantigen tolerogenic vaccine elicits inefficient antigen recognition events below the CD40L triggering threshold to expand CD4 + CD25 + FOXP3 + Tregs that inhibit experimental autoimmune encephalomyelitis (EAE). J Neuroinflammation 2020; 17:180. [PMID: 32522287 PMCID: PMC7285464 DOI: 10.1186/s12974-020-01856-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tolerogenic vaccines represent antigen-specific interventions designed to re-establish self-tolerance and thereby alleviate autoimmune diseases, which collectively comprise over 100 chronic inflammatory diseases afflicting more than 20 million Americans. Tolerogenic vaccines comprised of single-chain GM-CSF-neuroantigen (GMCSF-NAg) fusion proteins were shown in previous studies to prevent and reverse disease in multiple rodent models of experimental autoimmune encephalomyelitis (EAE) by a mechanism contingent upon the function of CD4+ CD25+ FOXP3+ regulatory T cells (Tregs). GMCSF-NAg vaccines inhibited EAE in both quiescent and inflammatory environments in association with low-efficiency T cell receptor (TCR) signaling events that elicited clonal expansion of immunosuppressive Tregs. Methods This study focused on two vaccines, including GMCSF-MOG (myelin oligodendrocyte glycoprotein 35–55/MOG35–55) and GMCSF-NFM (neurofilament medium peptide 13–37/NFM13–37), that engaged the transgenic 2D2 TCR with either low or high efficiencies, respectively. 2D2 mice were crossed with FOXP3 IRES eGFP (FIG) mice to track Tregs and further crossed with Rag−/− mice to reduce pre-existing Treg populations. Results This study provided evidence that low and high efficiency TCR interactions were integrated via CD40L expression levels to control the Treg/Tcon balance. The high-efficiency GMCSF-NFM vaccine elicited memory Tcon responses in association with activation of the CD40L costimulatory system. Conversely, the low-efficiency GMCSF-MOG vaccine lacked adequate TCR signal strength to elicit CD40L expression and instead elicited Tregs by a mechanism that was impaired by a CD40 agonist. When combined, the low- and high-efficiency GMCSF-NAg vaccines resulted in a balanced outcome and elicited both Tregs and Tcon responses without the predominance of a dominant immunogenic Tcon response. Aside from Treg expansion in 2D2-FIG mice, GMCSF-MOG caused a sustained decrease in TCR-β, CD3, and CD62L expression and a sustained increase in CD44 expression in Tcon subsets. Subcutaneous administration of GMCSF-MOG without adjuvants inhibited EAE in wildtype mice, which had a replete Treg repertoire, but was pathogenic rather than tolerogenic in 2D2-FIG-Rag1−/− mice, which lacked pre-existing Tregs. Conclusions This study provided evidence that the GMCSF-MOG vaccine elicited antigenic responses beneath the CD40L triggering threshold, which defined an antigenic niche that drove dominant expansion of tolerogenic myelin-specific Tregs that inhibited EAE.
Collapse
Affiliation(s)
- Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
23
|
Ren J, Liu Y, Wang S, Wang Y, Li W, Chen S, Cui D, Yang S, Li MY, Feng B, Lai PBS, Chen GG. The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3. J Biol Chem 2020; 295:5484-5495. [PMID: 32198183 PMCID: PMC7170510 DOI: 10.1074/jbc.ra120.012518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/12/2020] [Indexed: 01/16/2023] Open
Abstract
The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC.
Collapse
Affiliation(s)
- Jianwei Ren
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute (SZRI), Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yi Liu
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Wang
- Division of Cellular & Molecular Research, National Cancer Centre, Singapore 169610
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Dexuan Cui
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Shengli Yang
- Union Hospital Tumour Center, Wuhan 430022, China
| | - Ming-Yue Li
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Bo Feng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Paul B S Lai
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China.
| | - George G Chen
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute (SZRI), Chinese University of Hong Kong, Shenzhen 518057, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
25
|
Suwandi JS, Laban S, Vass K, Joosten A, van Unen V, Lelieveldt BP, Höllt T, Zwaginga JJ, Nikolic T, Roep BO. Multidimensional analyses of proinsulin peptide-specific regulatory T cells induced by tolerogenic dendritic cells. J Autoimmun 2020; 107:102361. [DOI: 10.1016/j.jaut.2019.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
|
26
|
Kadakia S, Farnaes L, Dimmock D, Chowdhury S, Ding Y, Anderson EJ, Kingsmore S, Newfield RS. Diagnosis and treatment of a boy with IPEX syndrome presenting with diabetes in early infancy. Clin Case Rep 2019; 7:2123-2127. [PMID: 31788263 PMCID: PMC6878034 DOI: 10.1002/ccr3.2438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
IPEX syndrome (Immune dysregulation, Polyendocrinopathy, X-linked) should be tested for in males under 6 months old presenting with diabetes, even without other IPEX features. Early diagnosis and bone marrow transplantation can improve outcomes.
Collapse
Affiliation(s)
- Sejal Kadakia
- Division of Pediatric EndocrinologyChildren's Hospital of Orange CountyOrangeCAUSA
| | - Lauge Farnaes
- Rady Children's Hospital of San DiegoSan DiegoCAUSA
- Rady Children's Institute for Genomic MedicineSan DiegoCAUSA
| | - David Dimmock
- Rady Children's Institute for Genomic MedicineSan DiegoCAUSA
| | | | - Yan Ding
- Rady Children's Institute for Genomic MedicineSan DiegoCAUSA
| | - Eric J. Anderson
- Rady Children's Hospital of San DiegoSan DiegoCAUSA
- Division of Pediatric Hematology‐OncologyUniversity of California San DiegoSan DiegoCAUSA
| | | | - Ron S. Newfield
- Rady Children's Hospital of San DiegoSan DiegoCAUSA
- Division of Pediatric EndocrinologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
27
|
Xia S, Zhang D, Zheng S, Wu C, Lin Q, Ying S, Shao X, Jiang Y. Association of Crohn's disease with Foxp3 gene polymorphisms and its colonic expression in Chinese patients. J Clin Lab Anal 2019; 33:e22835. [PMID: 30710380 PMCID: PMC6528575 DOI: 10.1002/jcla.22835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fork head/winged helix transcription factor (Foxp3) plays a pivotal role in regulatory T (Treg) cells. The present study aimed to assess the association of Crohn's disease (CD) with Foxp3 polymorphisms and its colonic expression in Chinese patients. METHODS The Foxp3 polymorphisms, rs3761547, rs2232365, rs2294021, and rs3761548, were examined by SNaPshot in 268 CD patients and 490 controls. The colonic expression levels of Foxp3, IL-2, and IL-4 were detected in 31 CD patients and 31 controls using real-time quantitative polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS Compared to male controls, the proportion of variant allele of rs3761547 was increased in male patients. The variant alleles of rs3761547, rs2232365, and rs2294021 were less in male patients with stricturing CD compared to those with non-stricturing, non-penetrating CD; however, these variants were frequently detected in male patients with colonic CD than in those with ileocolonic CD. The variant allele of rs3761548 was increased in male patients with penetrating CD compared to those with non-stricturing, non-penetrating CD. The colonic expression of Foxp3 was higher in CD patients than in controls (both males and females). Compared to male patients carrying wild-type alleles, the colonic expression of Foxp3 was downregulated in male patients with variant alleles, rs3761547, rs2232365, rs2294021, and rs3761548, respectively. However, the Foxp3 polymorphisms were not significantly related with the colonic expression levels of IL-2 and IL-4 in CD patients (both males and females). CONCLUSION Foxp3 polymorphisms might increase the CD susceptibility by reducing the colonic expression of Foxp3 in male patients.
Collapse
Affiliation(s)
- Shenglong Xia
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Daguan Zhang
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shuzi Zheng
- Department of Pediatric GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chaoqun Wu
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qianru Lin
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shijie Ying
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoxiao Shao
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Jiang
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
28
|
Medina E, Villalobos P, Coñuecar R, Ramírez-Sarmiento CA, Babul J. The protonation state of an evolutionarily conserved histidine modulates domainswapping stability of FoxP1. Sci Rep 2019; 9:5441. [PMID: 30931977 PMCID: PMC6443806 DOI: 10.1038/s41598-019-41819-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 11/12/2022] Open
Abstract
Forkhead box P (FoxP) proteins are members of the versatile Fox transcription factors, which control the timing and expression of multiple genes for eukaryotic cell homeostasis. Compared to other Fox proteins, they can form domain-swapped dimers through their DNA-binding –forkhead– domains, enabling spatial reorganization of distant chromosome elements by tethering two DNA molecules together. Yet, domain swapping stability and DNA binding affinity varies between different FoxP proteins. Experimental evidence suggests that the protonation state of a histidine residue conserved in all Fox proteins is responsible for pH-dependent modulation of these interactions. Here, we explore the consequences of the protonation state of another histidine (H59), only conserved within FoxM/O/P subfamilies, on folding and dimerization of the forkhead domain of human FoxP1. Dimer dissociation kinetics and equilibrium unfolding experiments demonstrate that protonation of H59 leads to destabilization of the domain-swapped dimer due to an increase in free energy difference between the monomeric and transition states. This pH–dependence is abolished when H59 is mutated to alanine. Furthermore, anisotropy measurements and molecular dynamics evidence that H59 has a direct impact in the local stability of helix H3. Altogether, our results highlight the relevance of H59 in domain swapping and folding stability of FoxP1.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile
| | - Ricardo Coñuecar
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 7820436, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile.
| |
Collapse
|
29
|
Huijts CM, Werter IM, Lougheed SM, Goedegebuure RS, van Herpen CM, Hamberg P, Tascilar M, Haanen JB, Verheul HM, de Gruijl TD, van der Vliet HJ. Phase 1 study of everolimus and low-dose oral cyclophosphamide in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2019; 68:319-329. [PMID: 30413837 PMCID: PMC6394488 DOI: 10.1007/s00262-018-2248-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023]
Abstract
mTOR inhibitors are frequently used in the treatment of metastatic renal cell cancer (mRCC). mTOR regulates cell growth, proliferation, angiogenesis, and survival, and additionally plays an important role in immune regulation. Since mTOR inhibitors were shown to benefit immunosuppressive regulatory T-cell (Treg) expansion, this might suppress antitumor immune responses. Metronomic cyclophosphamide (CTX) was shown to selectively deplete Tregs. This study was, therefore, designed to determine the optimal dosage and schedule of CTX when combined with everolimus to prevent this potentially detrimental Treg expansion. In this national multi-center phase I study, patients with mRCC progressive on first line anti-angiogenic therapy received 10 mg everolimus once daily and were enrolled into cohorts with different CTX dosages and schedules. Besides immune monitoring, adverse events and survival data were monitored. 40 patients, 39 evaluable, were treated with different doses and schedules of CTX. Combined with 10 mg everolimus once daily, the optimal Treg depleting dose and schedule of CTX was 50 mg CTX once daily. 23 (59%) patients experienced one or more treatment-related ≥ grade 3 toxicity, mostly fatigue, laboratory abnormalities and pneumonitis. The majority of the patients achieved stable disease, two patients a partial response. Median PFS of all cohorts was 3.5 months. In conclusion, the optimal Treg depleting dose and schedule of CTX, when combined with everolimus, is 50 mg once daily. This combination leads to acceptable adverse events in comparison with everolimus alone. Currently, the here selected combination is being evaluated in a phase II clinical trial. TRIAL REGISTRATION: NCT01462214.
Collapse
Affiliation(s)
- Charlotte M Huijts
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Inge M Werter
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ruben S Goedegebuure
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carla M van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul Hamberg
- Department of Medical Oncology, Franciscus Gasthuis, Rotterdam, The Netherlands
| | - Metin Tascilar
- Department of Medical Oncology, Isala Clinics, Zwolle, The Netherlands
| | - John B Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Uttarkar S, Brembilla NC, Boehncke WH. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J Allergy Clin Immunol 2019; 143:1302-1310. [PMID: 30664891 DOI: 10.1016/j.jaci.2018.12.1011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is a fundamental defense mechanism to protect the body from danger, which becomes potentially harmful if it turns chronic. Therapeutic strategies aimed at specifically blocking proinflammatory signals, particularly cytokines, such as IL-4, IL-6, IL-13, IL-17A, or TNF-α, have substantially improved our ability to effectively and safely treat chronic inflammatory diseases. Much less effort has been made to better understand the role of potential anti-inflammatory mechanisms. Here we summarize the current understanding of regulatory cell populations in the context of chronic inflammation, namely macrophages, Langerhans cells, myeloid-derived suppressor cells, and regulatory T and B lymphocytes. Emphasis is given to the skin because many different immune-related diseases occur in the skin. Development, phenotype, function, and evidence for their role in animal models of inflammation, as well as in the corresponding human diseases, are described. Finally, the feasibility of using regulatory cells as targets for potentially disease-modifying therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, Geneva University Hospitals and School of Medicine, Geneva, Switzerland.
| |
Collapse
|
31
|
Sciveres M, Nastasio S, Maggiore G. Novel Diagnostic and Therapeutic Strategies in Juvenile Autoimmune Hepatitis. Front Pediatr 2019; 7:382. [PMID: 31616649 PMCID: PMC6763601 DOI: 10.3389/fped.2019.00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile autoimmune hepatitis (JAIH) is a rare, chronic, inflammatory disease of the liver characterized by a complex interaction between genetic, immunological, and environmental factors leading to loss of immunotolerance to hepatic antigens. It affects both children and adolescents, most commonly females, and its clinical manifestations are quite variable. JAIH is progressive in nature and if left untreated may lead to cirrhosis and terminal liver failure. Although JAIH was first described almost 50 years ago, there have been few significant advances in the clinical management of these patients, both in terms of available diagnostic tools and therapeutic options. Aminotransferase activity, class G immunoglobulins and autoantibodies are the biomarkers used to diagnose AIH and monitor treatment response alongside clinical and histological findings. Despite their utility and cost-effectiveness, these biomarkers are neither an accurate expression of AIH pathogenic mechanism nor a precise measure of treatment response. Current standard of care is mainly based on the administration of steroids and azathioprine. This combination of drugs has been proven effective in inducing remission of disease in the majority of patients dramatically improving their survival; however, it not only fails to restore tolerance to hepatic autoantigens, but it also does not halt disease progression in some patients, it is often needed life-long and finally, it has deleterious side-effects. The ideal therapy should be enough selective to contrast immune-mediated live damage while preserving or potentiating the ability to develop permanent tolerance vs. pathogenic autoantigens. By reviewing the state of the art literature, this article highlights novel diagnostic and therapeutic strategies for managing pediatric AIH with a special focus on new strategies of immunotherapy. These promising tools could improve the diagnostic algorithm, more accurately predict disease prognosis, and provide targeted, individualized treatment.
Collapse
Affiliation(s)
- Marco Sciveres
- Pediatric Hepatology and Liver Transplantation, ISMETT-University of Pittsburgh Medical Center Italy, Palermo, Italy
| | - Silvia Nastasio
- Division of Gastroenterology, Hepatology, and Nutrition, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Giuseppe Maggiore
- Pediatric Hepatology and Liver Transplantation, ISMETT-University of Pittsburgh Medical Center Italy, Palermo, Italy.,Section of Pediatrics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic intestinal microbes, resulting in chronic intestinal inflammation. However, a subset of patients with IBD diagnosed <6 years of age, known as very early-onset (VEO)-IBD, can be phenotypically and genetically distinct from older onset IBD. We aim to review the clinical presentation of children with VEO-IBD and recent discoveries that point to the underlying genomic and immunologic drivers of disease, and the significant impact on our therapeutic decisions. RECENT FINDINGS VEO-IBD is increasing in incidence and is associated with more severe disease, aggressive progression, and poor response to most conventional therapies. This article will review some of the genetic findings in this population and the subsequent impact on therapy, with targeted approaches. SUMMARY Children with VEO-IBD may present with a different phenotype and more severe disease than older children and adults. An integrated approach combining genetics, immunology, and traditional IBD evaluations can lead to the identification of causal defects that directly impact management. These strategies can also be employed in older onset refractory IBD.
Collapse
Affiliation(s)
- Maire A Conrad
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia Philadelphia, Pennsylvania,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia Philadelphia, Pennsylvania,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Wawrusiewicz-Kurylonek N, Chorąży M, Posmyk R, Zajkowska O, Zajkowska A, Krętowski AJ, Tarasiuk J, Kochanowicz J, Kułakowska A. The FOXP3 rs3761547 Gene Polymorphism in Multiple Sclerosis as a Male-Specific Risk Factor. Neuromolecular Med 2018; 20:537-543. [PMID: 30229436 PMCID: PMC6244921 DOI: 10.1007/s12017-018-8512-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
The FOXP3 gene encodes a transcription factor and is predominantly expressed in the CD4+CD25+ regulatory T cells which plays a pivotal role in the maintenance of immune homeostasis. The defect of FOXP3 gene may provide a critical link between autoimmunity and immune deficiency. The purpose of our study was to evaluate the association of chosen polymorphisms of FOXP3 gene (rs3761549, rs3761548, rs3761547) with different clinical multiple sclerosis (MS) data of our relapsing-remitting groups of patients and in control group. The study was performed on a group consisting of 174 relapsing-remitting MS patients, diagnosed under 40 years of life, and 174 healthy volunteers. Genotyping was performed using a real-time PCR-based method by TaqMan Assays. Significant differences in distribution of allele C rs3761547 were found in male MS patients in comparison to the male healthy group (p = 0.046, OR 1.95, CI 95%). No association between MS and the other two polymorphisms was observed in males and females of both studied groups. Our data may suggest that FOXP3 rs3761547 gene polymorphism are related notably with the increased risk of MS development in males patients. To our knowledge this is the first study which indicates gender-specific relation between rs3761547 FOXP3 gene polymorphism and multiple sclerosis.
Collapse
Affiliation(s)
- Natalia Wawrusiewicz-Kurylonek
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Białystok, Poland
- Department of Clinical Genetics, Medical University of Bialystok, Białystok, Poland
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Renata Posmyk
- Department of Perinatology, Medical University of Bialystok, Białystok, Poland
| | - Olga Zajkowska
- Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Agata Zajkowska
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Białystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
| | - Joanna Tarasiuk
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
34
|
Taubert R, Hupa-Breier KL, Jaeckel E, Manns MP. Novel therapeutic targets in autoimmune hepatitis. J Autoimmun 2018; 95:34-46. [DOI: 10.1016/j.jaut.2018.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
35
|
Gutiérrez M, Scaglia P, Keselman A, Martucci L, Karabatas L, Domené S, Martin A, Pennisi P, Blanco M, Sanguineti N, Bezrodnik L, Di Giovanni D, Caldirola MS, Azcoiti ME, Gaillard MI, Denson LA, Zhang K, Husami A, Yayah Jones NH, Hwa V, Revale S, Vázquez M, Jasper H, Kumar A, Domené H. Partial growth hormone insensitivity and dysregulatory immune disease associated with de novo germline activating STAT3 mutations. Mol Cell Endocrinol 2018; 473:166-177. [PMID: 29378236 PMCID: PMC6143347 DOI: 10.1016/j.mce.2018.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/09/2023]
Abstract
Germinal heterozygous activating STAT3 mutations represent a novel monogenic defect associated with multi-organ autoimmune disease and, in some cases, severe growth retardation. By using whole-exome sequencing, we identified two novel STAT3 mutations, p.E616del and p.C426R, in two unrelated pediatric patients with IGF-I deficiency and immune dysregulation. The functional analyses showed that both variants were gain-of-function (GOF), although they were not constitutively phosphorylated. They presented differences in their dephosphorylation kinetics and transcriptional activities under interleukin-6 stimulation. Both variants increased their transcriptional activities in response to growth hormone (GH) treatment. Nonetheless, STAT5b transcriptional activity was diminished in the presence of STAT3 GOF variants, suggesting a disruptive role of STAT3 GOF variants in the GH signaling pathway. This study highlights the broad clinical spectrum of patients presenting activating STAT3 mutations and explores the underlying molecular pathway responsible for this condition, suggesting that different mutations may drive increased activity by slightly different mechanisms.
Collapse
Affiliation(s)
- Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Lucía Martucci
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ayelen Martin
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Miguel Blanco
- Endocrinología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Inmunología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | | | | | - María Isabel Gaillard
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lee A Denson
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kejian Zhang
- Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ammar Husami
- Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nana-Hawa Yayah Jones
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Santiago Revale
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Rosario, Argentina
| | - Martín Vázquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Rosario, Argentina
| | - Héctor Jasper
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ashish Kumar
- Division of BM Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Horacio Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 2018; 15:458-469. [PMID: 29563615 PMCID: PMC6068176 DOI: 10.1038/s41423-018-0004-4] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
The balance between Th17 cells and regulatory T cells (Tregs) has emerged as a prominent factor in regulating autoimmunity and cancer. Th17 cells are vital for host defense against pathogens but have also been implicated in causing autoimmune disorders and cancer, though their role in carcinogenesis is less well understood. Tregs are required for self-tolerance and defense against autoimmunity and often correlate with cancer progression. This review addresses the importance of a functional homeostasis between these two subsets in health and the consequences of its disruption when these forces collide in disease. Importantly, we discuss the ability of Th17 cells to mediate cancer regression in immunotherapy, including adoptive transfer and checkpoint blockade therapy, and the therapeutic possibilities of purposefully offsetting the Th17/Treg balance to treat patients with cancer as well as those with autoimmune diseases.
Collapse
Affiliation(s)
- Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Stefanie R Bailey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sierra M Amaya
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk M Elston
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Joni M Mazza-McCrann
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
37
|
LaMothe RA, Kolte PN, Vo T, Ferrari JD, Gelsinger TC, Wong J, Chan VT, Ahmed S, Srinivasan A, Deitemeyer P, Maldonado RA, Kishimoto TK. Tolerogenic Nanoparticles Induce Antigen-Specific Regulatory T Cells and Provide Therapeutic Efficacy and Transferrable Tolerance against Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:281. [PMID: 29552007 PMCID: PMC5840162 DOI: 10.3389/fimmu.2018.00281] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
T cells reacting to self-components can promote tissue damage when escaping tolerogenic control mechanisms which may result in autoimmune disease. The current treatments for these disorders are not antigen (Ag) specific and can compromise host immunity through chronic suppression. We have previously demonstrated that co-administration of encapsulated or free Ag with tolerogenic nanoparticles (tNPs) comprised of biodegradable polymers that encapsulate rapamycin are capable of inhibiting Ag-specific transgenic T cell proliferation and inducing Ag-specific regulatory T cells (Tregs). Here, we further show that tNPs can trigger the expansion of endogenous Tregs specific to a target Ag. The proportion of Ag-specific Treg to total Ag-specific T cells remains constant even after subsequent Ag challenge in combination with a potent TLR7/8 agonist or complete Freund’s adjuvant. tNP-treated mice do not develop experimental autoimmune encephalomyelitis (EAE) after adoptive transfer of encephalitogenic T cells; furthermore, tNP treatment provided therapeutic protection in relapsing EAE that was transferred to naïve animals. These findings describe a potent therapy to expand Ag-specific Tregs in vivo and suppress T cell-mediated autoimmunity.
Collapse
Affiliation(s)
| | | | - Trinh Vo
- Selecta Biosciences Inc., Watertown, MA, United States
| | | | | | - Jodie Wong
- Selecta Biosciences Inc., Watertown, MA, United States
| | - Victor T Chan
- Selecta Biosciences Inc., Watertown, MA, United States
| | - Sinthia Ahmed
- Selecta Biosciences Inc., Watertown, MA, United States
| | | | | | | | | |
Collapse
|
38
|
Huijts CM, Santegoets SJ, de Jong TD, Verheul HM, de Gruijl TD, van der Vliet HJ. Immunological effects of everolimus in patients with metastatic renal cell cancer. Int J Immunopathol Pharmacol 2017; 30:341-352. [PMID: 28988508 PMCID: PMC5806813 DOI: 10.1177/0394632017734459] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a crucial kinase present in all cells. Besides its role in the regulation of cell-growth, proliferation, angiogenesis, and survival of malignant tumors, mTOR additionally plays an important role in immune regulation by controlling the balance between effector T cells and regulatory T cells (Tregs). This critically affects the suppressive state of the immune system. Here, the systemic immunological effects of everolimus treatment were comprehensively investigated in five patients with metastatic renal cell cancer. In this hypothesis generating study, the immunological alterations in circulating immune subsets induced by everolimus included a (non-significant) increase in the frequency of Tregs, a significant increase in monocytic myeloid-derived suppressor cells, a significant decrease in the frequency of immunoregulatory natural killer cells, classical CD141+ (cDC1) and CD1c+ (cDC2) dendritic cell subsets, as well as a decrease in the activation status of plasmacytoid dendritic cells and cDC1. These date indicate that the immunological effects of everolimus affect multiple immune cell subsets and altogether tip the balance in favor of immunosuppression, which can be considered a detrimental effect in the treatment of cancer, and may require combination treatment with agents able to negate immune suppression and boost T cell immunity.
Collapse
Affiliation(s)
- Charlotte M Huijts
- 1 Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Saskia J Santegoets
- 1 Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tamarah D de Jong
- 2 Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M Verheul
- 1 Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- 1 Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- 1 Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic intestinal microbes, resulting in chronic intestinal inflammation. Patients diagnosed with IBD occurring before the age of 5 are a unique population, known as very early onset (VEO)-IBD and can be phenotypically and genetically distinct from older-onset IBD. We aim to review the clinical presentation of children with VEO-IBD and recent discoveries that point to genomic drivers of disease that may impact our therapeutic decisions. RECENT FINDINGS VEO-IBD is increasing in incidence and is associated with more severe disease, aggressive progression and poor response to most conventional therapies. This article will review the advances in sequencing technology that have led to identification of novel gene variants associated with disease and potentially new targeted therapeutic options. SUMMARY Children with VEO-IBD may present with a different phenotype and more severe disease than older children and adults. Identification of the causal gene or pathways, these children may allow for true precision medicine with targeted therapy and improved disease course.
Collapse
|
40
|
Ghinnagow R, Cruz LJ, Macho-Fernandez E, Faveeuw C, Trottein F. Enhancement of Adjuvant Functions of Natural Killer T Cells Using Nanovector Delivery Systems: Application in Anticancer Immune Therapy. Front Immunol 2017; 8:879. [PMID: 28798749 PMCID: PMC5529346 DOI: 10.3389/fimmu.2017.00879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Type I natural killer T (NKT) cells have gained considerable interest in anticancer immune therapy over the last decade. This “innate-like” T lymphocyte subset has the unique ability to recognize foreign and self-derived glycolipid antigens in association with the CD1d molecule expressed by antigen-presenting cells. An important property of these cells is to bridge innate and acquired immune responses. The adjuvant function of NKT cells might be exploited in the clinics. In this review, we discuss the approaches currently being used to target NKT cells for cancer therapy. In particular, we highlight ongoing strategies utilizing NKT cell-based nanovaccines to optimize immune therapy.
Collapse
Affiliation(s)
- Reem Ghinnagow
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elodie Macho-Fernandez
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
41
|
Extremely Early Onset IPEX Syndrome Caused by a Novel Small Exonic Deletion in FOXP3. J Pediatr Gastroenterol Nutr 2016; 63:e119-e120. [PMID: 25187107 PMCID: PMC4346554 DOI: 10.1097/mpg.0000000000000554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
42
|
Abstract
Genetic and cellular studies of type 1 diabetes in patients and in the nonobese diabetic mouse model of type 1 diabetes point to an imbalance between effector T cells and regulatory T cells (Tregs) as a driver of the disease. The imbalance may arise as a consequence of genetically encoded defects in thymic deletion of islet antigen-specific T cells, induction of islet antigen-specific thymic Tregs, unfavorable tissue environment for peripheral Treg induction, and failure of islet antigen-specific Tregs to survive in the inflamed islets secondary to insufficient IL-2 signals. These understandings are the foundation for rationalized design of new therapeutic interventions to restore the balance by selectively targeting effector T cells and boosting Tregs.
Collapse
Affiliation(s)
- Allyson Spence
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA
| | - Qizhi Tang
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA.
| |
Collapse
|
43
|
Ma OKF, Chan KH. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 2016; 8:268-78. [PMID: 27679683 PMCID: PMC5031888 DOI: 10.4252/wjsc.v8.i9.268] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.
Collapse
Affiliation(s)
- Oscar Ka-Fai Ma
- Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Koon Ho Chan
- Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Arellano B, Graber DJ, Sentman CL. Regulatory T cell-based therapies for autoimmunity. DISCOVERY MEDICINE 2016; 22:73-80. [PMID: 27585233 PMCID: PMC5573148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autoimmune disorders are long-term diseases that adversely affect the quality of life for patients, and they are one of the top ten leading causes of death. While each autoimmune disorder is unique, they all are caused by a breakdown of tolerance against endogenous proteins. This leads to auto-inflammatory events that promote the destruction of organs in a humoral and cellular immune mediated manner. Treatment options for autoimmunity can involve the use of chemical and biologic agents that suppress inflammation. While these treatment options for patients have shown to be beneficial in autoimmunity, they can result in patients being vulnerable to opportunistic infections. Newer therapies aim to identify methods to specifically block auto-inflammatory immune cells while allowing for an intact immune response to other antigens. T regulatory (Treg) cells are a subtype of the adoptive immune cell that is capable of suppressing inflammatory events in an antigen-specific manner, but they are often poorly functioning within autoimmune patients. Treg cells have been well characterized for their immune modulating capabilities and preclinical and early clinical studies support their therapeutic potential for antigen-specific immune suppression. This review will examine the current understanding of Treg cell function and the therapeutic potential of enhancing Treg cells in patients with inflammatory disorders.
Collapse
Affiliation(s)
- Benjamine Arellano
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| | - David J Graber
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Charles L Sentman
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| |
Collapse
|
45
|
Mirandola L, Wade R, Verma R, Pena C, Hosiriluck N, Figueroa JA, Cobos E, Jenkins MR, Chiriva-Internati M. Sex-driven differences in immunological responses: challenges and opportunities for the immunotherapies of the third millennium. Int Rev Immunol 2016; 34:134-42. [PMID: 25901858 DOI: 10.3109/08830185.2015.1018417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF THE STUDY Male-based studies, both at the biochemical and at the pre-clinical/clinical trial levels, still predominate in the scientific community. Many studies are based on the wrong assumption that both sexes are fundamentally identical in their response to treatments. As a result, findings obtained mainly in males are applied to females, resulting in negative consequences female patients. In cancer immunotherapy, there is still a scarce focus on this topic. Here we review the main differences in immune modulation and immune system biology between males and females with a particular focus on how these differences affect cancer immunotherapy and cancer vaccines. METHODS We reviewed articles published on PubMed from 1999 to 2014, using the keywords: sex hormones, immune response, estrogen, immunotherapy, testosterone, cancer vaccines, sex-based medicine. We also present new data wherein the expression of the cancer testis antigen, Ropporin-1, was determined in patients with multiple myeloma, showing that the expression of Ropporin-1 was influenced by sex. RESULTS Male and female immune systems display radical differences mainly due to the immune regulatory effects of sex hormones. These differences might have a dramatic impact on the immunological treatment of cancer. Moreover, the expression of tumor antigens that can be targeted by anti-cancer vaccines is associated with sex. CONCLUSION Future clinical trials focusing on cancer immunotherapy will need to take into account the differences in the immune response and in the frequency of target antigen expression between male and females, in order to optimize these anti-cancer immunotherapies of the third millennium.
Collapse
Affiliation(s)
- Leonardo Mirandola
- Division of Hematology/Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, TX , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pacheco-Gonzalez RM, Avila C, Dávila I, García-Sánchez A, Hernández-Hernández L, Benito-Pescador D, Torres R, Prieto-Matos P, Isidoro-Garcia M, Lorente F, Sanz C. Analysis of FOXP3 gene in children with allergy and autoimmune diseases. Allergol Immunopathol (Madr) 2016; 44:32-40. [PMID: 25982578 DOI: 10.1016/j.aller.2015.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Allergy and autoimmunity are important immunological entities underlying chronic diseases in children. In some cases both entities develop simultaneously in the same patient. FOXP3 gene codes for a transcription factor involved in regulation of the immune system. Considering that regulatory T cells are involved in controlling immunological disease development, and the relevant role of FOXP3 in this kind of T cells, the objective of this study was to analyse the FOXP3 gene in the most prevalent autoimmune diseases and/or allergies in childhood in a European population. METHODS A total of 255 Caucasian individuals, 95 controls and 160 patients diagnosed with allergic, autoimmune or both diseases were included in this study. The molecular analysis of FOXP3 was performed by DNA sequencing following the recommendations for quality of the European Molecular Genetics Quality Network. Genomic DNA was extracted from peripheral blood of all participants and was amplified using the polymerase chain reaction. After the visualisation of the amplified fragments by agarose gel-electrophoresis, they were sequenced. RESULTS Thirteen different polymorphisms in FOXP3 gene were found, seven of which had not been previously described. The mutated allele of SNP 7340C>T was observed more frequently in the group of male children suffering from both allergic and autoimmune diseases simultaneously (p=0.004, OR=16.2 [1.34-195.15]). CONCLUSIONS In this study we identified for first time genetic variants of FOXP3 that are significantly more frequent in children who share allergic and autoimmune diseases. These variants mainly affect regulatory sequences that could alter the expression levels of FOXP3 modifying its function including its role in Treg cells.
Collapse
Affiliation(s)
| | - C Avila
- Department of Statistics, University of Salamanca, Salamanca, Spain; Biosanitary Institute of Salamanca IBSAL, Salamanca, Spain
| | - I Dávila
- Biosanitary Institute of Salamanca IBSAL, Salamanca, Spain; Department of Allergy, University Hospital of Salamanca, Salamanca, Spain.
| | | | | | | | - R Torres
- Department of Paediatrics, University Hospital of Salamanca, Salamanca, Spain
| | - P Prieto-Matos
- Biosanitary Institute of Salamanca IBSAL, Salamanca, Spain; Department of Paediatrics, University Hospital of Salamanca, Salamanca, Spain
| | - M Isidoro-Garcia
- Biosanitary Institute of Salamanca IBSAL, Salamanca, Spain; Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain.
| | - F Lorente
- Biosanitary Institute of Salamanca IBSAL, Salamanca, Spain; Department of Paediatrics, University Hospital of Salamanca, Salamanca, Spain
| | - C Sanz
- Biosanitary Institute of Salamanca IBSAL, Salamanca, Spain; Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| |
Collapse
|
47
|
Do JS, Visperas A, Sanogo YO, Bechtel JJ, Dvorina N, Kim S, Jang E, Stohlman SA, Shen B, Fairchild RL, Baldwin WM, Vignali DAA, Min B. An IL-27/Lag3 axis enhances Foxp3+ regulatory T cell-suppressive function and therapeutic efficacy. Mucosal Immunol 2016; 9:137-45. [PMID: 26013006 PMCID: PMC4662649 DOI: 10.1038/mi.2015.45] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023]
Abstract
Foxp3-expressing regulatory T cells (Tregs) are central regulators of immune homeostasis and tolerance. As it has been suggested that proper Treg function is compromised under inflammatory conditions, seeking for a pathway that enhances or stabilizes Treg function is a subject of considerable interest. We report that interleukin (IL)-27, an IL-12 family cytokine known to have both pro- and anti-inflammatory roles in T cells, plays a pivotal role in enhancing Treg function to control T cell-induced colitis, a model for inflammatory bowel disease (IBD) in humans. Unlike wild-type (WT) Tregs capable of inhibiting colitogenic T-cell expansion and inflammatory cytokine expression, IL-27R-deficient Tregs were unable to downregulate inflammatory T-cell responses. Tregs stimulated with IL-27 expressed substantially improved suppressive function in vitro and in vivo. IL-27 stimulation of Tregs induced expression of Lag3, a surface molecule implicated in negatively regulating immune responses. Lag3 expression in Tregs was critical to mediate Treg function in suppressing colitogenic responses. Human Tregs also displayed enhanced suppressive function and Lag3 expression following IL-27 stimulation. Collectively, these results highlight a novel function for the IL-27/Lag3 axis in modulating Treg regulation of inflammatory responses in the intestine.
Collapse
Affiliation(s)
- Jeong-su Do
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Anabelle Visperas
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yibayiri Osee Sanogo
- Genomics Core, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Jennifer J. Bechtel
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Nina Dvorina
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Eunjung Jang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Stephen A. Stohlman
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Bo Shen
- Department of Gastroenterology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Robert L. Fairchild
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M. Baldwin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
48
|
The immunological and genetic basis of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Curr Opin Allergy Clin Immunol 2015; 15:525-32. [DOI: 10.1097/aci.0000000000000214] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Chan SK, Gelfand EW. Primary Immunodeficiency Masquerading as Allergic Disease. Immunol Allergy Clin North Am 2015; 35:767-78. [PMID: 26454318 DOI: 10.1016/j.iac.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary immune deficiencies (PIDs) are an uncommon heterogeneous group of diseases that result from fundamental defects in the proteins and cells that enable specific immune responses. Common allergic reactions (eczema, allergic rhinitis, asthma, and food allergies) are exaggerated immune responses that may be manifestations of an underlying PID. Early diagnosis and treatment has significant bearing on outcome. Immune suppression with systemic corticosteroids in these immune compromised individuals can lead to life threatening dissemination of infections.
Collapse
Affiliation(s)
- Sanny K Chan
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Erwin W Gelfand
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
50
|
Rodrigues RMM, de-Carvalho J, Henriques SF, Mira NP, Sá-Correia I, Ferreira GNM. Transmission line model analysis of transcription factors binding to oligoduplexes - differentiation of the effect of single nucleotide modifications. Analyst 2015; 139:3871-4. [PMID: 24955439 DOI: 10.1039/c4an00709c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced impedance spectroscopy analysis based on the transmission line model (TLM) is explored as a novel QCM acoustic biosensing platform for the detection of the single point mutation effect on the binding of the transcription factors (TFs) to immobilized DNA oligoduplexes and the characterization of the protein-DNA mechanical properties.
Collapse
Affiliation(s)
- Rogério M M Rodrigues
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | | | | | | | | | |
Collapse
|