1
|
Guha TK, Esplin ED, Horning AM, Chiu R, Paul K, Weimer AK, Becker WR, Laquindanum R, Mills MA, Glen Esplin D, Shen J, Monte E, White S, Karathanos TV, Cotter D, Bi J, Ladabaum U, Longacre TA, Curtis C, Greenleaf WJ, Ford JM, Snyder MP. Single-cell spatial mapping reveals alteration of cell type composition and tissue microenvironment during early colorectal cancer formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.622725. [PMID: 39605357 PMCID: PMC11601668 DOI: 10.1101/2024.11.20.622725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States. Familial adenomatous polyposis (FAP) is a hereditary syndrome that raises the risk of developing CRC, with total colectomy as the only effective prevention. Even though FAP is rare (0.5% of all CRC cases), this disease model is well suited for studying the early stages of malignant transformation as patients form many polyps reflective of pre-cancer states. In order to spatially profile and analyze the pre-cancer and tumor microenvironment, we have performed single-cell multiplexed imaging for 52 samples: 12 normal mucosa,16 FAP mucosa,18 FAP polyps, 2 FAP adenocarcinoma, and 4 sporadic colorectal cancer (CRCs) using Co-detection by Indexing (CODEX) imaging platform. The data revealed significant changes in cell type composition occurring in early stage polyps and during the malignant transformation of polyps to CRC. We observe a decrease in CD4+/CD8+ T cell ratio and M1/M2 macrophage ratio along the FAP disease continuum. Advanced dysplastic polyps show a higher population of cancer associated fibroblasts (CAFs), which likely alter the pre-cancer microenvironment. Within polyps and CRCs, we observe strong nuclear expression of beta-catenin and higher number neo-angiogenesis events, unlike FAP mucosa and normal colon counterparts. We identify an increase in cancer stem cells (CSCs) within the glandular crypts of the FAP polyps and also detect Tregs, tumor associated macrophages (TAMs) and vascular endothelial cells supporting CSC survival and proliferation. We detect a potential immunosuppressive microenvironment within the tumor 'nest' of FAP adenocarcinoma samples, where tumor cells tend to segregate and remain distant from the invading immune cells. TAMs were found to infiltrate the tumor area, along with angiogenesis and tumor proliferation. CAFs were found to be enriched near the inflammatory region within polyps and CRCs and may have several roles in supporting tumor growth. Neighborhood analyses between adjacent FAP mucosa and FAP polyps show significant differences in spatial location of cells based on functionality. For example, in FAP mucosa, naive CD4+ T cells alone tend to localize near the fibroblast within the stromal compartment. However, in FAP polyp, CD4+T cells colocalize with the macrophages for T cell activation. Our data are expected to serve as a useful resource for understanding the early stages of neogenesis and the pre-cancer microenvironment, which may benefit early detection, therapeutic intervention and future prevention.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | | | - Kristina Paul
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Meredith A Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - D Glen Esplin
- Animal Reference Pathology, Salt Lake City, UT 84107
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Shannon White
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | - Daniel Cotter
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Joanna Bi
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Teri A Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| |
Collapse
|
2
|
Nguyen Duy T, Le Huy H, Đao Thanh Q, Ngo Thi H, Ngo Thi Minh H, Nguyen Dang M, Le Huu S, Ngo Tat T. Association between Bacteroides fragilis and Fusobacterium nucleatum infection and colorectal cancer in Vietnamese patients. Anaerobe 2024; 88:102880. [PMID: 38942229 DOI: 10.1016/j.anaerobe.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant global health concern, and understanding the role of specific bacterial infections in its development and progression is of increasing interest. This cross-sectional study investigated the associations between Bacteroides fragilis (B. fragilis) and Fusobacterium nucleatum (F. nucleatum) infections and Vietnamese CRC patients. METHODS 192 patients with either polyps or CRC at varying stages were recruited from May 2017 to December 2020. Real-time PCR assessed infection rates and bacterial loads in CRC tissues. RESULTS B. fragilis infection was notably higher in CRC tissues (51.6 %) than polyps (9.4 %), with a fivefold higher relative load. Positive associations were found in stages II and III, indicating a fivefold increase in CRC progression risk. F. nucleatum infection rates were significantly higher in CRC tissues (55.2 %) than in polyps (10.5 %). In stage II, the infection rate exceeded that in adjacent tissues. The relative load of F. nucleatum was higher in stage III than in stages I and II. Positive F. nucleatum patients had a 3.2 times higher risk of CRC progression. CONCLUSION These findings suggest associations between loading of F. nucleatum or/and B. fragilis with the advanced stages of CRC.
Collapse
Affiliation(s)
- Truong Nguyen Duy
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Hoang Le Huy
- Department of Bacteriology, National of Hygiene and Epidemiology, Hanoi, 10000, Viet Nam
| | - Quyen Đao Thanh
- Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam
| | - Hoai Ngo Thi
- Department of Gastroenterological Intensive Care, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Hanh Ngo Thi Minh
- Department of Pathology, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Manh Nguyen Dang
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Song Le Huu
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam; Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam.
| | - Trung Ngo Tat
- Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam; Centre for Genetics Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, 100000, Viet Nam.
| |
Collapse
|
3
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
4
|
Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, Wang R, Zhang D, Lin J, Zheng C. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117733. [PMID: 38218504 DOI: 10.1016/j.jep.2024.117733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS Ginger has potential for daily prevention and clinical treatment of CRC.
Collapse
Affiliation(s)
- Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rongrong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
5
|
Yang S, Li Y, Wheldon CW, Prosperi M, George TJ, Shenkman EA, Wang F, Bian J, Guo Y. The Burden of Cancer and Pre-cancerous Conditions Among Transgender Individuals in a Large Healthcare Network. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.24.24304777. [PMID: 38585849 PMCID: PMC10996763 DOI: 10.1101/2024.03.24.24304777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The current study aimed to examine the prevalence of and risk factors for cancer and pre-cancerous conditions, comparing transgender and cisgender individuals, using 2012-2023 electronic health record data from a large healthcare system. We identified 2,745 transgender individuals using a previously validated computable phenotype and 54,900 matched cisgender individuals. We calculated the prevalence of cancer and pre-cancer related to human papillomavirus (HPV), human immunodeficiency virus (HIV), tobacco, alcohol, lung, breast, colorectum, and built multivariable logistic models to examine the association between gender identity and the presence of cancer or pre-cancer. Results indicated similar odds of developing cancer across gender identities, but transgender individuals exhibited significantly higher risks for pre-cancerous conditions, including alcohol-related, breast, and colorectal pre-cancers compared to cisgender women, and HPV-related, tobacco-related, alcohol-related, and colorectal pre-cancers compared to cisgender men. These findings underscore the need for tailored interventions and policies addressing cancer health disparities affecting the transgender population.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Yongqiu Li
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Christopher W. Wheldon
- Department of Social and Behavioral Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Thomas J. George
- Division of Hematology and Oncology, University of Florida, Gainesville, Florida, USA
| | - Elizabeth A. Shenkman
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Dehini G, Ghorbani H, Khafri S, Shokri Shirvani J, Hosseini A, Sadr Mohararpur S, Rouhi T. Diagnostic significance of CD10 marker to differentiate colorectal adenocarcinoma from adenomatous polyp: A pathological correlation. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:228-233. [PMID: 38807719 PMCID: PMC11129067 DOI: 10.22088/cjim.15.2.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 05/30/2024]
Abstract
Background Colorectal cancer could be developed from adenomatous polyp. The study aimed to evaluate the diagnostic significance of stromal and epithelial CD10 (Neprilysin) expression in patients with colorectal adenocarcinoma and adenomatous polyps. Methods This cross-sectional study was conducted on 141 patients with colorectal adenocarcinoma and adenomatous polyps referred to Ayatollah Rouhani Hospital from March 2020 to March 2021. Differential diagnoses of colorectal adenocarcinoma and adenomatous polyps were made colonoscopically, and then samples were taken from the lesions. The pathologists confirmed the final diagnosis as colorectal adenocarcinoma, high-grade or low-grade adenomatous polyps. The stromal and epithelial CD10 expression was evaluated by immunohistochemistry. The data was analyzed by SPSS 22 software (p<0.05). Results Sixty-five (46.1%) of the cases were low-grade polyps that were included positive (4 cases; 6.20%) and negative (61 cases; 93.80%) CD10 expression (P=0.001), also 76 (53.9%) of them were either high-grade polyps (21 cases) or adenocarcinomas (21 cases). Also, epithelial CD10 expression was significantly higher in the well-differentiated adenocarcinoma (38 cases) group than moderate (13 cases) and poor (4 cases) groups (P =0.001). Moreover, the CD10 expression level in the adenomatous polyps (10 positive cases and 76 negative cases) was correlated with the degree of dysplasia (P = 0.001) and the presence of tumor invasion (8 positive cases and 133 negative cases) (P = 0.001). Conclusion The CD10 expression is associated with an increased degree of dysplasia and the presence of tumor invasion in patients with pre-neoplastic lesions and colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Ghasem Dehini
- Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
- Department of Pathology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Ghorbani
- Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
- Department of Pathology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical. Sciences, Babol, Iran
| | - Javad Shokri Shirvani
- Department of Gastroenterology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Akramossadat Hosseini
- Department of Pathology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Sadr Mohararpur
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Tina Rouhi
- Department of Pathology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Xu L, Zhao J, Li Z, Sun J, Lu Y, Zhang R, Zhu Y, Ding K, Rudan I, Theodoratou E, Song P, Li X. National and subnational incidence, mortality and associated factors of colorectal cancer in China: A systematic analysis and modelling study. J Glob Health 2023; 13:04096. [PMID: 37824177 PMCID: PMC10569376 DOI: 10.7189/jogh.13.04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Background Due to their known variation by geography and economic development, we aimed to evaluate the incidence and mortality of colorectal cancer (CRC) in China over the past decades and identify factors associated with CRC among the Chinese population to provide targeted information on disease prevention. Methods We conducted a systemic review and meta-analysis of epidemiolocal studies on the incidence, mortality, and associated factors of CRC among the Chinese population, extracting and synthesising data from eligible studies retrieved from seven global and Chinese databases. We pooled age-standardised incidence rates (ASIRs) and mortality rates (ASMRs) for each province, subregion, and the whole of China, and applied a joinpoint regression model and annual per cent changes (APCs) to estimate the trends of CRC incidence and mortality. We conducted random-effects meta-analyses to assess the effect estimates of identified associated risk factors. Results We included 493 articles; 271 provided data on CRC incidence or mortality, and 222 on associated risk factors. Overall, the ASIR of CRC in China increased from 2.75 to 19.39 (per 100 000 person-years) between 1972 and 2019 with a slowed-down growth rate (APC1 = 5.75, APC2 = 0.42), while the ASMR of CRC decreased from 12.00 to 7.95 (per 100 000 person-years) between 1974 and 2020 with a slight downward trend (APC = -0.89). We analysed 62 risk factors with synthesized data; 16 belonging to the categories of anthropometrics factors, lifestyle factors, dietary factors, personal histories and mental health conditions were graded to be associated with CRC risk among the Chinese population in the meta-analysis limited to the high-quality studies. Conclusions We found substantial variation of CRC burden across regions and provinces of China and identified several associated risk factors for CRC, which could help to guide the formulation of targeted disease prevention and control strategies. Registration PROSPERO: CRD42022346558.
Collapse
Affiliation(s)
- Liying Xu
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zihan Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Lu
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongqi Zhang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingshuang Zhu
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Algebra University, Zagreb, Croatia
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Peige Song
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zheijang Province, Hangzhou. China
| | - Global Health Epidemiology Research Group (GHERG)
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Algebra University, Zagreb, Croatia
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zheijang Province, Hangzhou. China
| |
Collapse
|
8
|
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, Ghorbani E, Ferns GA, Manoochehri H, Menbari S, Sheykhhasan M, Tanzadehpanah H. Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer. Curr Pharm Des 2023; 29:3018-3039. [PMID: 37990895 DOI: 10.2174/0113816128274742231103063738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Mansourian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaho Menbari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Sheykhhasan
- Qom University of Medical Science and Health Services Mesenchymal Stem Cells Qom Iran
- Department of Mesenchymal Stem Cells, Qom University of Medical Science and Health Services, Qom, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Kim KW, Kang HW, Yoo H, Jun Y, Lee HJ, Im JP, Kim JW, Kim JS, Koh SJ, Jung YJ. Association between severe hepatic steatosis examined by Fibroscan and the risk of high-risk colorectal neoplasia. PLoS One 2022; 17:e0279242. [PMID: 36548355 PMCID: PMC9778623 DOI: 10.1371/journal.pone.0279242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
The prevalence of colorectal neoplasm in patients with non-alcoholic fatty liver disease has increased twice as high as that in the general population. FibroScan is a new modality for evaluating hepatic steatosis. This study aimed to investigate the relationship between the risk of high-risk colorectal neoplasia and hepatic steatosis examined using FibroScan. This was a cross sectional study of prospectively enrolled subjects who were scheduled to undergo index colonoscopy as a health screening between March 2018 and February 2019. The severity of steatosis was graded as normal, mild, moderate, or severe using FibroScan. A total of 140 consecutive subjects were enrolled and sequentially examined using FibroScan and colonoscopy. Subjects with hepatic steatosis had more high-risk colorectal neoplasia than those without hepatic steatosis. In addition, tumor size was larger in subjects with hepatic steatosis. In multivariable analysis, severe hepatic steatosis was an independent risk factor for high-risk colorectal neoplasia (adjusted odds ratio: 3.309, confidence interval: 1.043-10.498, p = 0.042). Alcohol consumption was also identified as a risk factor for high-risk colorectal neoplasia. In conclusion, severe hepatic steatosis on FibroScan is associated with the development of high-risk colorectal neoplasia. Thus, physicians should be aware of the association between colorectal neoplasia and hepatic steatosis assessed by FibroScan and its clinical implications.
Collapse
Affiliation(s)
- Kwang Woo Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoun Woo Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hosun Yoo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yukyung Jun
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Won Kim
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (YJJ); (S-JK)
| | - Yong Jin Jung
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (YJJ); (S-JK)
| |
Collapse
|
10
|
Polimeno L, Viggiani MT, Giorgio F, Polimeno L, Fratantonio D, Di Domenico M, Boccellino M, Ballini A, Topi S, Di Leo A, Santacroce L, Barone M. Possible role of nuclear factor erythroid 2-related factor 2 in the progression of human colon precancerous lesions. Dig Liver Dis 2022; 54:1716-1720. [PMID: 35210176 DOI: 10.1016/j.dld.2022.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased levels of oxidative stress/cell inflammation contribute to colorectal cancer (CRC) onset. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and its controlled growth factor erv1-like (Gfer) gene regulate redox-sensitive and anti-inflammatory mechanisms, respectively, which can contribute to promoting cancer development. AIM We evaluated Nrf2 and Gfer RNA expression and Nrf2 protein expression in colon mucosa in order to establish their possible involvement in the early stage of CRC. METHODS Forty subjects were enrolled after a histological evaluation of their colon biopsies. They included 20 subjects with a sporadic colorectal adenoma (SpCA group) and 20 without precancerous lesions (controls). Biopsy samples were processed for gene expression analysis and protein expression, using Real-time PCR and immunofluorescence confocal microscopy, respectively. RESULTS Nrf2 and Gfer mRNA expression were significantly reduced (p=0.007 and p<0.003, respectively) in SpCA tissues compared to normal mucosa from controls. Furthermore, immunofluorescence analysis confirmed a relevant reduction of Nrf2 in SpCA tissue compared to normal tissue from controls. CONCLUSIONS Our data confirm the hypothesis that Nrf2 and Gfer expression may be involved in the initial hits contributing to the multistep process of colon carcinogenesis. Further larger studies are needed to confirm if Nrf2 and Gfer are potential risk/prognostic factors for cancer development.
Collapse
Affiliation(s)
- Lorenzo Polimeno
- Polypheno Academic Spin Off, University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Maria Teresa Viggiani
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Floriana Giorgio
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Polimeno
- Polypheno Academic Spin Off, University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario "G. Quagliarello", University of Bari "A. Moro", 70125 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", Rruga Ismail Zyma, 3001 Elbasan, Albania
| | - Alfredo Di Leo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Polypheno Academic Spin Off, University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy; Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", Rruga Ismail Zyma, 3001 Elbasan, Albania; Department of Interdisciplinary Medicine, Microbiology and Virology Unit, Policlinico University Hospital of Bari, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari "A. Moro", Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
11
|
Ping J, Yang Y, Wen W, Kweon SS, Matsuda K, Jia WH, Shin A, Gao YT, Matsuo K, Kim J, Kim DH, Jee SH, Cai Q, Chen Z, Tao R, Shin MH, Tanikawa C, Pan ZZ, Oh JH, Oze I, Ahn YO, Jung KJ, Ren Z, Shu XO, Long J, Zheng W. Developing and validating polygenic risk scores for colorectal cancer risk prediction in East Asians. Int J Cancer 2022; 151:1726-1736. [PMID: 35765848 PMCID: PMC9509464 DOI: 10.1002/ijc.34194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
Several polygenic risk scores (PRSs) have been developed to predict the risk of colorectal cancer (CRC) in European descendants. We used genome-wide association study (GWAS) data from 22 702 cases and 212 486 controls of Asian ancestry to develop PRSs and validated them in two case-control studies (1454 Korean and 1736 Chinese). Eleven PRSs were derived using three approaches: GWAS-identified CRC risk SNPs, CRC risk variants identified through fine-mapping of known risk loci and genome-wide risk prediction algorithms. Logistic regression was used to estimate odds ratios (ORs) and area under the curve (AUC). PRS115-EAS , a PRS with 115 GWAS-reported risk variants derived from East-Asian data, validated significantly better than PRS115-EUR derived from European descendants. In the Korea validation set, OR per SD increase of PRS115-EAS was 1.63 (95% CI = 1.46-1.82; AUC = 0.63), compared with OR of 1.44 (95% CI = 1.29-1.60, AUC = 0.60) for PRS115-EUR . PRS115-EAS/EUR derived using meta-analysis results of both populations slightly improved the AUC to 0.64. Similar but weaker associations were found in the China validation set. Individuals among the highest 5% of PRS115-EAS/EUR have a 2.52-fold elevated CRC risk compared with the medium (41-60th) risk group and have a 12% to 20% risk of developing CRC by age 85. PRSs constructed using results from fine-mapping and genome-wide algorithms did not perform as well as PRS115-EAS and PRS115-EAS/EUR in risk prediction, possibly due to a small sample size. Our results indicate that CRC PRSs are promising in predicting CRC risk in East Asians and highlights the importance of using population-specific data to build CRC risk prediction models.
Collapse
Affiliation(s)
- Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yu-Tang Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University, 37212 Nashville, TN, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
12
|
Heckroth M, Eiswerth M, Elmasry M, Gala K, Cai W, Diamond S, Shine A, Liu D, Liu N, Tholkage S, Kong M, Parajuli D. Serrated polyp detection rate in colonoscopies performed by gastrointestinal fellows. Ther Adv Gastrointest Endosc 2022; 15:26317745221136775. [PMCID: PMC9749503 DOI: 10.1177/26317745221136775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Clinically significant serrated polyp detection rate (CSSDR) and proximal serrated polyp detection rate (PSDR) have been suggested as the potential quality benchmarks for colonoscopy (CSSDR = 7% and PSDR = 11%) in comparison to the established benchmark adenoma detection rate (ADR). Another emerging milestone is the detection rate of lateral spreading lesions (LSLs). Objectives: This study aimed to evaluate CSSDR, PSDR, ADR, and LSL detection rates among gastrointestinal (GI) fellows performing a colonoscopy. A secondary aim was to evaluate patient factors associated with the detection rates of these lesions. Design and Methods: A retrospective review of 799 colonoscopy reports was performed. GI fellow details, demographic data, and pathology found on colonoscopy were collected. Multiple logistic regression analysis was performed to identify the factors associated with CSSDR, PSDR, ADR, and LSL detection rates. A p value < 0.05 was considered statistically significant. Results: For our patient population, the median age was 58 years; 396 (49.8%) were male and 386 (48.6%) were African American. The 15 GI fellows ranged from first (F1), second (F2), or third (F3) year of training. We found an overall CSSDR of 4.4%, PSDR of 10.5%, ADR of 42.1%, and LSL detection rate of 3.2%. Female gender was associated with CSSDR, while only age was associated with PSDR. GI fellow level of training was associated with LSL detection rate, with the odds of detecting them expected to be four times higher in F2/F3s than F1s. Conclusion: Although GI fellows demonstrated an above-recommended ADR and nearly reached target PSDR, they failed to achieve target CSSDR. Future studies investigating a benchmark for LSL detection rate are needed to quantify if GI fellows are detecting these lesions at adequate rates.
Collapse
Affiliation(s)
- Matthew Heckroth
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Michael Eiswerth
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Mohamed Elmasry
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Khushboo Gala
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Wenjing Cai
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Scott Diamond
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Amal Shine
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - David Liu
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Nanlong Liu
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - Sudaraka Tholkage
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Dipendra Parajuli
- Department of Gastroenterology and Hepatology, University of Louisville, 550 S Jackson St, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Wang Y, Zhu M, Ma H, Shen H. Polygenic risk scores: the future of cancer risk prediction, screening, and precision prevention. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:129-149. [PMID: 37724297 PMCID: PMC10471106 DOI: 10.1515/mr-2021-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 09/20/2023]
Abstract
Genome-wide association studies (GWASs) have shown that the genetic architecture of cancers are highly polygenic and enabled researchers to identify genetic risk loci for cancers. The genetic variants associated with a cancer can be combined into a polygenic risk score (PRS), which captures part of an individual's genetic susceptibility to cancer. Recently, PRSs have been widely used in cancer risk prediction and are shown to be capable of identifying groups of individuals who could benefit from the knowledge of their probabilistic susceptibility to cancer, which leads to an increased interest in understanding the potential utility of PRSs that might further refine the assessment and management of cancer risk. In this context, we provide an overview of the major discoveries from cancer GWASs. We then review the methodologies used for PRS construction, and describe steps for the development and evaluation of risk prediction models that include PRS and/or conventional risk factors. Potential utility of PRSs in cancer risk prediction, screening, and precision prevention are illustrated. Challenges and practical considerations relevant to the implementation of PRSs in health care settings are discussed.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Kordahi MC, Stanaway IB, Avril M, Chac D, Blanc MP, Ross B, Diener C, Jain S, McCleary P, Parker A, Friedman V, Huang J, Burke W, Gibbons SM, Willis AD, Darveau RP, Grady WM, Ko CW, DePaolo RW. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host Microbe 2021; 29:1589-1598.e6. [PMID: 34536346 DOI: 10.1016/j.chom.2021.08.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Colorectal cancer is a major health concern worldwide. Growing evidence for the role of the gut microbiota in the initiation of CRC has sparked interest in approaches that target these microorganisms. However, little is known about the composition and role of the microbiota associated with precancerous polyps. Here, we found distinct microbial signatures between patients with and without polyps and between polyp subtypes using sequencing and culturing techniques. We found a correlation between Bacteroides fragilis recovered and the level of inflammatory cytokines in the mucosa adjacent to the polyp. Additional analysis revealed that B. fragilis from patients with polyps are bft-negative, activate NF-κB through Toll-like receptor 4, induce a pro-inflammatory response, and are enriched in genes associated with LPS biosynthesis. This study provides fundamental insight into the microbial microenvironment of the pre-neoplastic polyp by highlighting strain-specific genomic and proteomic differences, as well as more broad compositional differences in the microbiome.
Collapse
Affiliation(s)
- Melissa C Kordahi
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA
| | - Ian B Stanaway
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA
| | - Marion Avril
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Denise Chac
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA
| | - Marie-Pierre Blanc
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Benjamin Ross
- Department of Microbiology and Immunology at Dartmouth College, Hanover, NH 03755, USA
| | - Christian Diener
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Institute for Systems Biology, Seattle, WA 98105
| | - Sumita Jain
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Paul McCleary
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA
| | - Ana Parker
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA
| | - Vincent Friedman
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Huang
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wynn Burke
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sean M Gibbons
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Systems Biology, Seattle, WA 98105
| | - Amy D Willis
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics University of Washington, Seattle, WA 98195, USA
| | - Richard P Darveau
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - William M Grady
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cynthia W Ko
- Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - R William DePaolo
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Center for Microbiome Science & Therapeutics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
15
|
Cheng Y, Chen T, Chen J. Erzhu Jiedu decoction ameliorates liver precancerous lesions in a rat model of liver cancer. J Cancer 2020; 11:7302-7311. [PMID: 33193894 PMCID: PMC7646158 DOI: 10.7150/jca.49554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Precancerous lesions are the intermediate stage in the development of liver cancer from cirrhosis. Early intervention measures can effectively prevent the occurrence of liver cancer and prolong the lives of patients, resulting in greater economic effects. Erzhu Jiedu decoction (EJD) is a semiempirical formula that is used in the treatment of cirrhosis and liver cancer according to the academic philosophy of "Preventive treatment of disease" and has achieved good curative effects in clinical practice. The purpose of this study was to investigate the effect of EJD on liver precancerous lesions induced by diethylnitrosamine (DEN) in rats. The results showed that EJD improved the general conditions (body weight, ALT, AST, and GGT) and reduced the number of precancerous lesions in the rat model. Notably, the medium dose of EJD (1.05 g/kg) had better treatment effects than the low dose of EJD, and the high dose of EJD did not further improve the liver lesions compared to the medium dose of EJD. Moreover, EJD effectively reduced the DEN-induced GST-Pi, AFP, CK19, c-Myc, and Ki67 protein expression in liver precancerous tissues. Interestingly, EJD significantly reduced YAP and TAZ mRNA expression in the liver precancerous lesions. Collectively, EJD protects against in the initiation of liver cancer and the regulation of c-Myc and Hippo signaling pathways may be the underlying mechanism.
Collapse
Affiliation(s)
- Yang Cheng
- Department of liver disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China.,Institute of liver disease, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tianyang Chen
- Institute of liver disease, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jianjie Chen
- Department of liver disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China.,Institute of liver disease, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
16
|
Thomas M, Sakoda LC, Hoffmeister M, Rosenthal EA, Lee JK, van Duijnhoven FJB, Platz EA, Wu AH, Dampier CH, de la Chapelle A, Wolk A, Joshi AD, Burnett-Hartman A, Gsur A, Lindblom A, Castells A, Win AK, Namjou B, Van Guelpen B, Tangen CM, He Q, Li CI, Schafmayer C, Joshu CE, Ulrich CM, Bishop DT, Buchanan DD, Schaid D, Drew DA, Muller DC, Duggan D, Crosslin DR, Albanes D, Giovannucci EL, Larson E, Qu F, Mentch F, Giles GG, Hakonarson H, Hampel H, Stanaway IB, Figueiredo JC, Huyghe JR, Minnier J, Chang-Claude J, Hampe J, Harley JB, Visvanathan K, Curtis KR, Offit K, Li L, Le Marchand L, Vodickova L, Gunter MJ, Jenkins MA, Slattery ML, Lemire M, Woods MO, Song M, Murphy N, Lindor NM, Dikilitas O, Pharoah PDP, Campbell PT, Newcomb PA, Milne RL, MacInnis RJ, Castellví-Bel S, Ogino S, Berndt SI, Bézieau S, Thibodeau SN, Gallinger SJ, Zaidi SH, Harrison TA, Keku TO, Hudson TJ, Vymetalkova V, Moreno V, Martín V, Arndt V, Wei WQ, Chung W, Su YR, Hayes RB, White E, Vodicka P, Casey G, Gruber SB, Schoen RE, Chan AT, Potter JD, Brenner H, Jarvik GP, Corley DA, Peters U, Hsu L. Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. Am J Hum Genet 2020; 107:432-444. [PMID: 32758450 PMCID: PMC7477007 DOI: 10.1016/j.ajhg.2020.07.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
Collapse
Affiliation(s)
- Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195, USA
| | - Jeffrey K Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Franzel J B van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen 176700, the Netherlands
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, CA 90089, USA
| | - Christopher H Dampier
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna 1090, Austria
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm 17177, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona 08007, Spain
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå 90187, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå 90187, Sweden
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock 18051, Germany
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS2 9JT, UK
| | - Daniel D Buchanan
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia; Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Daniel Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David C Muller
- School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - David Duggan
- Translational Genomics Research Institute - An Affiliate of City of Hope, Phoenix, AZ 85003, USA
| | - David R Crosslin
- Department of Bioinformatics and Medical Education, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02108, USA
| | - Eric Larson
- Kaiser Permanente Washington Research Institute, Seattle, WA 98101, USA
| | - Flora Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Frank Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ian B Stanaway
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg 20246, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden 01062, Germany
| | - John B Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, NY 10065, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Mathieu Lemire
- PanCuRx Translational Research Initiative, Ontario, Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL A1B 3R7, Canada
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ 85260, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA 30303, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona 08007, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes 44093, France
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 85054, USA
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G1X5, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona 08908, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain; ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Vicente Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain; Biomedicine Institute (IBIOMED), University of León, León 24071, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wendy Chung
- Office of Research & Development, Department of Veterans Affairs, Washington, DC 20420, USA; Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Centre for Public Health Research, Massey University, Wellington 6140, New Zealand
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195, USA; Genome Sciences, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA.
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Salah M, Shaheen I, El-Shanawany P, Eid Saad N, Saad R, El Guibaly M, Momen N. Detection of miR-1246, miR-23a and miR-451 in sera of colorectal carcinoma patients: a case-control study in Cairo University hospital. Afr Health Sci 2020; 20:1283-1291. [PMID: 33402976 PMCID: PMC7751536 DOI: 10.4314/ahs.v20i3.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Colorectal cancer (CRC) has high morbidity and mortality rates. Invasive techniques and other laboratory tests with variable sensitivity and specificity are currently used in diagnosis. Micro ribonucleic acids (miRNAs) have bio vital roles in cell proliferation and apoptosis. Dys-regulation of miRNAs is linked to tumour genesis. The objective of this study was to evaluate the specificity and sensitivity of serum non-invasive biomarkers (micro-RNAs), miR-1246, miR-23a, and miR-451in CRC patients. Methods Peripheral expression of three miRNAs (miR-1246, miR-23a and miR-451) was investigated in sera of 37 CRC Egyptian patients and 30 healthy controls, using quantitative real-time polymerase chain reaction trying to reach the optimal non-invasive combination of miRNAs. Results Serum miR-1246 was up-regulated in sera of CRC patients compared to normal controls (fold change = 3.55; P<0.001) and showed 100% sensitivity and 80% specificity in diagnosis of CRC. Serum miR-451 was significantly down-regulated in CRC patients (fold change = -4.86; p= 0.014), whereas, miR-23a was down-regulated but this was not statistically significant. Conclusion Up-regulation of miR-1246 and down-regulation of miR-451 in the sera of primary CRC Egyptian patients were confirmed with high sensitivity and specificity. Large-scale studies on a wider spectrum of miRNAs in Egyptian CRC patients are needed.
Collapse
|
18
|
Cui G. Immune battle at the premalignant stage of colorectal cancer: focus on immune cell compositions, functions and cytokine products. Am J Cancer Res 2020; 10:1308-1320. [PMID: 32509381 PMCID: PMC7269793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
It is now widely accepted that most human cancers, including colorectal cancers (CRCs), develop from premalignant lesions through a long-term multistep process. Host immunity is a key determinant that maintains most premalignant lesions in a stable state via immunosurveillance. However, premalignant cells use diverse strategies to escape host immunosurveillance. A switch in the immune function from immunosurveillance to immunosuppression facilitates the progression of premalignant lesions to established CRCs. This review summarizes the recent progress in understanding alterations in the immune landscape, including immune cell compositions, functions and cytokine products, in the premalignant stage of CRC and provides an updated discussion on its translational significance along the colorectal adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
- Faculty of Health Science, Nord University, Campus LevangerNorway
| |
Collapse
|
19
|
Bader El Din NG, Ibrahim MK, El-Shenawy R, Salum GM, Farouk S, Zayed N, Khairy A, El Awady M. MicroRNAs expression profiling in Egyptian colorectal cancer patients. IUBMB Life 2020; 72:275-284. [PMID: 31512372 DOI: 10.1002/iub.2164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Egypt has increased incidence and high rate of early onset colorectal cancer (CRC). This study aimed to profile the expression levels of 84 circulating microRNAs (miRNAs) in Egyptian CRC patients and to evaluate the diagnostic accuracy of some selected miRNAs as diagnostic biomarkers for CRC patients. A total of 129 subjects (84 CRC patients and 45 healthy controls) were enrolled in two independent sample sets: the screening set (39 subjects) and the validation set (90 subjects). The expression profiles of 84 miRNAs were studied by miRNA PCR array in the screening set. Then four miRNAs (let-7c, 21, 26a, 146a) were selected to be studied by quantitative real-time PCR in the validation set. The PCR array results revealed significant up regulation of 20 miRNAs and downregulation of two miRNAs in CRC patients compared to the healthy subjects. Moreover, the expression levels of the four selected miRNAs were significantly higher in CRC serum samples than controls. The ROC analysis revealed that miRNAs (let-7c, 21, 26a and 146a) can effectively discriminate between CRC patients and the controls. The combination of the four miRNAs showed AUC of 0.950 (95% CI [0.898-1.002], p = .001). However, the combination of miR-21 and miR-26a showed the best diagnostic accuracy with AUC of 0.953 (95% CI [0.908-0.999], p = .001). The current data suggest that miRNAs (let-7c, 21, 26a, 146a) could play an important role in CRC development and they can be used as diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
| | - Marwa K Ibrahim
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Reem El-Shenawy
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Ghada M Salum
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Sally Farouk
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department, Cairo University Kasr Alainy Faculty of Medicine, Giza, Egypt
| | - Ahmed Khairy
- Endemic Medicine Department, Cairo University Kasr Alainy Faculty of Medicine, Giza, Egypt
| | - Mostafa El Awady
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
20
|
Glutathione S-transferase T1, M1 and P1 gene polymorphisms and susceptibility to colorectal cancer, a Syrian population study. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Shaker OG, Ali MA, Ahmed TI, Zaki OM, Ali DY, Hassan EA, Hemeda NF, AbdelHafez MN. Association between LINC00657 and miR-106a serum expression levels and susceptibility to colorectal cancer, adenomatous polyposis, and ulcerative colitis in Egyptian population. IUBMB Life 2019; 71:1322-1335. [PMID: 30927333 DOI: 10.1002/iub.2039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) represented the second cause of mortality among cancer patients. Long noncoding RNAs and microRNAs (miRNAs) serve as noninvasive biomarkers for CRC surveillance and introduce new therapeutic approaches. LINC00657 and miR-106a expression levels play a pivotal role in CRC. This study included 190 Egyptian subjects, and the expression levels of LINC00657 and miR-106a in serum were measured by using quantitative real-time polymerase chain reaction. We found that upregulation of LINC00657 and downregulation of miR-106a are significantly associated with the development of CRC. Also, a positive correlation was detected between their serum levels. In addition, serum LINC00657 can distinguish adenomatous polyposis (AP) patients and/or ulcerative colitis (UC) patients from controls. Also the miRNA-106a expression level discriminates AP but not UC from healthy individuals. Our study cited new diagnostic biomarkers for CRC, AP, and UC among Egyptians in addition to be noninvasive screening tools for CRC in both healthy subjects and those having precancerous lesions. © 2019 IUBMB Life, 71(9):1322-1335, 2019.
Collapse
Affiliation(s)
- Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa A Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek I Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M Zaki
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Doaa Y Ali
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Essam A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nada F Hemeda
- Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Marwa N AbdelHafez
- Department of Medical Oncology, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Yang Y, Lin X, Lu X, Luo G, Zeng T, Tang J, Jiang F, Li L, Cui X, Huang W, Hou G, Chen X, Ouyang Q, Tang S, Sun H, Chen L, Gonzalez FJ, Wu M, Cong W, Chen L, Wang H. Interferon-microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut 2016; 65:1186-201. [PMID: 26860770 PMCID: PMC6624432 DOI: 10.1136/gutjnl-2015-310318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Precancerous lesion, a well-established histopathologically premalignant tissue with the highest risk for tumourigenesis, develops preferentially from activation of DNA damage checkpoint and persistent inflammation. However, little is known about the mechanisms by which precancerous lesions are initiated and their physiological significance. DESIGN Laser capture microdissection was used to acquire matched normal liver, precancerous lesion and tumour tissues. miR-484(-/-), Ifnar1(-/-) and Tgfbr2(△hep) mice were employed to determine the critical role of the interferon (IFN)-microRNA pathway in precancerous lesion formation and tumourigenesis. RNA immunoprecipitation (RIP), pull-down and chromatin immunoprecipitation (ChIP) assays were applied to explore the underlying mechanisms. RESULTS miR-484 is highly expressed in over 88% liver samples clinically. DEN-induced precancerous lesions and hepatocellular carcinoma were dramatically impaired in miR-484(-/-) mice. Mechanistically, ectopic expression of miR-484 initiates tumourigenesis and cell malignant transformation through synergistic activation of the transforming growth factor-β/Gli and nuclear factor-κB/type I IFN pathways. Specific acetylation of H3K27 is indispensable for basal IFN-induced continuous transcription of miR-484 and cell transformation. Convincingly, formation of precancerous lesions were significantly attenuated in both Tgfbr2(△hep) and Ifnar1(-/-) mice. CONCLUSIONS These findings demonstrate a new protumourigenic axis involving type I IFN-microRNA signalling, providing a potential therapeutic strategy to manipulate or reverse liver precancerous lesions and tumourigenesis.
Collapse
Affiliation(s)
- Yingcheng Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ximeng Lin
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xinyuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guijuan Luo
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,National Center for Liver Cancer, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,National Center for Liver Cancer, Shanghai, China
| | - Feng Jiang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Liang Li
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,National Center for Liver Cancer, Shanghai, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,National Center for Liver Cancer, Shanghai, China
| | - Wentao Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Guojun Hou
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Xin Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Qing Ouyang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Shanhua Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Huanlin Sun
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mengchao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,National Center for Liver Cancer, Shanghai, China,Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China,National Center for Liver Cancer, Shanghai, China,State Key Laboratory for Oncogenes and Related Genes, Cancer Institute of RenJi Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
23
|
Sharma G, Rani I, Bhatnagar A, Agnihotri N. Apoptosis-Mediated Chemoprevention by Different Ratios of Fish Oil in Experimental Colon Carcinogenesis. Cancer Invest 2016; 34:220-30. [PMID: 27191482 DOI: 10.1080/07357907.2016.1183023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis plays an important role in prevention of colon cancer. In the present study, different ratios of fish oil and corn oil increased Fas expression in both phases and a decrease in FasL expression only in post initiation phase. Treatment with fish oil activated the intrinsic apoptotic pathway by increasing Bax expression and Cyt c release and decreasing Bcl-2 levels in both phases. This suggests that intrinsic pathway is upregulated by fish oil; however, Fas-FasL activity may be involved in inhibition of reversal of immune surveillance in tumor cells.
Collapse
Affiliation(s)
- Gayatri Sharma
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Isha Rani
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Archana Bhatnagar
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Navneet Agnihotri
- a Department of Biochemistry , Panjab University , Chandigarh , India
| |
Collapse
|
24
|
Hassanain M, Al-alem F, Simoneau E, Traiki TA, Alsaif F, Alsharabi A, Al-Faris H, Al-saleh K. Colorectal cancer liver metastasis trends in the kingdom of Saudi Arabia. Saudi J Gastroenterol 2016; 22:370-374. [PMID: 27748323 PMCID: PMC5051221 DOI: 10.4103/1319-3767.191142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM To elucidate colorectal cancer (CRC) disease patterns, demographics, characteristics, stage at presentation, metastases, and survival rates of patients, particularly those with liver metastases, at our center as the first report from the Kingdom of Saudi Arabia. PATIENTS AND METHODS We performed a retrospective, single-center database study based on the histological diagnosis of CRC in patients seen at the King Khalid University Hospital between 2007 and 2011. RESULTS 427 cases of CRC with a mean age at diagnosis of 55.47 12.85 years, out of which 96% were resected. Stage II was predominant at presentation, followed by both stage III and IV, with the remainder being stage I. One hundred patients had distant metastases, of which the liver was the only location in 54 patients. Mean survival was 3.0 years. Overall survival rates for CRC patients with liver metastases who underwent resection were 30% at 2 years and 17% at 5 years, and the mean survival rate was 1.4 years. CONCLUSIONS Both the mean survival rate of our CRC patients with resectable liver metastases and the 5-year survival rate of these patients are lower than global averages. This discrepancy is likely due to late diagnoses rather than more aggressive disease.
Collapse
Affiliation(s)
- Mazen Hassanain
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia,Department of Oncology, McGill University, Montreal, Quebec, Canada,Address for correspondence: Dr. Mazen Hassanain, Department of Surgery, College of Medicine, King Saud University, Riyadh - 11472, Kingdom of Saudi Arabia. E-mail:
| | - Faisal Al-alem
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eve Simoneau
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Thamer A. Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Alsaif
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulsalam Alsharabi
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Heba Al-Faris
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-saleh
- Division of Medical Oncology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Rouquier S, Pillaire MJ, Cazaux C, Giorgi D. Expression of the microtubule-associated protein MAP9/ASAP and its partners AURKA and PLK1 in colorectal and breast cancers. DISEASE MARKERS 2014; 2014:798170. [PMID: 24876664 PMCID: PMC4022107 DOI: 10.1155/2014/798170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/25/2014] [Accepted: 04/14/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Colorectal and breast cancers are among the most common cancers worldwide. They result from a conjugated deficiency of gene maintenance and cell cycle control. OBJECTIVE We investigate the expression of the microtubule-associated protein MAP9/ASAP and its two partners AURKA and PLK1 in colorectal tumors as well as in ductal breast cancers. MATERIALS AND METHODS 26 colorectal cancer samples and adjacent normal tissues and 77 ductal breast cancer samples from grade I to grade III were collected. Real-time quantitative PCR was used to analyse the expression of MAP9, AURKA, and PLK1. Results. Expression of MAP9 is downregulated in colorectal cancer compared to normal tissues (P > 10(-3)), whereas those of AURKA and PLK1 are upregulated (P > 10(-4)). In ductal breast cancer, we found a grade-dependent increase of AURKA expression (P > 10(-3)), while the variations of expression of MAP9 and PLK1 are not significant (P > 0.2). CONCLUSIONS MAP9 downregulation is associated with colorectal malignancy and could be used as a disease marker and a new drug target, while AURKA and PLK1 are upregulated. In ductal breast cancer, AURKA overexpression is strongly associated with the tumor grade and is therefore of prognostic value for the progression of the disease.
Collapse
Affiliation(s)
- Sylvie Rouquier
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, U1037, ERL5294, INSERM, CNRS and University Paul Sabatier, University of Toulouse, 205, route de Narbonne, 31077 Toulouse Cedex, France
| | - Christophe Cazaux
- Cancer Research Center of Toulouse, U1037, ERL5294, INSERM, CNRS and University Paul Sabatier, University of Toulouse, 205, route de Narbonne, 31077 Toulouse Cedex, France
| | - Dominique Giorgi
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| |
Collapse
|
26
|
Wang C, Zhang Q, Wu X, Tang T, Liu H, Zhu SW, Gao BZ, Yuan XC. Quantitative diagnosis of colorectal polyps by spectral domain optical coherence tomography. BIOMED RESEARCH INTERNATIONAL 2014; 2014:570629. [PMID: 24818145 PMCID: PMC4000955 DOI: 10.1155/2014/570629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
The principal aim of this study is to investigate the scattering coefficient of colorectal polyp tissues using an optical coherence tomography (OCT) technique. It combines the existing scattering coefficient model and spectral domain OCT to achieve method of early diagnosis of colorectal polyp in hospitals. Seventeen patients were studied, and a total of 1456 data points were extracted by curve-fitting the OCT signals into a confocal single-backscattering model. The results show that the mean scattering coefficient value for colorectal polyps is 1.91 mm(-1) (std: ± 0.54 mm(-1)), which is between the values for normal and malignant tissues. In addition, we studied the difference between adenomatous polyps (n = 15) and inflammatory polyps (n = 2) quantitatively and found that the adenomatous tissues had lower scattering coefficients than the inflammatory ones. The quantitative measurements confirmed that OCT can be used in primary diagnosis to compensate for the deficiencies in methods of pathological diagnosis, with a great potential for early diagnosis of tissues.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Modern Optics, Key Laboratory of Optical Information Science & Technology, Ministry of Education of China, Nankai University, Tianjin 300071, China
| | - Qinqin Zhang
- Institute of Modern Optics, Key Laboratory of Optical Information Science & Technology, Ministry of Education of China, Nankai University, Tianjin 300071, China
| | - Xiaojing Wu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Tao Tang
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Hong Liu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - S. W. Zhu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Bruce Z. Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - X.-C. Yuan
- Institute of Micro & Nano Optics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
27
|
Karip B, İşcan Y, Ağca B, Fersahoğlu M, Aydın T, Çelik K, Bulut NE, Memişoğlu K. The effect of the endoscopist on the wait-time for colorectal cancer surgery. ULUSAL CERRAHI DERGISI 2014; 30:67-70. [PMID: 25931897 DOI: 10.5152/ucd.2014.2702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The effect of the specialty of physicians who perform endoscopy on preoperative wait-time of colorectal cancer patients was evaluated. MATERIAL AND METHODS Data from 86 patients who have been operated with a diagnosis of colorectal cancer from January 2011-February 2013 regarding age, sex, tumor location, colonoscopy date, surgery date, the expertise and institution of the endoscopist were retrospectively examined. The time between colonoscopy and surgery was accepted as the pre-operative wait time (PWT). RESULTS Out of 86 patients, 24 (27.9%) colonoscopies were performed by general surgeons (GS), and 62 (72.1%) by gastroenterologists (GE). When patients who underwent colonoscopy in other centers were extracted, the PWT for our center was 20.4±10.8 days. When grouped according to specialties, the PWT of patients who had their colonoscopy performed by GS was significantly shorter than patients who underwent colonoscopy by GE at the same center (p<0.05). Patient's age, sex and location of the tumor had no effect on PWT (p>0.05). CONCLUSION The preparation time for surgery in colorectal cancer patients is influenced by the specialty of the physician performing the procedure. In order to standardize this period, a common flow diagram after endoscopy should be established for patients with suspected malignancy.
Collapse
Affiliation(s)
- Bora Karip
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Yalın İşcan
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Birol Ağca
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Mahir Fersahoğlu
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Timuçin Aydın
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Kafkas Çelik
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Nuriye Esen Bulut
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| | - Kemal Memişoğlu
- Clinic of General Surgery, Fatih Sultan Mehmet Teaching and Training Hospital, İstanbul, Turkey
| |
Collapse
|
28
|
Yang LM, Yang C, Yan B, Chen HY, Sun Q. Follow-up intervals for precancerous colorectal conditions. Shijie Huaren Xiaohua Zazhi 2013; 21:3971-3976. [DOI: 10.11569/wcjd.v21.i35.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer screening is useful not only in detecting colorectal cancer at an early stage, but also in finding people with precancerous conditions. Proper interference in precancerous patients is good for reducing the occurrence of cancer. The precancerous conditions vary from patient to patient, so is the risk of malignant transformation. However, the lack of clear definition and classification for precancerous colorectal conditions in China makes standard treatment and follow-up management of these people difficult. This review summarizes basic definition and classification for precancerous colorectal conditions, clarifies different risks among people, and introduces the latest progress in follow-up intervals worldwide.
Collapse
|