1
|
Khalid H, Mohamed H, Eltoukhy A, Saeed MT, Song Y. Harnessing marine resources for Alzheimer's therapy: A review integrating bioactivity and molecular docking. Eur J Pharmacol 2025; 997:177611. [PMID: 40216183 DOI: 10.1016/j.ejphar.2025.177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition resulting in cognitive impairment and the formation of neurofibrillary tangles and plaques in the brain. The drivers of AD's molecular progression and pathology include the accumulation of amyloid β protein (Aβ); thus, Aβ is an intervention target. However, the limitations in clinical trials of Aβ-targeted medicine and the failure to intervene in disease progression have raised concerns about the use of this drug and its veracious route. In particular, we comprehensively reviewed the potential effect of marine compounds and the mechanism of isolation and extraction from marine organisms resulting in the optimization of AD treatment. Furthermore, the hub compounds were docked with Beta-secretase receptors to strengthen the extrapolation of mechanistic interactions thus inhibiting the activity of an enzyme. An extensive review revealed that marine aquaculture and its byproducts are a promising source and isolated with green methods or less investment, ensuring their sustainability. MNPs harbor specific pharmacological features that enable them to exert neuroprotective effects by minimizing events such as Aβ peptide formation and reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Hina Khalid
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Adel Eltoukhy
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Muhammad Tariq Saeed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, 45750, Pakistan.
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; School of Basic Medicine, Qilu Medical University, Renmin West Road No. 1678, University Town, Zibo 255300, Shandong, China.
| |
Collapse
|
2
|
Hu J, Hu Z, Xia J, Chen Y, Cordato D, Cheng Q, Wang J. Targeting intracellular autophagic process for the treatment of post-stroke ischemia/reperfusion injury. Animal Model Exp Med 2025; 8:389-404. [PMID: 39908171 PMCID: PMC11904106 DOI: 10.1002/ame2.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is an important pathophysiological condition of ischemic stroke that involves a variety of physiological and pathological cell death pathways, including autophagy, apoptosis, necroptosis, and phagoptosis, among which autophagy is the most studied. We have reviewed studies published in the past 5 years regarding the association between autophagy and cerebral I/R injury. To the best of our knowledge, this is the first review article summarizing potential candidates targeting autophagic pathways in the treatment of I/R injury post ischemic stroke. The findings of this review may help to better understand the pathogenesis and mechanisms of I/R events and bridge the gap between basic and translational research that may lead to the development of novel therapeutic approaches for I/R injury.
Collapse
Affiliation(s)
- Jun Hu
- Department of Traditional RehabilitationThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Zekai Hu
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Jiayi Xia
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Yeping Chen
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Dennis Cordato
- Department of Neurology and NeurophysiologyLiverpool HospitalSydneyNew South WalesAustralia
- Stroke and Neurology Research GroupIngham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - Qi Cheng
- Department of Neurology and NeurophysiologyLiverpool HospitalSydneyNew South WalesAustralia
- Stroke and Neurology Research GroupIngham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - Jie Wang
- Department of Traditional RehabilitationThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| |
Collapse
|
3
|
Furioso Ferreira R, Ghaffari MH, Ceciliani F, Fontana M, Caruso D, Audano M, Savoini G, Agazzi A, Mrljak V, Sauerwein H. Untargeted lipidomics reveals unique lipid signatures of extracellular vesicles from porcine colostrum and milk. PLoS One 2025; 20:e0313683. [PMID: 39946395 PMCID: PMC11825007 DOI: 10.1371/journal.pone.0313683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/30/2024] [Indexed: 02/16/2025] Open
Abstract
Extracellular vesicles (EV) are membranous vesicles considered as significant players in cell-to-cell communication. Milk provides adequate nutrition, transfers immunity, and promotes neonatal development, and milk EV are suggested to play a crucial role in these processes. Milk samples were obtained on days 0, 7, and 14 after parturition from sows receiving either a standard diet (ω-6:ω-3 = 13:1) or a test diet enriched in ω-3 (ω-6:ω-3 = 4:1). EV were isolated using ultracentrifugation coupled with size exclusion chromatography, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and assessment of EV markers via Western blotting. The lipidome was determined following a liquid chromatography-quadrupole time-of-flight mass spectrometry approach. Here, we show that different stages of lactation (colostrum vs mature milk) have a distinct extracellular vesicle lipidomic profile. The distinct lipid content can be further explored to understand and regulate milk EV functionalities and primordial for enabling their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rafaela Furioso Ferreira
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Morteza H. Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Audano
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
| | - Giovanni Savoini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Agazzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Hoang LN, Lee H, Lee SJ. Improving cognitive impairment through chronic consumption of natural compounds/extracts: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci 2025; 16:1531278. [PMID: 39949865 PMCID: PMC11821934 DOI: 10.3389/fnagi.2024.1531278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This systematic review and meta-analysis aimed to compare the efficacy of extended supplementation (≥6 weeks) with natural compounds or extracts in improving cognitive function in patients with mild cognitive impairment (MCI) or Alzheimer's disease (AD). Methods A comprehensive literature search was conducted across Cochrane, PubMed, PsycARTICLES, Scopus, and Web of Science databases from inception to April 10, 2024. Eligible studies were randomized controlled trials evaluating cognitive outcomes in patients with MCI or AD using the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Results From an initial pool of 6,687 articles, 45 were deemed relevant for qualitative analysis. Of these, 37 studies demonstrated improvements or positive trends in cognitive outcomes with natural compound or extract supplementation. A total of 35 studies met the criteria for meta-analysis. The meta-analysis, involving 4,974 participants, revealed significant improvements in ADAS-Cog scores (pooled standardized mean difference = -2.88, 95% confidence interval [CI]: -4.26 to -1.50; t24 = -4.31, p < 0.01) following supplementation. Additionally, a suggestive trend toward improvement in MMSE scores was observed in a subgroup analysis of 1,717 participants (pooled standardized mean difference = 0.76, 95% CI: 0.06 to 1.46, t18 = 2.27, p = 0.04). Conclusion These findings support the potential cognitive benefits of extended (≥6 weeks) supplementation with natural compounds or extracts in individuals with MCI or AD. Further research is warranted to confirm these results and elucidate the underlying mechanisms. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
| | | | - Sook Jeong Lee
- Department of Bioactive Material Sciences and Research Centre of Bioactive Materials, Jeonbuk National University, Jeonju, Jeonbuk-do, Republic of Korea
| |
Collapse
|
5
|
Deshmukh GV, Niaz H, Bai R, Kim DH, Kim JW, Asghar J, Ramzan T, Maqbool M, Abushalha NB, Arif S, Khan S. The Role of Omega-3 Fatty Acid Supplementation in Slowing Cognitive Decline Among Elderly Patients With Alzheimer's Disease: A Systematic Review of Randomized Controlled Trials. Cureus 2024; 16:e73390. [PMID: 39659348 PMCID: PMC11630619 DOI: 10.7759/cureus.73390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 12/12/2024] Open
Abstract
This systematic review explores the impact of omega-3 fatty acid supplementation, particularly docosahexaenoic acid (DHA), on cognitive decline in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Omega-3 fatty acids are widely recognized for their neuroprotective properties, but the evidence regarding their efficacy in mitigating cognitive decline remains mixed. Through a comprehensive analysis of eleven randomized controlled trials, we aimed to assess the role of DHA in improving cognitive functions and slowing brain atrophy. The findings revealed that DHA supplementation demonstrated cognitive benefits, particularly in memory and hippocampal volume preservation, in some studies involving early-stage cognitive decline, while others reported negligible effects, particularly in more advanced Alzheimer's disease. The review identified variations in study design, dosage, intervention duration, and population characteristics as potential factors contributing to the inconsistencies observed across trials. Despite these mixed outcomes, DHA's safety profile and potential for early intervention in at-risk populations offer promise for its use in clinical practice. This review underscores the need for further longitudinal, large-scale studies to refine DHA dosage recommendations, optimize intervention timing, and explore personalized approaches based on genetic factors. The insights gained from this review contribute to a growing understanding of the role omega-3 fatty acids could play in managing cognitive decline and highlight future directions for research.
Collapse
Affiliation(s)
| | - Humaira Niaz
- Internal Medicine, Peshawar Medical College, Peshawar, PAK
| | - Riya Bai
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | - Dong Hwi Kim
- Internal Medicine, Pusan National University, Yangsan, KOR
| | - Ji Woo Kim
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, AUS
| | - Jawaria Asghar
- Internal Medicine, Basic Health Unit Jamal Pur, Gujrat, PAK
| | - Taha Ramzan
- Medical Education, Services Institute of Medical Sciences, Lahore, PAK
| | - Muhammad Maqbool
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, PAK
| | | | - Sidra Arif
- Urology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Safdar Khan
- Surgery, Services Hospital Lahore, Lahore, PAK
| |
Collapse
|
6
|
Shaw AR, Honea R, Mudaranthakam DP, Young K, Vidoni ED, Morris JK, Billinger S, Key MN, Berkley-Patton J, Burns JM. Feasibility of the MIND+SOUL Culturally Tailored Brain Healthy Diet: A Pilot Study. Am J Lifestyle Med 2024:15598276241296052. [PMID: 39540187 PMCID: PMC11556572 DOI: 10.1177/15598276241296052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) disproportionately impacts Black Americans, who are three times more likely to develop AD. While heart-healthy diets have shown potential in reducing AD risk, research on adapted dietary interventions for Black American communities remains limited. This pilot study assessed the feasibility and acceptability of an adapted brain healthy diet intervention (MIND + SOUL) and explored changes in cardiometabolic risk and cognition. Twenty-nine participants completed the 12-week intervention, which included culturally tailored health education, cooking classes, health coaching, and groceries. Feasibility was assessed by attendance and retention rates, while acceptability was measured by two questionnaires. Participants had a mean age of 70.3, with 10.3% male. The intervention demonstrated high feasibility (89.3% retention) and acceptability (mean = 71.9, SD = 8.59), with meaningful improvements in body mass index (estimate = -0.54, P = 0.009), dietary intake (estimate = 28.39, P = 0.042), and executive function (estimate = 3.32, P < 0.001). However, no significant changes in blood-based biomarkers were observed. The MIND + SOUL intervention demonstrated high feasibility and acceptability, improvements in body composition, cognitive function, and dietary behaviors, despite no significant changes in blood-based biomarkers. Findings suggest potential benefits for reducing AD risk factors and promoting healthy aging. Clinical Trials Registry: ClinicalTrials.Gov; NCT05414682.
Collapse
Affiliation(s)
- Ashley R. Shaw
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robyn Honea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dinesh Pal Mudaranthakam
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kate Young
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sandra Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mickeal N. Key
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jannette Berkley-Patton
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Lin Y, Li Y, Wu X, Xu W, Zhang Z, Zhu H, Zhou H. NgAP2a Targets KCS Gene to Promote Lipid Accumulation in Nannochloropsis gaditana. Int J Mol Sci 2024; 25:10305. [PMID: 39408634 PMCID: PMC11477109 DOI: 10.3390/ijms251910305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The commercialization of algal lipids and biofuels remains impractical due to the absence of lipogenic strains. As lipogenesis is regulated by a multitude of factors, the success in producing industrially suitable algal strains through conventional methods has been constrained. We present a new AP2 transcription factor, designated as NgAP2a, which, upon overexpression, leads to a significant increase in lipid storage in Nannochloropsis gaditana while maintaining the integrity of other physiological functions. These provide methodologies for enhancing petroleum output and optimizing the carbon fluxes associated with specific products. An integrated analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data has elucidated that the NgAP2a-induced up-regulation of critical genes is implicated in lipogenesis. Specifically, NgAP2a has been demonstrated to directly bind to the M1 motif situated within the promoter region of the KCS gene, thereby promoting the transcriptional activation of genes pertinent to lipid metabolism. In summary, we elucidate a plausible pathway whereby NgAP2a serves as a direct modulator of the KCS gene (Naga_100083g23), thereby influencing the expression levels of genes and molecules associated with lipid biosynthesis.
Collapse
Affiliation(s)
- Yihua Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Xiaobin Wu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Weinan Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
9
|
Wu M, Cheng Y, Zhang R, Han W, Jiang H, Bi C, Zhang Z, Ye M, Lin X, Liu Z. Molecular mechanism and therapeutic strategy of bile acids in Alzheimer's disease from the emerging perspective of the microbiota-gut-brain axis. Biomed Pharmacother 2024; 178:117228. [PMID: 39088965 DOI: 10.1016/j.biopha.2024.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β outside neurons and Tau protein inside neurons. Various pathological mechanisms are implicated in AD, including brain insulin resistance, neuroinflammation, and endocrinal dysregulation of adrenal corticosteroids. These factors collectively contribute to neuronal damage and destruction. Recently, bile acids (BAs), which are metabolites of cholesterol, have shown neuroprotective potential against AD by targeting the above pathological changes. BAs can enter the systematic circulation and cross the blood-brain barrier, subsequently exerting neuroprotective effects by targeting several endogenous receptors. Additionally, BAs interact with the microbiota-gut-brain (MGB) axis to improve immune and neuroendocrine function during AD episodes. Gut microbes impact BA signaling in the brain through their involvement in BA biotransformation. In this review, we summarize the role and molecular mechanisms of BAs in AD while considering the MGB axis and propose novel strategies for preventing the onset and progression of AD.
Collapse
Affiliation(s)
- Menglu Wu
- Clinical Laboratory, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yongyi Cheng
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ruolin Zhang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Wenwen Han
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hanqi Jiang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Chenchen Bi
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ziyi Zhang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, China
| | - Xiuqin Lin
- Clinical Laboratory, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, China.
| | - Zheng Liu
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
10
|
Ghasemi SG, Khoshrou A, Kakhki S, Shirinzadeh Feizabadi A, Masoudi M, Bagherifar F, Beheshti F. Ascorbic Acid Supplementation Improves Adolescent Stress-induced Cognitive Impairment Through Restoration of Behavioral, Biochemical and Electrophysiological Alterations in Male Rats. Neuroscience 2024; 549:55-64. [PMID: 38718917 DOI: 10.1016/j.neuroscience.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
The present research study aimed to investigate the role of Ascorbic acid (AA) on synaptic plasticity, learning, and memory impairment induced by unpredicted chronic mild stress (CUMS) in adolescent male rats. Adolescent male rats were divided into: 1) vehicle, 2) CUMS, 3-5) CUMS plus various doses of AA by oral gavage (CUMS-10/100/400 mg/kg), and 6) AA400 mg/kg by oral gavage. In Morris Water Maze, the time latency decreased, while the time spent in the target quadrant increased in CUMS group treated with AA at the dose of 400 mg/kg. In passive avoidance, the latency of entering into the dark chamber decreased in CUMS group treated with AA (400 mg/kg). In biochemical test results, nitrite and MDA significantly decreased, while thiol content, SOD, and catalase activity in CUMS group that received AA400mg/kg was increased. IL-10, BDNF and Ki67 increased, while TNF-a and AChE activity were decreased in CUMS group treated with AA simultaneously. The results of our study showed that chronic stress during adolescence could cause learning and memory disorders as well as synaptic plasticity. In addition, we showed that AA can prevent this problem by reducing oxidative stress, inflammation, increasing the amount of BDNF, and neurogenesis.
Collapse
Affiliation(s)
- Sima Gul Ghasemi
- Pharmacological Research Center of Medicinal Plant, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Atefeh Shirinzadeh Feizabadi
- Department of Medical Anesthesiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Faezeh Bagherifar
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
11
|
Chinnathambi S, Desale SE. The crosstalk between extracellular matrix proteins and Tau. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:447-466. [PMID: 38960482 DOI: 10.1016/bs.apcsb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease is progressive neurodegenerative disease characterize by the presence of extracellular accumulation of amyloid-β plaques and intracellular deposits of neurofibrillary tangles of Tau. Apart from axonal depositions pathological aggregated Tau protein is known to secrete into extracellular spaces and propagate through seeding mechanism. Microglia, the immune cells of the brain display modest ability to internalize the extracellular Tau and degrade it through endolysosomal pathway. However, the excessive burden of pathoproteins weakens the phagocytic ability of microglia. Extracellular supplementation of omega-3 fatty acids (n-3) may regulate the phagocytosis of microglia as they mediate the anti-inflammatory polarization of microglia through membrane lipid compositions changes. The internalization of extracellular Tau in the microglia is regulated by cortical membrane-associated actin remodeling driven by interplay of actin-binding proteins. On the other hand, Tau display capability bind and interact with various actin-binding protein owing to the presence of proline-rich domain in the structure and regulate their activation. In this study, we hypothesize that internalization of Tau in the presence of omega-3 fatty acids would propagate the Tau-mediated activation of actin-binding proteins as well as extracellular matrix and in turn modulate cortical actin remodeling for phagocytosis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Smita Eknath Desale
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Velasco-Rodríguez LDC, García HS, Rascón-Díaz MP. Curcumin and omega-3 polyunsaturated fatty acids as bioactive food components with synergistic effects on Alzheimer's disease. Psychogeriatrics 2024; 24:701-718. [PMID: 38528391 DOI: 10.1111/psyg.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/20/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Curcumin and omega-3 polyunsaturated fatty acids (ω-3 PUFA) are multifunctional compounds which play an important role in Alzheimer's disease (AD) and little has been addressed about the role of these two compounds together in the progression of the disease. There is evidence of the beneficial effect of combined administration of ω-3 PUFA and other dietary supplements such as vitamins and polyphenols in the prevention of AD, although much remains to be understood about their possible complementary or synergistic activity. Therefore, the objective of this work is to review the research focused on studying the effect and mechanisms of action of curcumin, ω-3 PUFA, and the combination of these nutraceutical compounds, particularly on AD, and to integrate the possible ways in which these compounds can potentiate their effect. The most important pathophysiologies that manifest in AD will be addressed, in order to have a better understanding of the mechanisms of action through which these bioactive compounds exert a neuroprotective effect.
Collapse
Affiliation(s)
| | - Hugo S García
- UNIDA, Tecnológico Nacional de México/IT de Veracruz, Veracruz, Mexico
| | - Martha P Rascón-Díaz
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
13
|
Kakraba S, Ayyadevara S, Mainali N, Balasubramaniam M, Bowroju S, Penthala NR, Atluri R, Barger SW, Griffin ST, Crooks PA, Shmookler Reis RJ. Thiadiazolidinone (TDZD) Analogs Inhibit Aggregation-Mediated Pathology in Diverse Neurodegeneration Models, and Extend C. elegans Life- and Healthspan. Pharmaceuticals (Basel) 2023; 16:1498. [PMID: 37895969 PMCID: PMC10610358 DOI: 10.3390/ph16101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic, low-grade inflammation has been implicated in aging and age-dependent conditions, including Alzheimer's disease, cardiomyopathy, and cancer. One of the age-associated processes underlying chronic inflammation is protein aggregation, which is implicated in neuroinflammation and a broad spectrum of neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's diseases. We screened a panel of bioactive thiadiazolidinones (TDZDs) from our in-house library for rescue of protein aggregation in human-cell and C. elegans models of neurodegeneration. Among the tested TDZD analogs, PNR886 and PNR962 were most effective, significantly reducing both the number and intensity of Alzheimer-like tau and amyloid aggregates in human cell-culture models of pathogenic aggregation. A C. elegans strain expressing human Aβ1-42 in muscle, leading to AD-like amyloidopathy, developed fewer and smaller aggregates after PNR886 or PNR962 treatment. Moreover, age-progressive paralysis was reduced 90% by PNR886 and 75% by PNR962, and "healthspan" (the median duration of spontaneous motility) was extended 29% and 62%, respectively. These TDZD analogs also extended wild-type C. elegans lifespan by 15-30% (p < 0.001), placing them among the most effective life-extension drugs. Because the lead drug in this family, TDZD-8, inhibits GSK3β, we used molecular-dynamic tools to assess whether these analogs may also target GSK3β. In silico modeling predicted that PNR886 or PNR962 would bind to the same allosteric pocket of inactive GSK3β as TDZD-8, employing the same pharmacophore but attaching with greater avidity. PNR886 and PNR962 are thus compelling candidate drugs for treatment of tau- and amyloid-associated neurodegenerative diseases such as AD, potentially also reducing all-cause mortality.
Collapse
Affiliation(s)
- Samuel Kakraba
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Nirjal Mainali
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Meenakshisundaram Balasubramaniam
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Suresh Bowroju
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.B.); (N.R.P.); (P.A.C.)
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.B.); (N.R.P.); (P.A.C.)
| | - Ramani Atluri
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.B.); (N.R.P.); (P.A.C.)
| | - Robert J. Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Shaw AR, Key MN, Fikru S, Lofton S, Sullivan DK, Berkley-Patton J, Glover CM, Burns JM, Vidoni ED. Development of a Culturally Adapted Dietary Intervention to Reduce Alzheimer's Disease Risk among Older Black Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6705. [PMID: 37681845 PMCID: PMC10488073 DOI: 10.3390/ijerph20176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The objective of this study is to identify and understand knowledge and attitudes that influence dietary practices among older Black adults using a community-engaged approach. This is a non-interventional mixed methods study designed to inform the development of an adapted brain-healthy soul food diet intervention. A purposive sampling approach was used to conduct seven semi-structured focus group discussions and an online quantitative survey. In total, 39 participants who self-identified as Black, aged 55 years and older, English speaking, and who were cognitively normal with an AD8 < 2; (25.6% men; 74.4% women) participated in the online survey and one of the seven 60 min virtual focus group discussions (5-7 per focus group). Quantitative frequency data from the online surveys were analyzed using descriptive statistics. Qualitative focus group data were analyzed using a 6-step thematic analysis process. Five themes emerged: dementia awareness; practices shaping food choices and consumption; barriers to eating healthy; instrumental support; and elements of a culturally adapted brain-healthy dietary intervention. Older Black adults perceived an adapted MIND dietary model as the most acceptable with the incorporation of salient cultural characteristics and strategies within both the design and delivery phases.
Collapse
Affiliation(s)
- Ashley R. Shaw
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Mickeal N. Key
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Samantha Fikru
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Saria Lofton
- College of Nursing, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jannette Berkley-Patton
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Crystal M. Glover
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Sciences, Rush Medical College, Chicago, IL 60612, USA;
- Department of Neurological Sciences, Rush Medical College, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| |
Collapse
|
16
|
Grzelczyk J, Gałązka-Czarnecka I, Oracz J. Potentiality Assessment of the Acetylcholinesterase-Inhibitory Activity of Olive Oil with an Additive Edible Insect Powder. Molecules 2023; 28:5535. [PMID: 37513405 PMCID: PMC10386343 DOI: 10.3390/molecules28145535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Edible insects (Alphitobius diaperinus Panzer, Gryllus campestris, Tenebrio molitor, Chorthippus biguttulus) are rich in nutrients that potentially inhibit acetylcholinesterase (AChE), but also improve cognition. The aim of this study was to evaluate four varied species of freeze-dried edible insects (purchased from a store); their nutrient composition, including fat, total phenolic compounds, vitamins, and antioxidant properties; and the potential inhibitory effect of AChE. An additional goal was to obtain olive oil with the addition of edible insects. Such oil was characterized by high oxidizing properties and showed high affinity to AChE. The results showed that mealworms and grasshoppers had the highest content of fats (PUFA/SFA) and phenolic compounds. These insects also showed a high content of vitamins, which correlated with the highest affinity for AChE. Therefore, they were added as a functional additive to olive oil. Olive oil with the addition of edible insects showed a higher affinity for AChE and enriched the olive oil with vitamin C and B vitamins.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
17
|
Kumar P, Singh A, Kumar A, Kumar R, Pal R, Sachan AK, Dixit RK, Nath R. Effect of Curcumin and Coenzyme Q10 Alone and in Combination on Learning and Memory in an Animal Model of Alzheimer's Disease. Biomedicines 2023; 11:1422. [PMID: 37239093 PMCID: PMC10216191 DOI: 10.3390/biomedicines11051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The most frequent neurodegenerative illness among senior people and the main cause of dementia is Alzheimer's disease. The present dementia medications available only help with the symptoms of cognitive deficits and have several negative effects. The current study's goal is to assess the effects of curcumin and coenzyme Q10, two herbal medicines, both separately and in combination, on learning and memory before comparing them to the industry standard drug. A total of 42 adult healthy Wistar rats were used in our study. In this experiment, rats were given daily doses of 2.5 mg/kg of body weight of scopolamine hydrobromide for 7 days to induce Alzheimer's disease. On the eighth day, behavioural testing was conducted. Following testing, scopolamine and the test medications were given daily for the following 21 days. On days 29 and 30, behavioural testing was conducted once more, and then animals were slaughtered. Brain homogenate was produced for the estimation of molecular and biochemical markers. Curcumin has demonstrated a dose-response relationship, with a higher dose (200 mg/kg b.w. p.o.) being more effective than a lower dose (100 mg/kg b.w. p.o.). Similar to the greater dose of curcumin, coenzyme Q10 (200 mg/kg b.w. p.o.) has also been found to improve memory and learning. Higher doses of curcumin and coenzyme Q10 had more pronounced and meaningful effects. Acetylcholinesterase and TNF levels increased in scopolamine-induced memory impairment, but these effects were restored by the test medications, and improved by the combined therapy. These outcomes are comparable to those of the common medication memantine. As a result, we may infer from our results that curcumin at higher doses and its combination with coenzyme Q10 (200 mg/kg b.w. p.o.) have a significant impact on cognitive impairment in animal models of Alzheimer's disease and can be utilised alone or as an add-on therapy for the condition.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Aarti Singh
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Anurag Kumar
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Rahul Kumar
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Rishi Pal
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Amod Kumar Sachan
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Rakesh Kumar Dixit
- Department of Pharmacology &Therapeutics King George’s Medical University, Lucknow 226003, Uttar Pradesh, India; (P.K.); (A.S.); (A.K.); (R.K.); (R.P.); (A.K.S.); (R.K.D.)
| | - Rajendra Nath
- Department of Pharmacology, King George Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
18
|
Baliyan S, Calvo MV, Piquera D, Montero O, Visioli F, Venero C, Fontecha J. Milk fat globule membrane concentrate as a nutritional supplement prevents age-related cognitive decline in old rats: A lipidomic study of synaptosomes. Food Res Int 2023; 163:112163. [PMID: 36596112 DOI: 10.1016/j.foodres.2022.112163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Aging is associated with a decline in cognitive abilities, mainly in memory and executive functioning. A similar but premature deterioration in cognitive capacities is the hallmark of mild cognitive impairment, Alzeimer's disease and dementia. The biochemical mechanisms that cause these neurodegenerative disorders are poorly understood. However, some evidence suggests that insufficient dietary intakes of some phospholipids could impact on brain function and increase the risk of future cognitive impairment and dementia. We evaluated the cognitive and biochemical effects of supplementation with a milk fat globule membrane (MFGM) concentrate in aged rats. We observed that, compared to control animals, MFGM supplemented rats showed enhanced spatial working memory, but both groups exhibited similar reference spatial learning and emotional memory abilities. No significant differences between BDNF levels in the hippocampus and frontal cortex of treated rats as compared to controls were found. The nootropic effects observed were accompanied by significant changes in the lipid composition of synaptic membranes. MFGM supplementation increased the levels of EPA and DHA acids as well as the plasmalogens content in the synaptosomes isolated from the hippocampus (Synapt-HP) and the frontal cortex (Synapt-FC). In addition enhanced levels of phosphatidyl serine (PS), particularly PS(18:1/18:1), and phosphatidyl inositol (PI) molecular species were observed in Synapt-HP and Synapt-FC of treated animals.Lipidomic analysis also revealed greater concentration of phosphatidyl ethanolamine (PE) molecular species containing very long-chain fatty acids and PE plasmenyls in Synapt-HP as well as an increase of the SM content in Synapt-FC from the MFGM group. Although further studies are needed to confirm the underlying mechanism (individual or synergistic), these results suggest that MFGM supplementation could be employed as a dietary implement to restore the proper cerebral concentration of some bioactive lipids and prevent or slow the progression of age-related cognitive impairment.
Collapse
Affiliation(s)
- Shishir Baliyan
- Cogni-UNED, Faculty of Psychology, Department of Psychobiology, UNED, Madrid, Spain
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Dharna Piquera
- Cogni-UNED, Faculty of Psychology, Department of Psychobiology, UNED, Madrid, Spain
| | - Olimpio Montero
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid, Valladolid, Spain
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, CEI UAM, Madrid, Spain
| | - César Venero
- Cogni-UNED, Faculty of Psychology, Department of Psychobiology, UNED, Madrid, Spain.
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain.
| |
Collapse
|
19
|
Fan L, Zhu X, Borenstein AR, Huang X, Shrubsole MJ, Dugan LL, Dai Q. Association of Circulating Caprylic Acid with Risk of Mild Cognitive Impairment and Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Cohort. J Prev Alzheimers Dis 2023; 10:513-522. [PMID: 37357292 PMCID: PMC10442865 DOI: 10.14283/jpad.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Medium-chain fatty acids (MCFAs) can rapidly cross the blood-brain barrier and provide an alternative energy source for the brain. This study aims to determine 1) whether plasma caprylic acid (C8:0) is associated with risk of incident mild cognitive impairment (MCI) among baseline cognitively normal (CN) participants, and incident Alzheimer's Disease (AD) among baseline MCI participants; and 2) whether these associations differ by sex, comorbidity of cardiometabolic diseases, apolipoprotein E (APOE) ε4 alleles, and ADAS-Cog 13. METHODS Within the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, plasma C8:0 was measured at baseline in 618 AD-free participants aged 55 to 91. Logistic regression models were used to estimate odds ratios (ORs) and 95% CIs with incident MCI and AD as dependent variables, separately. RESULTS The inverse association between circulating C8:0 and risk of incident MCI was of borderline significance. The inverse association between circulating levels of C8:0 and risk of incident MCI was significant among CN participants with ≥1 cardiometabolic diseases [OR (95% CI): 0.75 (0.58-0.98) (P=0.03)], those with one copy of APOE ε4 alleles [OR (95% CI): 0.43 (0.21-0.89) (P=0.02)], female [OR (95% CI): 0.60 (0.38-0.94) (P=0.02)], and ADAS-Cog 13 above the median [OR (95%CI): 0.69 (0.50-0.97)(P=0.03)] after adjusting for all covariates. CONCLUSION The inverse associations were present only among subgroups of CN participants, including female individuals, those with one or more cardiometabolic diseases, or one APOE ε4 allele, or higher ADAS-Cog 13 scores. If confirmed, this finding will facilitate precision prevention of MCI, in turn, AD among CN older adults.
Collapse
Affiliation(s)
- L Fan
- Qi Dai, M.D., Ph.D., Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN 37203-1738, USA, Phone: (615) 936-0707, Fax: (615) 343-5938, E-mail:
| | | | | | | | | | | | | |
Collapse
|
20
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
21
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
22
|
Malek Rivan NF, Shahar S, Fakhruddin NNINM, You YX, Che Din N, Rajikan R. The effect of dietary patterns on mild cognitive impairment and dementia incidence among community-dwelling older adults. Front Nutr 2022; 9:901750. [PMID: 36003836 PMCID: PMC9395130 DOI: 10.3389/fnut.2022.901750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple studies have shown that dietary patterns have beneficial health effects on cognitive function. However, information on this relationship is presently limited, particularly among older adults. Thus, this study aimed to determine the effects of dietary patterns on mild cognitive impairment (MCI) and dementia incidence among Malaysian community-dwelling older adults. In this prospective cohort study, a total of 280 participants aged 60 years and above were included in the 5-year follow-up analysis. Participants' sociodemographic, medical history, anthropometry, blood pressure, body composition, biochemical indices, cognitive assessments, psychosocial functions, functional status, and dietary intake were obtained. MCI was classified based on Petersen criteria, whereas dementia status was assessed using clinical dementia rating (CDR). Univariate analysis was performed for all variables, followed by multinomial regression analysis to identify the ability of dietary patterns in predicting the incidence of MCI and dementia. After controlling for confounding factors, the findings indicated that "local snacks-fish and seafood-high salt foods" dietary pattern was associated with an increased risk of MCI incidence, where the T3 [adjusted OR = 3.943 (95% CI: 1.212-12.832), p = 0.032] had the highest OR compared to T2 [adjusted OR = 3.252 (95% CI: 1.108-9.546), p = 0.023]. Meanwhile, a negative association across the tertiles of tropical fruits-oats dietary pattern and dementia incidence was observed [T2: adjusted OR = 0.152 (95% CI: 0.026-0.871), p = 0.034; T3: Adjusted OR = 0.101 (95% CI: 0.011-0.967), p = 0.047]. In conclusion, specific dietary patterns, particularly "local snacks-fish and seafoods-high salt foods," were shown to increase the risk of MCI, while increasing intakes of "tropical fruits-oats" dietary patterns would protect against the dementia incidence among Malaysian older adults.
Collapse
Affiliation(s)
- Nurul Fatin Malek Rivan
- Nutritional Sciences Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Dietetics Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Nur Izzati Nik Mohd Fakhruddin
- Dietetics Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yee Xing You
- Dietetics Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Normah Che Din
- Health Psychology Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roslee Rajikan
- Dietetics Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
24
|
Cedeño-Pinos C, Martínez-Tomé M, Mercatante D, Rodríguez-Estrada MT, Bañón S. Assessment of a Diterpene-Rich Rosemary (Rosmarinus officinalis L.) Extract as a Natural Antioxidant for Salmon Pâté Formulated with Linseed. Antioxidants (Basel) 2022; 11:antiox11061057. [PMID: 35739954 PMCID: PMC9219763 DOI: 10.3390/antiox11061057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
The use of natural plant extracts with standardised antioxidant properties is a growing strategy to stabilise food products. The use of a rosemary lipophilic extract (RLE), obtained from the by-product of high-yield selected plants and rich in polyphenols (334 mg/g, with diterpenes such as carnosic acid and carnosol as main compounds), is here proposed. Four RLE doses (0, 0.21, 0.42 and 0.63 g/kg) were tested in a salmon pâté formulated with sunflower oil and linseed, which was pasteurised (70 °C for 30 min) and subjected to storage at 4 °C and 600 lux for 42 days. Rosemary diterpenes resisted pasteurisation without degrading and showed antioxidant activities during the shelf-life of pasteurised pâté. RLE addition led to increased peroxide value (from 3.9 to 5.4 meq O2/kg), but inhibited formation of secondary oxidised lipids such as malondialdehyde (from 1.55 to 0.89 mg/g) and cholesterol oxidation products (from 286 to 102 µg/100 g) and avoided discolouration (slight brownness) in the refrigerated pâté. However, this did not entail relevant changes in fatty acid content or in the abundance of volatile organic compounds from oxidised lipids. Increasing the RLE dose only improved its antioxidant efficacy for some oxidation indexes. Thus, the oxidative deterioration of these types of fish emulsion can be naturally controlled with rosemary extracts rich in diterpenes.
Collapse
Affiliation(s)
- Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
| | - Magdalena Martínez-Tomé
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
- CIBER: CB12/03/30038 Pathophysiology of Obesity and Nutrition, CIBERobn, Carlos III Health Institute (ISCIII), 28013 Madrid, Spain
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - María Teresa Rodríguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
- Correspondence: ; Tel.: +34-868-888-265
| |
Collapse
|
25
|
Lin Y, Dai Y, Xu W, Wu X, Li Y, Zhu H, Zhou H. The Growth, Lipid Accumulation and Fatty Acid Profile Analysis by Abscisic Acid and Indol-3-Acetic Acid Induced in Chlorella sp. FACHB-8. Int J Mol Sci 2022; 23:ijms23074064. [PMID: 35409427 PMCID: PMC8999460 DOI: 10.3390/ijms23074064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Microalgae are considered a promising source for biodiesel. The addition of plant hormone can exert a significant impact on the production of microalgae biomass and lipid accumulation. Nevertheless, the response of microalgae cells to hormones is species- or strain-dependent. It remains controversial which genes involved in strong increase of fatty acids production in response to abscisic acid (ABA) in Chlorella sp. FACHB-8 strain. We investigated cell growth, lipid accumulation, and fatty acid composition when ABA and indol-3-acetic acid (IAA) were used in the growth medium of Chlorella sp. FACHB-8. The four treatments, including 5 mg/L IAA (E1), 10 mg/L IAA (E2), 10 mg/L ABA (E3), the combination of 5 mg/L IAA and 5 mg/L ABA (E4), were found to increase cell growth, but only 10 mg/L ABA treatment could enhance the lipid accumulation. The fatty acid profile was changed by the addition of ABA, making fatty acids afflux from polyunsaturated fatty acids to monounsaturated and saturated fatty acids, which were suitable for diesel application. Furthermore, a transcriptome analysis was conducted, unraveling the differentially expressed genes enriched in fatty acid biosynthesis, fatty acid metabolism, and biosynthesis of the unsaturated fatty acid pathway in response to ABA. Our results clarified the correlation of fatty acid synthesis-related genes and fatty acid profiles, helping understand the potential response mechanism of Chlorella sp. FACHB-8 strain respond to ABA treatment.
Collapse
Affiliation(s)
- Yihua Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (W.X.); (X.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
| | - Yue Dai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
| | - Weinan Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (W.X.); (X.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
| | - Xiaobin Wu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (W.X.); (X.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (W.X.); (X.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (W.X.); (X.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.D.); (H.Z.)
- Correspondence:
| |
Collapse
|
26
|
Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer's Disease: Two-Year Follow-Up. Nutrients 2022; 14:nu14061159. [PMID: 35334816 PMCID: PMC8950997 DOI: 10.3390/nu14061159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with slower rates of cognitive decline. We investigated the association between omega-3 PUFAs and cognitive function in patients with Alzheimer’s disease (AD) receiving acetylcholinesterase inhibitors (AChEIs). This was a prospective cohort study using registered data. Patients with AD receiving AChEIs were recruited from 1 May 2016 to 30 April 2019 and were followed up for two years. Their daily diet record and blood concentration of omega-3 PUFAs were analyzed. Multiple linear and binary logistic regression was used to determine the factors associated with cognitive decline (continuous and dichotomized cognitive change). In the research, 129 patients with AD were identified with a mean age of 76.5 ± 6.6. Patients with AD with lower baseline omega-3 PUFAs levels were associated with a higher risk of cognitive decline than those with higher levels (odds ratio [OR] = 1.067, 95% confidence interval [CI]: 1.012, 1.125; p = 0.016) after adjustment. Patients with AD with a lower baseline DHA (OR = 1.131, 95% CI: 1.020, 1.254; p = 0.020), but not EPA, were associated with a higher risk of cognitive decline. We found that higher Mini-Nutritional Assessment scores (beta = −0.383, 95% CI = −0.182–−0.048, p = 0.001) and total fat (beta = −0.248, 95% CI = −0.067–−0.003, p = 0.031) were independently associated with slow cognitive decline in patients with AD receiving AChEIs. The baseline blood levels of omega-3 PUFAs were associated with cognitive decline in patients with AD receiving AChEIs. Future randomized controlled trials are needed to clarify whether this association is causal.
Collapse
|
27
|
Zotov VA, Bessonov VV, Risnik DV. Methodological Aspects of the Analysis of Fatty Acids in Biological Samples. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
29
|
Passeri E, Elkhoury K, Jiménez Garavito MC, Desor F, Huguet M, Soligot-Hognon C, Linder M, Malaplate C, Yen FT, Arab-Tehrany E. Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice. Int J Mol Sci 2021; 22:11859. [PMID: 34769291 PMCID: PMC8584305 DOI: 10.3390/ijms222111859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (-50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Elodie Passeri
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Kamil Elkhoury
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | | | - Frédéric Desor
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Marion Huguet
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Claire Soligot-Hognon
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Michel Linder
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | - Catherine Malaplate
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Frances T. Yen
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Elmira Arab-Tehrany
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| |
Collapse
|
30
|
Cleland NRW, Al-Juboori SI, Dobrinskikh E, Bruce KD. Altered substrate metabolism in neurodegenerative disease: new insights from metabolic imaging. J Neuroinflammation 2021; 18:248. [PMID: 34711251 PMCID: PMC8555332 DOI: 10.1186/s12974-021-02305-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS), are relatively common and devastating neurological disorders. For example, there are 6 million individuals living with AD in the United States, a number that is projected to grow to 14 million by the year 2030. Importantly, AD, PD and MS are all characterized by the lack of a true disease-modifying therapy that is able to reverse or halt disease progression. In addition, the existing standard of care for most NDs only addresses the symptoms of the disease. Therefore, alternative strategies that target mechanisms underlying the neuropathogenesis of disease are much needed. Recent studies have indicated that metabolic alterations in neurons and glia are commonly observed in AD, PD and MS and lead to changes in cell function that can either precede or protect against disease onset and progression. Specifically, single-cell RNAseq studies have shown that AD progression is tightly linked to the metabolic phenotype of microglia, the key immune effector cells of the brain. However, these analyses involve removing cells from their native environment and performing measurements in vitro, influencing metabolic status. Therefore, technical approaches that can accurately assess cell-specific metabolism in situ have the potential to be transformative to our understanding of the mechanisms driving AD. Here, we review our current understanding of metabolism in both neurons and glia during homeostasis and disease. We also evaluate recent advances in metabolic imaging, and discuss how emerging modalities, such as fluorescence lifetime imaging microscopy (FLIM) have the potential to determine how metabolic perturbations may drive the progression of NDs. Finally, we propose that the temporal, regional, and cell-specific characterization of brain metabolism afforded by FLIM will be a critical first step in the rational design of metabolism-focused interventions that delay or even prevent NDs.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Endocrinology, Metabolism and Diabetes, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Saif I Al-Juboori
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kimberley D Bruce
- Endocrinology, Metabolism and Diabetes, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
31
|
Luo H, Chen CY, Li X, Zhang X, Su CW, Liu Y, Cao T, Hao L, Wang M, Kang JX. Increased lipogenesis is critical for self-renewal and growth of breast cancer stem cells: Impact of omega-3 fatty acids. Stem Cells 2021; 39:1660-1670. [PMID: 34486791 PMCID: PMC9292025 DOI: 10.1002/stem.3452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Aberrant lipid metabolism has recently been recognized as a new hallmark of malignancy, but the characteristics of fatty acid metabolism in breast cancer stem cells (BCSC) and potential interventions targeting this pathway remain to be addressed. Here, by using the in vitro BCSC models, mammosphere‐derived MCF‐7 cells and HMLE‐Twist‐ER cells, we found that the cells with stem cell‐like properties exhibited a very distinct profile of fatty acid metabolism compared with that of their parental cancer cells, characterized by increased lipogenesis, especially the activity of stearoyl‐CoA desaturase 1 (SCD1) responsible for the production of monounsaturated fatty acids, and augmented synthesis and utilization of the omega‐6 arachidonic acid (AA). Suppression of SCD1 activity by either enzyme inhibitors or small interfering RNA (siRNA) knockdown strikingly limited self‐renewal and growth of the BCSC, suggesting a key role for SCD1 in BCSC proliferation. Furthermore, elevated levels of SCD1 and other lipogenic enzymes were observed in human breast cancer tissues relative to the noncancer tissues from the same patients and correlated with the pathological grades. Interestingly, treatment of BCSC with omega‐3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, effectively downregulated the expression of the lipogenic enzymes and markedly suppressed BCSC self‐renewal and growth. Dietary supplementation of nude mice bearing BCSC‐derived tumors with omega‐3 fatty acids also significantly reduced their tumor load. These findings have demonstrated that increased lipogenesis is critical for self‐renewal and growth of BCSC, and that omega‐3 fatty acids are effective in targeting this pathway to exert their anticancer effect.
Collapse
Affiliation(s)
- Haiqing Luo
- Center of Oncology, The Affiliated Hospital of Guangdong Medical University, Guangdong, People's Republic of China.,Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiangyong Li
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, People's Republic of China
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yinghua Liu
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Hao
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Leung KS, Galano JM, Yau YF, Oger C, Durand T, Lee JCY. Walnut-Enriched Diet Elevated α-Linolenic Acid, Phytoprostanes, and Phytofurans in Rat Liver and Heart Tissues and Modulated Anti-inflammatory Lipid Mediators in the Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9094-9101. [PMID: 33351614 DOI: 10.1021/acs.jafc.0c06690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
α-Linolenic acid (ALA) and its non-enzymatic oxidized products, namely, phytoprostanes and phytofurans, are found in some nuts. The uptake and deposition of these compounds are not well-defined. Walnut has high ALA and a considerable amount of phytoprostanes and phytofurans compared to other common nuts. When fed to rodents, ALA and eicosapentaenoic acid levels increased in the liver and heart tissues compared to the control diet. Furthermore, phytoprostanes and phytofurans were elevated 3-fold in both tissues after a walnut diet, indicating that they are not only contributed from the diet but also generated through in vivo autoxidation of ALA found in the walnuts. It was further noted that a walnut diet reduced 5-F2t-isoprostanes and 12-hydroxyeicosatetraenoic acid and induced 4-F4t-neuroprostane and significant amounts of anti-inflammatory hydroxydocosahexaenoic acid in the liver only. Altogether, high ALA in a walnut diet elevated phytoprostanes and phytofurans in the liver and heart tissues and showed the regulation of anti-inflammatory lipid mediators in the liver only.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Yu Fung Yau
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
33
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:8208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
34
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
35
|
Huo M, Wang Z, Fu W, Tian L, Li W, Zhou Z, Chen Y, Wei J, Abliz Z. Spatially Resolved Metabolomics Based on Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging Reveals Region-Specific Metabolic Alterations in Diabetic Encephalopathy. J Proteome Res 2021; 20:3567-3579. [PMID: 34137614 DOI: 10.1021/acs.jproteome.1c00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.
Collapse
Affiliation(s)
- Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenqing Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
36
|
Peng Y, Tao H, Wang S, Xiao J, Wang Y, Su H. Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer's disease: A compendium of time-tested strategy. J Funct Foods 2021; 81:104463. [DOI: 10.1016/j.jff.2021.104463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Caio G, Lungaro L, Caputo F, Zoli E, Giancola F, Chiarioni G, De Giorgio R, Zoli G. Nutritional Treatment in Crohn's Disease. Nutrients 2021; 13:1628. [PMID: 34066229 PMCID: PMC8151495 DOI: 10.3390/nu13051628] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) which can affect any part of the whole gastrointestinal tract (from mouth to anus). Malnutrition affects 65-75% of CD patients, and it is now well acknowledged that diet is of paramount importance in the management of the disease. In this review, we would like to highlight the most recent findings in the field of nutrition for the treatment of CD. Our analysis will cover a wide range of topics, from the well-established diets to the new nutritional theories, along with the recent progress in emerging research fields, such as nutrigenomics.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital-Harvard Medical School, Boston, MA 02114, USA
| | - Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| | - Eleonora Zoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| | - Fiorella Giancola
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
| | - Giuseppe Chiarioni
- Division of Gastroenterology of the University of Verona, A.O.U.I. Verona, 37126 Verona, Italy;
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7080, USA
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| |
Collapse
|
38
|
Mauck MC, Barton CE, Tungate AS, Shupp JW, Karlnoski R, Smith DJ, Williams FN, Jones SW, Sefton C, McGrath K, Cairns BA, McLean SA. Peritraumatic plasma Omega-3 fatty acid concentration predicts chronic pain severity following thermal burn injury. J Burn Care Res 2021; 43:109-114. [PMID: 33895836 DOI: 10.1093/jbcr/irab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic pain is a significant co-morbidity of burn injury affecting up to 60% of survivors. Currently, no treatments are available to prevent chronic pain after burn injury. Accumulating evidence suggests that omega-3 fatty acids (O3FA) improve symptoms across a range of painful conditions. In this study, we evaluated whether low peritraumatic levels of O3FA predicts greater pain severity during the year after burn injury. Burn survivors undergoing skin autograft were recruited from three participating burn centers. Plasma O3FA (n=77) levels were assessed in the early aftermath of burn injury using liquid chromatography/mass spectrometry and pain severity was assessed via the 0-10 numeric rating scale for 1 year following burn injury. Repeated-measures linear regression analyses were used to evaluate the association between peritraumatic O3FA concentrations and pain severity during the year following burn injury. Peritraumatic O3FA concentration and chronic pain severity were inversely related; lower levels of peritraumatic O3FA predicted worse pain outcomes (β=-.002, p=.020). Future studies are needed to evaluate biological mechanisms mediating this association and to assess the ability of O3FA to prevent chronic pain following burn injury.
Collapse
Affiliation(s)
- Matthew C Mauck
- Institute for Trauma Recovery.,Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Chloe E Barton
- Institute for Trauma Recovery.,Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Andrew S Tungate
- Institute for Trauma Recovery.,Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Jeffrey W Shupp
- The Burn Center, MedStar Washington Hospital Center, Department of Surgery, Georgetown University, Washington, DC
| | | | - David J Smith
- Department of Surgery, University of South Florida, Tampa, FL
| | | | - Samuel W Jones
- Jaycee Burn Center, University of North Carolina Chapel Hill, NC
| | - Christopher Sefton
- Institute for Trauma Recovery.,Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Kyle McGrath
- Institute for Trauma Recovery.,Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Bruce A Cairns
- Jaycee Burn Center, University of North Carolina Chapel Hill, NC
| | - Samuel A McLean
- Institute for Trauma Recovery.,Anesthesiology, University of North Carolina, Chapel Hill, NC.,Emergency Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
39
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
40
|
Fernandes SS, Bernardino JCC, Owen PQ, Prentice C, Salas‐Mellado MDLM, Segura‐Campos MR. Effect of the use of ethanol and chia mucilage on the obtainment and techno‐functional properties of chia oil nanoemulsions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | | | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | - Maira Rubi Segura‐Campos
- Laboratory of Food Science, Faculty of Chemical Engineering Autonomous University of Yucatán Mérida Mexico
| |
Collapse
|
41
|
Esselun C, Dilberger B, Silaidos CV, Koch E, Schebb NH, Eckert GP. A Walnut Diet in Combination with Enriched Environment Improves Cognitive Function and Affects Lipid Metabolites in Brain and Liver of Aged NMRI Mice. Neuromolecular Med 2020; 23:140-160. [PMID: 33367957 PMCID: PMC7929966 DOI: 10.1007/s12017-020-08639-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022]
Abstract
This in vivo study aimed to test if a diet enriched with 6% walnuts alone or in combination with physical activity supports healthy ageing by changing the oxylipin profile in brain and liver, improving motor function, cognition, and cerebral mitochondrial function. Female NMRI mice were fed a 6% walnut diet starting at an age of 12 months for 24 weeks. One group was additionally maintained in an enriched environment, one group without intervention served as control. After three months, one additional control group of young mice (3 weeks old) was introduced. Motor and cognitive functions were measured using Open Field, Y-Maze, Rotarod and Passive Avoidance tests. Lipid metabolite profiles were determined using RP-LC-ESI(-)-MS/MS in brain and liver tissues of mice. Cerebral mitochondrial function was characterized by the determination of ATP levels, mitochondrial membrane potential and mitochondrial respiration. Expression of genes involved with mito- and neurogenesis, inflammation, and synaptic plasticity were determined using qRT-PCR. A 6% walnut-enriched diet alone improved spatial memory in a Y-Maze alternation test (p < 0.05) in mice. Additional physical enrichment enhanced the significance, although the overall benefit was virtually identical. Instead, physical enrichment improved motor performance in a Rotarod experiment (p* < 0.05) which was unaffected by walnuts alone. Bioactive oxylipins like hydroxy-polyunsaturated fatty acids (OH-PUFA) derived from linoleic acid (LA) were significantly increased in brain (p** < 0.01) and liver (p*** < 0.0001) compared to control mice, while OH-PUFA of α-linolenic acid (ALA) could only be detected in the brains of mice fed with walnuts. In the brain, walnuts combined with physical activity reduced arachidonic acid (ARA)-based oxylipin levels (p < 0.05). Effects of walnut lipids were not linked to mitochondrial function, as ATP production, mitochondrial membrane potential and mitochondrial respiration were unaffected. Furthermore, common markers for synaptic plasticity and neuronal growth, key genes in the regulation of cytoprotective response to oxidative stress and neuronal growth were unaffected. Taken together, walnuts change the oxylipin profile in liver and brain, which could have beneficial effects for healthy ageing, an effect that can be further enhanced with an active lifestyle. Further studies may focus on specific nutrient lipids that potentially provide preventive effects in the brain.
Collapse
Affiliation(s)
- Carsten Esselun
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany
| | - Benjamin Dilberger
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany
| | - Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany
| | - Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
42
|
Cutuli D, Landolfo E, Nobili A, De Bartolo P, Sacchetti S, Chirico D, Marini F, Pieroni L, Ronci M, D'Amelio M, D'Amato FR, Farioli-Vecchioli S, Petrosini L. Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:150. [PMID: 33198763 PMCID: PMC7667851 DOI: 10.1186/s13195-020-00705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Background In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. Results The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. Conclusions The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy. .,University of Rome "Sapienza", Rome, Italy.
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University of Rome "Sapienza", Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Doriana Chirico
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, Italy
| | - Federica Marini
- Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marcello D'Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | | | | | | |
Collapse
|
43
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
44
|
Martins M, Silva R, M. M. Pinto M, Sousa E. Marine Natural Products, Multitarget Therapy and Repurposed Agents in Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E242. [PMID: 32933034 PMCID: PMC7558913 DOI: 10.3390/ph13090242] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease characterized by the presence of amyloid plaques, neurofibrillary tangles, and nerve cell death that affects, mainly, older people. After decades of investigation, the search for an efficacious treatment for AD remains and several strategies can be and are being employed in this journey. In this review, four of the most promising strategies, alongside with its most promising agents under investigation or development are highlighted. Marine natural products (MNP) are a source of unique chemical structures with useful biological activities for AD treatment. One of the most promising compounds, a marine-derived acidic oligosaccharide (GV-971) just passed phase III clinical trials with a unique mechanism of action. Combination therapy and multitargeted-directed ligand therapy (MTDL) are also two important strategies, with several examples in clinical trials, based on the belief that the best approach for AD is a therapy capable of modulating multiple target pathways. Drug repurposing, a strategy that requires a smaller investment and is less time consuming, is emerging as a strong contender with a variety of pharmacological agents resurfacing in an attempt to identify a therapeutic candidate capable of modifying the course of this disease.
Collapse
Affiliation(s)
- Márcia Martins
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.M.); (M.M.M.P.)
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Madalena M. M. Pinto
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.M.); (M.M.M.P.)
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.M.); (M.M.M.P.)
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
45
|
Arellanes IC, Choe N, Solomon V, He X, Kavin B, Martinez AE, Kono N, Buennagel DP, Hazra N, Kim G, D'Orazio LM, McCleary C, Sagare A, Zlokovic BV, Hodis HN, Mack WJ, Chui HC, Harrington MG, Braskie MN, Schneider LS, Yassine HN. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine 2020; 59:102883. [PMID: 32690472 PMCID: PMC7502665 DOI: 10.1016/j.ebiom.2020.102883] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Past clinical trials of docosahexaenoic Acid (DHA) supplements for the prevention of Alzheimer's disease (AD) dementia have used lower doses and have been largely negative. We hypothesized that larger doses of DHA are needed for adequate brain bioavailability and that APOE4 is associated with reduced delivery of DHA and eicosapentaenoic acid (EPA) to the brain before the onset of cognitive impairment. METHODS 33 individuals were provided with a vitamin B complex (1 mg vitamin B12, 100 mg of vitamin B6 and 800 mcg of folic acid per day) and randomized to 2,152 mg of DHA per day or placebo over 6 months. 26 individuals completed both lumbar punctures and MRIs, and 29 completed cognitive assessments at baseline and 6 months. The primary outcome was the change in CSF DHA. Secondary outcomes included changes in CSF EPA levels, MRI hippocampal volume and entorhinal thickness; exploratory outcomes were measures of cognition. FINDINGS A 28% increase in CSF DHA and 43% increase in CSF EPA were observed in the DHA treatment arm compared to placebo (mean difference for DHA (95% CI): 0.08 µg/mL (0.05, 0.10), p<0.0001; mean difference for EPA: 0.008 µg/mL (0.004, 0.011), p<0.0001). The increase in CSF EPA in non-APOE4 carriers after supplementation was three times greater than APOE4 carriers. The change in brain volumes and cognitive scores did not differ between groups. INTERPRETATION Dementia prevention trials using omega-3 supplementation doses equal or lower to 1 g per day may have reduced brain effects, particularly in APOE4 carriers. TRIAL REGISTRATION NCT02541929. FUNDING HNY was supported by R01AG055770, R01AG054434, R01AG067063 from the National Institute of Aging and NIRG-15-361854 from the Alzheimer's Association, and MGH by the L. K. Whittier Foundation. This work was also supported by P50AG05142 (HCC) from the National Institutes of Health. Funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.
Collapse
Affiliation(s)
| | - Nicholas Choe
- Department of Medicine, Keck School of Medicine USC, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine USC, United States
| | - Xulei He
- Department of Medicine, Keck School of Medicine USC, United States
| | - Brian Kavin
- Department of Medicine, Keck School of Medicine USC, United States
| | | | - Naoko Kono
- Department of Preventive Medicine, Keck School of Medicine USC, United States
| | | | - Nalini Hazra
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, United States
| | - Giselle Kim
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, United States
| | - Lina M D'Orazio
- Department of Neurology, Keck School of Medicine USC, United States
| | - Carol McCleary
- Department of Neurology, Keck School of Medicine USC, United States
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Keck School of Medicine USC, United States
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine USC, United States
| | - Howard N Hodis
- Department of Medicine, Keck School of Medicine USC, United States; Department of Preventive Medicine, Keck School of Medicine USC, United States
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine USC, United States
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine USC, United States
| | - Michael G Harrington
- Huntington Medical Research Institutes, CA, United States; Department of Neurology, Keck School of Medicine USC, United States
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, United States
| | - Lon S Schneider
- Department of Neurology, Keck School of Medicine USC, United States; Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine USC, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine USC, United States; Department of Neurology, Keck School of Medicine USC, United States.
| |
Collapse
|
46
|
Lin MS. CISD2 Attenuates Inflammation and Regulates Microglia Polarization in EOC Microglial Cells-As a Potential Therapeutic Target for Neurodegenerative Dementia. Front Aging Neurosci 2020; 12:260. [PMID: 33005144 PMCID: PMC7479185 DOI: 10.3389/fnagi.2020.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Accumulating evidence has demonstrated a significant association between microglia-driven inflammation in the brain and neurodegenerative dementia. We previously showed a significant decline in CISD2 expression in mice models with advanced age. Moreover, we observed that the knockdown of CISD2 led to remarkable inflammation and mitochondrial dysfunction in neural cells. In the present study, we investigated whether CISD2 attenuation influences anti-inflammatory effects and M1-M2 polarization in microglia. Materials and Methods: The knockdown of CISD2 expression by siRNA (siCISD2) in EOC microglial cells was performed to mimic the age-driven decline of CISD2 expression. The extent of the inflammatory reaction, polarization in the M1/M2 spectrum, and NFκB activation were verified in EOC microglial cells exhibiting CISD2 deficiency. Results: In the cellular model of microglia, loss of CISD2 function mediated by siCISD2 exhibited a significant augmentation of proinflammatory signaling, as well as reduced expression levels of Arg-1, Ym1, IL-10, and BCL2. Attenuation of CISD2 expression led to a decrease in the proportion of the M2 phenotype of microglia (compared to M1). Enhanced DNA-binding activity of the NFκB p65 subunit was confirmed in cells transfected with siCISD2, as demonstrated by enzyme-linked immunosorbent assay (ELISA). Conclusions: To the best of our knowledge, this is the first report examining the following phenomena: (1) anti-inflammatory effects of CISD2 in microglia via NFκB regulation; and (2) microglial CISD2 assistance in the restoration of M2 microglia phenotype. The anti-inflammatory effects of CISD2 in microglia eventually augment anti-apoptotic effects, which provides a rationale for the development of potential therapeutic target for neurodegenerative diseases and neurodegenerative dementia.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| |
Collapse
|
47
|
Wang Y, Nakajima T, Diao P, Yamada Y, Nakamura K, Nakayama J, Tanaka N, Aoyama T, Kamijo Y. Polyunsaturated fatty acid deficiency affects sulfatides and other sulfated glycans in lysosomes through autophagy-mediated degradation. FASEB J 2020; 34:9594-9614. [PMID: 32501606 DOI: 10.1096/fj.202000030rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Metabolic changes in sulfatides and other sulfated glycans have been related to various diseases, including Alzheimer's disease (AD). However, the importance of polyunsaturated fatty acids (PUFA) in sulfated lysosomal substrate metabolism and its related disorders is currently unknown. We investigated the effects of deficiency or supplementation of PUFA on the metabolism of sulfatides and sulfated glycosaminoglycans (sGAGs) in sulfatide-rich organs (brain and kidney) of mice. A PUFA-deficient diet for over 5 weeks significantly reduced the sulfatide expression by increasing the sulfatide degradative enzymes arylsulfatase A and galactosylceramidase in brain and kidney. This sulfatide degradation was clearly associated with the activation of autophagy and lysosomal hyperfunction, the former of which was induced by suppression of the Erk/mTOR pathway. A PUFA-deficient diet also activated the degradation of sGAGs in the brain and kidney and that of amyloid precursor proteins in the brain, indicating an involvement in general lysosomal function and the early developmental process of AD. PUFA supplementation prevented all of the above abnormalities. Taken together, a PUFA deficiency might lead to sulfatide and sGAG degradation associated with autophagy activation and general lysosomal hyperfunction and play a role in many types of disease development, suggesting a possible benefit of prophylactic PUFA supplementation.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yosuke Yamada
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kozo Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Minamiminowa, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Kamijo
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
48
|
Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn's Disease Populations. Nutrients 2020; 12:nu12041139. [PMID: 32325778 PMCID: PMC7230517 DOI: 10.3390/nu12041139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Two trials separately measured the bioavailability and impact on inflammation of a supplement taken daily containing 510 mg Docosahexaenoic acid (DHA), 344 mg Eicosapentaenoic acid (EPA), and 1000 IU of vitamin D (25-hydroxyvitamin D; 25(OH)D), for healthy and Crohn’s disease (CD) populations. Both trials were double blinded, randomized, placebo-controlled with cross-over. Participants were randomly allocated to groups A (placebo then supplement) or B (supplement then placebo). Both included a washout. Fatty acid (N-3 PUFAs) and vitamin D serum levels, plasma C-reactive protein (CRP), and stool calprotectin were measured before and after each treatment period. Outcome measures were analyzed using generalized linear mixed models, including terms for treatment, period, and a treatment-by-period interaction. The supplement significantly increased serum levels in healthy and CD groups for EPA (p < 0.001 and p < 0.001, respectively), Docosapentaenoic acid (p < 0.001 and 0.005), DHA (p < 0.001 and 0.006), the omega-3 index (p < 0.001 and 0.001), and (vitamin D (p < 0.001 and 0.027). CRP and calprotectin measures showed no evidence of a treatment effect on inflammation; however, model estimation was imprecise for both outcomes, hence further research is required to elucidate potential inflammation effects. The nutrient supplement increased serum levels of key N-3 PUFAs and vitamin D in both populations, showing the preparation was readily bioavailable.
Collapse
|
49
|
Blanco-Luquin I, Acha B, Urdánoz-Casado A, Sánchez-Ruiz De Gordoa J, Vicuña-Urriza J, Roldán M, Labarga A, Zelaya MV, Cabello C, Méndez-López I, Mendioroz M. Early epigenetic changes of Alzheimer's disease in the human hippocampus. Epigenetics 2020; 15:1083-1092. [PMID: 32233750 DOI: 10.1080/15592294.2020.1748917] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The discovery of new biomarkers would be very valuable to improve the detection of early Alzheimer's disease (AD). DNA methylation marks may serve as epigenetic biomarkers of early AD. Here we identified epigenetic marks that are present in the human hippocampus from the earliest stages of AD. A previous methylome dataset of the human AD hippocampus was used to select a set of eight differentially methylated positions (DMPs) since early AD stages. Next, bisulphite pyrosequencing was performed in an expanded homogeneous cohort of 18 pure controls and 35 hippocampal samples with neuropathological changes of pure AD. Correlation between DNA methylation levels in DMPs and phospho-tau protein burden assessed by immunohistochemistry in the hippocampus was also determined. We found four DMPs showing higher levels of DNA methylation at early AD stages compared to controls, involving ELOVL2, GIT1/TP53I13 and the histone gene locus at chromosome 6. DNA methylation levels assessed by bisulphite pyrosequencing correlated with phospho-tau protein burden for ELOVL2 and HIST1H3E/HIST1H3 F genes. In this discovery study, a set of four epigenetic marks of early AD stages have been identified in the human hippocampus. It would be worth studying in-depth the specific pathways related to these epigenetic marks. These early alterations in DNA methylation in the AD hippocampus could be regarded as candidate biomarkers to be explored in future translational studies. ABBREVIATIONS AD: Alzheimer's disease; DMPs: Differentially methylated positions; CSF: Cerebrospinal fluid; βA42: β-amyloid 42; PET: positron emission tomography; 5mC: 5-methyl cytosine; CpG: cytosine-guanine dinucleotides; ANK1: ankyrin-1; BIN1: amphiphysin II; p-tau: hyperphosphorylated tau; CERAD: Consortium to Establish A Registry for Alzheimer's Disease; SD: standard deviation; ANOVA: one-way analysis of variance; VLCFAs: very long-chain fatty acids; DHA: docosahexaenoic acid; mTOR: mechanistic target of rapamycin.
Collapse
Affiliation(s)
- Idoia Blanco-Luquin
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Blanca Acha
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Javier Sánchez-Ruiz De Gordoa
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain.,Department of Neurology, Complejo Hospitalario De Navarra- IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Janire Vicuña-Urriza
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - María Victoria Zelaya
- Department of Pathology, Complejo Hospitalario De Navarra- IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Carolina Cabello
- Department of Neurology, Complejo Hospitalario De Navarra- IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| | - Iván Méndez-López
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain.,Department of Internal Medicine, Hospital García-Orcoyen , Estella, Spain
| | - Maite Mendioroz
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario De Navarra, Universidad Pública De Navarra (UPNA), IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain.,Department of Neurology, Complejo Hospitalario De Navarra- IdiSNA (Navarra Institute for Health Research) , Pamplona, Spain
| |
Collapse
|
50
|
García-Serrano A, Tomé-Carneiro J, Carmen Crespo M, Visitación Calvo M, Pereda-Pérez I, Baliyan S, Burgos-Ramos E, Montero O, Dávalos A, Venero C, Visioli F, Fontecha J. Concentrates of buttermilk and krill oil improve cognition in aged rats. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102077. [PMID: 32145667 DOI: 10.1016/j.plefa.2020.102077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 02/03/2023]
Abstract
Cognitive decline is one of the hallmarks of aging and can vary from mild cognitive impairment to dementia to Alzheimer's disease. In addition to some lifestyle interventions, there is room for the use of nutraceuticals/functional foods as pharma-nutritional tools to lessen the burden of cognitive decline before it worsens. We previously reported the promising molecular actions of milk fat globule membranes and krill oil concentrates in a rat model of aging. In this study, we concentrated on the activities on cognition, using an array of validated tests. We also performed lipidomic analyses of plasma, erythrocytes, and different brain areas. We report lower emotional memory (contextual fear conditioning) in aged rats supplemented with concentrates of polar lipids from buttermilk or krill oil at doses that approximate human consumption. No other behavioral parameter was significantly influenced by the supplements, calling for further research to confirm or not the purported salubrious activities of polar lipids, namely those rich in ω3 long-chain polyunsaturated fatty acids, on cognitive decline.
Collapse
Affiliation(s)
- Alba García-Serrano
- Bioactivity and Food Analysis Department, CIAL, CSIC-UAM, Madrid 28049, Spain
| | - Joao Tomé-Carneiro
- Bioactivity and Food Analysis Department, CIAL, CSIC-UAM, Madrid 28049, Spain; Bioactive Ingredients Food Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - M Carmen Crespo
- Bioactive Ingredients Food Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - M Visitación Calvo
- Bioactivity and Food Analysis Department, CIAL, CSIC-UAM, Madrid 28049, Spain
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Shishir Baliyan
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Emma Burgos-Ramos
- Área de Bioquímica, Universidad de Castilla-La-Mancha, Toledo, Spain
| | - Olimpio Montero
- Centro para el Desarrollo de la Biotecnología, CSIC, Parque Tecnológico de Boecillo, Valladolid, Spain
| | - Alberto Dávalos
- Bioactive Ingredients Food Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - César Venero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Francesco Visioli
- Bioactive Ingredients Food Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain; Department of Molecular Medicine, University of Padova, Padova, 35121, Italy.
| | - Javier Fontecha
- Bioactivity and Food Analysis Department, CIAL, CSIC-UAM, Madrid 28049, Spain
| |
Collapse
|