1
|
Singh AD, Chawda MB, Kulkarni YA. Cardioprotective Effects of 'Vasant Kusumakar Rasa,' a Herbo-metallic Formulation, in Type 2 Diabetic Cardiomyopathy in Rats. Cardiovasc Toxicol 2024; 24:942-954. [PMID: 39023814 DOI: 10.1007/s12012-024-09891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1β, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mukesh B Chawda
- Shree Dhootapapeshwar Limited, 135, Nanubhai Desai Road, Khetwadi, Girgaon, Mumbai, Maharashtra, 400004, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
2
|
Guler E, Nur Hazar-Yavuz A, Tatar E, Morid Haidari M, Sinemcan Ozcan G, Duruksu G, Graça MPF, Kalaskar DM, Gunduz O, Emin Cam M. Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: Enhanced in vitro and in vivo antidiabetic performance. Int J Pharm 2023; 635:122716. [PMID: 36791999 DOI: 10.1016/j.ijpharm.2023.122716] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Empagliflozin (EM) was successfully loaded in polycaprolactone/poly (L-lactic acid)/polymethyl methacrylate (PCL/PLA/PMMA) fibers. In the rat β-cell line (BRIN-BD11), the insulin expression ratio of pancreatic β-cells was stimulated at high and low glucose by culturing with tri-layer EM-loaded fiber (EMF) for 48 h. The expression ratios of glucokinase and GLUT-2 proteins increased after EMF treatment. According to the in vitro drug release test, 97% of all drug contained in fibers was released in a controlled manner for 24 h. The pharmacokinetic test revealed that the bioavailability was improved ∼4.8-fold with EMF treatment compared to EM-powder and blood glucose level was effectively controlled for 24 h with EMF. Oral administration of EMF exhibited a better sustainable anti-diabetic activity even in the half-dosage than EM-powder in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, PPAR-γ, and insulin were increased while the levels of SGLT-2 and TNF-α were decreased with EMF treatment. Also, EMF recovered the histopathological changes in the liver, pancreas, and kidney in T2DM rats and protected pancreatic β-cells. Consequently, EMF is suggested as an unprecedented and promotive treatment approach for T2DM with a higher bioavailability and better antidiabetic effect compared to conventional dosage forms.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Mohammad Morid Haidari
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | - Gokhan Duruksu
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Istanbul, Turkey.
| |
Collapse
|
3
|
Rosa CM, Campos DHS, Reyes DRA, Damatto FC, Kurosaki LY, Pagan LU, Gomes MJ, Corrêa CR, Fernandes AAH, Okoshi MP, Okoshi K. Effects of the SGLT2 Inhibition on Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats, a Model of Type 1 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:982. [PMID: 35624845 PMCID: PMC9137562 DOI: 10.3390/antiox11050982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Clinical trials have shown that sodium glucose co-transporter 2 (SGLT2) inhibitors improve clinical outcomes in diabetes mellitus (DM) patients. As most studies were performed in Type 2 DM, the cardiovascular effects of SGLT2 inhibition still require clarification in Type 1 DM. We analyzed the effects of SGLT2 inhibitor dapagliflozin on cardiac remodeling in rats with streptozotocin-induced diabetes, an experimental model of Type 1 DM. Methods: Male Wistar rats were assigned into four groups: control (C, n = 14); control treated with dapagliflozin (C + DAPA, n = 14); diabetes (DM, n = 20); and diabetes treated with dapagliflozin (DM + DAPA, n = 20) for 8 weeks. Dapagliflozin dosage was 5 mg/kg/day. Statistical analyses: ANOVA and Tukey or Kruskal−Wallis and Dunn. Results: DM + DAPA presented decreased blood pressure and glycemia and increased body weight compared to DM (C 507 ± 52; C + DAPA 474 ± 50; DM 381 ± 52 *; DM + DAPA 430 ± 48 # g; * p < 0.05 vs. C; # p < 0.05 vs. C + DAPA and DM + DAPA). DM echocardiogram presented left ventricular and left atrium dilation with impaired systolic and diastolic function. Cardiac changes were attenuated by dapagliflozin. Myocardial hydroxyproline concentration and interstitial collagen fraction did not differ between groups. The expression of Type III collagen was lower in DM and DM + DAPA than their controls. Type I collagen expression and Type I-to-III collagen ratio were lower in DM + DAPA than C + DAPA. DM + DAPA had lower lipid hydroperoxide concentration (C 275 ± 42; C + DAPA 299 ± 50; DM 385 ± 54 *; DM + DAPA 304 ± 40 # nmol/g tissue; * p < 0.05 vs. C; # p < 0.05 vs. DM) and higher superoxide dismutase and glutathione peroxidase activity than DM. Advanced glycation end products did not differ between groups. Conclusion: Dapagliflozin is safe, increases body weight, decreases glycemia and oxidative stress, and attenuates cardiac remodeling in an experimental rat model of Type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - David Rafael Abreu Reyes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Lucas Yamada Kurosaki
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | | | - Camila Renata Corrêa
- Department of Pathology, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil;
| | - Ana Angelica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu 18618-970, SP, Brazil;
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| |
Collapse
|
4
|
LCZ696 Protects against Diabetic Cardiomyopathy-Induced Myocardial Inflammation, ER Stress, and Apoptosis through Inhibiting AGEs/NF-κB and PERK/CHOP Signaling Pathways. Int J Mol Sci 2022; 23:ijms23031288. [PMID: 35163209 PMCID: PMC8836005 DOI: 10.3390/ijms23031288] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The present study is designed to determine the effect of LCZ696 on DCM in rats and investigate the underlying mechanism involved. Diabetes was induced by feeding rats with a high-fat diet for six weeks following a single injection of STZ (30 mg/kg). Diabetic rats were divided into three groups (n = 10). LCZ696 and valsartan treatment was started two weeks after diabetic induction and continued for eight weeks. At the end of the treatment, serum and cardiac tissues were analyzed by RT-PCR, Western blot, and ELISA kits. LCZ696 and valsartan ameliorated DCM progression by inhibiting AGEs formation at activity levels; pro-apoptotic markers (BAX/Bcl2 ratio and caspase-3) in mRNA and protein expressions, the NF-κB at mRNA; and protein levels associated with the restoration of elevated proinflammatory cytokines such as the TNF-α, IL-6, and IL-1β at the activity level. Furthermore, LCZ696 and valsartan contribute to restoring the induction of ER stress parameters (GRP78, PERK, eIF2a, ATF4, and CHOP) at mRNA and protein levels. LCZ696 and valsartan attenuated DCM by inhibiting the myocardial inflammation, ER stress, and apoptosis through AGEs/NF-κB and PERK/CHOP signaling cascades. Collectively, the present results reveal that LCZ696 had a more protective solid effect against DCM than valsartan.
Collapse
|
5
|
Uddandrao VVS, Parim B, Singaravel S, Ponnusamy P, Ponnusamy C, Sasikumar V, Saravanan G. Polyherbal Formulation Ameliorates Diabetic Cardiomyopathy Through Attenuation of Cardiac Inflammation and Oxidative Stress Via NF-κB/Nrf-2/HO-1 Pathway in Diabetic Rats. J Cardiovasc Pharmacol 2022; 79:e75-e86. [PMID: 34740211 DOI: 10.1097/fjc.0000000000001167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The present study was intended to evaluate the effect of polyherbal formulation (PHF) made with 3 nutraceuticals, such as Piper nigrum, Terminalia paniculata, and Bauhinia purpurea on inflammation and oxidative stress in diabetic cardiomyopathy (DCM), which is induced by streptozotocin and nicotinamide administration in rats. We supplemented DCM rats with PHF (250 and 500 mg/kg/BW) for 45 days and evaluated their effects on oxidative stress markers, proinflammatory cytokines, and messenger RNA expressions of the nuclear factor erythroid 2-related factor-2 (Nrf-2) and its linked genes [heme oxygenase-1 (HO-1), superoxide dismutase, catalase] along with inflammatory genes [tumour necrosis factor α and nuclear factor kappa B (NF-κB)]. Our study demonstrated that PHF successfully attenuated inflammation and oxidative stress via messenger RNA upregulation of Nrf-2, HO-1, superoxide dismutase, and catalase and concomitantly with downregulation of tumour necrosis factor α and NF-κB. Conversely, PHF also protected hyperglycemia-mediated cardiac damage, which was confirmed with histopathological and scanning electron microscopy analysis. In conclusion, our results suggested that PHF successfully ameliorated hyperglycemia-mediated inflammation and oxidative stress via regulation of NF-κB/Nrf-2/HO-1 pathway. Therefore, these results recommend that PHF may be a prospective therapeutic agent for DCM.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | - Brahmanaidu Parim
- Department of Animal Physiology and Biochemistry, National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, India
| | | | | | - Chandrasekaran Ponnusamy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | - Vadivukkarasi Sasikumar
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | - Ganapathy Saravanan
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| |
Collapse
|
6
|
Seshadri VD. Cardioprotective properties of natural medicine in isoproterenol induced myocardial damage in the male Albino rats. Saudi J Biol Sci 2021; 28:3169-3175. [PMID: 34121851 PMCID: PMC8176003 DOI: 10.1016/j.sjbs.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
The main aim of this study is to investigate cardioprotective properties of natural medicine inmyocardial damage induced male Albino rats. The aqueous extractof Allium sativumwas used for the determination of phenolic compounds and flavonoids. The amount of phenol (1.39 ± 0.37 GAE/g dry weight) and flavonoids (49.1 ± 2.79 QE/g dry weight) were high in aqueous extract. A. sativumextract and showed 68.39 ± 3.6% DPPHscavenging activity. Isoproterenol was used to induce myocardial injury in Albino rats in vivo by subcutaneous injection (100 mg/kg body weight). To achieve this, experimental animals were categorized into six groups (n = 4), namely, positive, negative control, only isoproterenol administered groups, and garlic extract administered group at 100-300 mg extract/kg body weight. Oxidative stress marker and cardiac markers were assayed to analyze the cardioprotective properties of garlic extract. At 300 mg/kg doseof garlic extract, rat was recovered from various altered factors such as, aspartate aminotransferase, alkaline transminase and alkaline phosphatase. The rats treated with 300 mggarlic extract/kg body weight decreased the level of asparate aminotransferase (126 ± 6.4 IU/L) than other lower doses (100 mg extract/kg and 200 mg extract/kg). Alkaline transaminase level of rat serum level was 81 ± 4.34 IU/L. In the isoproterenol treated rats elevated level was observed (152 ± 4.42 IU/L enzyme activity). Pre-treatment of Albino rat with A. sativum extract reduced cardiac damage. Isoproterenol exposed animal showed 207.6 ± 1.2 mg/dL triglyceride and the garlic administered rat (300 mgextract/kg) reduced LDL-cholesterol level (61.3 ± 1.3 mg/dL) significantly (p < 0.05). Creatinine kinase -MB level was 269.5 ± 12.5 IU/L in the control animal and stress induced animal showed elevated level (572.3 ± 19.4 IU/L). Garlic treated experimental animal (300 µg/kg bw) decreased CK-MB level. To conclude, the aqueous extract of A. sativumshowed cardio protective properties against myocardial injury.
Collapse
Affiliation(s)
- Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
7
|
Hu X, Zhu Y, L V X, Feng Z. Elucidation of the mechanism of action of pinitol against pressure overload-induced cardiac hypertrophy and fibrosis in an animal model of aortic stenosis. Biosci Biotechnol Biochem 2021; 85:643-655. [PMID: 33589894 DOI: 10.1093/bbb/zbaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 02/01/2023]
Abstract
The long-term imposition of pressure overload on the cardiac tissue causes left ventricular hypertrophy (LVH) and cardiac fibrosis. Pinitol has been reported to possess antioxidant potential. The aim was to evaluate the efficacy of pinitol against pressure overload-induced cardiac hypertrophy and fibrosis in the aortic stenosis (AS) rat model. Cardiac hypertrophy was produced in Sprague-Dawley rats by abdominal aortic constriction and treated with lisinopril (15 mg/kg) or pinitol (5, 10, and 20 mg/kg). Pressure overload-induced alterations in hemodynamic and left ventricular function tests, cardiac SOD, GSH, MDA, NO, Na-K-ATPase, and mitochondrial complex enzyme levels were significantly attenuated by pinitol. The upregulated mRNA expressions of cardiac ANP, BNP, cTn-I, TNF-α, IL-1β, IL-6, Bax, Caspase-3, collagen-I, and cardiac apoptosis were markedly downregulated by pinitol. In conclusion, pinitol ameliorated pressure overload-induced LVH and fibrosis via its anti-inflammatory, antioxidant, antifibrotic, and antiapoptotic potential in experimental AS.
Collapse
Affiliation(s)
- Xiaojing Hu
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an, Beilin District, Xi'an City, Shaanxi Province, China
| | - Yuanyuan Zhu
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an, Beilin District, Xi'an City, Shaanxi Province, China
| | - Xiaoyan L V
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an, Beilin District, Xi'an City, Shaanxi Province, China
| | - Zhanbin Feng
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an, Beilin District, Xi'an City, Shaanxi Province, China
| |
Collapse
|
8
|
Shabab S, Gholamnezhad Z, Mahmoudabady M. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113328. [PMID: 32871233 DOI: 10.1016/j.jep.2020.113328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Nowadays, there is an increase in global tendency to use medicinal plants as preventive and therapeutic agents to manage diabetes and its long-term complications such as cardiovascular disorders owing to their availability and valuable traditional background. AIM OF STUDY This review aims to introduce common medicinal plants, which have been demonstrated to have cardioprotective effects on diabetes and their mechanisms of action. MATERIALS AND METHODS Online literature databases, including Web of Sciences, PubMed, Science Direct, Scopus and Google Scholar were searched without date limitation by May 2020. The following keywords (natural products or medicinal plants or herbal medicine or herb or extract) and (diabetes or antidiabetic or hyperglycemic) and (cardiomyopathy or heart or cardioprotective or cardiac or cardio) were used, and after excluding non-relevant articles, 81 original English articles were selected. RESULTS The surveyed medicinal plants induced cardioprotective effects mostly through increasing antioxidant effects leading to attenuating ROS production as well as by inhibiting inflammatory signaling pathways and related cytokines. Moreover, they ameliorated the Na+/K + ATPase pump, the L-type Ca2+ channel current, and the intracellular ATP. They also reduced cardiac remodeling and myocardial cell apoptosis through degradation of caspase-3, Bax, P53 protein, enhancement of Bcl-2 protein expression as well as downregulation of TGFβ1 and TNFα expression. In addition, the extracts improved cardiac function through increasing EF% and FS% as well as restoring hemodynamic parameters. CONCLUSIONS The reviewed medicinal plants demonstrated cardioprotective manifestations in diabetes through intervention with mechanisms involved in the diabetic heart to restore cardiovascular complications.
Collapse
Affiliation(s)
- Sadegh Shabab
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, Clinical Characteristics of Diabetic Cardiomyopathy: Therapeutic Potential of Natural Polyphenols. Front Nutr 2020; 7:564352. [PMID: 33344490 PMCID: PMC7744342 DOI: 10.3389/fnut.2020.564352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is an outcome of disturbances in metabolic activities through oxidative stress, local inflammation, and fibrosis, as well as a prime cause of fatality worldwide. Cardiovascular disorders in diabetic individuals have become a challenge in diagnosis and formulation of treatment prototype. It is necessary to have a better understanding of cellular pathophysiology that reveal the therapeutic targets and prevent the progression of cardiovascular diseases due to hyperglycemia. Critical changes in levels of collagen and integrin have been observed in the extracellular matrix of heart, which was responsible for cardiac remodeling in diabetic patients. This review explored the understanding of the mechanisms of how the phytochemicals provide cardioprotection under diabetes along with the caveats and provide future perspectives on these agents as prototypes for the development of drugs for managing DCM. Thus, here we summarized the effect of various plant extracts and natural polyphenols tested in preclinical and cell culture models of diabetic cardiomyopathy. Further, the potential use of selected polyphenols that improved the therapeutic efficacy against diabetic cardiomyopathy is also illustrated.
Collapse
Affiliation(s)
- Neha Atale
- Jaypee Institute of Information Technology, Noida, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Vibha Rani
- Jaypee Institute of Information Technology, Noida, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
10
|
In vitro dual-target activities and in vivo antidiabetic effect of 3-hydroxy-N-(p-hydroxy-phenethyl) phthalimide in high-fat diet and streptozotocin-induced diabetic golden hamsters. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02628-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Soetikno V, Murwantara A, Andini P, Charlie F, Lazarus G, Louisa M, Arozal W. Alpha-Mangostin Improves Cardiac Hypertrophy and Fibrosis and Associated Biochemical Parameters in High-Fat/High-Glucose Diet and Low-Dose Streptozotocin Injection-Induced Type 2 Diabetic Rats. J Exp Pharmacol 2020; 12:27-38. [PMID: 32095085 PMCID: PMC6995289 DOI: 10.2147/jep.s233111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of present study was to analyze the effect of alpha-mangostin on cardiac hypertrophy and fibrosis and biochemical parameters in high-fat/high-glucose diet and low-dose streptozotocin injection (HF/HG/STZ)-induced type 2 diabetic rats. METHODS Diabetes was induced in male Wistar rats by giving a combination of high-fat/high-glucose (HF/HG) diet for 3 weeks and followed by low-dose streptozotocin intraperitoneal injection (STZ; 35 mg/kg) at Week-3 and the HF/HG diet was continued until 8 weeks. The diabetic rats were then divided into four groups (each, n=6): untreated diabetic group (HF/HG/STZ); diabetic group treated with metformin 200 mg/kg/day (HF/HG/STZ+Metformin); diabetic group treated with alpha-mangostin 100 mg/kg/day (HF/HG/STZ+AM100); and diabetic group treated with alpha-mangostin 200 mg/kg/day (HF/HG/STZ+AM200) and all were given by oral gavage for 8 weeks. We also included a control group (C) treated with AM200 (C+AM200). The role of alpha-mangostin was assessed through its effect on blood glucose levels, HOMA-IR, blood pressure, body weight, pro-inflammatory cytokines in cardiac tissue, serum aminotransferases (ALT and AST), lipid profiles (cholesterol and triglyceride), blood urea nitrogen (BUN), uric acid, cardiac hypertrophy and fibrosis. RESULTS Diabetic rats treated with alpha-mangostin in both doses for 8 weeks showed decrease in blood glucose levels, HOMA-IR, and blood pressure. Alpha-mangostin treatment also prevented HF/HG/STZ-induced changes in the activities of ALT, AST, BUN, uric acid, lipid profiles, and pro-inflammatory cytokines, which were comparable with the standard drug metformin, while alpha-mangostin did not show any significant effects on control rats (p>0.05). The cardiac hypertrophy and fibrosis were also attenuated in diabetic rats treated with alpha-mangostin in both doses. CONCLUSION These data suggest that administration of alpha-mangostin can effectively attenuate diabetes-induced alteration in cardiac hypertrophy and fibrosis as well as biochemical parameters in HF/HG/STZ rats.
Collapse
Affiliation(s)
- Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Andriyani Murwantara
- Graduate Course, Faculty of Medicine, Universitas Indonesia, Jakarta10430, Indonesia
| | - Prisma Andini
- Graduate Course, Faculty of Medicine, Universitas Indonesia, Jakarta10430, Indonesia
| | - Fabrian Charlie
- Graduate Course, Faculty of Medicine, Universitas Indonesia, Jakarta10430, Indonesia
| | - Gilbert Lazarus
- Undergraduate Course, Faculty of Medicine, Universitas Indonesia, Jakarta10430, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
12
|
Kandhare AD, Liu Z, Mukherjee AA, Bodhankar SL. Therapeutic Potential of Morin in Ovalbumin-induced Allergic Asthma Via Modulation of SUMF2/IL-13 and BLT2/NF-kB Signaling Pathway. Curr Mol Pharmacol 2019; 12:122-138. [PMID: 30605067 DOI: 10.2174/1874467212666190102105052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allergic asthma is a chronic immune-inflammatory disorder, characterized by airway inflammation and airway hyperresponsiveness (AHR). Morin is a natural flavonoid reported to exhibit inhibitory action against IgE-mediated allergic response. AIM To determine the efficacy of murine model of ovalbumin (OVA)-induced AHR inhibition by morin and decipher the molecular mechanism involved. MATERIALS AND METHODS Sprague-Dawley rats were sensitized and challenged with OVA to induce AHR. Rats received treatment with morin (10, 30 and 100 mg/kg, p.o.) for the next 28 days. RESULTS Morin (30 and 100 mg/kg) significantly and dose-dependently attenuated (p < 0.01 and p < 0.001) OVA-induced alterations in pulse oxy and lung function test, increased bronchoalveolar lavage fluid cell counts, elevated total protein and albumin levels in serum, BALF, and lungs, increased serum total and OVA-specific IgE levels and, elevated oxidative stress levels in the lung. RT-PCR analysis revealed that morin treatment (30 and 100 mg/kg) significantly (p < 0.001) up-regulated SUMF2 mRNA expression in lungs whereas mRNA expressions of BLT2, NF-κB, and Th2-cytokine (TNF-α, IL-1β, IL-4, IL-6, and IL-13) were down-regulated significantly and dose-dependently (p < 0.01 and p < 0.001). Also, histologic and ultrastructural studies showed that morin significantly inhibited (p < 0.001) OVAinduced perivascular and peribranchial inflammatory infiltration and interstitial fibrosis. CONCLUSION Morin exhibited inhibitory effect against OVA-induced allergic asthma by activation of SUMF2 which impeded IL-13 expression and in turn attenuated Th2-cytokines, BLT2, NF-κB, and IgE levels to ameliorate AHR. Thus, our findings suggested that morin could be considered as a potential alternative therapeutic agent for the management of allergic asthma.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Zihao Liu
- Jiangxi Medical College, Nanchang University, Jiangxi 330006, China
| | - Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| |
Collapse
|
13
|
Shah MA, Reanmongkol W, Radenahmad N, Khalil R, Ul-Haq Z, Panichayupakaranant P. Anti-hyperglycemic and anti-hyperlipidemic effects of rhinacanthins-rich extract from Rhinacanthus nasutus leaves in nicotinamide-streptozotocin induced diabetic rats. Biomed Pharmacother 2019; 113:108702. [PMID: 30844658 DOI: 10.1016/j.biopha.2019.108702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 02/05/2023] Open
Abstract
Rhinacanthus nasutus has traditionally been used in the treatment of various disorders including diabetes mellitus. Rhinacanthins-rich extract (RRE) is a semipurified R. nasutus leaf extract that contains 60% w/w of rhinacanthin-C (RC) obtained by a green extraction process. The purpose of this study was to investigate the anti-hyperglycemic and anti-hyperlipidemic activity of RRE (15 mg/kg equivalent to RC content) in comparison to its marker compound RC (15 mg/kg) and the standard drug glibenclamide (Glb) (600 μg/kg) in nicotinamide-streptozotocin induced diabetic rats for 28 days. In addition, the in silico pharmacokinetic and toxicity analysis of RC was also performed. RRE, RC and Glb significantly reduced the FBG, HbA1c and food/water intake while increasing the insulin level and body weight in diabetic rats without affecting the normal rats. The serum lipid, liver and kidney biomarkers were markedly normalized by RRE, RC and Glb in diabetic rats without affecting the normal rats. Moreover, the histopathology of the pancreas revealed that RRE, RC and Glb evidently restored the islets of Langerhans in diabetic rats. The overall results indicated that RRE has equivalent antidiabetic potential to that of RC. Moreover, the in silico pharmacokinetic and toxicity analysis predicts that RC is orally non-toxic, non-carcinogenic and non-mutagenic with a decent bioavailability. The undertaken study suggests that RRE could be used as an effective natural remedy in the treatment of diabetes.
Collapse
Affiliation(s)
- Muhammad Ajmal Shah
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand; Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Wantana Reanmongkol
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand
| | - Nisaudah Radenahmad
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat-Yai, 90112, Thailand
| | - Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| |
Collapse
|
14
|
Comparative Study on the Influence of Some Medicinal Plants on Diabetes Induced by Streptozotocin in Male Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3596287. [PMID: 30937310 PMCID: PMC6415286 DOI: 10.1155/2019/3596287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/06/2019] [Accepted: 02/04/2019] [Indexed: 01/24/2023]
Abstract
Medicinal plants have played an important role in the treatment of many diseases. Medicinal plants are believed to be well appropriate with the human body and to produce less side influences than the pharmaceuticals. Kingdom of Saudi Arabia has abundant and wide variety of medicinal plants whose therapeutic effects have not been adequately studied. The aim of this study was to investigate the hypoglycemic activities of the extracts of three plant species collected from Albaha region of Saudi Arabia including Olea oleaster (Oleaceae family) leaves (OLE), Juniperus procera (Cupressaceae family) leaves (JLE), and Opuntia ficus-indica (Cactaceae family) stems (OSE) on streptozotocin (STZ) diabetic male rats. The animals were distributed into eight groups. The first group was used as normal control. The second group was diabetic control. Diabetic rats of the third, fourth, and fifth groups were supplemented with OLE, JLE, and OSE, respectively. Normal rats of the sixth, seventh, and eighth groups were treated with OLE, JLE, and OSE, respectively. As expected, the mean of body weight was significantly decreased in rats of the second group. Significant increase in the value of serum glucose and decline of insulin value were observed in rats of the second group. Several alterations of lipid and protein profile and oxidative stress markers were noted in diabetic control rats. Severe histopathological alterations of pancreatic tissues were observed in untreated diabetic rats. The obtained results showed that OLE, JLE, and OSE attenuated the physiological and histopathological alterations. These new data indicate that the attenuation influences of OLE, JLE, and OSE attributed to their antioxidant properties confirmed by oxidative stress markers evaluation.
Collapse
|
15
|
Kosuru R, Kandula V, Rai U, Prakash S, Xia Z, Singh S. Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats. Cardiovasc Drugs Ther 2019; 32:147-163. [PMID: 29556862 DOI: 10.1007/s10557-018-6780-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress has a pivotal role in the pathogenesis of diabetes-associated cardiovascular problems, which has remained a primary cause of the increased morbidity and mortality in diabetic patients. It is of paramount importance to prevent the diabetes-associated cardiac complications by reducing oxidative stress with the help of nutritional or pharmacological agents. Pterostilbene (PT), the primary antioxidant in blueberries, has recently gained attention for its promising health benefits in metabolic and cardiac diseases. However, the mechanism whereby PT reduces diabetic cardiac complications is currently unknown. METHODS Sprague-Dawley rats were fed with 65% fructose diet with or without PT (20 mg kg-1 day-1) for 8 weeks. Heart rate and blood pressure were measured by tail-cuff apparatus. Real-time PCR and western blot experiments were executed to quantify the expression levels of mRNA and protein, respectively. RESULTS Fructose-fed rats demonstrated cardiac hypertrophy, hypertension, enhanced myocardial oxidative stress, inflammation and increased NF-κB expression. Administration of PT significantly decreased cardiac hypertrophy, hypertension, oxidative stress, inflammation, NF-κB expression and NLRP3 inflammasome. We demonstrated that PT improved mitochondrial biogenesis as evidenced by increased protein expression of PGC-1α, complex III and complex V in fructose-fed diabetic rats. Further, PT increased protein expressions of AMPK, Nrf2, HO-1 in cardiac tissues, which may account for the prevention of cardiac oxidative stress and inflammation in fructose-fed rats. CONCLUSIONS Collectively, PT reduced cardiac oxidative stress and inflammation in diabetic rats through stimulation of AMPK/Nrf2/HO-1 signalling.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vidya Kandula
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Uddipak Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Swati Prakash
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Zhengyuan Xia
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
16
|
Qin Q, Lin N, Huang H, Zhang X, Cao X, Wang Y, Li P. Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats. Diabetes Metab Syndr Obes 2019; 12:1091-1103. [PMID: 31372019 PMCID: PMC6628146 DOI: 10.2147/dmso.s208989] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background and purpose: Ginsenoside Rg1 (GS Rg1), as an important active substance of Panax ginseng, has been proven to have elaborate cardioprotective effects. The purpose of this study was to detect that GS Rg1 attenuates cardiac oxidative stress and inflammation in streptozotocin (STZ)-induced diabetic rats (DM). Methods: Cardiac function was assessed by heart rate and blood pressure. Markers relevant to myocardial oxidative stress and antioxidant capacity, and inflammatory reaction factors were detected. The mRNA and protein expression were detected by RT-qPCR and Western blot, respectively. Results: GS Rg1 treatment significantly reduced the symptoms of cardiac hypertrophy and hypertension, and also decreased oxidative stress, inflammation response, NF-κB expression and NLRP3 inflammasome expression. GS Rg1 enhanced mitochondrial biogenesis by increasing PGC-1α, complex III and complex Ⅳ expression. GS Rg1 treatment significantly increased the expression of AMPK, Nrf2 and HO-1 in cardiac tissues. Conclusion: GS Rg1 exhibited protective effect against STZ-induced cardiac dysfunction, which is potentially associated with AMPK/Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Qiaoji Qin
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
| | - Nan Lin
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
| | - Huan Huang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
| | - Xuezhi Zhang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
| | - Xuelei Cao
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
| | - Yongbin Wang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
| | - Peng Li
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao266003, Shandong, People’s Republic of China
- Correspondence: Peng LiEmergency Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao266003, Qingdao, People’s Republic of ChinaTel +86 532 8291 1201Fax +86 05 328 291 1201Email
| |
Collapse
|
17
|
Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2018; 109:2155-2172. [PMID: 30551473 DOI: 10.1016/j.biopha.2018.11.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are considered one of the leading causes of morbidity and mortality among diabetic patients. Diabetic cardiomyopathy (DCM) is a type of cardiovascular damage presents in diabetic patients independent of the coexistence of ischemic heart disease or hypertension. It is characterized by impaired diastolic relaxation time, myocardial dilatation and hypertrophy and reduced systolic and diastolic functions of the left ventricle. Molecular mechanisms underlying these pathological changes in the diabetic heart are most likely multifactorial and include, but not limited to, oxidative/nitrosative stress, increased advanced glycation end products, mitochondrial dysfunction, inflammation and cell death. The aim of this review is to address the major molecular mechanisms implicated in the pathogenesis of DCM. In addition, this review provides studies conducted to determine the pharmacological effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, focusing on its therapeutic potential against the processes involved in the pathogenesis and progression of DCM. EGCG has been shown to exert several potential therapeutic properties both in vitro and in vivo. Given its therapeutic potential, EGCG might be a promising drug candidate to decrease the morbidity and mortality associated with DCM and other diabetes complications.
Collapse
|
18
|
Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: Possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem Toxicol 2018; 121:95-108. [DOI: 10.1016/j.fct.2018.08.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/11/2023]
|
19
|
Renaud J, Bassareo V, Beaulieu J, Pinna A, Schlich M, Lavoie C, Murtas D, Simola N, Martinoli MG. Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal motor pathway. Neurobiol Aging 2018; 69:117-128. [DOI: 10.1016/j.neurobiolaging.2018.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/12/2018] [Accepted: 05/06/2018] [Indexed: 11/27/2022]
|
20
|
Jain PG, Mahajan UB, Shinde SD, Surana SJ. Cardioprotective role of FA against isoproterenol induced cardiac toxicity. Mol Biol Rep 2018; 45:1357-1365. [PMID: 30105550 DOI: 10.1007/s11033-018-4297-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The present study was designed to investigate the protective effect of ferulic acid (FA) against isoproterenol (ISO)-induced cardiac toxicity in rats. Isoproterenol challenged in a dose of 85 mg/kg body weight (b.w.) subcutaneously for two consecutive days in the experimental group resulted in acute cardiac toxicity as evidenced by changes in electrocardiogram (ECG) pattern and marked elevation of serum cardiac enzymes viz aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine kinase (CK-MB) and lactate dehydrogenase (LDH) also increases inflammatory cytokines. Moreover, acute toxicity effect was exhibited by disturbance in the antioxidant system as decrease in activities of superoxide dismutase (SOD) and glutathione (GSH) with the rise in activities of malondialdehyde (MDA) and nitric oxide (NO). Pre-treatment with FA at the increasing dose of (10, 20 and 40 mg/kg b.w.) orally for 28 consecutive days followed by isoproterenol injection for 2 days significantly attenuated changes in serum cardiac enzymes. Furthermore, histopathological evaluation confirmed the restoration of cellular architecture in FA pretreated rats. The cardioprotective effect of FA was comparable with standard drug treatment metoprolol. Taken together, FA demonstrated cardioprotective effect against ISO-induced cardiac toxicity by normalization of serum cardiac biomarkers, alleviating oxidative stress and augmenting endogenous antioxidant system.
Collapse
Affiliation(s)
- Pankaj G Jain
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India.
| | - Umesh B Mahajan
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| | - Sachin D Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| | - Sanjay J Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
21
|
Al-Damry NT, Attia HA, Al-Rasheed NM, Al-Rasheed NM, Mohamad RA, Al-Amin MA, Dizmiri N, Atteya M. Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy. Biomed Pharmacother 2018; 107:347-358. [PMID: 30099338 DOI: 10.1016/j.biopha.2018.07.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/07/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the protective effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on diabetic cardiomyopathy (DCM)-associated apoptosis and if this effect is mediated via modulating the activity of the survival kinases; AMP-activated protein kinase (AMPK) and Akt & the apoptotic kinases; glycogen synthase kinase-3 β (GSK-3β) and p38 mitogen-activated protein kinase (p38MAPK). Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg). Diabetic rats were treated with sitagliptin (10 mg/kg/day, p.o.) and metformin (200 mg/kg/day, p.o. as positive control) for six weeks. Chronic hyperglycemia resulted in elevation of serum cardiac biomarkers reflecting cardiac damage which was supported by H&E stain. The mRNA levels of collagen types I and III were augmented reflecting cardiac fibrosis and hypertrophy which was supported by Masson trichome stain and enhanced phosphorylation of p38MAPK. Cardiac protein levels of cleaved casapse-3, BAX were elevated, whereas, the levels of Bcl-2 and p-BAD were reduced indicating cardiac apoptosis which could be attributed to the diabetes-induced reduced phosphorylation of Akt and AMPK with concomitant augmented activation of GSK-3β and p38MAPK. Protein levels of liver kinase B-1, the upstream kinase of AMPK were also supressed. Sitagliptin administration alleviated the decreased phosphorylation of AMPK and Akt, inactivated the GSK-3β and p38 AMPK, therefore, attenuating the apoptosis and hypertrophy induced by hyperglycemia in the diabetic heart. In conclusion, sitagliptin exhibits valuable therapeutic potential in the management of DCM by attenuating apoptosis. The underlying mechanism may involve the modulating activity of AMPK, Akt, GSK-3β and p38MAPK.
Collapse
Affiliation(s)
- Nouf T Al-Damry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nawal M Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raeesa A Mohamad
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha A Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nduna Dizmiri
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammad Atteya
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Li W, Kandhare AD, Mukherjee AA, Bodhankar SL. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways. EXCLI JOURNAL 2018; 17:399-419. [PMID: 29805347 PMCID: PMC5962903 DOI: 10.17179/excli2018-1036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
Background: Delayed wound healing is a diverse, multifactorial, complex and inter-related complication of diabetes resulting in significant clinical morbidity. Hesperidin possesses potent antidiabetic and wound healing activity. Aim: To evaluate the potential of hesperidin against experimentally induced diabetes foot ulcers. Methods: Diabetes was induced experimentally by streptozotocin (STZ, 55 mg/kg, i.p.) in Sprague Dawley rats (180-220 g) and wounds were created on the dorsal surface of the hind paw of rats. Hesperidin (25, 50 and 100 mg/kg, p.o.) was administered for 21 days after wound stabilization. Various biochemical, molecular and histopathological parameters were evaluated in wound tissue. Results: STZ-induced decrease in body weight and increase in blood glucose, food, and water intake was significantly (p < 0.05) inhibited by hesperidin (50 and 100 mg/kg) treatment. It showed a significant increase (p < 0.05) in percent wound closure and serum insulin level. The STZ-induced decrease in SOD and GSH level, as well as elevated MDA and NO levels, were significantly (p < 0.05) attenuated by hesperidin (50 and 100 mg/kg) treatment. Intraperitoneal administration of STZ caused significant down-regulation in VEGF-c, Ang-1, Tie-2, TGF-β and Smad 2/3 mRNA expression in wound tissues whereas hesperidin (50 and 100 mg/kg) treatment showed significant up-regulation in these mRNA expressions. STZ-induced alteration in would architecture was also attenuated by hesperidin (50 and 100 mg/kg) treatment. Conclusion: Together, treatment with hesperidin accelerate angiogenesis and vasculogenesis via up-regulation of VEGF-c, Ang-1/Tie-2, TGF-β and Smad-2/3 mRNA expression to enhance wound healing in chronic diabetic foot ulcers.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Dermatology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi, 710003, China
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India.,Jalan Universiti Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| |
Collapse
|
23
|
Abdel-Mageid AD, Abou-Salem MES, Salaam NMHA, El-Garhy HAS. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:126-134. [PMID: 29747745 DOI: 10.1016/j.phymed.2018.04.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/07/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Modified herbal medicines implicate the combination of several therapeutic practices of native systems of medicine that may extend many earlier generations, which frequently afford valuable therapeutic benefits. PURPOSE In this study, the role of nano-curcumin and aged garlic extract (AGE) as two modified phytomedicines on alleviating both of advanced glycation end products (AGEPs) and oxidative stress (OS) in streptozotocin (STZ) induced diabetic rats were investigated during this study. METHOD Nano-curcumin and AGE suspension were orally administrated at a dose of 300, 500 mg/kg body weight respectively. Serum glucose, insulin, total cholesterol, triglycerides and myocardial enzyme activities including creatine kinase-isoenzyme (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were determined biochemically, while quantitative real-time polymerase chain reaction (qRT-PCR)-test had been used to determine relative of manganese-superoxide dismutase (Mn-SOD) and receptor for advanced glycation end products (RAGE) gene expressions in the heart tissue of rats. Structure of rat's heart tissue was examined by histopathological analysis (H&E). RESULTS AGE increased the body weight and insulin concentration, while, it decreased serum glucose concentration, CK-MB, and LDH enzyme activities in comparing with the diabetic group. In addition, total cholesterol, triglycerides, and AST didn't show any significant changes in serum values of AGE compared to diabetic rats. Nano-curcumin suspension decreased the serum levels of triglycerides, CK- MB, LDH, and AST. While, there were non-significant changes in the body weight, glucose, insulin, and total cholesterol level of the same group compared with the STZ- untreated induced diabetic rats. The transcript quantity of manganese-superoxide dismutase gene (Mn-SOD) was highly accumulated (3.25 and 3.87-fold) in the heart tissue sample of the induced diabetic rats in response to both nano-Curcumin and AGE suspension respectively. While AGE was the most potent treatment where it caused down regulation of the receptor for advanced glycation end products gene (RAGE) expression (1.79-fold). Results of histopathological analyses under the light microscope showed restoring the structural integrity of the myocytes towards normalization in diabetic hearts treated with each of nano-curcumin and AGE suspension compared with the untreated diabetic heart samples. CONCLUSION Nano-curcumin and AGE suspension have a great therapeutic potential in the treatment of DCM, Diabetic cardiomyopathy, by attenuating cardiac inflammation, myocardial fibrosis, and programmed myocardial cell deaths through inhibiting OS and AGEPs accumulation in diabetic heart tissue. Furthermore, the hypoglycemic antioxidant properties of AGE resulted in more potent therapeutic effect than nano-curcumin in the treatment of diabetic hearts.
Collapse
Affiliation(s)
- Afaf D Abdel-Mageid
- Biochemistry Department, Faculty of Vet. Med., Benha Universtiy, Moshtohor, Tukh, Qalubia, Egypt
| | - Mohamed E S Abou-Salem
- Department of Forensic Medicine and Toxicology, Faculty of Vet. Med., Benha University, Moshtohor, Tukh, Qalubia, Egypt
| | - Nancy M H A Salaam
- Biochemistry Department, Faculty of Vet. Med., Benha Universtiy, Moshtohor, Tukh, Qalubia, Egypt
| | - Hoda A S El-Garhy
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qalubia, Egypt.
| |
Collapse
|
24
|
Mukherjee AA, Kandhare AD, Bodhankar SL. Elucidation of protective efficacy of Pentahydroxy flavone isolated from Madhuca indica against arsenite-induced cardiomyopathy: Role of Nrf-2, PPAR-γ, c-fos and c-jun. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:172-185. [PMID: 28942082 DOI: 10.1016/j.etap.2017.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/29/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Madhuca indica J. F. Gmel. (Sapotaceae) is widely used ethnobotanically as anti-diabetic, antipyretic, hepatoprotective, anti-inflammatory and analgesic. It was shown to possess potent anti-apoptotic property. THE AIM OF THE STUDY To evaluate the possible mechanism of action of isolated phytoconstituent from Madhuca indica Leaves methanolic extract (MI-ALC) on arsenic-induced cardiotoxicity in rats. MATERIALS AND METHODS The 3,5,7,3',4'-Pentahydroxy flavone (QTN) was isolated and characterized by using HPTLC, 1H NMR, and LC-MS from MI-ALC. QTN (5, 10 and 20mg/kg, p.o.) was administered in arsenic intoxicated rats (5mL/kg, p.o.) for 28days and evaluated for various behavioral, biochemical, molecular and ultra-histological changes. RESULTS Treatment with QTN (10 and 20mg/kg, p.o.) significantly inhibited (p<0.05) arsenic-induced electrocardiographic, hemodynamic and left ventricular function alterations. Elevated levels of cardiac markers (LDH, CK-MB, AST, ALT, and ALP), altered lipid metabolism (total cholesterol, triglyceride, LDL, HDL, and VLDL) was significantly restored (p<0.05) by QTN. It also significantly inhibited (p<0.05) altered cardiac oxido-nitrosative stress, Na-K-ATPase level and mitochondrial enzymes (I-IV) activity after arsenite administration. QTN significantly increased (p<0.05) myocardial Nrf-2, PPAR-γ and significantly decreased (p<0.05) myocardial c-fos and c-jun mRNA expressions. Flow cytometric analysis showed that treatment with QTN (10 and 20mg/kg) significantly inhibited (p<0.05) arsenite-induce ROS and apoptosis. It also reduced ultra-histological aberrations induced by sodium arsenite. CONCLUSION Administration of 3,5,7,3',4'- Pentahydroxy flavone (i.e. Quercetin (QTN)) isolated from MI-ALC showed significant protection against arsenic-induced oxido-nitrosative stress and myocardial injury via modulation of Nrf2, PPAR-γ, and apoptosis.
Collapse
Affiliation(s)
- Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra 411038, India
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra 411038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra 411038, India.
| |
Collapse
|
25
|
Kandhare AD, Mukherjee A, Bodhankar SL. Antioxidant for treatment of diabetic nephropathy: A systematic review and meta-analysis. Chem Biol Interact 2017; 278:212-221. [DOI: 10.1016/j.cbi.2017.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/07/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023]
|
26
|
Anti-inflammatory and antioxidant potential of Guaianolide isolated from Cyathocline purpurea: Role of COX-2 inhibition. Int Immunopharmacol 2017; 52:110-118. [PMID: 28888779 DOI: 10.1016/j.intimp.2017.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/13/2017] [Accepted: 09/02/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammation activated by oxidative stress can cause various diseases, such as asthma, rheumatoid arthritis, cancer, diabetes, etc. Plant constituents with sesquiterpene lactones possess antioxidant and anti-inflammatory properties. AIM To determine the antioxidant and anti-inflammatory potential of isolated phytoconstituent from Cyathocline purpurea Buch-Ham ex D (CP). Don in laboratory animals. Furthermore, to understand the interactions involved in the binding of this compound to cyclooxygenase-2 (COX-2) via computational docking. METHODS Phytoconstituent was isolated, purified and well characterized (using IR, NMR, and MS) from ethyl acetate fraction of CP methanolic extract. It was then evaluated for its in-vitro antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and hydroxyl (OH) radical assays as well as in-vivo anti-inflammatory potential against carrageenan-induced paw edema model in rats. The molecular docking study was performed against the crystal structure of COX-2 to evaluate the binding potential of phytoconstituent towards this enzyme. RESULTS The isolated compound 6α-hydroxy-4 [14], 10 [15]-guainadien-8α, 12-olide (HGN) showed significant (p<0.001) antioxidant activity with IC50 values of 76μg/mL. Administration of HGN (10 and 20mg/kg) significantly (p<0.001) reduced the increased paw volume after subplantar administration of carrageenan. It also exhibits good binding affinity towards with COX-2 with a docking score of -8.98 and Glide binding energy of -36.488kcal/mol shedding light on the potential mechanism of anti-inflammatory action. CONCLUSIONS The presence of hydroxyl group in HGN provides a credential to its in-vivo anti-inflammatory and in-vitro antioxidant activities. Furthermore, the good binding affinity of HGN for the active site of COX-2 may open novel vistas in therapeutic option with natural antioxidants like Cyathocline purpurea to treat various inflammatory disorders.
Collapse
|
27
|
Yang B, Wang F, Cao H, Liu G, Zhang Y, Yan P, Li B. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells. Exp Ther Med 2017; 14:4224-4230. [PMID: 29104638 PMCID: PMC5658723 DOI: 10.3892/etm.2017.5080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/05/2017] [Indexed: 01/02/2023] Open
Abstract
Caffeoylxanthiazonoside (CYT) is an active constituent isolated from the fruit of the Xanthium strumarium L plant. The aim of the present study was to investigate the cardioprotective effects of oral administration of CYT on chronic heart failure (CHF) and its underlying mechanisms. A rat model of CHF was first established, and cardiac function indices, including the heart/body weight index, left heart/body weight index, fractional shortening (FS), ejection fraction (EF), cardiac output (CO) and heart rate (HR), were subsequently determined by cardiac ultrasound. Serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK), and the levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in heart tissues and cardiac microvascular endothelial cells (CMECs) were determined using ELISA. In addition, the protein expression levels of nuclear factor-κB (NF-κB) signaling pathway members were determined by western blotting in CMECs. The results demonstrated that oral administration of 10, 20, 40 mg/kg CYT significantly reduced cardiac hypertrophy and reversed FS, EF, CO and HR when compared with CHF model rats. In addition, CYT administration significantly decreased the levels of TNF-α, IL-6 and IL-1β in heart tissues, as well as serum LDH and CK levels. Furthermore, exposure of CMECs to 20, 40 and 80 µg/ml CYT significantly decreased the production of TNF-α, IL-1β and IL-6. The protein expression levels of cytoplasmic NF-κB p65 and IκB were upregulated, while nuclear NF-κB p65 was downregulated following treatment of CMECs with 20, 40 and 80 µg/ml CYT when compared with untreated CHF model controls. In conclusion, the results of the current study suggest that CYT demonstrates cardioprotective effects in CHF model rats by suppressing the expression of pro-inflammatory cytokines and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Yang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Fei Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Huili Cao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Guifang Liu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Yuean Zhang
- Department of Science and Education, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Ping Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
28
|
Mukherjee AA, Kandhare AD, Rojatkar SR, Bodhankar SL. Ameliorative effects of Artemisia pallens in a murine model of ovalbumin-induced allergic asthma via modulation of biochemical perturbations. Biomed Pharmacother 2017; 94:880-889. [PMID: 28810518 DOI: 10.1016/j.biopha.2017.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Asthma is a chronic, heterogeneous airway disorder characterized by airway inflammatory and remodeling. Artemisia pallens has been reported to possess antioxidant, anti-inflammatory and Anti-allergic potential. OBJECTIVE To evaluate the anti-asthmatic effects of methanolic extract of Artemisia pallens (APME) against ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) in rats. MATERIALS AND METHOD AHR was induced in male Sprague-Dawley rats (180-200g) by intraperitoneal (i.p.) injection of OVA and boosted with an identical OVA solution (s.c.) on day 7. Rats were either treated orally with vehicle (10mg/kg), montelukast (10mg/kg) or APME (100, 200 and 400mg/kg) for next 28days. At the end treatments, various biochemical, molecular (RT-PCR and ELISA analysis) and histological parameters were evaluated. RESULTS APME (200 and 400mg/kg) significantly attenuated (p<0.05) OVA-induced alteration in lung functions measured by Whole-body plethysmography. Increased Bronchoalveolar Lavage (BAL) fluid differential cell count, as well as total protein and albumin in BAL fluid and lungs, was significantly decreased (p<0.05) by APME. It also significantly attenuated (p<0.05) elevated lung oxido-nitrosative stress, myeloperoxidase, and serum IgE levels. OVA-induced down-regulation in lung Nrf2 and upregulation in TNF-α, IL-1β, IL-4, IL-6, TGF-β mRNA expression was significantly attenuated (p<0.05) by APME (200 and 400mg/kg) treatment. Histopathological analysis of lung tissue showed that APME treatment reduced OVA-induced inflammatory influx and fibrosis. CONCLUSION Artemisia pallens simultaneously orchestrate plethora of mechanisms viz. modulations of IgE, TGF-β, TNF-α, IL's and Nrf-2 levels to exhibit its anti-asthmatic potential in OVA-induced AHR in rats.
Collapse
Affiliation(s)
- Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune, 411 038, India
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune, 411 038, India
| | - Supada R Rojatkar
- R&D Centre in Pharmaceutical Sciences and Applied Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune, 411 038, India.
| |
Collapse
|
29
|
Kandhare AD, Bodhankar SL, Mohan V, Thakurdesai PA. Glycosides Based Standardized Fenugreek Seed Extract Ameliorates Bleomycin-induced Liver Fibrosis in Rats Via Modulation of Endogenous Enzymes. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2017; 9:185-194. [PMID: 28979073 PMCID: PMC5621181 DOI: 10.4103/0975-7406.214688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Liver fibrosis a complex process of excess collagen deposition resulted in disturbance of hepatic cellar function. Glycosides based standardized fenugreek seed extract (SFSE-G) has potent anti-inflammatory, antioxidant, and anti-fibrotic properties. OBJECTIVE The aim of this study is to evaluate the hepatoprotective potential of SFSE-G against bleomycin (BLM)-induced liver fibrosis in laboratory animals. MATERIALS AND METHODS Sprague-Dawley rats (180-220 g) were assigned to various groups, namely, normal, sham, BLM control, SFSE-G (5, 10, 20, and 40 mg/kg, p.o.), methylprednisolone (10 mg/kg, p.o.), and sildenafil (25 mg/kg, p.o.). Liver fibrosis was induced in various groups (except normal and sham) by single intratracheal BLM (6 IU/kg) injection. Various biochemical, molecular (reverse transcription polymerase chain reaction) and histological parameters were evaluated. RESULTS Intratracheal BLM administration caused significant induction (P < 0.001) of hepatotoxicity and liver fibrosis reflected by elevated levels of serum aspartate transaminase (AST), alanine transaminase (ALT), total as well as direct bilirubin, and gamma-glutamyl transferase (GGT). Administration of SFSE-G (20 and 40 mg/kg, p.o.) significantly reduced (P < 0.001) levels of AST, ALT, and GGT and significantly increased (P < 0.001) the level of serum albumin. BLM-induced elevated liver oxidative stress and decreased total antioxidant capacity was significantly restored (P < 0.001) by SFSE-G (20 and 40 mg/kg) treatment. It also significantly inhibited BLM-induced alteration in liver Farnesoid X receptor (FXR) mRNA expression. SFSE-G treatment reduced histopathological alteration induced by BLM in liver. CONCLUSION SFSE-G exerts its hepatoprotective potential via inhibition of oxido-nitrosative stress and modulation of FXR mRNA expression thus ameliorates BLM-induced liver fibrosis.
Collapse
Affiliation(s)
- Amit D. Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra, India
| | - Subhash Laxmanrao Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra, India
| | - Vishwaraman Mohan
- Department of Scientific Affairs and Quality Assurance, Indus Biotech Private Limited, Kondhwa, Pune, Maharashtra, India
| | - Prasad A. Thakurdesai
- Department of Scientific Affairs and Quality Assurance, Indus Biotech Private Limited, Kondhwa, Pune, Maharashtra, India
| |
Collapse
|
30
|
Kandhare AD, Mukherjee AA, Bodhankar SL. Neuroprotective effect of Azadirachta indica standardized extract in partial sciatic nerve injury in rats: Evidence from anti-inflammatory, antioxidant and anti-apoptotic studies. EXCLI JOURNAL 2017; 16:546-565. [PMID: 28694757 PMCID: PMC5491907 DOI: 10.17179/excli2017-161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 11/10/2022]
Abstract
Chronic neuropathic pain is a common and widely recognized pain syndrome for patients and difficult to manage for physicians. Azadirachta indica (AI) possesses analgesic, anti-inflammatory, and antioxidant properties. To evaluate the neuroprotective effect of AI standardized extract in an animal model of peripheral neuropathy induced by partial sciatic nerve ligation (PSNL). PSNL was induced in male Wistar rats (180-200 g) with tight ligation of the nerve. Rats received treatment with either vehicle i.e. distilled water (PSNL control), Pyridoxine (100 mg/kg, p.o.) or AI (100, 200 and 400 mg/kg, p.o.) for 28 days. Various behavioral parameters, biochemical, molecular and histological parameters were evaluated. PSNL resulted in a significant decrease (p < 0.05) in allodynia, hyperalgesia, motor coordination and motor nerve conduction velocity (MNCV) whereas chronic treatment with AI (200 and 400 mg/kg) significantly attenuated (p < 0.05) these behavioral changes. Enhanced activity of oxidative-nitrosative stress, inflammatory mediators (TNF-α, IL-1β, and NF-κB) as well as mRNA expression of Bax, Caspase-3, and iNOs were significantly attenuated (p < 0.05) by AI treatment. It also significantly increased (p < 0.05) peripheral blood oxygen content and Bcl-2 mRNA expression. The flow cytometric analysis revealed that AI (200 and 400 mg/kg) treatment significantly attenuated neural apoptosis and reactive oxygen species levels. PSNL induced histological aberrations were also decreased by AI treatment. Azadirachta indica exerts its neuroprotection against PSNL induced neuropathic pain via inhibition of oxidative-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis to improve MNCV (graphical abstract, Figure 1(Fig. 1)).
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| |
Collapse
|
31
|
Tang Z, Yang L, Zhang X. Retracted Article: Vitexin mitigates myocardial ischemia reperfusion-induced damage by inhibiting excessive autophagy to suppress apoptosis via the PI3K/Akt/mTOR signaling cascade. RSC Adv 2017. [DOI: 10.1039/c7ra12151b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia reperfusion (MI/R) injury is reported to induce apoptosis and autophagy of myocardial cells and contribute to adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Zhaobin Tang
- Department of Cardiology
- The First Hospital of Zibo
- China
| | - Lei Yang
- Department of Cardiology
- Hospital of Laiwu Steel Group
- China
| | - Xuesong Zhang
- Department of Cardiology
- Liaocheng People's Hospital
- Liaocheng
- China
| |
Collapse
|
32
|
Yan B, Ren J, Zhang Q, Gao R, Zhao F, Wu J, Yang J. Antioxidative Effects of Natural Products on Diabetic Cardiomyopathy. J Diabetes Res 2017; 2017:2070178. [PMID: 29181412 PMCID: PMC5664314 DOI: 10.1155/2017/2070178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/08/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes and results in high mortality. It is therefore imperative to develop novel therapeutics for the prevention or inhibition of the progression of DCM. Oxidative stress is a key mechanism by which diabetes induces DCM. Hence, targeting of oxidative stress-related processes in DCM could be a promising therapeutic strategy. To date, a number of studies have shown beneficial effects of several natural products on the attenuation of DCM via an antioxidative mechanism of action. The aim of the present review is to provide a comprehensive and concise overview of the previously reported antioxidant natural products in the inhibition of DCM progression. Clinical trials of the antioxidative natural products in the management of DCM are included. In addition, discussion and perspectives are further provided in the present review.
Collapse
Affiliation(s)
- Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Fenglian Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
33
|
Deo P, Hewawasam E, Karakoulakis A, Claudie DJ, Nelson R, Simpson BS, Smith NM, Semple SJ. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. Altern Ther Health Med 2016; 16:435. [PMID: 27809834 PMCID: PMC5095981 DOI: 10.1186/s12906-016-1421-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Background There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I’yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Methods Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Results Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. Conclusions The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1421-5) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Gamal SM, Sadek NB, Rashed LA, Shawky HM, Gamal El-Din MM. Effect of gamma-carboxylase inhibition on serum osteocalcin may be partially protective against developing diabetic cardiomyopathy in type 2 diabetic rats. Diab Vasc Dis Res 2016; 13:405-417. [PMID: 27488359 DOI: 10.1177/1479164116653239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIMS To investigate the possible protective effect of elevated undercarboxylated osteocalcin on diabetic cardiomyopathy mechanisms and risk factors. METHODS In all, 32 male rats were divided into four groups: control, diabetic, diabetic warfarin and normal warfarin-treated groups. Isolated heart functions were assessed; fasting serum insulin, glucose and glycosylated haemoglobin, homeostasis model assessment insulin resistance and lipid profile were investigated. Serum undercarboxylated osteocalcin and adiponectin were also measured. In cardiac tissue, malondialdehyde content, acyl-CoA dehydrogenase gene expression, Bax/Bcl2 ratio, sarcoendoplasmic reticulum calcium ATPase and osteocalcin receptor (G protein-coupled receptor family C group 6 member A) genes expression were investigated. RESULTS Prophylactic elevation of undercarboxylated osteocalcin was accompanied by improved insulin sensitivity and lipid profile, increased serum adiponectin, upregulated myocardial osteocalcin receptor with preserved left ventricular function, decreased cardiac malondialdehyde content, acyl-CoA dehydrogenase and Bax/Bcl2 ratio. CONCLUSION Undercarboxylated osteocalcin was suggested to have protective effects against diabetic cardiomyopathy, possibly through direct action on upregulated G protein-coupled receptor family C group 6 member A and indirectly via adiponectin. These effects may be mediated through antagonizing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Sarah Mahmoud Gamal
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen Bakr Sadek
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Mohamed Shawky
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
35
|
Devkar ST, Kandhare AD, Zanwar AA, Jagtap SD, Katyare SS, Bodhankar SL, Hegde MV. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS. PHARMACEUTICAL BIOLOGY 2016; 54:2394-2403. [PMID: 27043749 DOI: 10.3109/13880209.2016.1157193] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Overdose of acetaminophen (APAP) is common in humans and is often associated with hepatic damage. Withania somnifera (L.) Dunal (Solanaceae) shows multiple pharmacological activities including antioxidant and anti-inflammatory potential. OBJECTIVE To evaluate the possible mechanism of hepatoprotective activity of withanolide-rich fraction (WRF) isolated from a methanolic extract of Withania somnifera roots. MATERIALS AND METHODS Hepatotoxicity was induced by oral administration of APAP (750 mg/kg, p.o.) for 14 d. The control group received the vehicle. APAP-treated animals were given either silymarin (25 mg/kg) or graded doses of WRF (50, 100 and 200mg/kg) 2 h prior to APAP administration. Animals were killed on 15th day and blood and liver tissue samples were collected for the further analysis. RESULTS In WRF-treated group, there was significant and dose-dependent (p < 0.01 and p < 0.001) decrease in serum bilirubin, ALP, AST and ALT levels with significant and dose-dependent (p < 0.01 and p < 0.001) increase in hepatic SOD, GSH and total antioxidant capacity. The level of MDA and NO decreased significantly (p < 0.01) by WRF treatment. Up-regulated mRNA expression of TNF-α, IL-1β, COX-II and iNOS was significantly down-regulated (p < 0.001) by WRF. Histological alternations induced by APAP in liver were restored to near normality by WRF pretreatment. CONCLUSION WRF may exert its hepatoprotective action by alleviating inflammatory and oxido-nitrosative stress via inhibition of TNF-α, IL-1β, COX-II and iNOS.
Collapse
Affiliation(s)
- Santosh T Devkar
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Amit D Kandhare
- b Department of Pharmacology , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Anand A Zanwar
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Suresh D Jagtap
- c Interactive Research School in Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Surendra S Katyare
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Subhash L Bodhankar
- b Department of Pharmacology , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Mahabaleshwar V Hegde
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| |
Collapse
|
36
|
Sadar S, Kaspate D, Vyawahare N. Protective effect of L-glutamine against diabetes-induced nephropathy in experimental animal: Role of KIM-1, NGAL, TGF-β1, and collagen-1. Ren Fail 2016; 38:1483-1495. [PMID: 27756197 DOI: 10.1080/0886022x.2016.1227918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy is a serious microvascular complication and one of the main causes of end-stage renal disease. L-Glutamine (LG) is naturally occurring amino acids with antidiabetic and antioxidant potential. The aim of present investigation was to evaluate the potential of LG against streptozotocin (STZ)-induced diabetic nephropathy (DN) in laboratory rats. DN was induced in male Wistar rats (200-220 g) by intraperitoneal administration of STZ (55 mg/kg). Animals were treated orally with either distilled water (10 mg/kg) or LG (250, 500, and 1000 mg/kg) or Sitagliptin (5 mg/kg). Various biochemical, molecular, and histological (hematoxylin-eosin and Masson's trichrome stain) parameters were assessed. Administration of LG (500 and 1000 mg/kg) significantly inhibited (p < .05) STZ-induced alterations in serum and urine biochemistry (urine creatinine, uric acid, albumin, and BUN). It also significantly increased creatinine clearance rate. STZ induced increase in renal oxidonitrosative stress was significantly decreased (p < .05) by LG (500 and 1000 mg/kg) treatment. Upregulated renal KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expression after STZ administration was significantly inhibited (p < .05) by LG (500 and 1000 mg/kg) treatment. Correlation analysis also revealed that antidiabetic potential of LG attenuates STZ-induced elevated renal KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expression. Histopathological alteration induced by STZ in renal tissue was ameliorated by LG treatment. In conclusion, results of present investigation suggest that treatment with LG ameliorated STZ-induced DN via the inhibition of oxidonitrosative stress as well as downregulation of KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expressions.
Collapse
Affiliation(s)
- Smeeta Sadar
- a Padmashree Dr D. Y. Patil College of Pharmacy , Akurdi , Pune , Maharashtra , India
| | - Dipti Kaspate
- b Cognizant Technology Solution , Hinjewadi, Pune , Maharashtra , India
| | - Neeraj Vyawahare
- a Padmashree Dr D. Y. Patil College of Pharmacy , Akurdi , Pune , Maharashtra , India
| |
Collapse
|
37
|
Flax lignan concentrate attenuate hypertension and abnormal left ventricular contractility via modulation of endogenous biomarkers in two-kidney-one-clip (2K1C) hypertensive rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways. Chem Biol Interact 2016; 253:66-77. [DOI: 10.1016/j.cbi.2016.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 01/06/2023]
|
39
|
Adil M, Kandhare AD, Dalvi G, Ghosh P, Venkata S, Raygude KS, Bodhankar SL. Ameliorative effect of berberine against gentamicin-induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Ren Fail 2016; 38:996-1006. [DOI: 10.3109/0886022x.2016.1165120] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
40
|
Adil M, Kandhare AD, Ghosh P, Venkata S, Raygude KS, Bodhankar SL. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1. Ren Fail 2016; 38:1007-20. [DOI: 10.3109/0886022x.2016.1163998] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Honmore VS, Kandhare AD, Kadam PP, Khedkar VM, Sarkar D, Bodhankar SL, Zanwar AA, Rojatkar SR, Natu AD. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. Int Immunopharmacol 2016; 33:8-17. [PMID: 26849772 DOI: 10.1016/j.intimp.2016.01.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2015] [Accepted: 01/26/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inflammation triggered by oxidative stress can cause various ailments, such as cancer, rheumatoid arthritis, asthma, diabetes etc. In the last few years, there has been a renewed interest in studying the antioxidant and anti-inflammatory action of plant constituents such as flavonoids and diarylheptanoids. AIM To evaluate the antioxidant, anti-inflammatory activity and the total phenolic content of isolated compounds from Alpinia officinarum rhizomes. Furthermore, molecular docking was performed to study the binding mode of these compounds into the active site of cyclooxygenase-2 (COX-2). METHODS A. officinarum rhizomes were extracted by maceration, using methanol. This extract was further fractionated by partitioning with hexane, chloroform and ethyl acetate and these fractions on further purification resulted in isolation of five pure compounds. Characterization was carried out by using (1)H NMR, (13)C NMR and MS. They were further evaluated for antioxidant and anti-inflammatory activity using carrageenan-induced paw edema model in rats. Molecular docking study was performed using Glide module integrated in Schrodinger molecular modeling software. RESULTS The compounds were identified as 1,7-diphenylhept-4-en-3-one (1), 5-hydroxy-1,7-diphenyl-3-heptanone (2), 3,5,7-trihydroxyflavone (Galangin, 3), 3,5,7-trihydroxy-4'-methoxyflavone (Kaempferide, 4) and 5-hydroxy-7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-3-heptanone (5). The compound-3 and compound-5 (10mg/kg) showed significant (p<0.001) antioxidant and anti-inflammatory potential. Moreover, total phenolic content was detected as 72.96 mg and 51.18 mg gallic acid equivalent respectively. All the five isolates were found to be good binders with COX-2 (average docking score -9.03). CONCLUSIONS Galangin and 5-hydroxy-7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-3-heptanone exhibited anti-inflammatory and in-vitro antioxidant activity which may be due to presence of phenolic content in it. The molecular docking study revealed that these compounds have affinity towards COX-2 active site which can further be explored as selective COX-2 inhibitors. The results obtained in this work justify the use of A. officinarum in the treatment of inflammatory disorders like rheumatoid arthritis and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Varsha S Honmore
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College, Pune, Maharashtra 411004, India
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Parag P Kadam
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Vijay M Khedkar
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Dhiman Sarkar
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India.
| | - Anand A Zanwar
- Center for Innovation in Nutrition Health Disease, IRSHA, BVDU, Dhankawadi, Pune, Maharashtra 411043, India
| | - Supada R Rojatkar
- R&D Centre in Pharmaceutical Sciences and Applied Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India.
| | - Arun D Natu
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College, Pune, Maharashtra 411004, India.
| |
Collapse
|
42
|
Sawant SH, Bodhankar SL. Flax lignan concentrate reverses alterations in blood pressure, left ventricular functions, lipid profile and antioxidant status in DOCA-salt induced renal hypertension in rats. Ren Fail 2016; 38:411-23. [DOI: 10.3109/0886022x.2015.1136895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Adam SH, Giribabu N, Rao PV, Sayem ASM, Arya A, Panichayupakaranant P, Korla PK, Salleh N. Rhinacanthin C ameliorates hyperglycaemia, hyperlipidemia and pancreatic destruction in streptozotocin-nicotinamide induced adult male diabetic rats. Eur J Pharmacol 2016; 771:173-190. [PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
Collapse
Affiliation(s)
- Siti Hajar Adam
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pasupuleti Visweswara Rao
- Faculty of Agro Based Industry, University Malaysia Kelantan, Campus Jeli, Locked Bag No. 100, 17600 Jeli, Kelantan, Malaysia
| | - Abu Sadat Md Sayem
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany & Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Praveen Kumar Korla
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Adil M, Kandhare AD, Visnagri A, Bodhankar SL. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 2015; 37:1396-407. [PMID: 26337322 DOI: 10.3109/0886022x.2015.1074462] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.
Collapse
Affiliation(s)
- Mohammad Adil
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Amit D Kandhare
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Asjad Visnagri
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Subhash L Bodhankar
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| |
Collapse
|
45
|
Omega-3-fatty acid adds to the protective effect of flax lignan concentrate in pressure overload-induced myocardial hypertrophy in rats via modulation of oxidative stress and apoptosis. Int Immunopharmacol 2015; 28:751-63. [DOI: 10.1016/j.intimp.2015.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|