1
|
Pham DT, Tran TD. Drivergene.net: A Cytoscape app for the identification of driver nodes of large-scale complex networks and case studies in discovery of drug target genes. Comput Biol Med 2024; 179:108888. [PMID: 39047507 DOI: 10.1016/j.compbiomed.2024.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
There are no tools to identify driver nodes of large-scale networks in approach of competition-based controllability. This study proposed a novel method for this computation of large-scale networks. It implemented the method in a new Cytoscape plug-in app called Drivergene.net. Experiments of the software on large-scale biomolecular networks have shown outstanding speed and computing power. Interestingly, 86.67% of the top 10 driver nodes found on these networks are anticancer drug target genes that reside mostly at the innermost K-cores of the networks. Finally, compared method with those of five other researchers and confirmed that the proposed method outperforms the other methods on identification of anticancer drug target genes. Taken together, Drivergene.net is a reliable tool that efficiently detects not only drug target genes from biomolecular networks but also driver nodes of large-scale complex networks. Drivergene.net with a user manual and example datasets are available https://github.com/tinhpd/Drivergene.git.
Collapse
Affiliation(s)
- Duc-Tinh Pham
- Complex Systems and Bioinformatics Lab, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Viet Nam; Graduate University of Science and Technology, Academy of Science and Technology Viet Nam, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Tien-Dzung Tran
- Complex Systems and Bioinformatics Lab, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Viet Nam; Faculty of Information and Communication Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Viet Nam.
| |
Collapse
|
2
|
Miller KA, Degan S, Wang Y, Cohen J, Ku SY, Goodrich DW, Gelman IH. PTEN-regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. Oncogene 2024; 43:22-34. [PMID: 37875657 PMCID: PMC10766561 DOI: 10.1038/s41388-023-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
Affiliation(s)
- Karina A Miller
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- American Society of Human Genetics, Rockville, MD, 20852, USA
| | - Seamus Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Joseph Cohen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- Sequence, Inc., Morrisville, NC, USA
| | - Sheng Yu Ku
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA.
| |
Collapse
|
3
|
Xi Y, Wu Q, Zeng Y, Qi J, Li J, He H, Xu H, Hu J, Yan X, Bai L, Han C, Hu S, Wang J, Liu H, Li L. Identification of the genetic basis of the duck growth rate in multiple growth stages using genome-wide association analysis. BMC Genomics 2023; 24:285. [PMID: 37237371 DOI: 10.1186/s12864-023-09302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qifan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yutian Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xiping Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Miller K, Degan S, Wang Y, Cohen J, Ku SY, Goodrich D, Gelman I. PTEN regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. RESEARCH SQUARE 2023:rs.3.rs-2924750. [PMID: 37292818 PMCID: PMC10246239 DOI: 10.21203/rs.3.rs-2924750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastasis development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node disseminations, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
|
5
|
Wan G, Feng Z, Zhang Q, Li X, Ran K, Feng H, Luo T, Zhou S, Su C, Wei W, Wang N, Gao C, Zhao L, Yu L. Design and Synthesis of Fibroblast Growth Factor Receptor (FGFR) and Histone Deacetylase (HDAC) Dual Inhibitors for the Treatment of Cancer. J Med Chem 2022; 65:16541-16569. [PMID: 36449947 DOI: 10.1021/acs.jmedchem.2c01413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The activation of the STAT signal after incubation with the HDAC inhibitor represents a key mechanism causing resistance to HDAC inhibitors in some solid tumor cells, while the FGFR inhibitor could downregulate the level of pSTAT3. Inspired by the therapeutic prospect of FGFR/HDAC dual inhibitors, we designed and synthesized a series of quinoxalinopyrazole hydroxamate derivatives as FGFR/HDAC dual inhibitors. Among them, compound 10e potently inhibited FGFR1-4 and HDAC1/2/6/8 and presented improved antiproliferative effects of tumor cells. Further studies indicated that 10e also downregulated the expression of pSTAT3, potentially overcoming resistance to HDAC inhibitors. What's more, 10e significantly inhibited the tumor growth in HCT116 and SNU-16 xenograft models with favorable pharmacokinetic profiles. Collectively, these results supported that 10e could be a new drug candidate for malignant tumors.
Collapse
Affiliation(s)
- Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Kai Ran
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Huan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tianwen Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shuyan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Chang Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chao Gao
- Institute of Immunology and Inflammation,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Klose K, Packeiser EM, Granados-Soler JL, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Evaluation of the therapeutic potential of masitinib and expression of its specific targets c-Kit, PDGFR-α, PDGFR-β, and Lyn in canine prostate cancer cell lines. Vet Comp Oncol 2022; 20:641-652. [PMID: 35384248 DOI: 10.1111/vco.12817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Canine prostate cancer is classified into adenocarcinoma, transitional cell carcinoma with prostatic involvement, and mixed forms. Early metastatic spread leads to poor prognosis and limited treatment options. Masitinib is approved for the treatment of canine mast cell tumours and inhibits tyrosine kinase c-Kit, tyrosine-protein kinase Lyn (Lyn), and platelet-derived growth factor receptors alpha and beta (PDGFR-α, PDGFR-β), which are known to be expressed in canine prostate cancer. The aim of this study was to evaluate masitinib in an in vitro model consisting of cell lines from primary prostate adenocarcinoma, the associated lymph node metastasis of the same patient, and transitional cell carcinoma. To assess the suitability of the model system, the targets of masitinib were investigated by immunocytochemistry in the cell lines and by immunohistochemistry in the respective formalin-fixed, paraffin-embedded (FFPE) original neoplastic tissue. After exposure to masitinib, cell viability, cell count, apoptosis induction, and protein expression of c-Kit, Lyn, PDGFR-α, and PDGFR-β were assessed. To hedge the efficacy, two application protocols of masitinib (single application or 12-h double-dose regimen) were compared. Immunocytochemical and immunohistochemical analysis revealed increased Lyn, PDGFR-α, and PDGFR-β expression in cell lines and FFPE original neoplastic tissue compared to healthy prostate tissue. Masitinib exposure increased apoptosis, while the cell counts and cell viability decreased in a dose- and application interval-dependent manner, with increased impact in the 12-h double-dose regimen. These in vitro effects of masitinib in canine prostate cancer and associated metastasis support further in vivo research and modifications of the clinical treatment protocol in future studies.
Collapse
Affiliation(s)
- Katharina Klose
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Hugo Murua Escobar
- Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Carroll CP, Bolland H, Vancauwenberghe E, Collier P, Ritchie AA, Clarke PA, Grabowska AM, Harris AL, McIntyre A. Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia 2022; 25:41-52. [PMID: 35150959 PMCID: PMC8844412 DOI: 10.1016/j.neo.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Regions of low oxygen (hypoxia) are found in >50% of breast tumours, most frequently in the more aggressive triple negative breast cancer subtype (TNBC). Metastasis is the cause of 90% of breast cancer patient deaths. Regions of tumour hypoxia tend to be more acidic and both hypoxia and acidosis increase tumour metastasis. In line with this the metastatic process is dependent on pH regulatory mechanisms. We and others have previously identified increased hypoxic expression of Na+ driven bicarbonate transporters (NDBTs) as a major mechanism of tumour pH regulation. Hypoxia induced the expression of NDBTs in TNBC, most frequently SLC4A4 and SLC4A5. NDBT inhibition (S0859) and shRNA knockdown suppressed migration (40% reduction) and invasion (70% reduction) in vitro. Tumour xenograft metastasis in vivo was significantly reduced by NDBT knockdown. To investigate the mechanism by which NDBTs support metastasis, we investigated their role in regulation of phospho-signalling, epithelial-to-mesenchymal transition (EMT) and metabolism. NDBT knockdown resulted in an attenuation in hypoxic phospho-signalling activation; most notably LYN (Y397) reduced by 75%, and LCK (Y394) by 72%. The metastatic process is associated with EMT. We showed that NDBT knockdown inhibited EMT, modulating the expression of key EMT transcription factors and ablating the expression of vimentin whilst increasing the expression of E-cadherin. NDBT knockdown also altered metabolic activity reducing overall ATP and extracellular lactate levels. These results demonstrate that targeting hypoxia-induced NDBT can be used as an approach to modulate phospho-signalling, EMT, and metabolic activity and reduce tumour migration, invasion, and metastasis in vivo.
Collapse
Affiliation(s)
- Christopher Paul Carroll
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Hannah Bolland
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Eric Vancauwenberghe
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Pamela Collier
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Alison A Ritchie
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Alan McIntyre
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham.
| |
Collapse
|
8
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
9
|
Biswas P, Dey D, Rahman A, Islam MA, Susmi TF, Kaium MA, Hasan MN, Rahman MDH, Mahmud S, Saleh MA, Paul P, Rahman MR, Saber MA, Song H, Rahman MA, Kim B. Analysis of SYK Gene as a Prognostic Biomarker and Suggested Potential Bioactive Phytochemicals as an Alternative Therapeutic Option for Colorectal Cancer: An In-Silico Pharmaco-Informatics Investigation. J Pers Med 2021; 11:888. [PMID: 34575665 PMCID: PMC8470848 DOI: 10.3390/jpm11090888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SYK gene regulates the expression of SYK kinase (Spleen tyrosine kinase), an important non-receptor protein-tyrosine kinase for immunological receptor-mediated signaling, which is also considered a tumor growth metastasis initiator. An onco-informatics analysis was adopted to evaluate the expression and prognostic value of the SYK gene in colorectal cancer (CRC), the third most fatal cancer type; of late, it may be a biomarker as another targeted site for CRC. In addition, identify the potential phytochemicals that may inhibit the overexpression of the SYK kinase protein and minimize the human CRC. MATERIALS & METHODS The differential expression of the SYK gene was analyzed using several transcriptomic databases, including Oncomine, UALCAN, GENT2, and GEPIA2. The server cBioPortal was used to analyze the mutations and copy number alterations, whereas GENT2, Gene Expression Profiling Interactive Analysis (GEPIA), Onco-Lnc, and PrognoScan were used to examine the survival rate. The protein-protein interaction network of SYK kinase and its co-expressed genes was conducted via Gene-MANIA. Considering the SYK kinase may be the targeted site, the selected phytochemicals were assessed by molecular docking using PyRx 0.8 packages. Molecular interactions were also observed by following the Ligplot+ version 2.2. YASARA molecular dynamics simulator was applied for the post-validation of the selected phytochemicals. RESULTS Our result reveals an increased level of mRNA expression of the SYK gene in colorectal adenocarcinoma (COAD) samples compared to those in normal tissues. A significant methylation level and various genetic alterations recurrence of the SYK gene were analyzed where the fluctuation of the SYK alteration frequency was detected across different CRC studies. As a result, a lower level of SYK expression was related to higher chances of survival. This was evidenced by multiple bioinformatics platforms and web resources, which demonstrated that the SYK gene can be a potential biomarker for CRC. In this study, aromatic phytochemicals, such as kaempferol and glabridin that target the macromolecule (SYK kinase), showed higher stability than the controls, and we have estimated that these bioactive potential phytochemicals might be a useful option for CRC patients after the clinical trial. CONCLUSIONS Our onco-informatics investigation suggests that the SYK gene can be a potential prognostic biomarker of CRC. On the contrary, SYK kinase would be a major target, and all selected compounds were validated against the protein using in-silico drug design approaches. Here, more in vitro and in vivo analysis is required for targeting SYK protein in CRC.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Md. Aminul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
| | - Md. Abu Kaium
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - MD. Hasanur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Md. Al Saber
- Biotechnology, University of Pécs, Medical School, 7624 Pécs, Hungary;
| | - Hangyeul Song
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
10
|
Identification of Differentially Expressed Genes in Cervical Cancer Patients by Comparative Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8810074. [PMID: 33829064 PMCID: PMC8004372 DOI: 10.1155/2021/8810074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/09/2022]
Abstract
Cervical cancer is one of the most malignant reproductive diseases seen in women worldwide. The identification of dysregulated genes in clinical samples of cervical cancer may pave the way for development of better prognostic markers and therapeutic targets. To identify the dysregulated genes (DEGs), we have retrospectively collected 10 biopsies, seven from cervical cancer patients and three from normal subjects who underwent a hysterectomy. Total RNA isolated from biopsies was subjected to microarray analysis using the human Clariom D Affymetrix platform. Based on the results of principal component analysis (PCA), only eight samples are qualified for further studies; GO and KEGG were used to identify the key genes and were compared with TCGA and GEO datasets. Identified genes were further validated by quantitative real-time PCR and receiver operating characteristic (ROC) curves, and the highest Youden index was calculated in order to evaluate cutoff points (COPs) that allowed distinguishing of tissue samples of cervical squamous carcinoma patients from those of healthy individuals. By comparative microarray analysis, a total of 108 genes common across the six patients' samples were chosen; among these, 78 genes were upregulated and 26 genes were downregulated. The key genes identified were SPP1, LYN, ARRB2, COL6A3, FOXM1, CCL21, TTK, and MELK. Based on their relative expression, the genes were ordered as follows: TTK > ARRB2 > SPP1 > FOXM1 > LYN > MELK > CCL21 > COL6A3; this generated data is in sync with the TCGA datasets, except for ARRB2. Protein-protein interaction network analysis revealed that TTK and MELK are closely associated with SMC4, AURKA, PLK4, and KIF18A. The candidate genes SPP1, FOXM1, LYN, COL6A3, CCL21, TTK and MELK at mRNA level, emerge as promising candidate markers for cervical cancer prognosis and also emerge as potential therapeutic drug targets.
Collapse
|
11
|
Estrogen Receptor Signaling Pathways Involved in Invasion and Colony Formation of Androgen-Independent Prostate Cancer Cells PC-3. Int J Mol Sci 2021; 22:ijms22031153. [PMID: 33503805 PMCID: PMC7865506 DOI: 10.3390/ijms22031153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced and androgen-independent form of prostate cancer. Recent studies of rapid actions mediated by estrogen in the prostate and its relationship with CRPC are emerging. We have previously shown that estrogen receptor (ER) promotes migration and invasion of the androgen-independent prostate cancer cells PC-3, but the signaling pathways involved in these events remain to be elucidated. Therefore, this study aimed to analyze the role of ERα and ERβ in the activation of SRC, and the involvement of SRC and PI3K/AKT on invasion and colony formation of the PC-3 cells. Our results showed that the activation of ERα (using ERα-selective agonist PPT) and ERβ (using ERβ-selective agonist DPN) increased phosphorylation of SRC in PC-3 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, the effects of DPN and PPT on transmigration and soft agar colony formation assays were decreased. Furthermore, SRC is involved in the expression of the non-phosphorylated β-catenin. Finally, using PI3K specific inhibitor Wortmannin and AKT inhibitor MK2206, we showed that PI3K/AKT are also required for invasion and colony formation of PC-3 cells simulated by ER. This study provides novel insights into molecular mechanisms of ER in PC-3 cells by demonstrating that ER, located outside the cell nucleus, activates rapid responses molecules, including SRC and PI3K/AKT, which enhance the tumorigenic potential of prostate cancer cells, increasing cell proliferation, migration, invasion, and tumor formation.
Collapse
|
12
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
13
|
Matos B, Howl J, Jerónimo C, Fardilha M. The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Pharmacol Res 2020; 161:105145. [PMID: 32814172 DOI: 10.1016/j.phrs.2020.105145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common male-specific cancers worldwide, with high morbidity and mortality rates associated with advanced disease stages. The current treatment options of PCa are prostatectomy, hormonal therapy, chemotherapy or radiotherapy, the selection of which is usually dependent upon the stage of the disease. The development of PCa to a castration-resistant phenotype (CRPC) is associated with a more severe prognosis requiring the development of a new and effective therapy. Protein-protein interactions (PPIs) have been recognised as an emerging drug modality and targeting PPIs is a promising therapeutic approach for several diseases, including cancer. The efficacy of several compounds in which target PPIs and consequently impair disease progression were validated in phase I/II clinical trials for different types of cancer. In PCa, various small molecules and peptides proved successful in inhibiting important PPIs, mainly associated with the androgen receptor (AR), Bcl-2 family proteins, and kinases/phosphatases, thus impairing the growth of PCa cells in vitro. Moreover, a majority of these compounds require further validation in vivo and, preferably, in clinical trials. In addition, several other PPIs associated with PCa progression have been identified and now require experimental validation as potential therapeutic loci. In conclusion, we consider the disruption of PPIs to be a promising though challenging therapeutic strategy for PCa. Agents which modulate PPIs might be employed as a monotherapy or as an adjunct to classical chemotherapeutics to overcome drug resistance and improve efficacy. The discovery of new PPIs with important roles in disease progression, and of novel optimized strategies to target them are major challenges for the scientific and pharmacological communities.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), Research Center-LAB 3, F Bdg., 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Al-Nour MY, Ibrahim MM, Elsaman T. Ellagic Acid, Kaempferol, and Quercetin from Acacia nilotica: Promising Combined Drug With Multiple Mechanisms of Action. CURRENT PHARMACOLOGY REPORTS 2019; 5:255-280. [PMID: 32226726 PMCID: PMC7100491 DOI: 10.1007/s40495-019-00181-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pharmacological activity of Acacia nilotica's phytochemical constituents was confirmed with evidence-based studies, but the determination of exact targets that they bind and the mechanism of action were not done; consequently, we aim to identify the exact targets that are responsible for the pharmacological activity via the computational methods. Furthermore, we aim to predict the pharmacokinetics (ADME) properties and the safety profile in order to identify the best drug candidates. To achieve those goals, various computational methods were used including the ligand-based virtual screening and molecular docking. Moreover, pkCSM and SwissADME web servers were used for the prediction of pharmacokinetics and safety. The total number of the investigated compounds and targets was 25 and 61, respectively. According to the results, the pharmacological activity was attributed to the interaction with essential targets. Ellagic acid, Kaempferol, and Quercetin were the best A. nilotica's phytochemical constituents that contribute to the therapeutic activities, were non-toxic as well as non-carcinogen. The administration of Ellagic acid, Kaempferol, and Quercetin as combined drug via the novel drug delivery systems will be a valuable therapeutic choice for the treatment of recent diseases attacking the public health including cancer, multidrug-resistant bacterial infections, diabetes mellitus, and chronic inflammatory systemic disease.
Collapse
Affiliation(s)
- Mosab Yahya Al-Nour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Musab Mohamed Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
15
|
Dai Y, Siemann D. c-Src is required for hypoxia-induced metastasis-associated functions in prostate cancer cells. Onco Targets Ther 2019; 12:3519-3529. [PMID: 31190858 PMCID: PMC6512571 DOI: 10.2147/ott.s201320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Metastasis is the major cause of therapeutic failure in prostate cancer patients, and hypoxia has been shown to promote metastatic functions. However, whether Src family kinases (SFKs) can be upregulated under hypoxia is unclear. Materials and methods: In the current study, we evaluated the effects of hypoxia on cellular functions and activities of different SFK members (c-Src, Lyn, Fyn) in prostate cancer cells. Prostate cancer cell functions were determined in vitro including migration (wound-healing assay), invasion (Matrigel-based transwell assay) and clonogenic cell survival (colony formation assay). Protein expression was detected by Western blotting and gene knockdown was accomplished by siRNA transfection. Results:SRC, but not LYN and FYN, is associated with overall survival in prostate cancer patients, while all three phosphorylated proteins are highly expressed in tumors compared to normal tissues. Short-term hypoxic exposure significantly enhances cell migration, invasion, clonogenic survival, and consistently, c-Src phosphorylation in both PC-3ML and C4-2B cells. Knockdown of SRC, but not LYN or FYN, abolished hypoxia-induced functions. Finally, small molecule Src inhibitors strongly inhibited cell behaviors and c-Src activation under hypoxic conditions. Conclusion: Our data show that hypoxia is able to enhance metastatic-associated cell functions by activating c-Src in prostate cancer cells. Importantly, SFK inhibition by small molecule inhibitors was able to impair hypoxia-induced metastasis associated cell functions, suggesting a possible role of SFK inhibitors for prostate cancer treatment.
Collapse
Affiliation(s)
- Yao Dai
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32608, USA
| | - Dietmar Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
16
|
Naboulsi I, Aboulmouhajir A, Kouisni L, Bekkaoui F, Yasri A. Combining a QSAR Approach and Structural Analysis to Derive an SAR Map of Lyn Kinase Inhibition. Molecules 2018; 23:E3271. [PMID: 30544914 PMCID: PMC6320833 DOI: 10.3390/molecules23123271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023] Open
Abstract
Lyn kinase, a member of the Src family of protein tyrosine kinases, is mainly expressed by various hematopoietic cells, neural and adipose tissues. Abnormal Lyn kinase regulation causes various diseases such as cancers. Thus, Lyn represents, a potential target to develop new antitumor drugs. In the present study, using 176 molecules (123 training set molecules and 53 test set molecules) known by their inhibitory activities (IC50) against Lyn kinase, we constructed predictive models by linking their physico-chemical parameters (descriptors) to their biological activity. The models were derived using two different methods: the generalized linear model (GLM) and the artificial neural network (ANN). The ANN Model provided the best prediction precisions with a Square Correlation coefficient R² = 0.92 and a Root of the Mean Square Error RMSE = 0.29. It was able to extrapolate to the test set successfully (R² = 0.91 and RMSE = 0.33). In a second step, we have analyzed the used descriptors within the models as well as the structural features of the molecules in the training set. This analysis resulted in a transparent and informative SAR map that can be very useful for medicinal chemists to design new Lyn kinase inhibitors.
Collapse
Affiliation(s)
- Imane Naboulsi
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660⁻Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
- Organic Synthesis, Extraction and Valorization Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Km 8 El Jadida Road, 20100 Casablanca, Morocco.
| | - Aziz Aboulmouhajir
- Organic Synthesis, Extraction and Valorization Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Km 8 El Jadida Road, 20100 Casablanca, Morocco.
- Team of Molecular Modeling and Spectroscopy, Faculty of Sciences, Chouaib Doukkali University, 24000 El Jadida, Morocco.
| | - Lamfeddal Kouisni
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660⁻Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| | - Faouzi Bekkaoui
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660⁻Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
- School of Agriculture, Fertilizer and Environment Sciences, Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Abdelaziz Yasri
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660⁻Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
17
|
Aira LE, Villa E, Colosetti P, Gamas P, Signetti L, Obba S, Proics E, Gautier F, Bailly-Maitre B, Jacquel A, Robert G, Luciano F, Juin PP, Ricci JE, Auberger P, Marchetti S. The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim. Oncogene 2018; 37:2122-2136. [PMID: 29391601 DOI: 10.1038/s41388-017-0112-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 01/17/2023]
Abstract
Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.
Collapse
Affiliation(s)
| | - Elodie Villa
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | | | | | | | - Emma Proics
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Fabien Gautier
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, 8 Quai Moncousu - BP 70721, 44007, Nantes Cedex 1, France.,Institut de Cancérologie de l'Ouest, Bvd J Monod, Site René Gauducheau, 44805, Saint-Herblain, France
| | | | | | | | | | - Philippe P Juin
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, 8 Quai Moncousu - BP 70721, 44007, Nantes Cedex 1, France.,Institut de Cancérologie de l'Ouest, Bvd J Monod, Site René Gauducheau, 44805, Saint-Herblain, France
| | | | | | | |
Collapse
|
18
|
Wimalachandra D, Yang JX, Zhu L, Tan E, Asada H, Chan JY, Lee YH. Long-chain glucosylceramides crosstalk with LYN mediates endometrial cell migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:71-80. [DOI: 10.1016/j.bbalip.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023]
|
19
|
Resistance to dasatinib is associated with the activation of Akt in oral squamous cell carcinoma. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17702920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Koushyar S, Economides G, Zaat S, Jiang W, Bevan CL, Dart DA. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells. Oncogenesis 2017; 6:e333. [PMID: 28504694 PMCID: PMC5523065 DOI: 10.1038/oncsis.2017.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/16/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing.
Collapse
Affiliation(s)
- S Koushyar
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - G Economides
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - S Zaat
- Androgen Signalling Laboratory, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - W Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - C L Bevan
- Androgen Signalling Laboratory, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - D A Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
21
|
Wang X, Li Y, Luo D, Wang X, Zhang Y, Liu Z, Zhong N, Wu M, Li G. Lyn regulates mucus secretion and MUC5AC via the STAT6 signaling pathway during allergic airway inflammation. Sci Rep 2017; 7:42675. [PMID: 28205598 PMCID: PMC5312001 DOI: 10.1038/srep42675] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Hypersecretion of mucus is an important component of airway remodeling and contributes to the mucus plugs and airflow obstruction associated with severe asthma phenotypes. Lyn has been shown to down-regulate allergen-induced airway inflammation. However, the role of Lyn in mucin gene expression remains unresolved. In this study, we first demonstrate that Lyn overexpression decreased the mucus hypersecretion and levels of the muc5ac transcript in mice exposed to ovalbumin (OVA). Lyn overexpression also decreased the infiltration of inflammatory cells and the levels of IL-13 and IL-4 in OVA-challenged airways. Whereas Lyn knockdown increased the IL-4 or IL-13-induced MUC5AC transcript and protein levels in the human bronchial epithelial cell line, 16HBE, Lyn overexpression decreased IL-4- or IL-13-induced MUC5AC transcript and protein levels. Overexpression of Lyn also decreased the expression and phosphorylation of STAT6 in OVA-exposed mice, whereas Lyn knockdown increased STAT6 and MUC5AC levels in 16HBE cells. Finally, chromatin immunoprecipitation analysis confirmed that Lyn overexpression decreased the binding of STAT6 to the promoter region of Muc5ac in mice exposed to OVA. Collectively, these findings demonstrated that Lyn overexpression ameliorated airway mucus hypersecretion by down-regulating STAT6 and its binding to the MUC5AC promoter.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yin Li
- The First Clinic College, Chongqing Medical University, Chongqing 401331, China
| | - Deyu Luo
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xing Wang
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yun Zhang
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, Shenzhen Guangdong 518060, P.R. China
| | - Nanshan Zhong
- State Key Laboratories of Respiratory Disease, Ghuangzhou Medical University, Guangdong 510120, P.R. China
| | - Min Wu
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N Columbia Rd, Grand Forks, ND 58203-9037, USA
| | - Guoping Li
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
22
|
Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci 2016; 6:25. [PMID: 27087918 PMCID: PMC4832502 DOI: 10.1186/s13578-016-0089-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 12/02/2022] Open
Abstract
The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell’s energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their subsequent function, and the physiological and pathological implications of their localization are still poorly understood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the implications of mitochondrial kinases/phosphatases in cancer and several other diseases.
Collapse
|
23
|
Chatterji T, Varkaris AS, Parikh NU, Song JH, Cheng CJ, Schweppe RE, Alexander S, Davis JW, Troncoso P, Friedl P, Kuang J, Lin SH, Gallick GE. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells. Oncotarget 2016; 6:10175-94. [PMID: 25868388 PMCID: PMC4496348 DOI: 10.18632/oncotarget.3391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.
Collapse
Affiliation(s)
- Tanushree Chatterji
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Andreas S Varkaris
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Stephanie Alexander
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cell Biology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| |
Collapse
|
24
|
Posadas EM, Ahmed RS, Karrison T, Szmulewitz RZ, O’Donnell PH, Wade JL, Shen J, Gururajan M, Sievert M, Stadler WM. Saracatinib as a metastasis inhibitor in metastatic castration-resistant prostate cancer: A University of Chicago Phase 2 Consortium and DOD/PCF Prostate Cancer Clinical Trials Consortium Study. Prostate 2016; 76:286-93. [PMID: 26493492 PMCID: PMC4904773 DOI: 10.1002/pros.23119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/14/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fyn is a kinase that is upregulated in a subset of metastatic castration-resistant prostate cancer. Saracatinib potently inhibits Fyn activation. We have noted a relationship between Fyn expression and directional motility, a cellular process related to metastasis. As such we hypothesized that treatment with saracatinib would increase the time required to develop new metastatic lesions. METHODS Patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel were eligible for enrollment. This study was executed as a randomized discontinuation trial. During a lead-in phase of two 28-Day cycles, all patients received saracatinib. Afterward, patients with radiographically stable disease were randomized to either saracatinib or placebo. Patients continued treatment until evidence of new metastasis. RESULTS Thirty-one patients were treated. Only 26% of patients had stable disease after 8 weeks and thus proceeded to randomization. This required early termination of the study for futility. The 70% of patients who progressed after the lead-in phase exhibited expansion of existing lesions or decompensation due to clinical progression without new metastatic lesions. Fatigue was reported in more than 25% of patients (all grades) with only two patients experiencing grade 3 toxicity. Other grade 3 adverse events included dehydration, thrombocytopenia, and weakness. CONCLUSIONS This study was unable to determine if saracatinib had potential as metastasis inhibitor. Metastasis inhibition by saracatinib may still be viable in an earlier time in the disease history.
Collapse
Affiliation(s)
- Edwin M. Posadas
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Correspondence to: Edwin M. Posadas, MD, FACP, Medical Director, Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA.
| | - Rafi S. Ahmed
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Theodore Karrison
- Biostatistics, Department of Health Service, University of Chicago, Chicago, Illinois
| | - Russell Z. Szmulewitz
- Genitourinary Oncology Program, Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Peter H. O’Donnell
- Genitourinary Oncology Program, Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - James L. Wade
- Cancer Care Specialists of Central Illinois, S.C, Decatur, Illinois
| | - James Shen
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Murali Gururajan
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margarit Sievert
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Walter M. Stadler
- Genitourinary Oncology Program, Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Shah K, Bradbury NA. Kinase modulation of androgen receptor signaling: implications for prostate cancer. ACTA ACUST UNITED AC 2015; 2. [PMID: 28580371 DOI: 10.14800/ccm.1023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Androgens and androgen receptors play essential roles in the development and progression of prostate cancer, a disease that claims roughly 28,000 lives annually. In addition to androgen biding, androgen receptor activity can be regulated via several post-translational modifications such as ubiquitination, acetylation, phosphorylation, methylation & SUMO-ylation. Off these modifications, phosphorylation has been the most extensively studied. Modification by phosphorylation can alter androgen receptor localization, protein stability and transcriptional activity, ultimately leading to changes in the biology of cancer cells and cancer progression. Understanding, role of phosphorylated androgen receptor species holds the key to identifying a potential therapeutic drug target for patients with prostate cancer and castrate resistant prostate cancer. Here, we present a brief review of recently discovered protein kinases phosphorylating AR, focusing on the functional role of phosphorylated androgen receptor species in prostate cancer and castrate resistant prostate cancer.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine & Sciences, North Chicago, IL, 60064, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine & Sciences, North Chicago, IL, 60064, USA
| |
Collapse
|
26
|
Heo SK, Noh EK, Yoon DJ, Jo JC, Choi Y, Koh S, Baek JH, Park JH, Min YJ, Kim H. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells. PLoS One 2015; 10:e0129853. [PMID: 26065685 PMCID: PMC4466365 DOI: 10.1371/journal.pone.0129853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-060, Republic of Korea
| | - Eui-Kyu Noh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
| | - Dong-Joon Yoon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-060, Republic of Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
| | - Yunsuk Choi
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
| | - SuJin Koh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
| | - Jin Ho Baek
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
| | - Jae-Hoo Park
- Department of Hematology and Oncology, Myongji Hospital, Gyeonggi-do, 412-270, Republic of Korea
| | - Young Joo Min
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
| | - Hawk Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-060, Republic of Korea
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea
- * E-mail:
| |
Collapse
|
27
|
Lewis-Tuffin LJ, Feathers R, Hari P, Durand N, Li Z, Rodriguez FJ, Bakken K, Carlson B, Schroeder M, Sarkaria JN, Anastasiadis PZ. Src family kinases differentially influence glioma growth and motility. Mol Oncol 2015; 9:1783-98. [PMID: 26105207 DOI: 10.1016/j.molonc.2015.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
Src-family kinase (SFK) signaling impacts multiple tumor-related properties, particularly in the context of the brain tumor glioblastoma. Consequently, the pan-SFK inhibitor dasatinib has emerged as a therapeutic strategy, despite physiologic limitations to its effectiveness in the brain. We investigated the importance of individual SFKs (Src, Fyn, Yes, and Lyn) to glioma tumor biology by knocking down individual SFK expression both in culture (LN229, SF767, GBM8) and orthotopic xenograft (GBM8) contexts. We evaluated the effects of these knockdowns on tumor cell proliferation, migration, and motility-related signaling in culture, as well as overall survival in the orthotopic xenograft model. The four SFKs differed significantly in their importance to these properties. In culture, Src, Fyn, and Yes knockdown generally reduced growth and migration and altered motility-related phosphorylation patterns while Lyn knockdown did so to a lesser extent. However the details of these effects varied significantly depending on the cell line: in no case were conclusions about the role of a particular SFK applicable to all of the measures or all of the cell types examined. In the orthotopic xenograft model, mice implanted with non-target or Src or Fyn knockdown cells showed no differences in survival. In contrast, mice implanted with Yes knockdown cells had longer survival, associated with reduced tumor cell proliferation. Those implanted with Lyn knockdown cells had shorter survival, associated with higher overall tumor burden. Together, our results suggest that Yes signaling directly affects tumor cell biology in a pro-tumorigenic manner, while Lyn signaling affects interactions between tumor cells and the microenvironment in an anti-tumor manner. In the context of therapeutic targeting of SFKs, these results suggest that pan-SFK inhibitors may not produce the intended therapeutic benefit when Lyn is present.
Collapse
Affiliation(s)
- Laura J Lewis-Tuffin
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Ryan Feathers
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Priya Hari
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Nisha Durand
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Zhimin Li
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21231, USA
| | - Katie Bakken
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Panos Z Anastasiadis
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
| |
Collapse
|
28
|
Aubry A, Galiacy S, Ceccato L, Marchand C, Tricoire C, Lopez F, Bremner R, Racaud-Sultan C, Monsarrat B, Malecaze F, Allouche M. Peptides derived from the dependence receptor ALK are proapoptotic for ALK-positive tumors. Cell Death Dis 2015; 6:e1736. [PMID: 25950466 PMCID: PMC4669685 DOI: 10.1038/cddis.2015.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
ALK is a receptor tyrosine kinase with an oncogenic role in various types of human malignancies. Despite constitutive activation of the kinase through gene alterations, such as chromosomal translocation, gene amplification or mutation, treatments with kinase inhibitors invariably lead to the development of resistance. Aiming to develop new tools for ALK targeting, we took advantage of our previous demonstration identifying ALK as a dependence receptor, implying that in the absence of ligand the kinase-inactive ALK triggers or enhances apoptosis. Here, we synthesized peptides mimicking the proapoptotic domain of ALK and investigated their biological effects on tumor cells. We found that an ALK-derived peptide of 36 amino acids (P36) was cytotoxic for ALK-positive anaplastic large-cell lymphoma and neuroblastoma cell lines. In contrast, ALK-negative tumor cells and normal peripheral blood mononuclear cells were insensitive to P36. The cytotoxic effect was due to caspase-dependent apoptosis and required N-myristoylation of the peptide. Two P36-derived shorter peptides as well as a cyclic peptide also induced apoptosis. Surface plasmon resonance and mass spectrometry analysis of P36-interacting proteins from two responsive cell lines, Cost lymphoma and SH-SY5Y neuroblastoma, uncovered partners that could involve p53-dependent signaling and pre-mRNA splicing. Furthermore, siRNA-mediated knockdown of p53 rescued these cells from P36-induced apoptosis. Finally, we observed that a treatment combining P36 with the ALK-specific inhibitor crizotinib resulted in additive cytotoxicity. Therefore, ALK-derived peptides could represent a novel targeted therapy for ALK-positive tumors.
Collapse
Affiliation(s)
- A Aubry
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada [3] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - S Galiacy
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] CHU Purpan, Toulouse F-31300, France
| | - L Ceccato
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - C Marchand
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - C Tricoire
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - F Lopez
- INSERM, UMR1037, CRCT, Toulouse F-31000, France
| | - R Bremner
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - C Racaud-Sultan
- 1] INSERM, UMR 1043, CPTP, Toulouse F-31300, France [2] CNRS, UMR 5282, CPTP, Toulouse F-31300, France
| | - B Monsarrat
- CNRS, UMR 5089, IPBS, Toulouse F-31077, France
| | - F Malecaze
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] CHU Purpan, Toulouse F-31300, France
| | - M Allouche
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| |
Collapse
|
29
|
Abstract
Knowledge of the molecular events that contribute to prostate cancer progression has created opportunities to develop novel therapy strategies. It is now well established that c-Src, a non-receptor tyrosine kinase, regulates a complex signaling network that drives the development of castrate-resistance and bone metastases, events that signal the lethal phenotype of advanced disease. Preclinical studies have established a role for c-Src and Src Family Kinases (SFKs) in proliferation, angiogenesis, invasion and bone metabolism, thus implicating Src signaling in both epithelial and stromal mechanisms of disease progression. A number of small molecule inhibitors of SFK now exist, many of which have demonstrated efficacy in preclinical models and several that have been tested in patients with metastatic castrate-resistant prostate cancer. These agents have demonstrated provocative clinic activity, particularly in modulating the bone microenvironment in a therapeutically favorable manner. Here, we review the discovery and basic biology of c-Src and further discuss the role of SFK inhibitors in the treatment of advanced prostate cancer.
Collapse
|
30
|
Kumar A, Jaggi AS, Singh N. Pharmacology of Src family kinases and therapeutic implications of their modulators. Fundam Clin Pharmacol 2015; 29:115-30. [PMID: 25545125 DOI: 10.1111/fcp.12097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
Src family kinases (SFKs), the largest family of nonreceptor tyrosine kinases, include 10 members. Src was the first gene product discovered to have intrinsic protein tyrosine kinase activity. Src is widely expressed in many cell types and can have different locations within a cell; the subcellular location of Src can affect its function. Src can associate with cellular membranes, such as the plasma membrane, the perinuclear membrane, and the endosomal membrane. SFKs actions on mammalian cells are pleiotropic and include effect on cell morphology, adhesion, migration, invasion, proliferation, differentiation, and survival. SFKs at one end have been documented to play some important physiological functions; on the other end, they have been described in the pathophysiology of some disorders. In this review article, an exhaustive attempt has been made to unearth pharmacology of SFKs and therapeutic implications of SFKs modulators.
Collapse
Affiliation(s)
- Amit Kumar
- CNS and CVS Research Laboratory, Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | | | | |
Collapse
|
31
|
Wang X, Wen J, Li R, Qiu G, Zhou L, Wen X. Gene expression profiling analysis of castration-resistant prostate cancer. Med Sci Monit 2015; 21:205-12. [PMID: 25592164 PMCID: PMC4306671 DOI: 10.12659/msm.891193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Prostate cancer is a global health issue. Usually, men with metastatic disease will progress to castration-resistant prostate cancer (CRPC). We aimed to identify the differentially expressed genes (DEGs) in tumor samples from non-castrated and castrated men from LNCaP Orthotopic xenograft models of prostate cancer and to study the mechanisms of CRPC. Material/Methods In this work, GSE46218 containing 4 samples from non-castrated men and 4 samples from castrated men was downloaded from Gene Expression Omnibus. We identified DEGs using limma Geoquery in R, the Robust Multi-array Average (RMA) method in Bioconductor, and Bias methods, followed by constructing an integrated regulatory network involving DEGs, miRNAs, and TFs using Cytoscape. Then, we analyzed network motifs of the integrated gene regulatory network using FANMOD. We selected regulatory modules corresponding to network motifs from the integrated regulatory network by Perl script. We preformed gene ontology (GO) and pathway enrichment analysis of DEGs in the regulatory modules using DAVID. Results We identified total 443 DEGs. We built an integrated regulatory network, found three motifs (motif 1, motif 2 and motif 3), and got two function modules (module 1 corresponded to motif 1, and module 2 corresponded to motif 2). Several GO terms (such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, phosphorylation, and phosphorus metabolic process) and two pathways (pathway in cancer and Melanoma) were enriched. Furthermore, some significant DEGs (such as CAV1, LYN, FGFR3 and FGFR3) were related to CPRC development. Conclusions These genes might play important roles in the development and progression of CRPC.
Collapse
Affiliation(s)
- Xuelei Wang
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jiling Wen
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Rongbing Li
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Guangming Qiu
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Lan Zhou
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Xiaofei Wen
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
32
|
Spreafico A, Chi KN, Sridhar SS, Smith DC, Carducci MA, Kavsak P, Wong TS, Wang L, Ivy SP, Mukherjee SD, Kollmannsberger CK, Sukhai MA, Takebe N, Kamel-Reid S, Siu LL, Hotte SJ. A randomized phase II study of cediranib alone versus cediranib in combination with dasatinib in docetaxel resistant, castration resistant prostate cancer patients. Invest New Drugs 2014; 32:1005-16. [PMID: 24788563 PMCID: PMC4281773 DOI: 10.1007/s10637-014-0106-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activation of the vascular endothelial growth factor receptor (VEGFR) and the oncogenic Src pathway has been implicated in the development of castration-resistant prostate cancer (CRPC) in preclinical models. Cediranib and dasatinib are multi-kinase inhibitors targeting VEGFR and Src respectively. Phase II studies of cediranib and dasatinib in CRPC have shown single agent activity. METHODS Docetaxel-pretreated CRPC patients were randomized to arm A: cediranib alone (20 mg/day) versus arm B: cediranib (20 mg/day) plus dasatinib (100 mg/day) given orally on 4-week cycles. Primary endpoint was 12-week progression-free survival (PFS) as per the Prostate Cancer Clinical Trials Working Group (PCWG2). Patient reported outcomes were evaluated using Functional Assessment of Cancer Therapy-Prostate (FACT-P) and Present Pain Intensity (PPI) scales. Correlative studies of bone turnover markers (BTM), including bone alkaline phosphate (BAP) and serum beta-C telopeptide (B-CTx) were serially assayed. Results A total of 22 patients, 11 per arm, were enrolled. Baseline demographics were similar in both arms. Median number of cycles =4 in arm A (range 1-12) and 2 in arm B (range 1-9). Twelve-week PFS was 73 % in arm A versus 18 % in arm B (p = 0.03). Median PFS in months (arm A versus B) was: 5.2 versus 2.6 (95 % CI: 1.9-6.5 versus 1.4-not reached). Most common grade 3 toxicities were hypertension, anemia and thrombocytopenia in arm A and hypertension, diarrhea and fatigue in arm B. One treatment-related death (retroperitoneal hemorrhage) was seen in arm A. FACT-P and PPI scores did not significantly change in either arm. No correlation between BTM and PFS was seen in either arm. CONCLUSIONS Although limited by small numbers, this randomized study showed that the combination of VEGFR and Src targeted therapy did not result in improved efficacy and may be associated with a worse outcome than VEGFR targeted therapy alone in patients with CRPC. ClinicalTrials.gov number: NCT01260688.
Collapse
Affiliation(s)
| | - Kim N. Chi
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | - Michael A. Carducci
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Peter Kavsak
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, Canada
| | - Tracy S. Wong
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Lisa Wang
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - S. Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, USA
| | | | | | | | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute NIH, Bethesda, USA
| | | | | | | |
Collapse
|
33
|
Text mining and network analysis of molecular interaction in non-small cell lung cancer by using natural language processing. Mol Biol Rep 2014; 41:8071-9. [PMID: 25205120 DOI: 10.1007/s11033-014-3705-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/23/2014] [Indexed: 01/21/2023]
Abstract
Lung cancer including non-small cell lung cancer (NSCLC) and small cell lung cancer is one of the most aggressive tumors with high incidence and low survival rate. The typical NSCLC patients account for 80-85 % of the total lung cancer patients. To systemically explore the molecular mechanisms of NSCLC, we performed a molecular network analysis between human and mouse to identify key genes (pathways) involved in the occurrence of NSCLC. We automatically extracted the human-to-mouse orthologous interactions using the GeneWays system by natural language processing and further constructed molecular (gene and its products) networks by mapping the human-to-mouse interactions to NSCLC-related mammalian phenotypes, followed by module analysis using ClusterONE of Cytoscape and pathway enrichment analysis using the database for annotation, visualization and integrated discovery (DAVID) successively. A total of 70 genes were proven to be related to the mammalian phenotypes of NSCLC, and seven genes (ATAD5, BECN1, CDKN2A, FNTB, E2F1, KRAS and PTEN) were found to have a bearing on more than one mammalian phenotype (MP) each. Four network clusters centered by four genes thyroglobulin (TG), neurofibromatosis type-1 (NF1 ), neurofibromatosis type 2 (NF2 ) and E2F transcription factor 1 (E2F1) were generated. Genes in the four network modules were enriched in eight KEGG pathways (p value < 0.05), including pathways in cancer, small cell lung cancer, cell cycle and p53 signaling pathway. Genes p53 and E2F1 may play important roles in NSCLC occurrence, and thus can be considered as therapeutic targets for NSCLC.
Collapse
|
34
|
Zardan A, Nip KM, Thaper D, Toren P, Vahid S, Beraldi E, Fazli L, Lamoureux F, Gust KM, Cox ME, Bishop JL, Zoubeidi A. Lyn tyrosine kinase regulates androgen receptor expression and activity in castrate-resistant prostate cancer. Oncogenesis 2014; 3:e115. [PMID: 25133482 PMCID: PMC5189960 DOI: 10.1038/oncsis.2014.30] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/22/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) progression is a complex process by which prostate cells acquire the ability to survive and proliferate in the absence or under very low levels of androgens. Most CRPC tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes owing to reactivation of AR. Protein tyrosine kinases have been implicated in supporting AR activation under castrate conditions. Here we report that Lyn tyrosine kinase expression is upregulated in CRPC human specimens compared with hormone naive or normal tissue. Lyn overexpression enhanced AR transcriptional activity both in vitro and in vivo and accelerated CRPC. Reciprocally, specific targeting of Lyn resulted in a decrease of AR transcriptional activity in vitro and in vivo and prolonged time to castration. Mechanistically, we found that targeting Lyn kinase induces AR dissociation from the molecular chaperone Hsp90, leading to its ubiquitination and proteasomal degradation. This work indicates a novel mechanism of regulation of AR stability and transcriptional activity by Lyn and justifies further investigation of the Lyn tyrosine kinase as a therapeutic target for the treatment of CRPC.
Collapse
Affiliation(s)
- A Zardan
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - K M Nip
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - D Thaper
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Toren
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Vahid
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - E Beraldi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - L Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - F Lamoureux
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - K M Gust
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - M E Cox
- 1] The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada [2] Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J L Bishop
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Zoubeidi
- 1] The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada [2] Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Vlaeminck-Guillem V, Gillet G, Rimokh R. SRC: marker or actor in prostate cancer aggressiveness. Front Oncol 2014; 4:222. [PMID: 25184116 PMCID: PMC4135356 DOI: 10.3389/fonc.2014.00222] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/02/2014] [Indexed: 01/22/2023] Open
Abstract
A key question for urologic practitioners is whether an apparently organ-confined prostate cancer (PCa) is actually aggressive or not. The dilemma is to specifically identify among all prostate tumors the very aggressive high-grade cancers that will become life-threatening by developing extra-prostatic invasion and metastatic potential and the indolent cancers that will never modify a patient's life expectancy. A choice must be made between several therapeutic options to achieve the optimal personalized management of the disease that causes as little harm as possible to patients. Reliable clinical, biological, or pathological markers that would enable distinctions to be made between aggressive and indolent PCas in routine practice at the time of initial diagnosis are still lacking. The molecular mechanisms that explain why a PCa is aggressive or not are also poorly understood. Among the potential markers and/or actors in PCa aggressiveness, Src and other members of the Src kinase family, are valuable candidates. Activation of Src-dependent intracellular pathways is frequently observed in PCa. Indeed, Src is at the cross-roads of several pathways [including androgen receptor (AR), TGFbeta, Bcl-2, Akt/PTEN or MAPK, and ERK …], and is now known to influence some of the cellular and tissular events that accompany tumor progression: cell proliferation, cell motility, invasion, epithelial-to-mesenchymal transition, resistance to apoptosis, angiogenesis, neuroendocrine differentiation, and metastatic spread. Recent work even suggests that Src could also play a part in PCa initiation in coordination with the AR. The aim of this review is to gather data that explore the links between the Src kinase family and PCa progression and aggressiveness.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- University of Lyon, Cancer Research Centre of Lyon, U1052 INSERM, UMS 3453 CNRS, Lyon I University, Léon Bérard Centre , Lyon , France ; Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, University Hospital of Lyon-Sud, Hospices Civils of Lyon , Lyon , France
| | - Germain Gillet
- University of Lyon, Cancer Research Centre of Lyon, U1052 INSERM, UMS 3453 CNRS, Lyon I University, Léon Bérard Centre , Lyon , France
| | - Ruth Rimokh
- University of Lyon, Cancer Research Centre of Lyon, U1052 INSERM, UMS 3453 CNRS, Lyon I University, Léon Bérard Centre , Lyon , France
| |
Collapse
|
36
|
Morinaga T, Abe K, Nakayama Y, Yamaguchi N, Yamaguchi N. Activation of Lyn tyrosine kinase through decreased membrane cholesterol levels during a change in its membrane distribution upon cell detachment. J Biol Chem 2014; 289:26327-26343. [PMID: 25104351 DOI: 10.1074/jbc.m114.580001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular membranes, which can serve as scaffolds for signal transduction, dynamically change their characteristics upon cell detachment. Src family kinases undergo post-translational lipid modification and are involved in a wide range of signaling events at the plasma membrane, such as cell proliferation, cell adhesion, and survival. Previously, we showed the differential membrane distributions among the members of Src family kinases by sucrose density gradient fractionation. However, little is known about the regulation of the membrane distribution of Src family kinases upon cell detachment. Here, we show that cell detachment shifts the main peak of the membrane distribution of Lyn, a member of Src family kinase, from the low density to the high density membrane fractions and enhances the kinase activity of Lyn. The change in Lyn distribution upon cell detachment involves both dynamin activity and a decrease in membrane cholesterol. Cell detachment activates Lyn through decreased membrane cholesterol levels during a change in its membrane distribution. Furthermore, cholesterol incorporation decreases Lyn activity and reduces the viability of suspension cells. These results suggest that cell detachment-induced Lyn activation through the change in the membrane distribution of Lyn plays an important role in survival of suspension cells.
Collapse
Affiliation(s)
- Takao Morinaga
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kohei Abe
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Noritaka Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
37
|
Gelman IH. Androgen receptor activation in castration-recurrent prostate cancer: the role of Src-family and Ack1 tyrosine kinases. Int J Biol Sci 2014; 10:620-6. [PMID: 24948875 PMCID: PMC4062955 DOI: 10.7150/ijbs.8264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
There is growing appreciation that castration-recurrent prostate cancer (CR-CaP) is driven by the continued expression of androgen receptor (AR). AR activation in CR-CaP through various mechanisms, including AR overexpression, expression of AR splice variants or mutants, increased expression of co-regulator proteins, and by post-translational modification, allows for the induction of AR-regulated genes in response to very low levels of tissue-expressed, so-called intracrine androgens, resulting in pathways that mediate CaP proliferation, anti-apoptosis and oncogenic aggressiveness. The current review focuses on the role played by Src-family (SFK) and Ack1 non-receptor tyrosine kinases in activating AR through direct phosphorylation, respectively, on tyrosines 534 or 267, and how these modifications facilitate progression to CR-CaP. The fact that SFK and Ack1 are central mediators for multiple growth factor receptor signaling pathways that become activated in CR-CaP, especially in the context of metastatic growth in the bone, has contributed to recent therapeutic trials using SFK/Ack1 inhibitors in monotherapy or in combination with antagonists of the AR activation axis.
Collapse
Affiliation(s)
- Irwin H. Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
38
|
Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, Tanaka Y, Dahiya R, Deng G. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther 2014; 13:1952-63. [PMID: 24817628 DOI: 10.1158/1535-7163.mct-14-0017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies suggest that deletions at chromosome (chr) 5q region (particularly chr5q14-q23) are frequent in prostate cancer, implicating this region in prostate carcinogenesis. However, the genes within this region are largely unknown. Here, we report for the first time the widespread attenuation of miR-3607, an miRNA gene located at chr5q14 region, in prostate cancer. Expression analyses of miR-3607 in a clinical cohort of prostate cancer specimens showed that miR-3607 is significantly attenuated and low miR-3607 expression is correlated with tumor progression and poor survival outcome in prostate cancer. Our analyses suggest that miR-3607 expression may be a clinically significant parameter with an associated diagnostic potential. We examined the functional significance of miR-3607 in prostate cancer cell lines and found that miR-3607 overexpression led to significantly decreased proliferation, apoptosis induction, and decreased invasiveness. Furthermore, our results suggest that miR-3607 directly represses oncogenic SRC family kinases LYN and SRC in prostate cancer. In view of our results, we propose that miR-3607 plays a tumor-suppressive role in prostate cancer by regulating SRC kinases that in turn regulates prostate carcinogenesis. To our knowledge, this is the first report that: (i) identifies a novel role for miR-3607 located in a frequently deleted region of prostate cancer and (ii) defines novel miRNA-mediated regulation of SRC kinases in prostate cancer. Because SRC kinases play a central role in prostate cancer progression and metastasis and are attractive targets, this study has potential implications in the design of better therapeutic modalities for prostate cancer management.
Collapse
Affiliation(s)
- Sharanjot Saini
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Sumit Arora
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| |
Collapse
|
39
|
Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Díaz B, Courtneidge SA, Seals DF. Src-dependent Tks5 phosphorylation regulates invadopodia-associated invasion in prostate cancer cells. Prostate 2014; 74:134-48. [PMID: 24174371 PMCID: PMC4083496 DOI: 10.1002/pros.22735] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The Src tyrosine kinase substrate and adaptor protein Tks5 had previously been implicated in the invasive phenotype of normal and transformed cell types via regulation of cytoskeletal structures called podosomes/invadopodia. The role of Src-Tks5 signaling in invasive prostate cancer, however, had not been previously evaluated. METHODS We measured the relative expression of Tks5 in normal (n = 20) and cancerous (n = 184, from 92 patients) prostate tissue specimens by immunohistochemistry using a commercially available tumor microarray. We also manipulated the expression and activity of wild-type and mutant Src and Tks5 constructs in the LNCaP and PC-3 prostate cancer cell lines in order to ascertain the role of Src-Tks5 signaling in invadopodia development, matrix-remodeling activity, motility, and invasion. RESULTS Our studies demonstrated that Src was activated and Tks5 upregulated in high Gleason score prostate tumor specimens and in invasive prostate cancer cell lines. Remarkably, overexpression of Tks5 in LNCaP cells was sufficient to induce invadopodia formation and associated matrix degradation. This Tks5-dependent increase in invasive behavior further depended on Src tyrosine kinase activity and the phosphorylation of Tks5 at tyrosine residues 557 and 619. In PC-3 cells we demonstrated that Tks5 phosphorylation at these sites was necessary and sufficient for invadopodia-associated matrix degradation and invasion. CONCLUSIONS Our results suggest a general role for Src-Tks5 signaling in prostate tumor progression and the utility of Tks5 as a marker protein for the staging of this disease.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian S. Learman
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Amy K. Boucherle
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - S. Joseph Sirintrapun
- Department of Pathology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Scott Isom
- Department of Biostatistical Sciences, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Begoña Díaz
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Sara A. Courtneidge
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Darren F. Seals
- Department of Biology, Appalachian State University, Boone, North Carolina
| |
Collapse
|
40
|
He Y, Kim H, Ryu T, Lee KY, Choi WS, Kim KM, Zheng M, Joh Y, Lee JH, Kwon DD, Lu Q, Kim K. C-Src-mediated phosphorylation of δ-catenin increases its protein stability and the ability of inducing nuclear distribution of β-catenin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:758-68. [PMID: 24412473 DOI: 10.1016/j.bbamcr.2013.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/11/2013] [Accepted: 12/31/2013] [Indexed: 01/08/2023]
Abstract
Although δ-catenin was first considered as a brain specific protein, strong evidence of δ-catenin overexpression in various cancers, including prostate cancer, has been accumulated. Phosphorylation of δ-catenin by Akt and GSK3β has been studied in various cell lines. However, tyrosine phosphorylation of δ-catenin in prostate cancer cells remains unknown. In the current study, we demonstrated that Src kinase itself phosphorylates δ-catenin on its tyrosine residues in prostate cancer cells and further illustrated that Y1073, Y1112 and Y1176 of δ-catenin are predominant sites responsible for tyrosine phosphorylation mediated by c-Src. Apart from c-Src, other Src family kinases, including Fgr, Fyn and Lyn, can also phosphorylate δ-catenin. We also found that c-Src-mediated Tyr-phosphorylation of δ-catenin increases its stability via decreasing its affinity to GSK3β and enhances its ability of inducing nuclear distribution of β-catenin through interrupting the integrity of the E-cadherin. Taken together, these results indicate that c-Src can enhance the oncogenic function of δ-catenin in prostate cancer cells.
Collapse
Affiliation(s)
- Yongfeng He
- College of Pharmacy, Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea
| | - Hangun Kim
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, South Korea
| | - Taeyong Ryu
- College of Pharmacy, Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea
| | - Kwang-Youl Lee
- College of Pharmacy, Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju, South Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea
| | - Mei Zheng
- College of Pharmacy, Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea
| | - Yechan Joh
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju, South Korea
| | - Jae-Hyuk Lee
- Chonnam National University Hospital, Gwangju, South Korea
| | - Dong-Deuk Kwon
- Chonnam National University Hospital, Gwangju, South Korea
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, USA
| | - Kwonseop Kim
- College of Pharmacy, Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea; Chonnam National University Hospital, Gwangju, South Korea.
| |
Collapse
|
41
|
Su B, Gillard B, Gao L, Eng KH, Gelman IH. Src controls castration recurrence of CWR22 prostate cancer xenografts. Cancer Med 2013; 2:784-92. [PMID: 24403252 PMCID: PMC3892383 DOI: 10.1002/cam4.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022] Open
Abstract
Recurrence of prostate cancer (CaP) after androgen-deprivation therapy continues to have the greatest impact on patient survival. Castration-recurrent (CR)-CaP is likely driven by the activation of androgen receptor (AR) through multiple mechanisms including induction of AR coregulators, AR mutants or splice variants, and AR posttranslational modification such as phosphorylation by Src-family and Ack1 tyrosine kinases. Here, we address whether Src is required for the CR growth of human CWR22 CaP xenografts. The shRNA-mediated Src knockdown or treatment with the Src inhibitors, dasatinib or KXO1, reduced CaP recurrence over controls and increased time-to-recurrence following castration. Moreover, CR-CaP [Src-shRNA] tumors that recurred had similar Src protein and activation levels as those of parental cells, strengthening the notion that Src activity is required for progression to CR-CaP. In contrast, the ability of dasatinib or KXO1 to inhibit Src kinase activity in vitro did not correlate with their ability to inhibit serum-driven in vitro proliferation of CR and androgen-dependent stable cell lines derived from CWR22 tumors (CWR22Rv1 and CWR22PC, respectively), suggesting that the in vitro proliferation of these CaP lines is Src independent. Taken together, these findings strongly suggest that Src is a potent and specific therapeutic target for CR-CaP progression.
Collapse
Affiliation(s)
- Bing Su
- Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangzhou, China; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | |
Collapse
|
42
|
Liu WM, Huang P, Kar N, Burgett M, Muller-Greven G, Nowacki AS, Distelhorst CW, Lathia JD, Rich JN, Kappes JC, Gladson CL. Lyn facilitates glioblastoma cell survival under conditions of nutrient deprivation by promoting autophagy. PLoS One 2013; 8:e70804. [PMID: 23936469 PMCID: PMC3732228 DOI: 10.1371/journal.pone.0070804] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Members of the Src family kinases (SFK) can modulate diverse cellular processes, including division, death and survival, but their role in autophagy has been minimally explored. Here, we investigated the roles of Lyn, a SFK, in promoting the survival of human glioblastoma tumor (GBM) cells in vitro and in vivo using lentiviral vector-mediated expression of constitutively-active Lyn (CA-Lyn) or dominant-negative Lyn (DN-Lyn). Expression of either CA-Lyn or DN-Lyn had no effect on the survival of U87 GBM cells grown under nutrient-rich conditions. In contrast, under nutrient-deprived conditions (absence of supplementation with L-glutamine, which is essential for growth of GBM cells, and FBS) CA-Lyn expression enhanced survival and promoted autophagy as well as inhibiting cell death and promoting proliferation. Expression of DN-Lyn promoted cell death. In the nutrient-deprived GBM cells, CA-Lyn expression enhanced AMPK activity and reduced the levels of pS6 kinase whereas DN-Lyn enhanced the levels of pS6 kinase. Similar results were obtained in vitro using another cultured GBM cell line and primary glioma stem cells. On propagation of the transduced GBM cells in the brains of nude mice, the CA-Lyn xenografts formed larger tumors than control cells and autophagosomes were detectable in the tumor cells. The DN-Lyn xenografts formed smaller tumors and contained more apoptotic cells. Our findings suggest that on nutrient deprivation in vitro Lyn acts to enhance the survival of GBM cells by promoting autophagy and proliferation as well as inhibiting cell death, and Lyn promotes the same effects in vivo in xenograft tumors. As the levels of Lyn protein or its activity are elevated in several cancers these findings may be of broad relevance to cancer biology.
Collapse
Affiliation(s)
- Wei Michael Liu
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ping Huang
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Niladri Kar
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Monica Burgett
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Gaelle Muller-Greven
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Amy S. Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Clark W. Distelhorst
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Justin D. Lathia
- Department of Stem Cell Biology and Regenerative Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Candece L. Gladson
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Huang TH, Huo L, Wang YN, Xia W, Wei Y, Chang SS, Chang WC, Fang YF, Chen CT, Lang JY, Tu C, Wang Y, Hsu MC, Kuo HP, Ko HW, Shen J, Lee HH, Lee PC, Wu Y, Chen CH, Hung MC. Epidermal growth factor receptor potentiates MCM7-mediated DNA replication through tyrosine phosphorylation of Lyn kinase in human cancers. Cancer Cell 2013; 23:796-810. [PMID: 23764002 PMCID: PMC3703149 DOI: 10.1016/j.ccr.2013.04.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 11/17/2012] [Accepted: 04/26/2013] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) initiates a signaling cascade that leads to DNA synthesis and cell proliferation, but its role in regulating DNA replication licensing is unclear. Here, we show that activated EGFR phosphorylates the p56 isoform of Lyn, p56(Lyn), at Y32, which then phosphorylates MCM7, a licensing factor critical for DNA replication, at Y600 to increase its association with other minichromosome maintenance complex proteins, thereby promoting DNA synthesis complex assembly and cell proliferation. Both p56(Lyn) Y32 and MCM7 Y600 phosphorylation are enhanced in proliferating cells and correlated with poor survival of breast cancer patients. These results establish a signaling cascade in which EGFR enhances MCM7 phosphorylation and DNA replication through Lyn phosphorylation in human cancer cells.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Asia University, Taichung 413, Taiwan.
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Wei-Chao Chang
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
| | - Yueh-Fu Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Jing-Yu Lang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chun Tu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ming-Chuan Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Jia Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chung-Hsuan Chen
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Asia University, Taichung 413, Taiwan.
- To whom correspondence should be addressed: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Box 108, 1515 Holcombe Boulevard, Houston, TX 77030.
| |
Collapse
|
44
|
Tyrosine Kinases in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
45
|
Xiao X, Mruk DD, Cheng FL, Cheng CY. C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:295-317. [PMID: 23397631 DOI: 10.1007/978-1-4614-4711-5_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Src family kinases (SFKs), in particular c-Src and c-Yes, are nonreceptor protein tyrosine kinases that mediate integrin signaling at focal adhesion complex at the cell-extracellular matrix interface to regulate cell adhesion, cell cycle progression, cell survival, proliferation and differentiation, most notably in cancer cells during tumorigenesis and metastasis. Interestingly, recent studies have shown that these two proto-oncogenes are integrated components of the stem cell niche and the cell-cell actin-based anchoring junction known as ectoplasmic specialization (ES) at the: (1) Sertoli cell-spermatid interface known as apical ES and (2) Sertoli-Sertoli cell interface known as basal ES which together with tight junctions (TJ), gap junctions and desmosomes constitute the blood-testis barrier (BTB). At the stem cell niche, these SFKs regulate spermatogonial stem cell (SSC) renewal to maintain the proper population of SSC/spermatogonia for spermatogenesis. At the apical ES and the BTB, c-Src and c-Yes confer cell adhesion either by maintaining the proper phosphorylation status of integral membrane proteins at the site which in turn regulates protein-protein interactions between integral membrane proteins and their adaptors, or by facilitating androgen action on spermatogenesis via a nongenomic pathway which also modulates cell adhesion in the seminiferous epithelium. Herein, we critically evaluate recent findings in the field regarding the roles of these two unlikely partners of spermatogenesis. We also propose a hypothetical model on the mechanistic functions of c-Src and c-Yes in spermatogenesis so that functional experiments can be designed in future studies.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Biomedical Research, Population Council, New York New York, USA
| | | | | | | |
Collapse
|
46
|
Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 2012; 10:21. [PMID: 22805580 PMCID: PMC3464935 DOI: 10.1186/1478-811x-10-21] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/04/2012] [Indexed: 12/24/2022] Open
Abstract
Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn-/- mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. LAY To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can positively or negatively regulate the information output. This ability of Lyn to be able to both turn on and turn off the relay of information inside cells makes it difficult to fully understand its precise function in each specific circumstance. Lyn has important functions for cells involved in blood development, including different while blood cells as well as red blood cells, and in particular for the immune cells that produce antibodies (B-cells), as exemplified by the major B-cell abnormalities that mice with mutations in the Lyn gene display. Certain types of leukaemia and lymphoma appear to have too much Lyn activity that in part causes the characteristics of these diseases, suggesting it may be a good target to develop new anti-leukaemia drugs. Furthermore, some specific types, and even specific subtypes, of solid cancers, e.g. prostate, brain and breast cancer can also have abnormal regulation of Lyn. Consequently, targeting this protein in these cancers could also prove to be beneficial.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, The University of Western Australia, Rear 50 Murray Street, Perth, WA, 6000, Australia.
| |
Collapse
|
47
|
Chan CM, Jing X, Pike LA, Zhou Q, Lim DJ, Sams SB, Lund GS, Sharma V, Haugen BR, Schweppe RE. Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res 2012; 18:3580-91. [PMID: 22586301 DOI: 10.1158/1078-0432.ccr-11-3359] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There are no effective therapies for patients with poorly differentiated papillary thyroid cancer (PTC) or anaplastic thyroid cancer (ATC), and metastasis to the bone represents a significantly worse prognosis. Src family kinases (SFKs) are overexpressed and activated in numerous tumor types and have emerged as a promising therapeutic target, especially in relation to metastasis. We recently showed that Src is overexpressed and activated in thyroid cancer. We therefore tested whether inhibition of Src with dasatinib (BMS-354825) blocks thyroid cancer growth and metastasis. EXPERIMENTAL DESIGN The effects of dasatinib on thyroid cancer growth, signaling, cell cycle, and apoptosis were evaluated in vitro. The therapeutic efficacy of dasatinib was further tested in vivo using an orthotopic and a novel experimental metastasis model. Expression and activation of SFKs in thyroid cancer cells was characterized, and selectivity of dasatinib was determined using an Src gatekeeper mutant. RESULTS Dasatinib treatment inhibited Src signaling, decreased growth, and induced cell-cycle arrest and apoptosis in a subset of thyroid cancer cells. Immunoblotting showed that c-Src and Lyn are expressed in thyroid cancer cells and that c-Src is the predominant SFK activated. Treatment with dasatinib blocked PTC tumor growth in an orthotopic model by more than 90% (P = 0.0014). Adjuvant and posttreatment approaches with dasatinib significantly inhibited metastasis (P = 0.016 and P = 0.004, respectively). CONCLUSION These data provide the first evidence that Src is a central mediator of thyroid cancer growth and metastasis, indicating that Src inhibitors may have a higher therapeutic efficacy in thyroid cancer, as both antitumor and antimetastatic agents.
Collapse
Affiliation(s)
- Christine M Chan
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Targeting Lyn tyrosine kinase through protein fusions encompassing motifs of Cbp (Csk-binding protein) and the SOCS box of SOCS1. Biochem J 2012; 442:611-20. [DOI: 10.1042/bj20111485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.
Collapse
|
49
|
Gallick GE, Corn PG, Zurita AJ, Lin SH. Small-molecule protein tyrosine kinase inhibitors for the treatment of metastatic prostate cancer. Future Med Chem 2012; 4:107-19. [PMID: 22168167 PMCID: PMC3285098 DOI: 10.4155/fmc.11.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microenvironment is critical to the growth of prostate cancer (PCa) in the bone. Thus, for clinical efficacy, therapies must target tumor-microenvironment interactions. Several protein tyrosine kinases have been implicated in the development and growth of PCa bone metastasis. In this review, specific protein tyrosine kinases that regulate these complex interactions, including PDGFR, the EGFR family, c-Src, VEGFR, IGF-1R, FGFR and c-Met will be discussed, with an emphasis on why these kinases are promising therapeutic targets for metastatic PCa treatment. For each of these kinases, small-molecule inhibitors have reached clinical trials. Current results of these trials and future prospects for the use of tyrosine kinase inhibitors for the treatment of PCa bone metastases are also discussed.
Collapse
Affiliation(s)
- Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Molecular Pathology, Unit 89, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
50
|
Wu Z, Doondeea JB, Gholami AM, Janning MC, Lemeer S, Kramer K, Eccles SA, Gollin SM, Grenman R, Walch A, Feller SM, Kuster B. Quantitative chemical proteomics reveals new potential drug targets in head and neck cancer. Mol Cell Proteomics 2011; 10:M111.011635. [PMID: 21955398 DOI: 10.1074/mcp.m111.011635] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumors of the head and neck represent a molecularly diverse set of human cancers, but relatively few proteins have actually been shown to drive the disease at the molecular level. To identify new targets for individualized diagnosis or therapeutic intervention, we performed a kinase centric chemical proteomics screen and quantified 146 kinases across 34 head and neck squamous cell carcinoma (HNSCC) cell lines using intensity-based label-free mass spectrometry. Statistical analysis of the profiles revealed significant intercell line differences for 42 kinases (p < 0.05), and loss of function experiments using siRNA in high and low expressing cell lines identified kinases including EGFR, NEK9, LYN, JAK1, WEE1, and EPHA2 involved in cell survival and proliferation. EGFR inhibition by the small molecule inhibitors lapatinib, gefitinib, and erlotinib as well as siRNA led to strong reduction of viability in high but not low expressing lines, confirming EGFR as a drug target in 10-20% of HNSCC cell lines. Similarly, high, but not low EPHA2-expressing cells showed strongly reduced viability concomitant with down-regulation of AKT and ERK signaling following EPHA2 siRNA treatment or EPHA1-Fc ligand exposure, suggesting that EPHA2 is a novel drug target in HNSCC. This notion is underscored by immunohistochemical analyses showing that high EPHA2 expression is detected in a subset of HNSCC tissues and is associated with poor prognosis. Given that the approved pan-SRC family kinase inhibitor dasatinib is also a very potent inhibitor of EPHA2, our findings may lead to new therapeutic options for HNSCC patients. Importantly, the strategy employed in this study is generic and therefore also of more general utility for the identification of novel drug targets and molecular pathway markers in tumors. This may ultimately lead to a more rational approach to individualized cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zhixiang Wu
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|