1
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. Gut Microbes 2025; 17:2458189. [PMID: 39930324 PMCID: PMC11817531 DOI: 10.1080/19490976.2025.2458189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal growth barrier dysfunction, and aberrant inflammatory responses. Further, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, mostly commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no U.S. Food and Drug Administration (FDA) approved countermeasures that can treat radiation-induced GI injuries. To meet this critical need, Synedgen Inc. has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract, which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy partial body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, Vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory responses mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera while suppressing potentially pathogenic bacteria Enterococcus and Staphylococcus compared with Vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and reducing pro-inflammatory responses. Further development of this drug as an FDA-approved medical countermeasure is of critical importance.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025:10.1038/s42255-025-01287-w. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
3
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Golomb SM, Guldner IH, Aleksandrovic E, Fross SR, Liu X, Diao L, Liang K, Wu J, Wang Q, Lopez JA, Zhang S. Temporal dynamics of immune cell transcriptomics in brain metastasis progression influenced by gut microbiome dysbiosis. Cell Rep 2025; 44:115356. [PMID: 40023843 PMCID: PMC12028778 DOI: 10.1016/j.celrep.2025.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Interactions between metastatic cancer cells and the brain microenvironment regulate brain metastasis (BrMet) progression. Central nervous system (CNS)-native and peripheral immune cells influence the BrMet immune landscape, but the dynamics and factors modulating this microenvironment remain unclear. As the gut microbiome impacts CNS and peripheral immune activity, we investigated its role in regulating immune response dynamics throughout BrMet stages. Antibiotic-induced (ABX) gut dysbiosis significantly increased BrMet burden versus controls but was equalized with fecal matter transplantation, highlighting microbiome diversity as a regulator of BrMet. Single-cell sequencing revealed a highly dynamic immune landscape during BrMet progression in both conditions. However, the timing of the monocyte inflammatory response was altered. Microglia displayed an elevated activation signature in late-stage metastasis in ABX-treated mice. T cell and microglia perturbation revealed involvement of these cell types in modulating BrMet under gut dysbiosis. These data indicate profound effects on immune response dynamics imposed by gut dysbiosis across BrMet progression.
Collapse
Affiliation(s)
- Samantha M Golomb
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Emilija Aleksandrovic
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Shaneann R Fross
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Xiyu Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Lu Diao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Karena Liang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinxuan Wu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Jacqueline A Lopez
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
5
|
Gu C, Sha G, Zeng B, Cao H, Cao Y, Tang D. Therapeutic potential of fecal microbiota transplantation in colorectal cancer based on gut microbiota regulation: from pathogenesis to efficacy. Therap Adv Gastroenterol 2025; 18:17562848251327167. [PMID: 40104324 PMCID: PMC11915259 DOI: 10.1177/17562848251327167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with its progression intricately linked to gut microbiota dysbiosis. Disruptions in microbial homeostasis contribute to tumor initiation, immune suppression, and inflammation, establishing the microbiota as a key therapeutic target. Fecal microbiota transplantation (FMT) has emerged as a transformative approach to restore microbial balance, enhance immune responses, and reshape the tumor microenvironment. This review explores the mechanisms underlying FMT's therapeutic potential, evaluates its advantages over other microbiota-based interventions, and addresses challenges such as donor selection, safety concerns, and treatment standardization. Looking forward, the integration of FMT into personalized CRC therapies requires robust clinical trials and the identification of predictive biomarkers to optimize its efficacy and safety.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Herong Cao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yibo Cao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Tang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou 225000, China
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221000, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, 225000, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| |
Collapse
|
6
|
Morgaenko K, Arneja A, Ball AG, Putelo AM, Munson JM, Rutkowski MR, Pompano RR. Ex Vivo Model of Breast Cancer Cell Invasion in Live Lymph Node Tissue. ACS Pharmacol Transl Sci 2025; 8:690-705. [PMID: 40109746 PMCID: PMC11915036 DOI: 10.1021/acsptsci.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the coevolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion toward CXCL13-rich domains. Finally, we extended this system to premetastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells that was not due to diminished chemokine secretion. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow for isolation of specific factors that make TDLNs resistant to cancer cell invasion, which is challenging to dissect in vivo.
Collapse
Affiliation(s)
- Katerina Morgaenko
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center and University of Virginia Cancer Center, University
of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Abhinav Arneja
- Department
of Pathology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Alexander G. Ball
- Carter
Immunology Center and University of Virginia Cancer Center, University
of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Audrey M. Putelo
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Jennifer M. Munson
- Department
of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, Virginia 24016, United States
| | - Melanie R. Rutkowski
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rebecca R. Pompano
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center and University of Virginia Cancer Center, University
of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Qi H, Gao H, Li M, Sun T, Gu X, Wei L, Zhi M, Li Z, Fu D, Liu Y, Wei Z, Dou Y, Feng Q. Parvimonas micra promotes oral squamous cell carcinoma metastasis through TmpC-CKAP4 axis. Nat Commun 2025; 16:2305. [PMID: 40055343 PMCID: PMC11889085 DOI: 10.1038/s41467-025-57530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/25/2025] [Indexed: 03/12/2025] Open
Abstract
Parvimonas micra (P. micra), an opportunistic oral pathogen associated with multiple cancers, has limited research on its role in oral squamous cell carcinoma (OSCC). This study shows that P. micra is enriched in OSCC tissues and positively correlated with tumor metastasis and stages. P. micra infection promotes OSCC metastasis by inducing hypoxia/HIF-1α, glycolysis, and autophagy. Mechanistically, P. micra surface protein TmpC binds to CKAP4, a receptor overexpressed in OSCC, facilitating bacterial attachment and invasion. This interaction activates HIF-1α and autophagy via CKAP4-RanBP2 and CKAP4-NBR1 pathways, driving metastasis. Targeting CKAP4 with masitinib or antibodies impairs P. micra attachment and abolishes P. micra-promoted OSCC metastasis in vitro and in vivo. Together, our findings identify P. micra as a pathogen that promotes OSCC metastasis and highlight that TmpC-CKAP4 interaction could be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Houbao Qi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Haiting Gao
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Meihui Li
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Xiufeng Gu
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Li Wei
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Mengfan Zhi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Zixuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210093, China
| | - Dachuan Fu
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yiran Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ziyi Wei
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yu Dou
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
| |
Collapse
|
8
|
Li D, Lan X, Xu L, Zhou S, Luo H, Zhang X, Yu W, Yang Y, Fang X. Influence of gut microbial metabolites on tumor immunotherapy: mechanisms and potential natural products. Front Immunol 2025; 16:1552010. [PMID: 40066456 PMCID: PMC11891355 DOI: 10.3389/fimmu.2025.1552010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, tumor immunotherapy has made significant breakthroughs in the treatment of malignant tumors. However, individual differences in efficacy have been observed in clinical practice. There is increasing evidence that gut microbial metabolites influence the efficacy of distal tumor immunotherapy via the gut-liver axis, the gut-brain axis and the gut-breast axis, a process that may involve modulating the expression of immune cells and cytokines in the tumor microenvironment (TME). In this review, we systematically explore the relationship between gut microbial metabolites and tumor immunotherapy, and examine the corresponding natural products and their mechanisms of action. The in-depth exploration of this research area will provide new ideas and strategies to enhance the efficacy of tumor immunotherapy and mitigate adverse effects.
Collapse
Affiliation(s)
- Dongyang Li
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Linyi Xu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuo Zhou
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoying Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Yu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yonggang Yang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Massara M, Ballabio M, Dolfi B, Morad G, Wischnewski V, Lamprou E, Lourenco J, Claudinot S, Gallart-Ayala H, Méndez RS, Kauzlaric A, Fournier N, Damania AV, Wong MC, Ivanisevic J, Ajami NJ, Wargo JA, Joyce JA. The bacterial microbiome modulates the initiation of brain metastasis by impacting the gut-to-brain axis. iScience 2025; 28:111874. [PMID: 39995854 PMCID: PMC11848439 DOI: 10.1016/j.isci.2025.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Brain metastases (BrMs) are the most common brain tumors in patients and are associated with poor prognosis. Investigating the systemic and environmental factors regulating BrM biology represents an important strategy to develop effective treatments. Toward this goal, we explored the contribution of the gut microbiome to BrM development by using in vivo breast-BrM models under germ-free conditions or antibiotic treatment. This revealed a detrimental role of gut microbiota in fostering BrM initiation. We thus evaluated the impact of antibiotics and BrM outgrowth on the gut-brain axis. We found the bacterial genus Alistipes was differentially present under antibiotic treatment and BrM progression. In parallel, we quantified circulating metabolites, revealing kynurenic acid as a differentially abundant molecule that impaired the interaction between cancer cells and the brain vasculature in ex vivo functional assays. Together, these results illuminate the potential role of gut microbiota in modulating breast-BrM via the gut-to-brain axis.
Collapse
Affiliation(s)
- Matteo Massara
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Michelle Ballabio
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Bastien Dolfi
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Stéphanie Claudinot
- Germ-free facility, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1066 Epalinges, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rui Santalla Méndez
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Ashish V. Damania
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
| | - Matthew C. Wong
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nadim J. Ajami
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Johanna A. Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| |
Collapse
|
10
|
Rad SK, Yeo KKL, Wu F, Li R, Nourmohammadi S, Tomita Y, Price TJ, Ingman WV, Townsend AR, Smith E. A Systematic Review and Meta-Analysis of 16S rRNA and Cancer Microbiome Atlas Datasets to Characterize Microbiota Signatures in Normal Breast, Mastitis, and Breast Cancer. Microorganisms 2025; 13:467. [PMID: 40005832 PMCID: PMC11858161 DOI: 10.3390/microorganisms13020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The breast tissue microbiome has been increasingly recognized as a potential contributor to breast cancer development and progression. However, inconsistencies in microbial composition across studies have hindered the identification of definitive microbial signatures. We conducted a systematic review and meta-analysis of 11 studies using 16S rRNA sequencing to characterize the bacterial microbiome in 1260 fresh breast tissue samples, including normal, mastitis-affected, benign, cancer-adjacent, and cancerous tissues. Studies published until 31 December 2023 were included if they analyzed human breast tissue using Illumina short-read 16S rRNA sequencing with sufficient metadata, while non-human samples, non-breast tissues, non-English articles, and those lacking metadata or using alternative sequencing methods were excluded. We also incorporated microbiome data from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort to enhance our analyses. Our meta-analysis identified Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota as the dominant phyla in breast tissue, with Staphylococcus and Corynebacterium frequently detected across studies. While microbial diversity was similar between cancer and cancer-adjacent tissues, they both exhibited a lower diversity compared to normal and mastitis-affected tissues. Variability in bacterial genera was observed across primer sets and studies, emphasizing the need for standardized methodologies in microbiome research. An analysis of TCGA-BRCA data confirmed the dominance of Staphylococcus and Corynebacterium, which was associated with breast cancer proliferation-related gene expression programs. Notably, high Staphylococcus abundance was associated with a 4.1-fold increased mortality risk. These findings underscore the potential clinical relevance of the breast microbiome in tumor progression and emphasize the importance of methodological consistency. Future studies to establish causal relationships, elucidate underlying mechanisms, and assess microbiome-targeted interventions are warranted.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Fangmeinuo Wu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Runhao Li
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Saeed Nourmohammadi
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Wendy V. Ingman
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Hou T, Huang X, Lai J, Zhou D. Intra-tumoral bacteria in breast cancer and intervention strategies. Adv Drug Deliv Rev 2025; 217:115516. [PMID: 39828126 DOI: 10.1016/j.addr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The microbiome, consisting of a wide range of both beneficial and harmful microorganisms, is vital to various physiological and pathological processes in the human body, including cancer pathogenesis. Tumor progression is often accompanied by the destruction of the vascular system, allowing bacteria to circulate into the tumor area and flourish in an immunosuppressive environment. Microbes are recognized as significant components of the tumor microenvironment. Recent research has increasingly focused on the role of intra-tumoral bacteria in the onset, progression, and treatment of breast cancer-the most prevalent cancer among women. This review elucidates the potential mechanisms by which intra-tumoral bacteria impact breast cancer and discusses different therapeutic approaches aimed at targeting these bacteria. It provides essential insights for enhancing existing treatment paradigms while paving the way for novel anticancer interventions. As our understanding of the microbiome's intricate relationship with cancer deepens, it opens avenues for groundbreaking strategies that could redefine oncology.
Collapse
Affiliation(s)
- Ting Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Lai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Guo H. Interactions between the tumor microbiota and breast cancer. Front Cell Infect Microbiol 2025; 14:1499203. [PMID: 39926112 PMCID: PMC11802574 DOI: 10.3389/fcimb.2024.1499203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Changes in the microbiota and their metabolites affect the occurrence and development of breast cancer; however, the specific mechanisms are not clear. Gut microbes and their metabolites influence the development of breast cancer by regulating the tumor immune response, estrogen metabolism, chemotherapy, and immunotherapy effects. It was previously thought that there were no microorganisms in breast tissue, but it is now thought that there are microorganisms in breast cancer that can affect the outcome of the disease. This review builds on existing research to comprehensively analyze the role of gut and intratumoral microbiota and their metabolites in the development and metastasis of breast cancer. We also explore the potential function of the microbiota as biomarkers for prognosis and therapeutic response, highlighting the need for further research to clarify the causal relationship between the microbiota and breast cancer. We hope to provide new ideas and directions for the development of new methods for breast cancer treatment.
Collapse
Affiliation(s)
- Hua Guo
- The Nursing Department, Shaanxi Provincial People’s Hospital,
Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Amaro-da-Cruz A, Rubio-Tomás T, Álvarez-Mercado AI. Specific microbiome patterns and their association with breast cancer: the intestinal microbiota as a potential biomarker and therapeutic strategy. Clin Transl Oncol 2025; 27:15-41. [PMID: 38890244 PMCID: PMC11735593 DOI: 10.1007/s12094-024-03554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Based on histological characteristics, they are classified as non-invasive, or in situ (tumors located within the milk ducts or milk lobules) and invasive. BC may develop from in situ carcinomas over time. Determining prognosis and predicting response to treatment are essential tools to manage this disease and reduce its incidence and mortality, as well as to promote personalized therapy for patients. However, over half of the cases are not associated with known risk factors. In addition, some patients develop resistance to treatment and relapse. Therefore, it is necessary to identify new biomarkers and treatment strategies that improve existing therapies. In this regard, the role of the microbiome is being researched as it could play a role in carcinogenesis and the efficacy of BC therapies. This review aims to describe specific microbiome patterns associated with BC. For this, a literature search was carried out in PubMed database using the MeSH terms "Breast Neoplasms" and "Gastrointestinal Microbiome", including 29 publications. Most of the studies have focused on characterizing the gut or breast tissue microbiome of the patients. Likewise, studies in animal models and in vitro that investigated the impact of gut microbiota (GM) on BC treatments and the effects of the microbiome on tumor cells were included. Based on the results of the included articles, BC could be associated with an imbalance in the GM. This imbalance varied depending on molecular type, stage and grade of cancer, menopause, menarche, body mass index, and physical activity. However, a specific microbial profile could not be identified as a biomarker. On the other hand, some studies suggest that the GM may influence the efficacy of BC therapies. In addition, some microorganisms and bacterial metabolites could improve the effects of therapies or influence tumor development.
Collapse
Affiliation(s)
- Alba Amaro-da-Cruz
- Department of Chemical Engineering, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Ana I Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014, Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016, Armilla, Spain.
- Department of Pharmacology School of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
14
|
Yi C, Lu L, Li Z, Guo Q, Ou L, Wang R, Tian X. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res 2025; 15:84-101. [PMID: 38758499 DOI: 10.1007/s13346-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.
Collapse
Affiliation(s)
- Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Linzhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Zhaosheng Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Qianqian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Longyun Ou
- The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Ruoyu Wang
- Department of Infectious Diseases, Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Rd, Hunan, 410208, Changsha, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China.
- Hunan Province University Key Laboratory of Oncology of Tradional Chinese Medicine, 410208, Changsha, Hunan, China.
| |
Collapse
|
15
|
Zhou Y, Jiang M, Li X, Shen K, Zong H, Lv Q, Shen B. Bibliometric and visual analysis of human microbiome-breast cancer interactions: current insights and future directions. Front Microbiol 2024; 15:1490007. [PMID: 39717276 PMCID: PMC11664440 DOI: 10.3389/fmicb.2024.1490007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
The composition of the gut microbiome differs from that of healthy individuals and is closely linked to the progression and development of breast cancer. Recent studies have increasingly examined the relationship between microbial communities and breast cancer. This study analyzed the research landscape of microbiome and breast cancer, focusing on 736 qualified publications from the Web of Science Core Collection (WoSCC). Publications in this field are on the rise, with the United States leading in contributions, followed by China and Italy. Despite this strong output, the centrality value of China in this field is comparatively low at ninth, highlighting a gap between the quantity of research and its global impact. This pattern is repetitively observed in institutional contributions, with a predominance of Western institutes among the top contributors, underscoring a potential research quality gap in China. Keyword analysis reveals that research hotspots are focused on the effect of microbiome on breast cancer pathogenesis and tumor metabolism, with risk factors and metabolic pathways being the most interesting areas. Publications point to a shift toward anti-tumor therapies and personalized medicine, with clusters such as "anti-tumor" and "potential regulatory agent" gaining prominence. Additionally, intratumor bacteria studies have emerged as a new area of significant interest, reflecting a new direction in research. The University of Helsinki and Adlercreutz H are influential institutions and researchers in this field. Current trends in microbiome and breast cancer research indicate a significant shift toward therapeutic applications and personalized medicine. Strengthening international collaborations and focusing on research quality is crucial for advancing microbiome and breast cancer research.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Lv
- Department of Breast Surgery and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Bairong Shen
- Department of Breast Surgery and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
16
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
17
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619652. [PMID: 39484519 PMCID: PMC11526895 DOI: 10.1101/2024.10.22.619652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury. To meet this critical need, Synedgen Inc., has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy total body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory response mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera, while suppressing potentially pathogenic bacteria compared with vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and effectively reducing proinflammatory responses. Further development of this drug as an FDA-approved medical countermeasure will be of critical importance in the event of a radiation public health emergency.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Hrubesz G, Leigh J, Ng TL. Understanding the relationship between breast cancer, immune checkpoint inhibitors, and gut microbiota: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:31. [PMID: 39534584 PMCID: PMC11557166 DOI: 10.21037/tbcr-24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The composition of gut microbiota plays an important role in predicting and influencing outcomes of cancer treated with immunotherapy. Our objective is to summarize the role of gut microbiota and immunotherapy in breast cancer. Methods A systematic search from inception until July 2024 of key search terms including immunity, breast neoplasm, gastrointestinal microbiome/microbiota, fecal microbiota transplantation, pro- and prebiotics, antibiotics and immunotherapy using EMBASE, MEDLINE and CENTRAL was conducted. The results were screened by two reviewers independently and synthesized and presented descriptively. Key Content and Findings Thirteen studies (5 clinical, 8 pre-clinical) met the eligibility criteria and were published from 2020-2024. Clinical studies showed that the composition and diversity of gut microbiota was associated with patient response to immunotherapy. In pre-clinical studies, dysbiotic states induced by obesity, antibiotics, and diet were associated with immunosuppression and influenced response to programmed cell death-ligand 1 (PD-L1) inhibitors. Microbiota-modulating treatments such as probiotics showed the ability to enhance response to immunotherapy, indicating their potential use as adjunct therapies in breast cancer treatment. Conclusions The composition of gut microbiota could help predict the chance of response to immunotherapy, and modulating gut microbiota has the potential to enhance the efficacy of chemo-immunotherapy in breast cancer. However, the available data relating to breast cancer are limited. Larger prospective studies are required to further elucidate their role as a biomarker and treatment.
Collapse
Affiliation(s)
- Gabriella Hrubesz
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Jennifer Leigh
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Terry L Ng
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
21
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
22
|
Morgaenko K, Arneja A, Ball AG, Putelo AM, Munson JM, Rutkowski MR, Pompano RR. Ex vivo model of breast cancer cell invasion in live lymph node tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.601753. [PMID: 39091774 PMCID: PMC11291011 DOI: 10.1101/2024.07.18.601753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the co-evolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion towards CXCL13-rich domains. Finally, we extended this system to pre-metastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells. The reduced invasion was not due to diminished chemokine secretion, but it correlated with elevated intranodal IL-21. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow isolation of specific factors that make TDLNs resistant to cancer cell invasion, which are challenging to dissect in vivo.
Collapse
Affiliation(s)
- Katerina Morgaenko
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Alexander G Ball
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Audrey M Putelo
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Jennifer M Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Melanie R Rutkowski
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Rebecca R Pompano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
23
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
24
|
Guo Z, Xu C, Fang Z, Yu X, Yang K, Liu C, Ning X, Dong Z, Liu C. Inflammatory bowel disease and breast cancer: A two-sample bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38392. [PMID: 38847661 PMCID: PMC11155618 DOI: 10.1097/md.0000000000038392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
There is a correlation between IBD and breast cancer according to previous observational studies. However, so far there is no evidence to support if there is a causal relationship between these 2 diseases. We acquired comprehensive Genome-Wide Association Study (GWAS) summary data on IBD (including ulcerative colitis [UC] and Crohn disease [CD]) as well as breast cancer of completely European descent from the IEU GWAS database. The estimation of bidirectional causality between IBD (including UC and CD) and breast cancer was achieved through the utilization of 2-sample Mendelian randomization (MR). The MR results were also assessed for any potential bias caused by heterogeneity and pleiotropy through sensitivity analyses. Our study found a bidirectional causal effect between IBD and breast cancer. Genetic susceptibility to IBD was associated with an increased risk of breast cancer (OR = 1.053, 95% CI: 1.016-1.090, P = .004). Similarly, the presence of breast cancer may increase the risk of IBD (OR = 1.111, 95% CI: 1.035-1.194, P = .004). Moreover, the bidirectional causal effect between IBD and breast cancer can be confirmed by another GWAS of IBD. Subtype analysis showed that CD was associated with breast cancer (OR = 1.050, 95% CI: 1.020-1.080, P < .001), but not UC and breast cancer. There was a suggestive association between breast cancer and UC (OR = 1.106, 95% CI: 1.011-1.209, P = .028), but not with CD. This study supports a bidirectional causal effect between IBD and breast cancer. There appear to be considerable differences in the specific associations of UC and CD with AD. Understanding that IBD including its specific subtypes and breast cancer constitute common risk factors can contribute to the clinical management of both diseases.
Collapse
Affiliation(s)
- Zihao Guo
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changyu Xu
- Department of Ultrasound, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxiao Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Yang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinwei Ning
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhichao Dong
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Soldado-Gordillo A, Álvarez-Mercado AI. Epigenetics, Microbiota, and Breast Cancer: A Systematic Review. Life (Basel) 2024; 14:705. [PMID: 38929688 PMCID: PMC11204553 DOI: 10.3390/life14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. According to recent studies, alterations in the microbiota and epigenetic modulations are risk factors for this disease. This systematic review aims to determine the possible associations between the intestinal and mammary microbial populations, epigenetic modifications, and breast cancer. To achieve this objective, we conducted a literature search in the PubMed, Web of Science, and Science Direct databases following the PRISMA guidelines. Although no results are yet available in humans, studies in mice suggest a protective effect of maternal dietary interventions with bioactive compounds on the development of breast tumors in offspring. These dietary interventions also modified the gut microbiota, increasing the relative abundance of short-chain fatty acid-producing taxa and preventing mammary carcinogenesis. In addition, short-chain fatty acids produced by the microbiota act as epigenetic modulators. Furthermore, some authors indicate that stress alters the gut microbiota, promoting breast tumor growth through epigenetic and gene expression changes in the breast tumor microenvironment. Taken together, these findings show the ability of epigenetic modifications and alterations of the microbiota associated with environmental factors to modulate the development, aggressiveness, and progression of breast cancer.
Collapse
Affiliation(s)
- Alba Soldado-Gordillo
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain;
| | - Ana Isabel Álvarez-Mercado
- Department Pharmacology, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
26
|
Yu C, Xu J, Xu S, Huang Y, Tang L, Zeng X, Yu T, Chen W, Sun Z. Appraising the causal association between Crohn's disease and breast cancer: a Mendelian randomization study. Front Oncol 2024; 13:1275913. [PMID: 38406175 PMCID: PMC10884953 DOI: 10.3389/fonc.2023.1275913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024] Open
Abstract
Background Previous research has indicated that there may be a link between Crohn's disease (CD) and breast cancer (BC), but the causality remains unclear. This study aimed to investigate the causal association between CD and BC using Mendelian randomization (MR) analysis. Methods The summary data for CD (5,956 cases/14,927 controls) was obtained from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). And the summary data for BC (122,977 cases/105,974 controls) was extracted from the Breast Cancer Association Consortium (BCAC). Based on the estrogen receptor status, the cases were classified into two subtypes: estrogen receptor-positive (ER+) BC and estrogen receptor-negative (ER-) BC. We used the inverse variance weighted method as the primary approach for two-sample MR. MR-PRESSO method was used to rule out outliers. Heterogeneity and pleiotropy tests were carried out to improve the accuracy of results. Additionally, multivariable MR was conducted by adjusting for possible confounders to ensure the stability of the results. Results The two-sample MR indicated that CD increased the risks of overall (OR: 1.020; 95% CI: 1.010-1.031; p=0.000106), ER+ (OR: 1.019; 95%CI: 1.006-1.034; p=0.006) and ER- BC (OR: 1.019; 95%CI: 1.000-1.037; p=0.046) after removal of outliers by MR-PRESSO. This result was reliable in the sensitivity analysis, including Cochran's Q and MR-Egger regression. In multivariate MR analyses, after adjusting for smoking and drinking separately or concurrently, the positive association between CD and the risks of overall and ER+ BC remained, but it disappeared in ER- BC. Furthermore, reverse MR analysis suggested that BC did not have a significant impact on CD risk. Conclusion Our findings provide evidence for a possible positive association between CD and the risk of BC. However, further studies are needed to fully understand the underlying mechanisms and establish a stronger causal relationship.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siyi Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lei Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
27
|
Dutta RK, Abu YF, Tao J, Chupikova I, Oleas J, Singh PK, Vitari NA, Qureshi R, Ramakrishnan S, Roy S. Altered gut microbiome drives heightened pain sensitivity in a murine model of metastatic triple-negative breast cancer. Am J Cancer Res 2024; 14:274-299. [PMID: 38323292 PMCID: PMC10839306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.
Collapse
Affiliation(s)
- Rajib K Dutta
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Yaa F Abu
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Junyi Tao
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Irina Chupikova
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Janneth Oleas
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Praveen K Singh
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Nicolas A Vitari
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Rehana Qureshi
- Department of Pathology, University of MiamiMiami, FL 33136, USA
| | | | - Sabita Roy
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| |
Collapse
|
28
|
Sevcikova A, Mladosievicova B, Mego M, Ciernikova S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int J Mol Sci 2023; 24:17199. [PMID: 38139030 PMCID: PMC10742837 DOI: 10.3390/ijms242417199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
29
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
30
|
Avtanski D, Reddy V, Stojchevski R, Hadzi-Petrushev N, Mladenov M. The Microbiome in the Obesity-Breast Cancer Axis: Diagnostic and Therapeutic Potential. Pathogens 2023; 12:1402. [PMID: 38133287 PMCID: PMC10747404 DOI: 10.3390/pathogens12121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Varun Reddy
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11545, USA;
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| |
Collapse
|
31
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
32
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
33
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
34
|
Wu Y, Zhang Y, Zhang W, Huang Y, Lu X, Shang L, Zhou Z, Chen X, Li S, Cheng S, Song Y. The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier. J Cancer Res Clin Oncol 2023; 149:12513-12534. [PMID: 37382675 DOI: 10.1007/s00432-023-05014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Although significant advances have been made in the diagnosis and treatment of breast cancer (BC) in recent years, BC remains the most common cancer in women and one of the main causes of death among women worldwide. Currently, more than half of BC patients have no known risk factors, emphasizing the significance of identifying more tumor-related factors. Therefore, we urgently need to find new therapeutic strategies to improve prognosis. Increasing evidence demonstrates that the microbiota is present in a wider range of cancers beyond colorectal cancer. BC and breast tissues also have different types of microbiotas that play a key role in carcinogenesis and in modulating the efficacy of anticancer treatment, for instance, chemotherapy, radiotherapy, and immunotherapy. In recent years, studies have confirmed that the microbiota can be an important factor directly and/or indirectly affecting the occurrence, metastasis and treatment of BC by regulating different biological processes, such as estrogen metabolism, DNA damage, and bacterial metabolite production. Here, we review the different microbiota-focused studies associated with BC and explore the mechanisms of action of the microbiota in BC initiation and metastasis and its application in various therapeutic strategies. We found that the microbiota has vital clinical value in the diagnosis and treatment of BC and could be used as a biomarker for prognosis prediction. Therefore, modulation of the gut microbiota and its metabolites might be a potential target for prevention or therapy in BC.
Collapse
Affiliation(s)
- Yang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yue Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenwen Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiangshi Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Lingmin Shang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Zhaoyue Zhou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiaolu Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shuhui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shaoqiang Cheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
35
|
Jiang Y, Gong W, Xian Z, Xu W, Hu J, Ma Z, Dong H, Lin C, Fu S, Chen X. 16S full-length gene sequencing analysis of intestinal flora in breast cancer patients in Hainan Province. Mol Cell Probes 2023; 71:101927. [PMID: 37595804 DOI: 10.1016/j.mcp.2023.101927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Breast cancer has become the number one cancer in the world, and intestinal flora may be closely linked to it. Geographic location also has an important impact on human intestinal flora. We conducted the first study on the intestinal flora of breast cancer patients and non-breast cancer patients in a tropical region - Hainan Province in China. At the same time, Pacbio platform based on third-generation sequencing was used for the first time to conduct 16S full-length sequencing of fecal microorganism DNA. We completed the species diversity analysis and differential species analysis of the intestinal flora between the two groups, inferred their functional genetic composition and performed functional difference analysis. There were statistically significant differences in alpha diversity between the two groups in Hainan Province. By species composition difference analysis, at the phylum level, Bacteroidales (P = 0.006) and Firmicutes (P = 0.002) was differed between the two groups, and at the genus level, 17 breast cancer-related differential species such as Bacteroides were screened. According to the five grouping methods including ER level, PR level, HER2 status, Ki67 index and histological grade of breast cancer patients, 4, 1, 9, 6, 5 differential microbiota were screened out respectively, which were in total 25 (P < 0.05 for all subgroups) . The functional prediction and difference analysis revealed two functional metabolisms with significant differences between the two groups of microbes (P < 0.05). These results suggest that breast cancer is associated with changes in the composition and function of intestinal flora. These microflora and functional differences may become biomarkers or new targets for diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglan Jiang
- Department of Clinical Laboratory, Changsha County People's Hospital (Xingsha Campus of Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Wei Gong
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Hainan University, Haikou, Hainan, China
| | - Zhenyong Xian
- Department of Clinical Laboratory, Lingao County Traditional Chinese Medicine Hospital, Lingao, Hainan, China
| | - Weihua Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Hainan Tropical Tumor Institute, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China
| | - Junjie Hu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China
| | - Zhichao Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China
| | - Huaying Dong
- Department of Breast Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Chong Lin
- Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shengmiao Fu
- Academician Innovation Platform of Hainan Province, Haikou, Hainan, China.
| | - Xinping Chen
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Hainan Tropical Tumor Institute, Haikou, Hainan, China; Hainan University, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China.
| |
Collapse
|
36
|
Walker JN, Hanson BM, Hunter T, Simar SR, Duran Ramirez JM, Obernuefemann CLP, Parikh RP, Tenenbaum MM, Margenthaler JA, Hultgren SJ, Myckatyn TM. A prospective randomized clinical trial to assess antibiotic pocket irrigation on tissue expander breast reconstruction. Microbiol Spectr 2023; 11:e0143023. [PMID: 37754546 PMCID: PMC10581127 DOI: 10.1128/spectrum.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial infection is the most common complication following staged post-mastectomy breast reconstruction initiated with a tissue expander (TE). To limit bacterial infection, antibiotic irrigation of the surgical site is commonly performed despite little high-quality data to support this practice. We performed a prospective randomized control trial to compare the impact of saline irrigation alone to a triple antibiotic irrigation regimen (1 g cefazolin, 80 mg gentamicin, and 50,000 units of bacitracin in 500 mL of saline) for breast implant surgery. The microbiome in breasts with cancer (n = 16) was compared to those without (n = 16), as all patients (n = 16) had unilateral cancers but bilateral mastectomies (n = 32). Biologic and prosthetic specimens procured both at the time of mastectomy and during TE removal months later were analyzed for longitudinal comparison. Outcomes included clinical infection, bacterial abundance, and relative microbiome composition. No patient in either group suffered a reconstructive failure or developed an infection. Triple antibiotic irrigation administered at the time of immediate TE reconstruction did not reduce bacterial abundance or impact microbial diversity relative to saline irrigation at the time of planned exchange. Implanted prosthetic material adopted the microbial composition of the surrounding host tissue. In cancer-naïve breasts, relative to saline, antibiotic irrigation increased bacterial abundance on periprosthetic capsules (P = 0.03) and acellular dermal matrices (P = 0.04) and altered the microbiota on both. These data show that, relative to saline only, the use of triple antibiotic irrigation in TE breast reconstruction does impact the bacterial abundance and diversity of certain biomaterials from cancer-naïve breasts. IMPORTANCE The lifetime risk of breast cancer is ~13% in women and is treated with a mastectomy in ~50% of cases. The majority are reconstructed, usually starting with a tissue expander to help restore the volume for a subsequent permanent breast implant or the women's own tissues. The biopsychosocial benefits of breast reconstruction, though, can be tempered by a high complication rate of at least 7% but over 30% in some women. Bacterial infection is the most common complication, and can lead to treatment delays, patient physical and emotional distress and escalating health care cost. To limit this risk, plastic surgeons have tried a variety of strategies to limit bacterial infection including irrigating the pocket created after removing the breast implant with antibiotic solutions, but good-quality data are scarce. Herein, we study the value of antibiotics in pocket irrigation using a robust randomized clinical trial design and molecular microbiology approaches.
Collapse
Affiliation(s)
- Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Tayler Hunter
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Shelby R. Simar
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rajiv P. Parikh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A. Margenthaler
- Division of Surgical Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
37
|
Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, Segata N, Zitvogel L. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol 2023; 20:583-603. [PMID: 37365438 PMCID: PMC11258874 DOI: 10.1038/s41571-023-00785-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Oncogenesis is associated with intestinal dysbiosis, and stool shotgun metagenomic sequencing in individuals with this condition might constitute a non-invasive approach for the early diagnosis of several cancer types. The prognostic relevance of antibiotic intake and gut microbiota composition urged investigators to develop tools for the detection of intestinal dysbiosis to enable patient stratification and microbiota-centred clinical interventions. Moreover, since the advent of immune-checkpoint inhibitors (ICIs) in oncology, the identification of biomarkers for predicting their efficacy before starting treatment has been an unmet medical need. Many previous studies addressing this question, including a meta-analysis described herein, have led to the description of Gut OncoMicrobiome Signatures (GOMS). In this Review, we discuss how patients with cancer across various subtypes share several GOMS with individuals with seemingly unrelated chronic inflammatory disorders who, in turn, tend to have GOMS different from those of healthy individuals. We discuss findings from the aforementioned meta-analysis of GOMS patterns associated with clinical benefit from or resistance to ICIs across different cancer types (in 808 patients), with a focus on metabolic and immunological surrogate markers of intestinal dysbiosis, and propose practical guidelines to incorporate GOMS in decision-making for prospective clinical trials in immuno-oncology.
Collapse
Affiliation(s)
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée - Ligue Nationale contre le cancer, Université de Paris, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France.
- Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
38
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
39
|
Hoskinson C, Jiang RY, Stiemsma LT. Elucidating the roles of the mammary and gut microbiomes in breast cancer development. Front Oncol 2023; 13:1198259. [PMID: 37664075 PMCID: PMC10470065 DOI: 10.3389/fonc.2023.1198259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The mammary microbiome is a newly characterized bacterial niche that might offer biological insight into the development of breast cancer. Together with in-depth analysis of the gut microbiome in breast cancer, current evidence using next-generation sequencing and metabolic profiling suggests compositional and functional shifts in microbial consortia are associated with breast cancer. In this review, we discuss the fundamental studies that have progressed this important area of research, focusing on the roles of both the mammary tissue microbiome and the gut microbiome. From the literature, we identified the following major conclusions, (I) There are unique breast and gut microbial signatures (both compositional and functional) that are associated with breast cancer, (II) breast and gut microbiome compositional and breast functional dysbiosis represent potential early events of breast tumor development, (III) specific breast and gut microbes confer host immune responses that can combat breast tumor development and progression, and (IV) chemotherapies alter the microbiome and thus maintenance of a eubiotic microbiome may be key in breast cancer treatment. As the field expectantly advances, it is necessary for the role of the microbiome to continue to be elucidated using multi-omic approaches and translational animal models in order to improve predictive, preventive, and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | - Leah T. Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
40
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
41
|
Gong Y, Huang X, Wang M, Liang X. Intratumor microbiota: a novel tumor component. J Cancer Res Clin Oncol 2023; 149:6675-6691. [PMID: 36639531 DOI: 10.1007/s00432-023-04576-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Bacteria have been found in tumors for over 100 years, but the irreproducibility of experiments on bacteria, the limitations of science and technology, and the contamination of the host environment have severely hampered most research into the role of bacteria in carcinogenesis and cancer treatment. With the development of molecular tools and techniques (e.g., macrogenomics, metabolomics, lipidomics, and macrotranscriptomics), the complex relationships between hosts and different microorganisms are gradually being deciphered. In the past, attention has been focused on the impact of the gut microbiota, the site where the body's microbes gather most, on tumors. However, little is known about the role of microbes from other sites, particularly the intratumor microbiota, in cancer. In recent years, an increasing number of studies have identified the presence of symbiotic microbiota within a large number of tumors, bringing the intratumor microbiota into the limelight. In this review, we aim to provide a better understanding of the role of the intratumor microbiota in cancer, to provide direction for future experimental and translational research, and to offer new approaches to the treatment of cancer and the improvement of patient prognosis.
Collapse
Affiliation(s)
- Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
42
|
Zhou S, Yu J. Crohn's disease and breast cancer: a literature review of the mechanisms and treatment. Intern Emerg Med 2023; 18:1303-1316. [PMID: 37138170 PMCID: PMC10412481 DOI: 10.1007/s11739-023-03281-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023]
Abstract
This is a literature review describes Crohn's disease (CD) concomitant with breast cancer and summarizes possible common pathogenic mechanisms shared by the two diseases involving the IL-17 and NF-κB signaling pathways. Inflammatory cytokines including TNF-α and Th17 cells in CD patients can induce activation of the ERK1/2, NF-κB and Bcl-2 pathways. Hub genes are involved in the generation of cancer stem cells (CSCs) and are related to inflammatory mediators, including CXCL8, IL1-β and PTGS2, which promote inflammation and breast cancer growth, metastasis, and development. CD activity is highly associated with altered intestinal microbiota processes, including secretion of complex glucose polysaccharides by Ruminococcus gnavus colonies; furthermore, γ-proteobacteria and Clostridium are associated with CD recurrence and active CD, while Ruminococcaceae, Faecococcus and Vibrio desulfuris are associated with CD remission. Intestinal microbiota disorder promotes breast cancer occurrence and development. Bacteroides fragilis can produce toxins that induce breast epithelial hyperplasia and breast cancer growth and metastasis. Gut microbiota regulation can also improve chemotherapy and immunotherapy efficacy in breast cancer treatment. Intestinal inflammation can affects the brain through the brain-gut axis, which activates the hypothalamic‒pituitary‒adrenal (HPA) axis to induce anxiety and depression in patients; these effects can inhibit the antitumor immune responses of the immune system and promote breast cancer occurrence in patients with CD. There are few studies on the treatment of patients with CD concomitant with breast cancer, but published studies show three main strategies: new biological agents combined with breast cancer treatment methods, intestinal fecal bacteria transplantation, and dietary treatment.
Collapse
Affiliation(s)
- Sisi Zhou
- Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Jing Yu
- Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
43
|
Bernardo G, Le Noci V, Di Modica M, Montanari E, Triulzi T, Pupa SM, Tagliabue E, Sommariva M, Sfondrini L. The Emerging Role of the Microbiota in Breast Cancer Progression. Cells 2023; 12:1945. [PMID: 37566024 PMCID: PMC10417285 DOI: 10.3390/cells12151945] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Emerging evidence suggests a profound association between the microbiota composition in the gastrointestinal tract and breast cancer progression. The gut microbiota plays a crucial role in modulating the immune response, releasing metabolites, and modulating estrogen levels, all of which have implications for breast cancer growth. However, recent research has unveiled a novel aspect of the relationship between the microbiota and breast cancer, focusing on microbes residing within the mammary tissue, which was once considered sterile. These localized microbial communities have been found to change in the presence of a tumor as compared to healthy mammary tissue, unraveling their potential contribution to tumor progression. Studies have identified specific bacterial species that are enriched within breast tumors and have highlighted the mechanisms by which even these microbes influence cancer progression through immune modulation, direct carcinogenic activity, and effects on cellular pathways involved in cell proliferation or apoptosis. This review aims to provide an overview of the current knowledge on the mechanisms of crosstalk between the gut/mammary microbiota and breast cancer. Understanding this intricate interplay holds promise for developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy; (G.B.); (V.L.N.); (M.S.)
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy; (G.B.); (V.L.N.); (M.S.)
| | - Martina Di Modica
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| | - Elena Montanari
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| | - Tiziana Triulzi
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| | - Serenella M. Pupa
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| | - Elda Tagliabue
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy; (G.B.); (V.L.N.); (M.S.)
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy; (G.B.); (V.L.N.); (M.S.)
- Microenvironment and Biomarkers of Solid Tumors, Experimental Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.D.M.); (E.M.); (T.T.); (S.M.P.); (E.T.)
| |
Collapse
|
44
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
45
|
Svolacchia F, Brongo S, Catalano A, Ceccarini A, Svolacchia L, Santarsiere A, Scieuzo C, Salvia R, Finelli F, Milella L, Saturnino C, Sinicropi MS, Fabrizio T, Giuzio F. Natural Products for the Prevention, Treatment and Progression of Breast Cancer. Cancers (Basel) 2023; 15:cancers15112981. [PMID: 37296944 DOI: 10.3390/cancers15112981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we summarize the most used natural products as useful adjuvants in BC by clarifying how these products may play a critical role in the prevention, treatment and progression of this disease. BC is the leading cancer, in terms of incidence, that affects women. The epidemiology and pathophysiology of BC were widely reported. Inflammation and cancer are known to influence each other in several tumors. In the case of BC, the inflammatory component precedes the development of the neoplasm through a slowly increasing and prolonged inflammation that also favors its growth. BC therapy involves a multidisciplinary approach comprising surgery, radiotherapy and chemotherapy. There are numerous observations that showed that the effects of some natural substances, which, in integration with the classic protocols, can be used not only for prevention or integration in order to prevent recurrences and induce a state of chemoquiescence but also as chemo- and radiosensitizers during classic therapy.
Collapse
Affiliation(s)
- Fabiano Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
- Department of Medical Sciences, Policlinic Foundation Tor Vergata University, 00133 Rome, Italy
| | - Sergio Brongo
- Department of Plastic Surgery, University of Salerno, 84131 Campania, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Agostino Ceccarini
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
| | - Lorenzo Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
| | - Alessandro Santarsiere
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, 67000 Strasbourg, France
| | - Carmen Scieuzo
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Tommaso Fabrizio
- Department of Plastic Surgery, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Federica Giuzio
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
46
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
47
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Haroun E, Kumar PA, Saba L, Kassab J, Ghimire K, Dutta D, Lim SH. Intestinal barrier functions in hematologic and oncologic diseases. J Transl Med 2023; 21:233. [PMID: 37004099 PMCID: PMC10064590 DOI: 10.1186/s12967-023-04091-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The intestinal barrier is a complex structure that not only regulates the influx of luminal contents into the systemic circulation but is also involved in immune, microbial, and metabolic homeostasis. Evidence implicating disruption in intestinal barrier functions in the development of many systemic diseases, ranging from non-alcoholic steatohepatitis to autism, or systemic complications of intestinal disorders has increased rapidly in recent years, raising the possibility of the intestinal barrier as a potential target for therapeutic intervention to alter the course and mitigate the complications associated with these diseases. In addition to the disease process being associated with a breach in the intestinal barrier functions, patients with hematologic and oncologic diseases are particularly at high risks for the development of increased intestinal permeability, due to the frequent use of broad-spectrum antibiotics and chemoradiation. They also face a distinct challenge of being intermittently severely neutropenic due to treatment of the underlying conditions. In this review, we will discuss how hematologic and oncologic diseases are associated with disruption in the intestinal barrier and highlight the complications associated with an increase in the intestinal permeability. We will explore methods to modulate the complication. To provide a background for our discussion, we will first examine the structure and appraise the methods of evaluation of the intestinal barrier.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Ludovic Saba
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Krishna Ghimire
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| |
Collapse
|
49
|
Sun J, Tang Q, Yu S, Xie M, Zheng W, Chen G, Yin Y, Huang X, Wo K, Lei H, Zhang J, Wan Q, Chen L. F. nucleatum facilitates oral squamous cell carcinoma progression via GLUT1-driven lactate production. EBioMedicine 2023; 88:104444. [PMID: 36709580 PMCID: PMC9900488 DOI: 10.1016/j.ebiom.2023.104444] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Tumor-resident microbiota has been documented for various cancer types. Oral squamous cell carcinoma (OSCC) is also enriched with microbiota, while the significance of microbiota in shaping the OSCC microenvironment remains elusive. METHODS We used bioinformatics and clinical sample analysis to explore relationship between F. nucleatum and OSCC progression. Xenograft tumor model, metabolic screening and RNA sequencing were performed to elucidate mechanisms of pro-tumor role of F. nucleatum. FINDINGS We show that a major protumorigenic bacterium, F. nucleatum, accumulates in invasive margins of OSCC tissues and drives tumor-associated macrophages (TAMs) formation. The mechanistic dissection shows that OSCC-resident F. nucleatum triggers the GalNAc-Autophagy-TBC1D5 signaling, leading to GLUT1 aggregation in the plasma membrane and the deposition of extracellular lactate. Simultaneous functional inhibition of GalNAc and GLUT1 efficiently reduces TAMs formation and restrains OSCC progression. INTERPRETATION These findings suggest that tumor-resident microbiota affects the immunomodulatory and protumorigenic microenvironment via modulating glycolysis and extracellular lactate deposition. The targeted intervention of this process could provide a distinct clinical strategy for patients with advanced OSCC. FUNDING This work was supported by the National Natural Science Foundation of China for Key Program Projects (82030070, to LC) and Distinguished Young Scholars (31725011, to LC), as well as Innovation Team Project of Hubei Province (2020CFA014, to LC).
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Keqi Wo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Haoqi Lei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China,Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
50
|
Predictive Biomarkers for Response to Immunotherapy in Triple Negative Breast Cancer: Promises and Challenges. J Clin Med 2023; 12:jcm12030953. [PMID: 36769602 PMCID: PMC9917763 DOI: 10.3390/jcm12030953] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a highly heterogeneous disease with a poor prognosis and a paucity of therapeutic options. In recent years, immunotherapy has emerged as a new treatment option for patients with TNBC. However, this therapeutic evolution is paralleled by a growing need for biomarkers which allow for a better selection of patients who are most likely to benefit from this immune checkpoint inhibitor (ICI)-based regimen. These biomarkers will not only facilitate a better optimization of treatment strategies, but they will also avoid unnecessary side effects in non-responders, and limit the increasing financial toxicity linked to the use of these agents. Huge efforts have been deployed to identify predictive biomarkers for the ICI, but until now, the fruits of this labor remained largely unsatisfactory. Among clinically validated biomarkers, only programmed death-ligand 1 protein (PD-L1) expression has been prospectively assessed in TNBC trials. In addition to this, microsatellite instability and a high tumor mutational burden are approved as tumor agnostic biomarkers, but only a small percentage of TNBC fits this category. Furthermore, TNBC should no longer be approached as a single biological entity, but rather as a complex disease with different molecular, clinicopathological, and tumor microenvironment subgroups. This review provides an overview of the validated and evolving predictive biomarkers for a response to ICI in TNBC.
Collapse
|