1
|
Han H, Li Y, Qi Y, Mangiola S, Ling W. Deciphering Gut Microbiome in Colorectal Cancer via Robust Learning Methods. Genes (Basel) 2025; 16:452. [PMID: 40282413 PMCID: PMC12026925 DOI: 10.3390/genes16040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers worldwide and is closely linked to the gut microbiota. Identifying reproducible and generalizable microbial signatures holds significant potential for enhancing early detection and advancing treatment for this deadly disease. METHODS This study integrated various publicly available case-control datasets to identify microbial signatures for CRC. Alpha and beta diversity metrics were evaluated to characterize differences in gut microbial richness, evenness, and overall composition between CRC patients and healthy controls. Differential abundance analysis was conducted using ANCOM-BC and LEfSe to pinpoint individual taxa that were enriched or depleted in CRC patients. Additionally, sccomp, a Bayesian machine learning method from single-cell analysis, was adapted to provide a more robust validation of compositional differences in individual microbial markers. RESULTS Gut microbial richness is significantly higher in CRC patients, and overall microbiome composition differs significantly between CRC patients and healthy controls. Several taxa, such as Fusobacterium and Peptostreptococcus, are enriched in CRC patients, while others, including Anaerostipes, are depleted. The microbial signatures identified from the integrated data are reproducible and generalizable, with many aligning with findings from previous studies. Furthermore, the use of sccomp enhanced the precision of individual microbial marker identification. CONCLUSIONS Biologically, the microbial signatures identified from the integrated data improve our understanding of the gut microbiota's role in CRC pathogenesis and may contribute to the development of translational targets and microbiota-based therapies. Methodologically, this study demonstrates the effectiveness of adapting robust techniques from single-cell research to improve the precision of microbial marker discovery.
Collapse
Affiliation(s)
- Huiye Han
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; (H.H.); (Y.L.)
| | - Ying Li
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; (H.H.); (Y.L.)
| | - Youran Qi
- Independent Researcher, New York, NY 10128, USA;
| | - Stefano Mangiola
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA 5005, Australia;
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Wodan Ling
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; (H.H.); (Y.L.)
| |
Collapse
|
2
|
Greco L, Rubbino F, Ferrari C, Cameletti M, Grizzi F, Bonelli F, Malesci A, Mazzone M, Ricciardiello L, Laghi L. Association of Fusobacterium nucleatum with colorectal cancer molecular subtypes and its outcome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e5. [PMID: 40297307 PMCID: PMC12035788 DOI: 10.1017/gmb.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Massimiliano Mazzone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Macrophage Dynamics Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luigi Ricciardiello
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Mondal T, Chattopadhyay D, Saha Mondal P, Das S, Mondal A, Das A, Samanta S, Saha T. Fusobacterium nucleatum modulates the Wnt/β-catenin pathway in colorectal cancer development. Int J Biol Macromol 2025; 299:140196. [PMID: 39848378 DOI: 10.1016/j.ijbiomac.2025.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The Wnt/β-catenin signalling pathway normally maintains cellular and tissue homeostasis by regulating cellular differentiation and survival in a controlled manner. An aberrantly regulated Wnt/β-catenin signalling pathway can transform into an oncogenic pathway, which is associated with Colorectal cancer (CRC) as well as other cancers. CRC is one of the most frequently occurring gastrointestinal cancers worldwide. In CRC tissues, deregulation of Wnt/β-catenin pathway is observed, which indicates that this oncogenic pathway directly promotes CRC malignancy, cell migration, angiogenesis, chemoresistance, as well as shorter lifespan of a patient. Growing evidence suggests that human commensal microbes have a strong association with carcinogenesis, particularly the prevalence and high enrichment of Fusobacterium nucleatum in CRC progression. The Wnt/β-catenin pathway is one of the targeted pathways by F. nucleatum in CRC, where Fusobacterium adhesin attaches to E-cadherin to initiate infection. Also, Wnt/β-catenin pathway can be a potential target for the treatment of both CRC and F. nucleatum-positive CRC. Here, we discuss the underlying mechanisms of F. nucleatum-positive CRC development through modulation of Wnt/β-catenin signalling and its possibility for the application in targeted therapy of F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India; Department of Physiology, Katwa Collage, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Abhishek Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
4
|
Xia S, Ma L, Li H, Li Y, Yu L. Prevalence of enterotoxigenic Bacteroides fragilis in patients with colorectal cancer: a systematic review and meta-analysis. Front Cell Infect Microbiol 2025; 15:1525609. [PMID: 40125515 PMCID: PMC11926129 DOI: 10.3389/fcimb.2025.1525609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction The gut microbiome, specifically enterotoxigenic Bacteroides fragilis (ETBF), has been reported to play a role in colorectal cancer development. We aimed to conduct a systematic review and meta-analysis of published studies to compare the prevalence of ETBF in patients with colorectal cancer and healthy controls as well as in various stages of colorectal cancer. Methods PubMed, EMBASE, and The Cochrane Library were systematically searched for studies published until May 2024. We utilized studies either comparing the prevalence of ETBF in patients with colorectal cancer and healthy control or examining its prevalence across different stages of colorectal cancer. The prevalence of ETBF colonization in biological samples from individuals with colorectal cancer compared to that in healthy controls or adjacent normal tissue as well as the association between the prevalence of ETBF and various stages of colorectal cancer were plotted using a random-effect or fixed-effect model. Results Fourteen relevant articles were identified. Meta-analyses revealed that patients with colorectal cancer had a higher likelihood of having ETBF than healthy controls (odds ratio [OR]: 2.54, 95% confidence interval [CI]: 1.63-3.98, I2 = 55%). Additionally, ETBF detection was lower in stage I/II than in stage III/IV colorectal cancer (OR: 0.61, 95% CI: 0.41-0.91, I2 = 41%). Discussion The prevalence of ETBF was consistently higher in the tissue and fecal samples of patients with colorectal cancer than in those of controls. A difference in ETBF prevalence between stage I/II and stage III/IV colorectal cancer was noted, but further analysis revealed that the conclusion is unreliable. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD 42024548325.
Collapse
Affiliation(s)
- Shijun Xia
- Department of Anus & Intestine Surgery, Shenzhen Hospital (Fu Tian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Ma
- Department of Anus & Intestine Surgery, Shenzhen Traditional Chinese Medicine Anorectal Hospital (Fu tian), Shenzhen, China
| | - Hui Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Research Group of Standardization of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yue Li
- Department of Anus & Intestine Surgery, Shenzhen Hospital (Fu Tian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linchong Yu
- Department of Anus & Intestine Surgery, Shenzhen Hospital (Fu Tian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Zhao F, An R, Ma Y, Yu S, Gao Y, Wang Y, Yu H, Xie X, Zhang J. Integrated spatial multi-omics profiling of Fusobacterium nucleatum in breast cancer unveils its role in tumour microenvironment modulation and cancer progression. Clin Transl Med 2025; 15:e70273. [PMID: 40070022 PMCID: PMC11897063 DOI: 10.1002/ctm2.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Tumour-associated microbiota are integral components of the tumour microenvironment (TME). However, previous studies on intratumoral microbiota primarily rely on bulk tissue analysis, which may obscure their spatial distribution and localized effects. In this study, we applied in situ spatial-profiling technology to investigate the spatial distribution of intratumoral microbiota in breast cancer and their interactions with the local TME. Using 5R 16S rRNA gene sequencing and RNAscope FISH/CISH on patients' tissue, we identified significant spatial heterogeneity in intratumoral microbiota, with Fusobacterium nucleatum (F. nucleatum) predominantly localized in tumour cell-rich areas. GeoMx digital spatial profiling (DSP) revealed that regions colonized by F. nucleatum exhibit significant influence on the expression of RNAs and proteins involved in proliferation, migration and invasion. In vitro studies indicated that co-culture with F. nucleatum significantly stimulates the proliferation and migration of breast cancer cells. Integrative spatial multi-omics and co-culture transcriptomic analyses highlighted the MAPK signalling pathways as key altered pathways. By intersecting these datasets, VEGFD and PAK1 emerged as critical upregulated proteins in F. nucleatum-positive regions, showing strong positive correlations with MAPK pathway proteins. Moreover, the upregulation of VEGFD and PAK1 by F. nucleatum was confirmed in co-culture experiments, and their knockdown significantly reduced F. nucleatum-induced proliferation and migration. In conclusion, intratumoral microbiota in breast cancer exhibit significant spatial heterogeneity, with F. nucleatum colonization markedly altering tumour cell protein expression to promote progression and migration. These findings provide novel perspectives on the role of microbiota in breast cancer, identify potential therapeutic targets, and lay the foundation for future cancer treatments. KEY POINTS: Intratumoral Fusobacterium nucleatum exhibits significant spatial heterogeneity within breast cancer tissues. F. nucleatum colonization alters the expression of key proteins involved in tumour progression and migration. The MAPK signalling pathway is a critical mediator of F. nucleatum-induced breast cancer cell proliferation and migration. VEGFD and PAK1 are potential therapeutic targets to mitigate F. nucleatum-induced tumour progression.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Rui An
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yilei Ma
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shaobo Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yuzhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yanzhong Wang
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haitao Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xinyou Xie
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jun Zhang
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| |
Collapse
|
6
|
Sameni F, Elkhichi PA, Dadashi A, Sadeghi M, Goudarzi M, Eshkalak MP, Dadashi M. Global prevalence of Fusobacterium nucleatum and Bacteroides fragilis in patients with colorectal cancer: an overview of case reports/case series and meta-analysis of prevalence studies. BMC Gastroenterol 2025; 25:71. [PMID: 39930345 PMCID: PMC11808969 DOI: 10.1186/s12876-025-03664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second deadliest carcinoma across the globe and has been known as a multi-factor induced-disease. Emerging research have demonstrated that bacterial colonization may contribute to the initiation and promotion of the CRC. The presence of Fusobacterium nucleatum (F. nucleatum) and Bacteroides fragilis (B. fragilis) in the gut is associated with the development of CRC. In this study, the prevalence of F. nucleatum and B. fragilis among CRC patients has been assessed worldwide through a systematic review and meta-analysis. METHODS The extensive search was performed using "Fusobacterium nucleatum", "Bacteroides fragilis", "Colorectal cancer" and all relevant keywords. Then, a systematic paper screening was done following a comprehensive search in Embase, Web of Science, and PubMed databases while the time range was limited between the years 2000 and 2024. Afterwards, statistical analysis was performed utilizing the comprehensive meta-analysis (CMA) software (version 2.0, Biostat, USA). RESULTS According to the meta-analysis of prevalence studies, the prevalence of F. nucleatum among 19 countries and B. fragilis among 10 countries were indicated to be 38.9% (95% CI 33.7-44.3%) and 42.5% (95% CI 34.4-51.1%), respectively, among the CRC patients. It was then revealed that Asia had the highest prevalence of F. nucleatum while most of the B. fragilis isolates in CRC cases were reported in European countries. Moreover, the data suggested that the most common comorbidity observed among the CRC cases was diabetes. CONCLUSION Our results emphasized the high prevalence of F. nucleatum and B. fragilis in CRC patients. Based on this meta-analysis review, regulating the gut microbiota in CRC patients seemed to be a promising approach to improving the efficacy of CRC therapy.
Collapse
Affiliation(s)
- Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Abedi Elkhichi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dadashi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohammad Sadeghi
- EA7375-EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers,, Paris East Créteil University (UPEC), Créteil, 94010, France
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
7
|
Emadi R, Saki S, Yousefi P, Tabibzadeh A. A Perspective on Lung Cancer and Lung Microbiome: Insight on Immunity. Immun Inflamm Dis 2025; 13:e70145. [PMID: 39887959 PMCID: PMC11783403 DOI: 10.1002/iid3.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Although the carcinogenic potential of microbes has long been recognized, their significance may have been underestimated. Currently, the connection between microbiota and cancer is under extensive research. The lung microbiota may serve as a proxy for the state of lung health based on its crucial role in preserving lung hemostasis. OBJECTIVES This review tried to outline the state of our understanding of the contribution of lung microbiome and lung cancer. METHODS A literature search was performed using PubMed, Google Scholar, and Scopus databases for recent research focusing on the development and possible pathogenesis of lung microbiome and lung cancer. RESULTS Early research on lung cancer indicated that dysbiosis significantly impacted the development and spread of the tumor. As a result of these findings, the study of the lung microbiota as a possible therapeutic target and diagnostic marker has accelerated. Early-stage disease diagnostic biomarkers could be represented as microbiota profiles. Additionally, the microbiome is involved in anticancer therapy. There are limited studies on lung microbiota, and most microbiome studies commonly concentrate on the gut microbiota. A proper understanding of lung microbiota can have several potential therapeutic approaches. Therefore, more studies in this field may initiate remarkable advancements in microbiome-dependent treatment. CONCLUSION Convincing data from studies on both humans and animals indicates that the microbiota might play a role in cancer initiation, influenced by internal and environmental factors of the host. Notably, the lung harbors its microbiome, as do lung cancers. In general view, it seems microbiome diversity in lung cancer patients is reduced. Meanwhile, some genera were increased in lung cancer patients in comparison with a noncancerous population (such as Streptococcus genus), and some of them were decreased (Granulicatella adiacens, G. adiacens). Furthermore, research on the microbiome-carcinogenesis relationship is still in its infancy, and much remains to be fully understood.
Collapse
Affiliation(s)
- Reza Emadi
- Department of Medical Laboratory Sciences, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
| | - Sasan Saki
- Department of Medical Laboratory Sciences, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
| | - Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Medical Laboratory Sciences, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
- Applied Neuroscience Research CenterIslamic Azad University, Arak BranchArakIran
| |
Collapse
|
8
|
Zou D, Xin X, Xu Y, Xu H, Xu T. A cross-sectional study on the association between physical activity and the risk of colon cancer based on NHANES 2007-2018. Sci Rep 2025; 15:3297. [PMID: 39865142 PMCID: PMC11770084 DOI: 10.1038/s41598-025-88067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025] Open
Abstract
Colon cancer poses a significant threat to global health, and studies have shown a correlation between physical activity (PA) and the incidence of colon cancer. However, existing research has not quantitatively analyzed PA to evaluate its impact on the risk of colon cancer comprehensively. Data related to the study were obtained from the NHANES database for participants aged 20 and above between 2007 and 2018. Calculate the daily total metabolic equivalent (MET) based on the duration of different physical activities for each participant, use multivariate logistic regression analysis to evaluate the association between PA and colon cancer risk, perform subgroup analysis to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) between different subgroups, and use RCS regression analysis to evaluate the non-linear relationship between MET and colon cancer risk. After adjusting for potential confounding factors, multivariate logistic regression analysis showed that compared with the overall data of the participants in this study, the OR of the low PA group (PA ≤ 120MET/day) was 1.224 (95% CI 1.031-1.453, P = 0.023), the OR of the mild PA group (120 < PA ≤ 600MET/day) was 1.026 (95%CI 0.707-1.488, P = 0.894), the OR of the moderate intensity PA group (600 < PA ≤ 1200MET/day) was 0.798 (95% CI 0.506-1.258, P = 0.334), and the OR of the high-intensity PA group (PA > 1200MET/day) was 0.470 (95% CI 0.249-0.885, P = 0.022), these results are consistent in subgroup analysis. The RCS regression analysis results showed a significant nonlinear relationship between MET and the risk of colon cancer(p < 0.001), with an inflection point observed at 1879 MET/day on the correlation curve. Low physical activity increases the risk of colon cancer, while moderate to high-intensity physical activity can reduce the risk of colon cancer. The results of this study emphasize the importance of maintaining appropriate physical activity as a healthy way to prevent colon cancer.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
9
|
Deng J, Sun C, Xu G, Wang B, Tzortzopoulou E, Deng D, Giovannetti E. The Oral Microbiome and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:151-170. [PMID: 40111691 DOI: 10.1007/978-3-031-79146-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There is growing evidence suggesting a strong association between members of the oral microbiota and various types of cancer, including oral cancer, colorectal cancer, esophageal squamous cell carcinoma, and pancreatic cancer. Periodontal diseases closely associated with pathogenic bacteria in the oral cavity have been shown to be correlated with the occurrence and development of cancers. Among the periodontal disease-associated bacteria in the oral cavity, two prominent oral pathogens, Porphyromonas gingivalis and Fusobacterium nucleatum, have been found to promote tumor cell proliferation, invasion, and migration, as well as to inhibit immune cell function, thereby facilitating tumor progression. The presence of other oral pathogenic bacteria, such as Treponema denticola, Tannerella forsythia, Parvimonas micra, and Aggregatibacter actinomycetemcomitans, has also been found to be associated with cancer worsening. Oral commensal bacteria play a crucial role in maintaining the normal oral homeostasis. However, the relationship between oral commensal bacteria and the occurrence and development of cancers remains controversial. Some studies suggest an increase in oral commensal bacteria during tumor development, while others suggest an association of certain commensal bacteria with lower tumor risk. The microbiota can significantly alter responses and toxicity to various forms of cancer treatment through interactions with the human body, thereby influencing disease progression. In this chapter, we provide a concise overview of current understanding of the role of the oral microbiota in cancer.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chen Sun
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Eleni Tzortzopoulou
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
10
|
Akbari E, Epstein JB, Samim F. Unveiling the Hidden Links: Periodontal Disease, Fusobacterium Nucleatum, and Cancers. Curr Oncol Rep 2024; 26:1388-1397. [PMID: 39133417 DOI: 10.1007/s11912-024-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Fusobacterium nucleatum (F. nucleatum), an anaerobic, gram-negative microbe, commonly found in human dental biofilm and the gut flora. It has long been known to have a higher concentration in periodontal disease and has recently been implicated in both oral and distant cancers such as colorectal, gastrointestinal, esophageal, breast, pancreatic hepatocellular, and genitourinary cancers. However, the mechanism of its involvement in the development of cancer has not been fully discussed. This review aims to cover biological molecular and clinical aspects of F. nucleatum and cancers. RECENT FINDINGS Studies indicate F. nucleatum promotes tumor development through chronic inflammation, immune evasion, cell proliferation activation, and direct cell interactions, as in oral squamous cell carcinoma (OSCC). In colorectal cancer (CRC), F. nucleatum contributes to tumorigenesis through β-catenin signaling and NF-κB activation. It also induces autophagy, leading to chemoresistance in CRC and esophageal cancers, and enhances tumor growth and metastasis in breast cancer by reducing T-cell infiltration. F. nucleatum is linked to carcinogenesis and increased bacterial diversity in OSCC, with improved oral hygiene potentially preventing OSCC. F. nucleatum triggers cancer by causing mutations and epigenetic changes through cytokines and reactive oxygen species. It also promotes chemoresistance in CRC. F. nucleatum may potentially serve as a diagnostic tool in various cancers, with non-invasive detection methods available. Further investigation is needed to discover its potential in the diagnosis and treatment of OSCC and other cancers.
Collapse
Affiliation(s)
- Elahe Akbari
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada
| | - Joel B Epstein
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cedars Sinai Health System, Los Angeles, CA, USA
| | - Firoozeh Samim
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Hamada M, Nishiyama K, Nomura R, Akitomo T, Mitsuhata C, Yura Y, Nakano K, Matsumoto-Nakano M, Uzawa N, Inaba H. Clinical relationships between the intratumoral microbiome and risk factors for head and neck cancer. Heliyon 2024; 10:e39284. [PMID: 39497974 PMCID: PMC11533578 DOI: 10.1016/j.heliyon.2024.e39284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
A bioinformatic analysis is a promising approach to understand the relationship between the vast tumor microbiome and cancer development. In the present study, we studied the relationships between the intratumoral microbiome and classical clinical risk factors using bioinformatics analysis of the Cancer Genome Atlas (TCGA) and the Cancer Microbiome Atlas (TCMA) datasets. We used TCMA database and investigated the abundance of microbes at the genus level in solid normal tissue (n = 22) and the primary tumors of patients with head and neck squamous cell carcinoma (HNSCC) (n = 154) and identified three major tumor microbiomes, Fusobacterium, Prevotella, and Streptococcus. The tissue level of Fusobacterium was higher in primary tumors than in solid normal tissue. However, univariate and multivariate analyses of these 3 microbes showed no significant effects on patient survival. We then extracted 43, 55, or 59 genes that were differentially expressed between the over and under the median groups for Fusobacterium, Prevotella, or Streptococcus using the criteria of >2.5, >1.5, or >2.0 fold and p < 0.05 in the Mann-Whitney U test. The results of a pathway analysis revealed the association of Fusobacterium- and Streptococcus-related genes with the IL-17 signaling pathway and Staphylococcus aureus infection, while Prevotella-associated pathways were not extracted. A protein-protein interaction analysis revealed a dense network in the order of Fusobacterium, Streptococcus, and Prevotella. An investigation of the relationships between the intratumoral microbiome and classical clinical risk factors showed that high levels of Fusobacterium were associated with a good prognosis in the absence of alcohol consumption and smoking, while high levels of Streptococcus were associated with a poor prognosis in the absence of alcohol consumption. In conclusion, intratumoral Fusobacterium and Streptococcus may affect the prognosis of patients with HNSCC, and their effects on HNSCC are modulated by the impact of drinking and smoking.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kyoko Nishiyama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Dental Hygiene, Kyoto Koka Woman's College, 38, Kuzuno-cho, Nishikyogoku, Ukyo-ku, Kyoto-shi, 615-0882, Japan
| |
Collapse
|
12
|
Datorre JG, Dos Reis MB, de Carvalho AC, Porto J, Rodrigues GH, Lima AB, Reis MT, Hirai W, Hashimoto CL, Guimarães DP, Reis RM. Enhancing Colorectal Cancer Screening with Droplet Digital PCR Analysis of Fusobacterium nucleatum in Fecal Immunochemical Test Samples. Cancer Prev Res (Phila) 2024; 17:471-479. [PMID: 38953141 DOI: 10.1158/1940-6207.capr-23-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/18/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Fecal immunochemical test (FIT) followed by colonoscopy in positive cases is commonly used for population-based colorectal cancer screening. However, specificity of FIT for colorectal cancer is not ideal and has poor performance for advanced adenoma detection. Fecal Fusobacterium nucleatum (Fn) detection has been proposed as a potential noninvasive biomarker for colorectal cancer and advanced adenoma detection. We aimed to evaluate the diagnostic performance of Fn detection using droplet digital PCR (ddPCR) in FIT samples from individuals enrolled in a colorectal cancer screening program with colorectal adenoma or cancer. We evaluated Fn presence in DNA isolated from FIT leftover material of 300 participants in a colorectal cancer screening program using ddPCR. The Fn DNA amount was classified as Fn-low/negative and Fn-high, and the association with patients' clinicopathological features and accuracy measurements was calculated. Fn-high levels were more prevalent in FIT-positive (47.2%, n = 34 of 72) than FIT-negative samples (28.9%, n = 66 of 228; P < 0.04). Among FIT-positive samples, high Fn levels were significantly more frequent in patients with cancer (CA, n = 8) when compared to normal (NT, n = 16; P = 0.02), non-advanced adenomas (NAA, n = 36; P = 0.01), and advanced adenomas (AA, n = 12; P = 0.01). Performance analysis of Fn in FIT-positive samples for colorectal cancer detection yielded an AUC of 0.8203 [confidence interval (CI), 0.6464-0.9942], with high sensitivity (100%) and specificity of 50%. Concluding, we showed the feasibility of detecting Fn in FIT leftovers using the ultrasensitive ddPCR technique. Furthermore, we highlighted the potential use of Fn levels in fecal samples to ameliorate colorectal cancer detection. Prevention Relevance: Fusobacterium nucleatum detection by droplet digital PCR could prioritize the selection of fecal immunochemical test-positive individuals who might benefit the most from the colonoscopy procedure.
Collapse
Affiliation(s)
- José G Datorre
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Mariana B Dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Ana C de Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Jun Porto
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Adhara B Lima
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Monise T Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | - Welinton Hirai
- Department of Statistics and Epidemiology, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Denise P Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Department of Prevention, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
13
|
Ulger Y, Delik A, Akkız H. Gut Microbiome and colorectal cancer: discovery of bacterial changes with metagenomics application in Turkısh population. Genes Genomics 2024; 46:1059-1070. [PMID: 38990271 DOI: 10.1007/s13258-024-01538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the 3rd most common cancer in the world and colonic carcinogenesis is a multifactorial disease that involves environmental and genetic factors. Gut microbiota plays a critical role in the regulation of intestinal homeostasis. Increasing evidence shows that the gut microbiome plays a role in CRC development and may be a biomarker for early diagnosis. OBJECTIVE This study aimed to determine the clinical prognostic significance of gut microbiota in CRC patients in the Turkish population by metagenomic analysis and to determine the microbial composition in tumor tissue biopsy samples. METHODS Tissue biopsies were taken from the participants with sterile forceps during colonoscopy and stored at -80 °C. Then, DNA isolation was performed from the tissue samples and the V3-V4 region of the 16 S rRNA gene was sequenced on the Illumina MiSeq platform. Quality control of the obtained sequence data was performed. Operational taxonomic units (OTUs) were classified according to the Greengenes database. Alpha diversity (Shannon index) and beta diversity (Bray-Curtis distance) analyses were performed. The most common bacterial species in CRC patients and healthy controls were determined and whether there were statistically significant differences between the groups was tested. RESULTS A total of 40 individuals, 13 CRC patients and 20 healthy control individuals were included in our metagenomic study. The mean age of the patients was 64.83 and BMI was 25.85. In CRC patients, the level of Bacteroidetes at the phylum taxonomy was significantly increased (p = 0.04), the level of Clostridia at the class taxonomy was increased (p = 0.23), and the level of Enterococcus at the genus taxonomy was significantly increased (p = 0.01). When CRC patients were compared with the control group, significant increases were detected in the species of Gemmiger formicilis (p = 0.15), Prevotella copri (p = 0.02) and Ruminococcus bromii (p = 0.001) at the species taxonomy. CONCLUSIONS Metagenomic analysis of intestinal microbiota composition in CRC patients provides important data for determining the treatment options for these patients. The results of this study suggest that it may be beneficial in terms of early diagnosis, poor prognosis and survival rates in CRC patients. In addition, this metagenomic study is the first study on the colon microbiome associated with CRC mucosa in the Turkish population.
Collapse
Affiliation(s)
- Yakup Ulger
- Faculty of Medicine, Division of Gastroenterology, Cukurova University, Adana, 01330, Turkey
| | - Anıl Delik
- Faculty of Medicine, Division of Gastroenterology, Cukurova University, Adana, 01330, Turkey
- Faculty of Science and Literature, Division of Biology, Cukurova University, Adana, 01330, Turkey
| | - Hikmet Akkız
- Faculty of Medicine, Division of Gastroenterology Istanbul, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
14
|
Davoutis E, Gkiafi Z, Lykoudis PM. Bringing gut microbiota into the spotlight of clinical research and medical practice. World J Clin Cases 2024; 12:2293-2300. [PMID: 38765739 PMCID: PMC11099419 DOI: 10.12998/wjcc.v12.i14.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Despite the increasing scientific interest and expanding role of gut microbiota (GM) in human health, it is rarely reported in case reports and deployed in clinical practice. Proteins and metabolites produced by microbiota contribute to immune system development, energy homeostasis and digestion. Exo- and endogenous factors can alter its composition. Disturbance of microbiota, also known as dysbiosis, is associated with various pathological conditions. Specific bacterial taxa and related metabolites are involved in disease pathogenesis and therefore can serve as a diagnostic tool. GM could also be a useful prognostic factor by predicting future disease onset and preventing hospital-associated infections. Additionally, it can influence response to treatments, including those for cancers, by altering drug bioavailability. A thorough understanding of its function has permitted significant development in therapeutics, such as probiotics and fecal transplantation. Hence, GM should be considered as a ground-breaking biological parameter, and it is advisable to be investigated and reported in literature in a more consistent and systematic way.
Collapse
Affiliation(s)
- Efstathia Davoutis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Zoi Gkiafi
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagis M Lykoudis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Benedetti F, Mongodin EF, Badger JH, Munawwar A, Cellini A, Yuan W, Silvestri G, Kraus CN, Marini S, Rathinam CV, Salemi M, Tettelin H, Gallo RC, Zella D. Bacterial DnaK reduces the activity of anti-cancer drugs cisplatin and 5FU. J Transl Med 2024; 22:269. [PMID: 38475767 PMCID: PMC10935962 DOI: 10.1186/s12967-024-05078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jonathan H Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Cellini
- Pathology Biorepository Shared Service, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovannino Silvestri
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Chozha V Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Gu Z, Liu Y. A bibliometric and visualized in oral microbiota and cancer research from 2013 to 2022. Discov Oncol 2024; 15:24. [PMID: 38302656 PMCID: PMC10834930 DOI: 10.1007/s12672-024-00878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Numerous studies have highlighted the implication of oral microbiota in various cancers. However, no bibliometric analysis has been conducted on the relationship between oral microbiota and cancer. This bibliometric analysis aimed to identify the research hotspots in oral microbiota and cancer research, as well as predict future research trends. The literature published relating to oral microbiota and cancer was searched from the Web of Science Core Collection database (WoSCC) from 2013 to 2022. VOSviewer or Citespace software was used to perform the bibliometric analysis, focusing on countries, institutions, authors, journals, keywords and references. A total of 1516 publications were included in the analysis. The number of publications related oral microbiota and cancer increased annually, reaching its peak in 2022 with 287 papers. The United States (456) and China (370) were the countries with the most publications and made significant contributions to the field. Sears CL and Zhou XD were the most productive authors. The high frequency of keywords revealed key topics, including cancer (colorectal cancer, oral cancer), oral microbiota (Fusobacterium nucleatum, Porphyromonas gingivalis), and inflammation (periodontal disease). The latest trend keywords were F. nucleatum, dysbiosis, prognosis, tumor microenvironment, gastric microbiota, complications and survival, suggesting a new hotspot in the field of oral microbiota and cancer. Our study provides a comprehensive analysis of oral microbiota and cancer research, revealing an increase in publications in recent years. Future research directions will continue to focus on the diversity of oral microbiota impacted by cancers and the underlying mechanism connecting them, providing new ideas for targeted therapy of tumorigenesis.
Collapse
Affiliation(s)
- Zhiyu Gu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yunkun Liu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
17
|
Ding R, Lian SB, Tam YC, Oh CC. Das kutane Mikrobiom bei Hautkrebs - Eine systematische Übersicht: The cutaneous microbiome in skin cancer - A systematic review. J Dtsch Dermatol Ges 2024; 22:177-185. [PMID: 38361188 DOI: 10.1111/ddg.15294_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024]
Abstract
ZusammenfassungDie Hautkrebs‐Inzidenz ist über die vergangene halbe Dekade weltweit gestiegen und mit signifikanter Morbidität und Mortalität assoziiert. Jüngste Fortschritte in der molekularen Diagnostik ermöglichen ein besseres Verständnis von Mikrobiom‐Veränderungen bei diesen Erkrankungen. Allerdings ist die Literatur zum kutanen Mikrobiom bei Hautkrebs nach wie vor heterogen und spärlich. Wir führten eine systematische Überprüfung durch, um die bestehende Literatur sowie ihren Nutzen bezüglich mikrobiombasierter Biomarker zu evaluieren. Die Datenbanken (PubMed, Medline, EMBASE, GoogleScholar) wurden zwischen Juni und Juli 2022 in Übereinstimmung mit den PRISMA‐Richtlinien gesichtet.Insgesamt wurden 1.543 Artikel ermittelt, von denen 16 in die Übersicht eingeschlossen wurden (11 Artikel zu epithelialen Hauttumoren und 5 Artikel zu Melanomen). Bei Plattenepithelkarzinomen (PEKs) und aktinischer Keratose (AK) wird im Vergleich zu gesunder Haut eine erhöhte Prävalenz von Staphylococcus (S.) aureus bei gleichzeitigem Rückgang der kommensalen Organismen festgestellt. Das Mikrobiom des Melanoms scheint sich zwar von dem der gesunden Haut zu unterscheiden, doch stehen nur wenige Daten für aussagekräftige Schlussfolgerungen zur Verfügung.Die vorliegende Übersicht fasst die aktuellen Erkenntnisse zum Mikrobiom bei epithelialem Hautkrebs und Melanom zusammen. Sie zeigt, dass sich das Mikrobiom bei diesen Erkrankungen von dem gesunder Haut unterscheidet und dass an dieser Dysbiose sowohl pathogene als auch kommensale Organismen beteiligt sind.
Collapse
Affiliation(s)
- Ruojun Ding
- Department of Dermatology, Singapore General Hospital, Singapore, Singapore
| | | | - Yew Chong Tam
- Education Resource Centre, Singapore General Hospital, Singapore, Singapore
| | - Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
18
|
Kasagga A, Hawrami C, Ricci E, Hailu KT, Salib K, Savithri Nandeesha S, Hamid P. Gut Microbiota and Colorectal Cancer: An Umbrella Review of Methodological Trends and Clinical Correlations. Cureus 2024; 16:e54210. [PMID: 38496101 PMCID: PMC10942869 DOI: 10.7759/cureus.54210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
In this umbrella review, we analyze the effect of gut microbiota on the development and progression of colorectal cancer (CRC), a global health challenge. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines, we searched multiple databases for the most relevant systematic reviews and meta-analyses from 2000 to 2023. We identified 20 articles that met our inclusion criteria. The findings include the identification of specific microbiota markers, such as Fusobacterium nucleatum, for potential early diagnosis and improvement of disease treatment. This thorough study not only establishes the connection between microbiota and CRC but also provides valuable knowledge for future research in developing microbiome-centered treatments and preventive methods.
Collapse
Affiliation(s)
- Alousious Kasagga
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chnoor Hawrami
- Pediatric Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Erica Ricci
- Anesthesiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kirubel T Hailu
- Internal medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Afet Speciality Clinic, Addis Ababa, ETH
| | - Korlos Salib
- Internal Medicine, St Mary El zaytoun, Cairo, EGY
| | - Sanath Savithri Nandeesha
- Internal Medicine, Karnataka Institute of Medical Sciences, Hubli, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
19
|
Ding R, Lian SB, Tam YC, Oh CC. The cutaneous microbiome in skin cancer - A systematic review. J Dtsch Dermatol Ges 2024; 22:177-184. [PMID: 38243841 DOI: 10.1111/ddg.15294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/29/2023] [Indexed: 01/22/2024]
Abstract
The overall incidence of skin cancer has risen over the past half a decade worldwide and is associated with significant morbidity and mortality. Recent advances in molecular testing have allowed us to better characterize microbiome alterations in skin cancer. However, literature specific to skin microbiome and skin cancer remain heterogenous and scattered. A systematic review was performed to identify the existing literature and its usefulness in providing microbiome-based biomarkers. A search of the databases (PubMed, Medline, EMBASE, GoogleScholar) was conducted from June to July 2022 in accordance with the PRISMA guidelines. A total of 1,543 articles were identified, of which 16 were selected for inclusion in the review (11 articles on cancer of the keratinocytes and 5 articles on melanoma). Increased Staphylococcus (S.) aureus prevalence with decline in commensal organisms is seen in squamous cell carcinoma (SCC) and actinic keratosis (AK), compared to healthy skin. While the microbiome of melanoma appears to be distinct from healthy skin, limited data is available to draw meaningful conclusions. Our review summarizes the current evidence on the microbiome of keratinocyte skin cancers and melanoma. The study establishes that the microbiome of these cancers is altered from healthy skin and that this dysbiosis involves both pathogenic and commensal organisms.
Collapse
Affiliation(s)
- Ruojun Ding
- Department of Dermatology, Singapore General Hospital, Singapore, Singapore
| | | | - Yew Chong Tam
- Singapore General Hospital Library, Singapore Health System, Singapore, Singapore
| | - Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
20
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
21
|
Duggan WP, Kisakol B, Woods I, Azimi M, Dussmann H, Fay J, O’Grady T, Maguire B, Reynolds IS, Salvucci M, Slade DJ, McNamara DA, Burke JP, Prehn JH. Spatial transcriptomic analysis reveals local effects of intratumoral fusobacterial infection on DNA damage and immune signaling in rectal cancer. Gut Microbes 2024; 16:2350149. [PMID: 38709233 PMCID: PMC11086019 DOI: 10.1080/19490976.2024.2350149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/26/2024] [Indexed: 05/07/2024] Open
Abstract
Mucinous colorectal cancer (CRC) is a common histological subtype of colorectal adenocarcinoma, associated with a poor response to chemoradiotherapy. The commensal facultative anaerobes fusobacteria, have been associated with poor prognosis specifically in mesenchymal CRC. Interestingly, fusobacterial infection is especially prevalent in mucinous CRC. The objective of this study was therefore to increase our understanding of beneficial and detrimental effects of fusobacterial infection, by contrasting host cell signaling and immune responses in areas of high vs. low infection, using mucinous rectal cancer as a clinically relevant example. We employed spatial transcriptomic profiling of 106 regions of interest from 8 mucinous rectal cancer samples to study gene expression in the epithelial and immune segments across regions of high versus low fusobacterial infection. Fusobacteria high regions were associated with increased oxidative stress, DNA damage, and P53 signaling. Meanwhile regions of low fusobacterial prevalence were characterized by elevated JAK-STAT, Il-17, Il-1, chemokine and TNF signaling. Immune masks within fusobacterial high regions were characterized by elevated proportions of cytotoxic (CD8+) T cells (p = 0.037), natural killer (NK) cells (p < 0.001), B-cells (p < 0.001), and gamma delta T cells (p = 0.003). Meanwhile, fusobacteria low regions were associated with significantly greater M2 macrophage (p < 0.001), fibroblast (p < 0.001), pericyte (p = 0.002), and endothelial (p < 0.001) counts.
Collapse
Affiliation(s)
- William P. Duggan
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ina Woods
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mohammedreza Azimi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
| | - Tony O’Grady
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
| | - Barry Maguire
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ian S. Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John P. Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Jochen H.M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
22
|
Beretta S, Apparicio M, Toniollo GH, Cardozo MV. The importance of the intestinal microbiota in humans and dogs in the neonatal period. Anim Reprod 2023; 20:e20230082. [PMID: 38026003 PMCID: PMC10681130 DOI: 10.1590/1984-3143-ar2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/01/2023] Open
Abstract
The neonatal period represents a critical stage for the establishment and development of the gut microbiota, which profoundly influences the future health trajectory of individuals. This review examines the importance of intestinal microbiota in humans and dogs, aiming to elucidate the distinct characteristics and variations in the composition between these two species. In humans, the intestinal microbiota contributes to several crucial physiological processes, including digestion, nutrient absorption, immune system development, and modulation of host metabolism. Dysbiosis, an imbalance or disruption of the gut microbial community, has been linked to various disorders, such as inflammatory bowel disease, obesity, and even neurological conditions. Furthermore, recent research has unveiled the profound influence of the gut-brain axis, emphasizing the bidirectional communication between the gut microbiota and the central nervous system, impacting cognitive function and mental health. Similarly, alterations in the canine intestinal microbiota have been associated with gastrointestinal disorders, including chronic enteropathy, such as inflammatory bowel disease, food allergies, and ulcerative histiocytic colitis. However, our understanding of the intricacies and functional significance of the intestinal microbiota in dogs remains limited. Understanding the complex dynamics of the intestinal microbiota in both humans and dogs is crucial for devising effective strategies to promote health and manage disease. Moreover, exploring the similarities and differences in the gut microbial composition between these two species can facilitate translational research, potentially leading to innovative therapeutic interventions and strategies to enhance the well-being of both humans and dogs.
Collapse
Affiliation(s)
- Samara Beretta
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Maricy Apparicio
- Departamento de Cirurgia Veterinária e Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Gilson Hélio Toniollo
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Marita Vedovelli Cardozo
- Laboratório de Fisiologia de Microorganismos, Departamento de Ciências Biomédicas e Saúde, Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brasil
| |
Collapse
|
23
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
24
|
Garrigues Q, Apper E, Rodiles A, Rovere N, Chastant S, Mila H. Composition and evolution of the gut microbiota of growing puppies is impacted by their birth weight. Sci Rep 2023; 13:14717. [PMID: 37679393 PMCID: PMC10484951 DOI: 10.1038/s41598-023-41422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Low birth weight puppies present an increased risk of neonatal mortality, morbidity, and some long-term health issues. Yet it has not been investigated if those alterations could be linked to the gut microbiota composition and evolution. 57 puppies were weighed at birth and rectal swabs were performed at 5 time points from birth to 28 days of age. Puppies were grouped into three groups based on their birth weight: low birth weight (LBW), normal birth weight (NBW) and high birth weight (HBW). 16S rRNA gene sequencing was used to highlight differences in the fecal microbiota. During the first three weeks, the relative abundance of facultative anaerobic bacteria such as E. coli, C. perfringens and Tyzzerella was higher in LBW feces, but they catch back with the other groups afterwards. HBW puppies showed higher abundances of Faecalibacterium and Bacteroides during the neonatal period, suggesting an earlier maturation of their microbiota. The results of this study suggest that birth weight impact the initial establishment of the gut microbiota in puppies. Innovative strategies would be desired to deal with altered gut microbiota in low birth weight puppies aiming to improve their survival and long term health.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, Reproduction, ENVT, Université de Toulouse, 23 Chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France.
| | | | | | - Nicoletta Rovere
- Department of Health, Animal Science and Food Safety, VESPA, University of Veterinary, 20134, Milan, Italy
| | - Sylvie Chastant
- NeoCare, Reproduction, ENVT, Université de Toulouse, 23 Chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| | - Hanna Mila
- NeoCare, Reproduction, ENVT, Université de Toulouse, 23 Chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| |
Collapse
|
25
|
Garcia‐Serrano A, Mukhedkar D, Hultin E, Rudsander U, Wettergren Y, Ure AE, Dillner J, Arroyo‐Mühr LS. Assessment of bacterial and viral gut communities in healthy and tumoral colorectal tissue using RNA and DNA deep sequencing. Cancer Med 2023; 12:19291-19300. [PMID: 37641475 PMCID: PMC10557870 DOI: 10.1002/cam4.6483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is known to present a distinct microbiome profile compared to healthy mucosa. Non-targeted deep-sequencing strategies enable nowadays full microbiome characterization up to species level. AIM We aimed to analyze both bacterial and viral communities in CRC using these strategies. MATERIALS & METHODS We analyzed bacterial and viral communities using both DNA and RNA deep-sequencing (Novaseq) in colorectal tissue specimens from 10 CRC patients and 10 matched control patients. Following taxonomy classification using Kraken 2, different metrics for alpha and beta diversities as well as relative and differential abundance were calculated to compare tumoral and healthy samples. RESULTS No viral differences were identified between tissue types, but bacterial species Polynucleobacter necessarius had a highly increased presence for DNA in tumors (p = 0.001). RNA analyses showed that bacterial species Arabia massiliensis had a highly decreased transcription in tumors (p = 0.002) while Fusobacterium nucleatum transcription was highly increased in tumors (p = 0.002). DISCUSSION Sequencing of both DNA and RNA enables a wider perspective of micriobiome profiles. Lack of RNA transcription (Polynucleobacter necessarius) casts doubt on possible role of a microorganism in CRC. The association of F. nucleatum mainly with transcription, may provide further insights on its role in CRC. CONCLUSION Joint assessment of the metagenome (DNA) and the metatranscriptome (RNA) at the species level provided a huge coverage for both bacteria and virus and identifies differential specific bacterial species as tumor associated.
Collapse
Affiliation(s)
- Ainhoa Garcia‐Serrano
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Dhananjay Mukhedkar
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
- Hopsworks ABStockholmSweden
| | - Emilie Hultin
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Ulla Rudsander
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Yvonne Wettergren
- Department of SurgerySahlgrenska University Hospital, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Agustín Enrique Ure
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Joakim Dillner
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
- Center for Cervical Cancer EliminationForskningsgatan F56 Karolinska University Hospital HuddingeStockholmSweden
| | - Laila Sara Arroyo‐Mühr
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
- Center for Cervical Cancer EliminationForskningsgatan F56 Karolinska University Hospital HuddingeStockholmSweden
| |
Collapse
|
26
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Cazzaniga M, Zonzini GB, Di Pierro F, Palazzi CM, Cardinali M, Bertuccioli A. Influence of the microbiota on the effectiveness and toxicity of oncological therapies, with a focus on chemotherapy. Pathol Oncol Res 2023; 29:1611300. [PMID: 37593337 PMCID: PMC10427764 DOI: 10.3389/pore.2023.1611300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Recent studies have highlighted a possible correlation between microbiota composition and the pathogenesis of various oncological diseases. Also, many bacterial groups are now directly or indirectly associated with the capability of stimulating or inhibiting carcinogenic pathways. However, little is known about the importance and impact of microbiota patterns related to the efficacy and toxicity of cancer treatments. We have recently begun to understand how oncological therapies and the microbiota are closely interconnected and could influence each other. Chemotherapy effectiveness, for example, appears to be strongly influenced by the presence of some microorganisms capable of modulating the pharmacokinetics and pharmacodynamics of the compounds used, thus varying the real response and therefore the efficacy of the oncological treatment. Similarly, chemotherapeutic agents can modulate the microbiota with variations that could facilitate or avoid the onset of important side effects. This finding has or could have considerable relevance as it is possible that our ability to modulate and modify the microbial structure before, during, and after treatment could influence all the clinical parameters related to pharmacological treatments and, eventually, the prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, Varese, Italy
| | | | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, Azienda Unità Sanitaria Locale Romagna, Rimini, Italy
| | | |
Collapse
|
28
|
Debertin J, Teles F, Martin LM, Lu J, Koestler DC, Kelsey KT, Beck JD, Platz EA, Michaud DS. Antibodies to oral pathobionts and colon cancer risk in the CLUE I cohort study. Int J Cancer 2023; 153:302-311. [PMID: 36971101 PMCID: PMC10389748 DOI: 10.1002/ijc.34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Periodontitis has been associated with an increased risk for gastrointestinal cancers. The objective of our study was to investigate the association of antibodies to oral bacteria and the risk of colon cancer in a cohort setting. Using the CLUE I cohort, a prospective cohort initiated in 1974 in Washington County, Maryland, we conducted a nested case-control study to examine the association of levels of IgG antibodies to 11 oral bacterial species (13 total strains) with risk of colon cancer diagnosed a median of 16 years later (range: 1-26 years). Antibody response was measured using checkerboard immunoblotting assays. We included 200 colon cancer cases and 200 controls matched on age, sex, cigarette smoking status, time of blood draw and pipe or cigar smoking status. Controls were selected using incidence density sampling. Conditional logistic regression models were used to assess the association between antibody levels and colon cancer risk. In the overall analysis, we observed significant inverse associations for 6 of the 13 antibodies measured (P-trends <.05) and one positive association for antibody levels to Aggregatibacter actinomycetemcomitans (ATCC 29523; P-trend = .04). While we cannot rule out a role for periodontal disease in colon cancer risk, findings from our study suggest that a strong adaptive immune response may be associated with a lower risk of colon cancer. More studies will need to examine whether the positive associations we observed with antibodies to A. actinomycetemcomitans reflect a true causal association for this bacterium.
Collapse
Affiliation(s)
- Julia Debertin
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
| | - Flavia Teles
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Lynn M. Martin
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
- University of Kansas Cancer Center, Kansas City, KS
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - James D. Beck
- Division of Comprehensive Oral Health/Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
29
|
Zhou L, Jiang Z, Zhang Z, Xing J, Wang D, Tang D. Progress of gut microbiome and its metabolomics in early screening of colorectal cancer. Clin Transl Oncol 2023; 25:1949-1962. [PMID: 36790675 DOI: 10.1007/s12094-023-03097-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Gut microbes are widely considered to be closely associated with colorectal cancer (CRC) development. The microbiota is regarded as a potential identifier of CRC, as several studies have found great significant changes in CRC patients' microbiota and metabolic groups. Changes in microbiota, like Fusobacterium nucleatum and Bacteroides fragilis, also alter the metabolic activity of the host, promoting CRC development. In contrast, the metabolome is an intuitive discriminative biomarker as a small molecular bridge to distinguish CRC from healthy individuals due to the direct action of microbes on the host. More diagnostic microbial markers have been found, and the potential discriminatory power of microorganisms in CRC has been investigated through the combined use of biomic genomic metabolomics, bringing new ideas for screening fecal microbial markers. In this paper, we discuss the potential of microorganisms and their metabolites as biomarkers in CRC screening, hoping to provide thoughts and references for non-invasive screening of CRC.
Collapse
Affiliation(s)
- Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|
30
|
Duggan WP, Salvucci M, Kisakol B, Lindner AU, Reynolds IS, Dussmann H, Fay J, O'Grady T, Longley DB, Ginty F, Mc Donough E, Slade DJ, Burke JP, Prehn JHM. Increased Fusobacterium tumoural abundance affects immunogenicity in mucinous colorectal cancer and may be associated with improved clinical outcome. J Mol Med (Berl) 2023; 101:829-841. [PMID: 37171483 PMCID: PMC10300184 DOI: 10.1007/s00109-023-02324-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
There is currently an urgent need to identify factors predictive of immunogenicity in colorectal cancer (CRC). Mucinous CRC is a distinct histological subtype of CRC, associated with a poor response to chemotherapy. Recent evidence suggests the commensal facultative anaerobe Fusobacterium may be especially prevalent in mucinous CRC. The objectives of this study were to assess the association of Fusobacterium abundance with immune cell composition and prognosis in mucinous CRC. Our study included two independent colorectal cancer patient cohorts, The Cancer Genome Atlas (TCGA) cohort, and a cohort of rectal cancers from the Beaumont RCSI Cancer Centre (BRCC). Multiplexed immunofluorescence staining of a tumour microarray (TMA) from the BRCC cohort was undertaken using Cell DIVE technology. Our cohorts included 87 cases (13.3%) of mucinous and 565 cases (86.7%) of non-mucinous CRC. Mucinous CRC in the TCGA dataset was associated with an increased proportion of CD8 + lymphocytes (p = 0.018), regulatory T-cells (p = 0.001) and M2 macrophages (p = 0.001). In the BRCC cohort, mucinous RC was associated with enhanced CD8 + lymphocyte (p = 0.022), regulatory T-cell (p = 0.047), and B-cell (p = 0.025) counts. High Fusobacterium abundance was associated with an increased proportion of CD4 + lymphocytes (p = 0.031) and M1 macrophages (p = 0.006), whilst M2 macrophages (p = 0.043) were under-represented in this cohort. Patients with increased Fusobacterium relative abundance in our mucinous CRC TCGA cohort tended to have better clinical outcomes (DSS: likelihood ratio p = 0.04, logrank p = 0.052). Fusobacterium abundance may be associated with improved outcomes in mucinous CRC, possibly due to a modulatory effect on the host immune response. KEY MESSAGES: • Increased Fusobacterium relative abundance was not found to be associated with microsatellite instability in mucinous CRC. • Increased Fusobacterium relative abundance was associated with an M2/M1 macrophage switch, which is especially significant in mucinous CRC, where M2 macrophages are overexpressed. • Increased Fusobacterium relative abundance was associated with a significant improvement in disease specific survival in mucinous CRC. • Our findings were validated at a protein level within our own in house mucinous and non-mucinous rectal cancer cohorts.
Collapse
Affiliation(s)
- William P Duggan
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Andreas U Lindner
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Joanna Fay
- RCSI Biobank, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony O'Grady
- RCSI Biobank, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B Longley
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | | | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
31
|
Debelius JW, Engstrand L, Matussek A, Brusselaers N, Morton JT, Stenmarker M, Olsen RS. The Local Tumor Microbiome Is Associated with Survival in Late-Stage Colorectal Cancer Patients. Microbiol Spectr 2023; 11:e0506622. [PMID: 37042765 PMCID: PMC10269740 DOI: 10.1128/spectrum.05066-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
The gut microbiome is associated with survival in colorectal cancer. Single organisms have been identified as markers of poor prognosis. However, in situ imaging of tumors demonstrate a polymicrobial tumor-associated community. To understand the role of these polymicrobial communities in survival, we conducted a nested case-control study in late-stage cancer patients undergoing resection for primary adenocarcinoma. The microbiome of paired tumor and adjacent normal tissue samples was profiled using 16S rRNA sequencing. We found a consistent difference in the microbiome between paired tumor and adjacent tissue, despite strong individual microbial identities. Furthermore, a larger difference between normal and tumor tissue was associated with prognosis: patients with shorter survival had a larger difference between normal and tumor tissue. Within the tumor tissue, we identified a 39-member community statistic associated with survival; for every log2-fold increase in this value, an individual's odds of survival increased by 20% (odds ratio survival 1.20; 95% confidence interval = 1.04 to 1.33). Our results suggest that a polymicrobial tumor-specific microbiome is associated with survival in late-stage colorectal cancer patients. IMPORTANCE Microbiome studies in colorectal cancer (CRC) have primarily focused on the role of single organisms in cancer progression. Recent work has identified specific organisms throughout the intestinal tract, which may affect survival; however, the results are inconsistent. We found differences between the tumor microbiome and the microbiome of the rest of the intestine in patients, and the magnitude of this difference was associated with survival, or, the more like a healthy gut a tumor looked, the better a patient's prognosis. Our results suggest that future microbiome-based interventions to affect survival in CRC will need to target the tumor community.
Collapse
Affiliation(s)
- Justine W. Debelius
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Andreas Matussek
- Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden
- Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - James T. Morton
- Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaretha Stenmarker
- Futurum/Department of Pediatrics, Jönköping Region County, Jönköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Institute of Clinical Sciences, Department of Paediatrics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Renate S. Olsen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Pathology Laboratory, Department of Laboratory Medicine, Jönköping Region County, Jönköping, Sweden
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
32
|
Pani G. Fusobacterium & Co. at the Stem of Cancer: Microbe-Cancer Stem Cell Interactions in Colorectal Carcinogenesis. Cancers (Basel) 2023; 15:cancers15092583. [PMID: 37174049 PMCID: PMC10177588 DOI: 10.3390/cancers15092583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Adult stem cells lie at the crossroads of tissue repair, inflammation, and malignancy. Intestinal microbiota and microbe-host interactions are pivotal to maintaining gut homeostasis and response to injury, and participate in colorectal carcinogenesis. Yet, limited knowledge is available on whether and how bacteria directly crosstalk with intestinal stem cells (ISC), particularly cancerous stem-like cells (CR-CSC), as engines for colorectal cancer initiation, maintenance, and metastatic dissemination. Among several bacterial species alleged to initiate or promote colorectal cancer (CRC), the pathobiont Fusobacterium Nucleatum has recently drawn significant attention for its epidemiologic association and mechanistic linkage with the disease. We will therefore focus on current evidence for an F. nucleatum-CRCSC axis in tumor development, highlighting the commonalities and differences between F. nucleatum-associated colorectal carcinogenesis and gastric cancer driven by Helicobacter Pylori. We will explore the diverse facets of the bacteria-CSC interaction, analyzing the signals and pathways whereby bacteria either confer "stemness" properties to tumor cells or primarily target stem-like elements within the heterogeneous tumor cell populations. We will also discuss the extent to which CR-CSC cells are competent for innate immune responses and participate in establishing a tumor-promoting microenvironment. Finally, by capitalizing on the expanding knowledge of how the microbiota and ISC crosstalk in intestinal homeostasis and response to injury, we will speculate on the possibility that CRC arises as an aberrant repair response promoted by pathogenic bacteria upon direct stimulation of intestinal stem cells.
Collapse
Affiliation(s)
- Giovambattista Pani
- Department of Translational Medicine and Surgery, Section of General Pathology, Faculty of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
33
|
Crowder SL, Jim HSL, Hogue S, Carson TL, Byrd DA. Gut microbiome and cancer implications: Potential opportunities for fermented foods. Biochim Biophys Acta Rev Cancer 2023; 1878:188897. [PMID: 37086870 DOI: 10.1016/j.bbcan.2023.188897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.
Collapse
Affiliation(s)
- Sylvia L Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephanie Hogue
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
34
|
Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol 2023; 31:159-172. [PMID: 36058786 DOI: 10.1016/j.tim.2022.08.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC), one of the most prevalent cancers, has complex etiology. The dysbiosis of intestinal bacteria has been highlighted as an important contributor to CRC. Fusobacterium nucleatum, an oral anaerobic opportunistic pathogen, is enriched in both stools and tumor tissues of patients with CRC. Therefore, F. nucleatum is considered to be a risk factor for CRC. This review summarizes the biological characteristics and the mechanisms underlying the regulatory behavior of F. nucleatum in the tumorigenesis and progression of CRC. F. nucleatum as a marker for the early warning and prognostic prediction of CRC, and as a target for prevention and treatment, is also described.
Collapse
Affiliation(s)
- Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Digestive Diseases, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Digestive Diseases, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Kim HS, Kim CG, Kim WK, Kim KA, Yoo J, Min BS, Paik S, Shin SJ, Lee H, Lee K, Kim H, Shin EC, Kim TM, Ahn JB. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers. Front Cell Infect Microbiol 2023; 13:1101291. [PMID: 36960042 PMCID: PMC10028079 DOI: 10.3389/fcimb.2023.1101291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Background & Aims Fusobacterium nucleatum (FN) plays a pivotal role in the development and progression of colorectal cancer by modulating antitumor immune responses. However, the impact of FN on immune regulation in the tumor microenvironment has not been fully elucidated. Methods The abundance of FN was measured in 99 stage III CRC tumor tissues using quantitative polymerase chain reaction. Gene expression profiles were assessed and annotated using consensus molecular subtypes (CMS), Gene Ontology (GO) analysis, and deconvolution of individual immune cell types in the context of FN abundance. Immune profiling for tumor infiltrating T cells isolated from human tumor tissues was analyzed using flow cytometry. Ex vivo tumor-infiltrating T cells were stimulated in the presence or absence of FN to determine the direct effects of FN on immune cell phenotypes. Results Gene expression profiles, CMS composition, abundance of immune cell subtypes, and survival outcomes differed depending on FN infection. We found that FN infection was associated with poorer disease-free survival and overall survival in stage III CRC patients. FN infection was associated with T cell depletion and enrichment of exhausted CD8+ and FoxP3+ regulatory T cells in the tumor microenvironment. The presence of FN in tumors was correlated with a suppressive tumor microenvironment in a T cell-dependent manner. Conclusion FN enhanced the suppressive immune microenvironment with high depletion of CD8+ T cells and enrichment of FoxP3+ regulatory T cells in human colorectal cancer cases. Our findings suggest a potential association for FN in adaptive immunity, with biological and prognostic implications.
Collapse
Affiliation(s)
- Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Kyu Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Kyung-A Kim
- Graduate School of Medical Science, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinseon Yoo
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soonmyung Paik
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoguen Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- *Correspondence: Joong Bae Ahn, ; Tae-Min Kim, ; Eui-Cheol Shin,
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- *Correspondence: Joong Bae Ahn, ; Tae-Min Kim, ; Eui-Cheol Shin,
| | - Joong Bae Ahn
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Joong Bae Ahn, ; Tae-Min Kim, ; Eui-Cheol Shin,
| |
Collapse
|
36
|
Yun SY, Lee Y, Hong J, Kim DC, Lee H, Yong D, Lim YK, Kook JK, Lee K. Identification of Fusobacterium Species Using Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry by Updating ASTA CoreDB. Yonsei Med J 2022; 63:1138-1143. [PMID: 36444550 PMCID: PMC9760896 DOI: 10.3349/ymj.2022.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Fusobacterium species can cause infections, and associations with cancer are being increasingly reported. As their clinical significance differs, accurate identification of individual species is important. However, matrix-assisted laser desorption/ionization-time of flight mass spectrometry has not been found to be effective in identifying Fusobacterium species in previous studies. In this study, we aimed to improve the accuracy and efficacy of identifying Fusobacterium species in clinical laboratories. MATERIALS AND METHODS In total, 229 Fusobacterium isolates were included in this study. All isolates were identified at the species level based on nucleotide sequences of the 16S ribosomal RNA gene and/or DNA-dependent RNA polymerase β-subunit gene (rpoB). Where necessary, isolates were identified based on whole genome sequences. Among them, 47 isolates were used for updating the ASTA database, and 182 isolates were used for the validation of Fusobacterium spp. identification. RESULTS Fusobacterium isolates used for validation (182/182) were correctly identified at the genus level, and most (180/182) were correctly identified at the species level using the ASTA MicroIDSys system. Most of the F. nucleatum isolates (74/75) were correctly identified at the subspecies level. CONCLUSION The updated ASTA MicroIDSys system can identify nine species of Fusobacterium and four subspecies of F. nucleatum in good agreement. This tool can be routinely used in clinical microbiology laboratories to identify Fusobacterium species and serve as a springboard for future research.
Collapse
Affiliation(s)
- Shin Young Yun
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yunhee Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Juwon Hong
- R&D Center, NOSQUEST Inc., Yongin, Korea
| | | | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
- Seoul Clinical Laboratories Academy, Yongin, Korea
| |
Collapse
|
37
|
Attard TM, Septer S, Lawson CE, Attard MI, Lee STM, Umar S. Microbiome insights into pediatric familial adenomatous polyposis. Orphanet J Rare Dis 2022; 17:416. [PMID: 36376984 PMCID: PMC9664625 DOI: 10.1186/s13023-022-02569-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Individuals with familial adenomatous polyposis (FAP) harbor numerous polyps with inevitable early progression to colon cancer. Complex microbiotic-tumor microenvironment perturbations suggest a dysbiotic relationship between polyp and microbiome. In this study, we performed comprehensive analyses of stool and tissue microbiome of pediatric FAP subjects and compared with unaffected cohabiting relatives through 16S V4 region amplicon sequencing and machine learning platforms. RESULTS Within our FAP and control patient population, Firmicutes and Bacteroidetes were the predominant phyla in the tissue and stool samples, while Proteobacteria dominated the polyp/non-polyp mucosa. A decline in Faecalibacterium in polyps contrasted with a decline in Bacteroides in the FAP stool. The alpha- and beta-diversity indices differed significantly within the polyp/non-polyp groups, with a concurrent shift towards lower diversity in polyps. In a limited 3-year longitudinal study, the relative abundance of Proteobacteria and Fusobacteria was higher in polyps compared to non-polyp and stool specimens over time. Through machine learning, we discovered that Archaeon_enrichment_culture_clone_A13, Micrococcus_luteus, and Eubacterium_hallii in stool and PL-11B10, S1-80, and Blastocatellaceae in tissues were significantly different between patients with and without polyps. CONCLUSIONS Detection of certain bacterial concentrations within stool or biopsied polyps could serve as adjuncts to current screening modalities to help identify higher-risk patients.
Collapse
Affiliation(s)
- Thomas M. Attard
- Department of Gastroenterology, Children’s Mercy Hospital, 1MO2.37, 2401 Gilham Road, Kansas City, MO 64108 USA
| | - Seth Septer
- Department of Pediatric Gastroenterology, Children’s Hospital Colorado, Aurora, CO USA
| | - Caitlin E. Lawson
- Division of Genetics, Children’s Mercy Hospital, Kansas City, MO USA
| | - Mark I. Attard
- Neonatal Unit, Aberdeen Maternity Hospital, Aberdeen, AB25 2ZL UK
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160 USA
| |
Collapse
|
38
|
Abstract
Until recently, bacteria have been studied in terms of their roles in infectious diseases and mainly by using isolation and culture methods. However, in practice, many bacteria existing on the earth are difficult to isolate and culture, and thus only a limited number of them have been studied to date. On the other hand, in 2005, the next-generation sequencing technology became generally available, and since then genomic analysis of bacterial flora has become widespread. As a result, it has been revealed that the lower respiratory tract, which was previously thought to be sterile, in fact has bacterial flora (a microbiome) with a high level of biodiversity. In addition, it has been found that various diseases develop and worsen depending on the balance of the bacterial flora, and in recent years, a relationship has been established between various disorders. Recent research on cancer-associated microbial communities has elucidated the reciprocal interactions among bacteria, tumors and immune cells, the bacterial pathways associated with induction of oncogenesis, and their translational significance. Nevertheless, despite the increasing evidence showing that dysbiosis is associated with lung oncogenesis, the detailed mechanisms remain to be fully elucidated. Microorganisms seem to trigger tumor initiation and progression, presumably through the production of bacterio-toxins and other pro-inflammatory factors. The purpose of this review is to present a context for the basic mechanisms and molecular functions of the airway microbiome in oncogenesis, in an effort to prevent cancer by strategies utilizing the airway microbiota, as well as summarizing the mechanisms wherein the microbiome acts as a modulator of immunotherapies in lung cancer.
Collapse
|
39
|
Kashyap S, Pal S, Chandan G, Saini V, Chakrabarti S, Saini NK, Mittal A, Thakur VK, Saini AK, Saini RV. Understanding the cross-talk between human microbiota and gastrointestinal cancer for developing potential diagnostic and prognostic biomarkers. Semin Cancer Biol 2022; 86:643-651. [PMID: 33971261 DOI: 10.1016/j.semcancer.2021.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
The interaction between gut microbes and gastrointestinal (GI) tract carcinogenesis has always attracted researchers' attention to identify therapeutic targets or potential prognostic biomarkers. Various studies have suggested that the microbiota do show inflammation and immune dysregulation, which led to carcinogenesis in GI tract. In this review, we have focused on the role of microbes present in the gut, intestine, or faeces in GI tract cancers, including esophageal cancer, gastric cancer, and colorectal cancer. Herein, we have discussed the importance of the microbes and their metabolites, which could serve as diagnostic biomarkers for cancer detection, especially in the early stage, and prognostic markers. To maximize the effect of the treatment strategies, an accurate evaluation of the prognosis is imperative for clinicians. There is a vast difference in the microbiota profiles within a population and across the populations depending upon age, diet, lifestyle, genetic makeup, use of antibiotics, and environmental factors. Therefore, the diagnostic efficiency of the microbial markers needs to be further validated. A deeper understanding of the GI cancer and the host microbiota is needed to acquire pivotal information about disease status.
Collapse
Affiliation(s)
- Sheetal Kashyap
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Soumya Pal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Gourav Chandan
- Central Research Cell, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Vipin Saini
- Maharishi Markandeshwar University, Solan, 173229, Himachal Pradesh, India
| | - Sasanka Chakrabarti
- Central Research Cell, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Neeraj K Saini
- Department of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Mittal
- Central Research Cell, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
40
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
41
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
42
|
He Z, Tian W, Wei Q, Xu J. Involvement of Fusobacterium nucleatum in malignancies except for colorectal cancer: A literature review. Front Immunol 2022; 13:968649. [PMID: 36059542 PMCID: PMC9428792 DOI: 10.3389/fimmu.2022.968649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is originally an oral opportunistic pathogen and accumulating evidence links the presence of F. nucleatum with the pathogenicity, development, and prognosis of colorectal cancer (CRC). However, only limited preliminary data is available dealing with the role of F. nucleatum in other malignancies except for CRC. The present review aims to update and systematize the latest information about the mechanisms of F. nucleatum-mediating carcinogenesis, together with the detection rates, clinicopathological, and molecular features in F. nucleatum-associated malignancies. Comparing with adjacent non-tumorous tissue, previous studies have shown an overabundance of intratumoural F. nucleatum. Although the prognostic role of F. nucleatum is still controversial, a higher prevalence of F. nucleatum was usually associated with a more advanced tumor stage and a worse overall survival. Preliminary evidence have shown that epithelial-to-mesenchymal transition (EMT) and relevant inflammation and immune response aroused by F. nucleatum may be the probable link between F. nucleatum infection and the initiation of oral/head and neck cancer. Further studies are needed to elucidate the etiologic role of the specific microbiota and the connection between the extent of periodontitis and carcinogenesis in different tumor types. The mechanisms of how the antibiotics exerts the critical role in the carcinogenesis and antitumor effects in malignancies other than CRC need to be further explored.
Collapse
Affiliation(s)
- Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xu
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Xu,
| |
Collapse
|
43
|
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G, Xu H. New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol 2022; 13:964793. [PMID: 36046819 PMCID: PMC9420899 DOI: 10.3389/fphar.2022.964793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas. CRC is characterized by asymptomatic onset, and most patients are already in the middle and advanced stages of disease when they are diagnosed. Inflammatory bowel disease (IBD) and the inflammatory-cancer transformation of advanced colorectal adenoma are the main causes of CRC. There is an urgent need for effective prevention and intervention strategies for CRC. In recent years, rapid research progress has increased our understanding of gut microbiota. Meanwhile, with the deepening of research on the pathogenesis of colorectal cancer, gut microbiota has been confirmed to play a direct role in the occurrence and treatment of colorectal cancer. Strategies to regulate the gut microbiota have potential value for application in the prevention and treatment of CRC. Regulation of gut microbiota is one of the important ways for natural products to exert pharmacological effects, especially in the treatment of metabolic diseases and tumours. This review summarizes the role of gut microbiota in colorectal tumorigenesis and the mechanism by which natural products reduce tumorigenesis and improve therapeutic response. We point out that the regulation of gut microbiota by natural products may serve as a potential means of treatment and prevention of CRC.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Qian
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Salvucci M, Crawford N, Stott K, Bullman S, Longley DB, Prehn JHM. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut 2022; 71:1600-1612. [PMID: 34497144 PMCID: PMC9279747 DOI: 10.1136/gutjnl-2021-325193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Transcriptomic-based subtyping, consensus molecular subtyping (CMS) and colorectal cancer intrinsic subtyping (CRIS) identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B) and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates and host contexture to refine patient stratification and to identify druggable context-specific vulnerabilities. DESIGN We coupled cell culture experiments with characterisation of Fn/Fusobacteriales prevalence and host biology/microenviroment in tumours from two independent colorectal cancer patient cohorts (Taxonomy: n=140, colon and rectal cases of The Cancer Genome Atlas (TCGA-COAD-READ) cohort: n=605). RESULTS In vitro, Fn infection induced inflammation via nuclear factor kappa-light-chain-enhancer of activated B cells/tumour necrosis factor alpha in HCT116 and HT29 cancer cell lines. In patients, high Fn/Fusobacteriales were found in CMS1, microsatellite unstable () tumours, with infiltration of M1 macrophages, reduced M2 macrophages, and high interleukin (IL)-6/IL-8/IL-1β signalling. Analysis of the Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower Fn load than CMS1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential association between Fusobacteriales relative abundance and outcome when stratifying patients in mesenchymal (either CMS4 and/or CRIS-B) versus non-mesenchymal (neither CMS4 nor CRIS-B). Patients with mesenchymal tumours and high Fusobacteriales had approximately twofold higher risk of worse outcome. These associations were null in non-mesenchymal patients. Modelling the three-way association between Fusobacteriales prevalence, molecular subtyping and host contexture with logistic models with an interaction term disentangled the pathogen-host signalling relationship and identified aberrations (including NOTCH, CSF1-3 and IL-6/IL-8) as candidate targets. CONCLUSION This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nyree Crawford
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Katie Stott
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Susan Bullman
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
45
|
The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143385. [PMID: 35884445 PMCID: PMC9317273 DOI: 10.3390/cancers14143385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence shows a close relationship between the microbiome and colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this systematic review was to compile evidence on the relationship between tissue-associated microbiota and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups of bacteria with strong positive and 18 groups of bacteria with strong negative associations with colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that aim to prevent, detect, and treat colorectal cancer in the upcoming years. Abstract The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual’s local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.
Collapse
|
46
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Fusobacterium nucleatum and Malignant Tumors of the Digestive Tract: A Mechanistic Overview. Bioengineering (Basel) 2022; 9:bioengineering9070285. [PMID: 35877336 PMCID: PMC9312082 DOI: 10.3390/bioengineering9070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is an oral anaerobe that plays a role in several oral diseases. However, F. nucleatum is also found in other tissues of the digestive tract, and several studies have recently reported that the level of F. nucleatum is significantly elevated in malignant tumors of the digestive tract. F. nucleatum is proposed as one of the risk factors in the initiation and progression of digestive tract malignant tumors. In this review, we summarize recent reports on F. nucleatum and its role in digestive tract cancers and evaluate the mechanisms underlying the action of F. nucleatum in digestive tract cancers.
Collapse
|
48
|
Kim Y, Cho NY, Kang GH. Prognostic and clinicopathological significance of Fusobacterium nucleatum in colorectal cancer: a systemic review and meta-analysis. J Pathol Transl Med 2022; 56:144-151. [PMID: 35581731 PMCID: PMC9119808 DOI: 10.4132/jptm.2022.03.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Fusobacterium nucleatum has been identified to promote tumor progression in colorectal cancer (CRC). However, association between F. nucleatum and prognostic or clinicopathological features has been diverse among studies, which could be affected by type of biospecimen (formalin-fixed paraffin-embedded or fresh frozen [FF]). Methods Articles were systemically reviewed for studies that included the correlation between F. nucleatum and prognosis or clinicopathological features in CRC. Results Ten articles, eight studies with survival-related features involving 3,199 patients and nine studies with clinical features involving 2,655 patients, were eligible for the meta-analysis. Overall survival, disease-free survival, and cancer-specific survival were all associated with worse prognosis in F. nucleatum–high patients (p<.05). In subgroup analysis, only studies with FF tissues retained prognostic significance with F. nucleatum. In meta-analysis of clinicopathological variables, F. nucleatum level was associated with location within colon, pT category, MLH1 hypermethylation, microsatellite instability status, and BRAF mutation regardless of type of biospecimen. However, lymph node metastasis and KRAS mutation was only associated with F. nucleatum level in FF-based studies. Conclusions In conclusion, type of biospecimen could affect the role of F. nucleatum as a biomarker associated with clinicopathological features and prognosis.
Collapse
Affiliation(s)
- Younghoon Kim
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Corresponding Author: Gyeong Hoon Kang, MD, PhD, Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-22-740-8272, Fax: +82-2-765-5600, E-mail:
| |
Collapse
|
49
|
Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World J Gastroenterol 2022; 28:1946-1964. [PMID: 35664963 PMCID: PMC9150055 DOI: 10.3748/wjg.v28.i18.1946] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence links gut microbiota to various human diseases including colorectal cancer (CRC) initiation and development. However, gut microbiota profiles associated with CRC recurrence and patient prognosis are not completely understood yet, especially in a Chinese cohort. AIM To investigate the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. METHODS We obtained the composition and structure of gut microbiota collected from 75 patients diagnosed with CRC and 26 healthy controls. The patients were followed up by regular examination to determine whether tumors recurred. Triplet-paired samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed with/without CRC recurrence were analyzed to assess spatial-specific patterns of gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. RESULTS We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence and patient prognosis. A total of 17 bacterial genera/families were identified as potential biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema. CONCLUSION Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC recurrence and patient death.
Collapse
Affiliation(s)
- Rui-Xue Huo
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yi-Jia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shao-Bin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
- Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Xue-Hua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
50
|
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20:178. [PMID: 35449107 PMCID: PMC9022293 DOI: 10.1186/s12967-022-03378-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death and the third most frequently diagnosed cancer. Besides the lifestyle, genetic and epigenetic alterations, and environmental factors, gut microbiota also plays a vital role in CRC development. The interruption of the commensal relationship between gut microbiota and the host could lead to an imbalance in the bacteria population, in which the pathogenic bacteria become the predominant population in the gut. Different therapeutic strategies have been developed to modify the gut immune system, prevent pathogen colonization, and alter the activity and composition of gut microbiota, such as prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). Even though the employed strategies exhibit promising results, their translation into the clinic requires evaluating potential implications and risks, as well as assessment of their long-term effects. This study was set to review the gut microbiota imbalances and their relationship with CRC and their effects on CRC therapy, including chemotherapy and immunotherapy. More importantly, we reviewed the strategies that have been used to modulate gut microbiota, their impact on the treatment of CRC, and the challenges of each strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|