1
|
Yang X, Wu X, Hao X, Li T, Guo H, Yang R. Unleashing the therapeutic potential of tumor-draining lymph nodes: spotlight on bladder cancer. J Transl Med 2025; 23:489. [PMID: 40301883 PMCID: PMC12042586 DOI: 10.1186/s12967-024-05864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 05/01/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are often involved during the metastasis of bladder cancer (BC), which is associated with a poor prognosis. Recent studies have shown that TDLNs are a major source of host anti-tumor immunity, which can impede tumor progression and favor tumor immunotherapy. However, during tumor progression, various tumor-derived mediators modulate the TDLN microenvironment, impairing their protective function. Ultimately, TDLNs provide the soil for the proliferation and dissemination of tumor cells. Therefore, surgical removal of TDLNs is commonly recommended in various solid tumors to prevent metastasis, but this poses significant challenges for leveraging TDLNs in immunotherapy. Additionally, lymph node dissection (LND) has not shown survival benefits in some tumors. Hence, the decision to remove TDLNs in oncological treatment needs to be reconsidered. Herein, we spotlight the TDLNs of BC and introduce how BC cells modulate stromal cells and immune cells to shape an immunosuppressive TDLN microenvironment for BC progression. We summarize the existing therapeutic strategies to reinvigorate anti-tumor immunity in TDLNs. Furthermore, we discuss whether to preserve TDLNs and the role of LND during oncological treatment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuyang Hao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Chen X, Lei L, Yan J, Wang X, Li L, Liu Q, Wang Y, Chen T, Shao J, Yu L, Li Z, Zhu L, Wang L, Liu B. Bifunctional Phage Particles Augment CD40 Activation and Enhance Lymph Node-Targeted Delivery of Personalized Neoantigen Vaccines. ACS NANO 2025; 19:6955-6976. [PMID: 39933905 DOI: 10.1021/acsnano.4c14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Although personalized neoantigen cancer vaccines have emerged as a promising strategy for cancer treatment, challenges remain to develop immune-stimulatory carriers which allow simultaneous transport of adjuvants and vaccines to lymph nodes (LNs). With inherent immunogenicity, genetic plasticity, and efficiency for large-scale production, M13 phages represent an attractive platform for vaccine delivery as natural bionanomaterials. Here, we report the discovery of an anti-CD40 designed ankyrin repeat protein (DARPin) and propose a bifunctional M13 ph age for neoantigen delivery based on this anti-CD40 DARPin protein (M13CD40). M13CD40-based neoantigen vaccines show improved accumulation and prolonged antigen retention in LNs compared with nontargeting phage vaccines due to the abundance of CD40-positive cells in LNs. Besides the intrinsic immunogenicity of phages, M13CD40-based neoantigen vaccines also benefit from additional CD40 stimulation due to multiple copies of anti-CD40 DARPins displayed on M13CD40 phages. Subcutaneous immunization with M13CD40-based neoantigen vaccines results in more robust antigen-specific immune responses and superior antitumor efficacy in poorly immunogenic tumor models compared with nontargeting phage vaccines. Combination therapy with PD-1 blockade further enhances T cell cytotoxicity and improves tumor control. To summarize, our findings highlight M13CD40 as a CD40 nanoagonist as well as an efficient vehicle for LN-targeted delivery of personalized neoantigen vaccines.
Collapse
Affiliation(s)
- Xiaotong Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lei Lei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jiayao Yan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Ying Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Tianran Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jie Shao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zijian Li
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| |
Collapse
|
3
|
Adachi Y, Miyake K, Ohira K, Satoh S, Masuhiro K, Edahiro R, Shirai Y, Naito M, Naito Y, Shiroyama T, Koyama S, Hirata H, Iwahori K, Nagatomo I, Takeda Y, Kumanogoh A. Enhancing the efficacy of near-infrared photoimmunotherapy through intratumoural delivery of CD44-targeting antibody-photoabsorber conjugates. EBioMedicine 2025; 112:105566. [PMID: 39848206 PMCID: PMC11795636 DOI: 10.1016/j.ebiom.2025.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Photoimmunotherapy (PIT) is a potent modality for cancer treatment. The conventional PIT regimen involves the systemic delivery of an antibody-photoabsorber conjugate, followed by a 24-h waiting period to ensure adequate localisation on the target cells. Subsequent exposure to near-infrared (NIR) light selectively damages the target cells. We aimed to improve the efficacy of PIT in vivo by evaluating the effects of the different routes of conjugate administration on treatment outcomes. METHODS Subcutaneous Lewis lung carcinoma tumours were established in mice, targeting cluster of differentiation (CD)44 with an anti-CD44 antibody conjugated to IRDye700DX (IR700). The conjugate was administered via the intravenous or intratumoural route followed by the assessment of antibody binding and therapeutic effects of PIT. FINDINGS Compared to intravenous administration, intratumoural delivery of the CD44-IR700 conjugate significantly increased the number of cells binding to the conjugate by >five-fold. This method, combined with NIR light irradiation, halved tumour growth when compared to intravenous delivery. Reducing the interval between intratumoural injection and NIR light exposure to 30 min did not diminish efficacy, thereby demonstrating the feasibility of a 1-h procedure. INTERPRETATION Intratumoural administration of the antibody-photoabsorber conjugate enhanced the efficacy of PIT in vivo. A simplified, 1-h procedure involving conjugate tumour injection followed by irradiation emerged as a potent cancer treatment strategy. FUNDING This study was supported by the Japan Society for the Promotion of Science, the Japan Agency for Medical Research and Development, Japan Science and Technology Agency, and the Osaka Medical Research Foundation for Intractable Diseases.
Collapse
Affiliation(s)
- Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Kika Ohira
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Shingo Satoh
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Lucas S, Thomas SN. Therapeutic Immunomodulation of Tumor-Lymphatic Crosstalk via Intratumoral Immunotherapy. Mol Pharm 2024; 21:5929-5943. [PMID: 39478434 PMCID: PMC11615947 DOI: 10.1021/acs.molpharmaceut.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Intra- and peritumoral lymphatics and tumor-draining lymph nodes play major roles in mediating the adaptive immune response to cancer immunotherapy. Despite this, current paradigms of clinical cancer management seldom seek to therapeutically modulate tumor-lymphatic immune crosstalk. This review explores recent developments that set the stage for how this regulatory axis can be therapeutically manipulated, with a particular emphasis on tumor-localized immunomodulation. Building on this idea, the nature of tumor-lymphatic immune crosstalk and relevant immunotherapeutic targets and pathways are reviewed, with a focus on their translational potential. Engineered drug delivery systems that enhance intratumoral immunotherapy by improving drug delivery to both the tumor and lymph nodes are also highlighted.
Collapse
Affiliation(s)
- Samuel
N. Lucas
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
of America
| | - Susan N. Thomas
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
of America
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Winship
Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
of America
| |
Collapse
|
5
|
Hesen N, Anany M, Freidel A, Baker M, Siegmund D, Zaitseva O, Wajant H, Lang I. Genetically engineered IgG1 and nanobody oligomers acquire strong intrinsic CD40 agonism. Bioengineered 2024; 15:2302246. [PMID: 38214443 PMCID: PMC10793706 DOI: 10.1080/21655979.2024.2302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.
Collapse
Affiliation(s)
- Nienke Hesen
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Andre Freidel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mediya Baker
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| |
Collapse
|
6
|
Mebrahtu A, Laurén I, Veerman R, Akpinar GG, Lord M, Kostakis A, Astorga-Wells J, Dahllund L, Olsson A, Andersson O, Persson J, Persson H, Dönnes P, Rockberg J, Mangsbo S. A bispecific CD40 agonistic antibody allowing for antibody-peptide conjugate formation to enable cancer-specific peptide delivery, resulting in improved T proliferation and anti-tumor immunity in mice. Nat Commun 2024; 15:9542. [PMID: 39500897 PMCID: PMC11538452 DOI: 10.1038/s41467-024-53839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Current antibody-based immunotherapy depends on tumor antigen shedding for proper T cell priming. Here we select a novel human CD40 agonistic drug candidate and generate a bispecific antibody, herein named BiA9*2_HF, that allows for rapid antibody-peptide conjugate formation. The format is designed to facilitate peptide antigen delivery to CD40 expressing cells combined with simultaneous CD40 agonistic activity. In vivo, the selected bispecific antibody BiA9*2_HF loaded with peptide cargos induces improved antigen-specific proliferation of CD8+ (10-15 fold) and CD4+ T cells (2-7 fold) over control in draining lymph nodes. In both virus-induced and neoantigen-based mouse tumor models, BiA9*2_HF demonstrates therapeutic efficacy and elevated safety profile, with complete tumor clearance, as well as measured abscopal impact on tumor growth. The BiA9*2_HF drug candidate can thus be utilized to tailor immunotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Aman Mebrahtu
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
- Strike Pharma AB, Uppsala, Sweden
| | - Ida Laurén
- Strike Pharma AB, Uppsala, Sweden
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Martin Lord
- Strike Pharma AB, Uppsala, Sweden
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Kostakis
- Strike Pharma AB, Uppsala, Sweden
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Astorga-Wells
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Leif Dahllund
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden
| | - Anders Olsson
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden
| | - Oscar Andersson
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden
| | - Jonathan Persson
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden
| | - Helena Persson
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden
| | - Pierre Dönnes
- Strike Pharma AB, Uppsala, Sweden
- SciCross AB, Skövde, Sweden
| | - Johan Rockberg
- KTH Royal Institute of Technology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden.
- Strike Pharma AB, Uppsala, Sweden.
| | - Sara Mangsbo
- Strike Pharma AB, Uppsala, Sweden.
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Hussein NI, Molina AH, Sunga GM, Amit M, Lei YL, Zhao X, Hartgerink JD, Sikora AG, Young S. Localized intratumoral delivery of immunomodulators for oral cancer and oral potentially malignant disorders. Oral Oncol 2024; 158:106986. [PMID: 39137489 DOI: 10.1016/j.oraloncology.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Immunotherapy has developed into an important modality of modern cancer treatment. Unfortunately, checkpoint inhibitor immunotherapies are currently delivered systemically and require frequent administration, which can result in toxicity and severe, sometimes fatal, adverse events. Localized delivery of immunomodulators for oral cancer and oral potentially malignant disorders offers the promise of maximum therapeutic potential and reduced systemic adverse effects. This review will discuss the limitations of current standard-of-care systemic therapies and highlight research advances in localized, intratumoral delivery platforms for immunotherapy for oral cancer and oral potentially malignant disorders.
Collapse
Affiliation(s)
- Nourhan I Hussein
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Andrea H Molina
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Gemalene M Sunga
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Xiao Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, 6500 Main St, BRC-319, Houston, TX 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA.
| |
Collapse
|
8
|
Bridges K, Pizzurro GA, Baysoy A, Baskaran JP, Xu Z, Mathew V, Tripple V, LaPorte M, Park K, Damsky W, Kluger H, Fan R, Kaech SM, Bosenberg MW, Miller-Jensen K. Mapping intratumoral myeloid-T cell interactomes at single-cell resolution reveals targets for overcoming checkpoint inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620093. [PMID: 39554094 PMCID: PMC11565996 DOI: 10.1101/2024.10.28.620093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Effective cancer immunotherapies restore anti-tumor immunity by rewiring cell-cell communication. Treatment-induced changes in communication can be inferred from single-cell RNA-sequencing (scRNA-seq) data, but current methods do not effectively manage heterogeneity within cell types. Here we developed a computational approach to efficiently analyze scRNA-seq-derived, single-cell-resolved cell-cell interactomes, which we applied to determine how agonistic CD40 (CD40ag) alters immune cell crosstalk alone, across tumor models, and in combination with immune checkpoint blockade (ICB). Our analyses suggested that CD40ag improves responses to ICB by targeting both immuno-stimulatory and immunosuppressive macrophage subsets communicating with T cells, and we experimentally validated a spatial basis for these subsets with immunofluorescence and spatial transcriptomics. Moreover, treatment with CD40ag and ICB established coordinated myeloid-T cell interaction hubs that are critical for reestablishing antitumor immunity. Our work advances the biological significance of hypotheses generated from scRNA-seq-derived cell-cell interactomes and supports the clinical translation of myeloid-targeted therapies for ICB-resistant tumors.
Collapse
Affiliation(s)
- Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Present address: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Janani P. Baskaran
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Varsha Mathew
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael LaPorte
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Harriet Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT 06511, USA
- Lead contact
| |
Collapse
|
9
|
Cheng W, Huang Z, Hao Y, Hua H, Zhang B, Li X, Fu F, Yang J, Zheng K, Zhang X, Qi C. The engineered agonistic anti-CD40 antibody potentiates the antitumor effects of β-glucan by resetting TAMs. Immunol Lett 2024; 268:106882. [PMID: 38810887 DOI: 10.1016/j.imlet.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Anti-CD40 antibodies (Abs) have been shown to induce antitumor T-cell responses. We reported that the engineered agonistic anti-CD40 Ab (5C11, IgG4 isotype) recognized human CD40 antigen expressed on a human B lymphoblastoid cell line as well as on splenic cells isolated from humanized CD40 mice. Of note, a single high dosage of 5C11 was able to prohibit tumor growth in parallel with an increase in the population of infiltrated CD8+ T cells. Furthermore, the antitumor effects of 5C11 were enhanced in the presence of β-glucan along with an increase in the population of infiltrated CD8+ T cells. In addition, the numbers of CD86+ TAMs and neutrophils were elevated in the combination of 5C11 and β-glucan compared with either 5C11 or β-glucan alone. Furthermore, the abundance of Faecalibaculum, one of the probiotics critical for tumor suppression, was obviously increased in the combination of 5C11 and β-glucan-treated mice. These data reveal a novel mechanism of tumor suppression upon the combination treatment of 5C11 and β-glucan and propose that the combination treatment of agonistic anti-human CD40 antibody 5C11 and β-glucan could be a promising therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Wanpeng Cheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Provincial Medical Key Discipline, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, China
| | - Yongzhe Hao
- Laboratory of Oncology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| | - Hui Hua
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bo Zhang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Provincial Medical Key Discipline, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Provincial Medical Key Discipline, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, China.
| | - Chunjian Qi
- Laboratory of Oncology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
10
|
Ku KS, Tang J, Chen Y, Shi Y. Current Advancements in Anti-Cancer Chimeric Antigen Receptor T Cell Immunotherapy and How Nanotechnology May Change the Game. Int J Mol Sci 2024; 25:5361. [PMID: 38791398 PMCID: PMC11120994 DOI: 10.3390/ijms25105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.
Collapse
Affiliation(s)
- Kimberly S. Ku
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
| | - Jie Tang
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
11
|
Lei L, Yan J, Xin K, Li L, Sun Q, Wang Y, Chen T, Wu S, Shao J, Liu B, Chen X. Engineered Bacteriophage-Based In Situ Vaccine Remodels a Tumor Microenvironment and Elicits Potent Antitumor Immunity. ACS NANO 2024; 18:12194-12209. [PMID: 38689426 DOI: 10.1021/acsnano.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In situ vaccines (ISVs) utilize the localized delivery of chemotherapeutic agents or radiotherapy to stimulate the release of endogenous antigens from tumors, thereby eliciting systemic and persistent immune activation. Recently, a bioinspired ISV strategy has attracted tremendous attention due to its features such as an immune adjuvant effect and genetic plasticity. M13 bacteriophages are natural nanomaterials with intrinsic immunogenicity, genetic flexibility, and cost-effectiveness for large-scale production, demonstrating the potential for application in cancer vaccines. In this study, we propose an ISV based on the engineered M13 bacteriophage targeting CD40 (M13CD40) for dendritic cell (DC)-targeted immune stimulation, named H-GM-M13CD40. We induce immunogenic cell death and release tumor antigens through local delivery of (S)-10-hydroxycamptothecin (HCPT), followed by intratumoral injection of granulocyte-macrophage colony stimulating factor (GM-CSF) and M13CD40 to enhance DC recruitment and activation. We demonstrate that this ISV strategy can result in significant accumulation and activation of DCs at the tumor site, reversing the immunosuppressive tumor microenvironment. In addition, H-GM-M13CD40 can synergize with the PD-1 blockade and induce abscopal effects in cold tumor models. Overall, our study verifies the immunogenicity of the engineered M13CD40 bacteriophage and provides a proof of concept that the engineered M13CD40 phage can function as an adjuvant for ISVs.
Collapse
Affiliation(s)
- Lei Lei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jiayao Yan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Kai Xin
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008 China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008 China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Ying Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Tianran Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Siwen Wu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008 China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008 China
| | - Xiaotong Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China
- Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| |
Collapse
|
12
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Zhang H, Li Y, Kang H, Lan J, Hou L, Chen Z, Li F, Liu Y, Zhao J, Li N, Wan Y, Zhu Y, Zhao Z, Zhang H, Zhuang J, Huang X. Genetically engineered membrane-based nanoengagers for immunotherapy of pancreatic cancer. J Nanobiotechnology 2024; 22:104. [PMID: 38468289 PMCID: PMC10926568 DOI: 10.1186/s12951-024-02369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane: anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.
Collapse
Affiliation(s)
- Haoqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Helong Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jingping Lan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Lin Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhengbang Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
15
|
Berglund H, Salomonsson SL, Mohajershojai T, Gago FJF, Lane DP, Nestor M. p53 stabilisation potentiates [ 177Lu]Lu-DOTATATE treatment in neuroblastoma xenografts. Eur J Nucl Med Mol Imaging 2024; 51:768-778. [PMID: 37823909 PMCID: PMC10796565 DOI: 10.1007/s00259-023-06462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Molecular radiotherapy is a treatment modality that is highly suitable for targeting micrometastases and [177Lu]Lu-DOTATATE is currently being explored as a potential novel treatment option for high-risk neuroblastoma. p53 is a key player in the proapoptotic signalling in response to radiation-induced DNA damage and is therefore a potential target for radiosensitisation. METHODS This study investigated the use of the p53 stabilising peptide VIP116 and [177Lu]Lu-DOTATATE, either alone or in combination, for treatment of neuroblastoma tumour xenografts in mice. Initially, the uptake of [177Lu]Lu-DOTATATE in the tumours was confirmed, and the efficacy of VIP116 as a monotherapy was evaluated. Subsequently, mice with neuroblastoma tumour xenografts were treated with placebo, VIP116, [177Lu]Lu-DOTATATE or a combination of both agents. RESULTS The results demonstrated that monotherapy with either VIP116 or [177Lu]Lu-DOTATATE significantly prolonged median survival compared to the placebo group (90 and 96.5 days vs. 50.5 days, respectively). Notably, the combination treatment further improved median survival to over 120 days. Furthermore, the combination group exhibited the highest percentage of complete remission, corresponding to a twofold increase compared to the placebo group. Importantly, none of the treatments induced significant nephrotoxicity. Additionally, the therapies affected various molecular targets involved in critical processes such as apoptosis, hypoxia and angiogenesis. CONCLUSION In conclusion, the combination of VIP116 and [177Lu]Lu-DOTATATE presents a promising novel treatment approach for neuroblastoma. These findings hold potential to advance research efforts towards a potential cure for this vulnerable patient population.
Collapse
Affiliation(s)
- Hanna Berglund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Sara Lundsten Salomonsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
- Ridgeview Instruments AB, SE-752 38, Uppsala, Sweden
| | - Tabassom Mohajershojai
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | | | - David P Lane
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, 138648, Singapore
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, SE-171 65, Solna, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
16
|
Weiss SA, Sznol M, Shaheen M, Berciano-Guerrero MÁ, Couselo EM, Rodríguez-Abreu D, Boni V, Schuchter LM, Gonzalez-Cao M, Arance A, Wei W, Ganti AK, Hauke RJ, Berrocal A, Iannotti NO, Hsu FJ, Kluger HM. A Phase II Trial of the CD40 Agonistic Antibody Sotigalimab (APX005M) in Combination with Nivolumab in Subjects with Metastatic Melanoma with Confirmed Disease Progression on Anti-PD-1 Therapy. Clin Cancer Res 2024; 30:74-81. [PMID: 37535056 PMCID: PMC10767304 DOI: 10.1158/1078-0432.ccr-23-0475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Disease progression during or after anti-PD-1-based treatment is common in advanced melanoma. Sotigalimab is a CD40 agonist antibody with a unique epitope specificity and Fc receptor binding profile optimized for activation of CD40-expressing antigen-presenting cells. Preclinical data indicated that CD40 agonists combined with anti-PD1 could overcome resistance to anti-PD-1. PATIENTS AND METHODS We conducted a multicenter, open-label, phase II trial to evaluate the combination of sotigalimab 0.3 mg/kg and nivolumab 360 mg every 3 weeks in patients with advanced melanoma following confirmed disease progression on a PD-1 inhibitor. The primary objective was to determine the objective response rate (ORR). RESULTS Thirty-eight subjects were enrolled and evaluable for safety. Thirty-three were evaluable for activity. Five confirmed partial responses (PR) were observed for an ORR of 15%. Two PRs are ongoing at 45.9+ and 26+ months, whereas the other three responders relapsed at 41.1, 18.7, and 18.4 months. The median duration of response was at least 26 months. Two additional patients had stable disease for >6 months. Thirty-four patients (89%) experienced at least one adverse event (AE), and 13% experienced a grade 3 AE related to sotigalimab. The most common AEs were pyrexia, chills, nausea, fatigue, pruritus, elevated liver function, rash, vomiting, headache, arthralgia, asthenia, myalgia, and diarrhea. There were no treatment-related SAEs, deaths, or discontinuation of sotigalimab due to AEs. CONCLUSIONS Sotigalimab plus nivolumab had a favorable safety profile consistent with the toxicity profiles of each agent. The combination resulted in durable and prolonged responses in a subset of patients with anti-PD-1-resistant melanoma, warranting further evaluation in this setting. See related commentary by Wu and Luke, p. 9.
Collapse
Affiliation(s)
- Sarah A. Weiss
- Yale University School of Medicine, New Haven, Connecticut
| | - Mario Sznol
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Miguel-Ángel Berciano-Guerrero
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | | | - Valentina Boni
- START Madrid-CIOCC, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Lynn M. Schuchter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Gonzalez-Cao
- Instituto Oncológico, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Ana Arance
- Hospital Clínic Barcelona, Barcelona, Spain
| | - Wei Wei
- Yale University School of Medicine, New Haven, Connecticut
| | - Apar Kishor Ganti
- VA Nebraska Western Iowa Healthcare System and University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | |
Collapse
|
17
|
Wang B, Liu Y, Yuan R, Dou X, Qian N, Pan X, Xu G, Xu Q, Dong B, Yang C, Li H, Wang J, Bai G, Liu L, Gao X. XFab-α4-1BB/CD40L fusion protein activates dendritic cells, improves expansion of antigen-specific T cells, and exhibits antitumour efficacy in multiple solid tumour models. Cancer Immunol Immunother 2023; 72:4015-4030. [PMID: 37863852 PMCID: PMC10991239 DOI: 10.1007/s00262-023-03535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Additional immunotherapies are still warranted for non-responders to checkpoint inhibitors with refractory or relapsing cancers, especially for patients with "cold" tumours lacking significant immune infiltration at treatment onset. We developed XFab-α4-1BB/CD40L, a bispecific antibody targeting 4-1BB and CD40 for dendritic cell activation and priming of tumour-reactive T cells to inhibit tumours. METHODS XFab-α4-1BB/CD40L was developed by engineering an anti-4-1BB Fab arm into a CD40L trimer based on XFab® platform. Characterisation of the bispecific antibody was performed by cell-based reporter assays, maturation of dendritic cell assays, and mixed lymphocyte reactions. The abilities of antigen-specific T-cell expansion and antitumour efficacy were assessed in syngeneic mouse tumour models. Toxicological and pharmacodynamic profiles were investigated in non-human primates. RESULTS XFab-α4-1BB/CD40L demonstrated independent CD40 agonistic activity and conditional 4-1BB activity mediated by CD40 crosslinking, leading to dendritic cell maturation and T-cell proliferation in vitro. We confirmed the expansion of antigen-specific T cells in the vaccination model and potent tumour regression induced by the bispecific antibody alone or in combination with gemcitabine in vivo, concomitant with improved tumour-reactive T-cell infiltration. XFab-α4-1BB/CD40L showed no signs of liver toxicity at doses up to 51 mg/kg in a repeated-dose regimen in non-human primates. CONCLUSIONS XFab-α4-1BB/CD40L is capable of enhancing antitumour immunity by modulating dendritic cell and T-cell functions via targeting 4-1BB agonism to areas of CD40 expression. The focused, potent, and safe immune response induced by the bispecific antibody supports further clinical investigations for the treatment of solid tumours.
Collapse
Affiliation(s)
- Bochun Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Yujie Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Ruofei Yuan
- Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaoqian Dou
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Niliang Qian
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Xiujie Pan
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Guili Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Qinzhi Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Bo Dong
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Cuima Yang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Hongjie Li
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Jingjing Wang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Guijun Bai
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Xin Gao
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China.
| |
Collapse
|
18
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
19
|
Krykbaeva I, Bridges K, Damsky W, Pizzurro GA, Alexander AF, McGeary MK, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss SA, Olino K, Kaech SM, Kluger HM, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunol Res 2023; 11:1332-1350. [PMID: 37478171 DOI: 10.1158/2326-6066.cir-22-0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.
Collapse
Affiliation(s)
- Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - William Damsky
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Gabriela A Pizzurro
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amanda F Alexander
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
| | - James Eyles
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Nadia Luheshi
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Noel Turner
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah A Weiss
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute of Biological Sciences, La Jolla, California
| | - Harriet M Kluger
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Chu C, Pietzak E. Immune mechanisms and molecular therapeutic strategies to enhance immunotherapy in non-muscle invasive bladder cancer: Invited review for special issue "Seminar: Treatment Advances and Molecular Biology Insights in Urothelial Carcinoma". Urol Oncol 2023; 41:398-409. [PMID: 35811207 PMCID: PMC10167944 DOI: 10.1016/j.urolonc.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/12/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Intravesical immunotherapy with Bacillus Calmette-Guérin (BCG) has been the standard of care for patients with high-risk non non-muscle invasive bladder cancer (NMIBC) for over four decades. Despite its success as a cancer immunotherapy, disease recurrence and progression remain common. Current efforts are focused on developing effective and well-tolerated alternatives to BCG and salvage bladder preservation therapies after BCG has failed. The focus of this review is to synthesize our current understanding of the molecular biology and tumor immune microenvironment of NMIBC to provide rationale for existing and emerging therapeutic targets. We highlight recent and ongoing clinical trials and define the current treatment landscape, challenges, and future directions of salvage treatment. Combination regimens that are rationally designed will be needed to make meaningful therapeutic advancements. Investigations into the molecular underpinnings of NMIBC are leading to the emergence of predictive molecular biomarkers that provide greater insight into the clinical heterogeneity of NMIBC and enable us to identify drivers of treatment resistance and new therapeutic targets.
Collapse
Affiliation(s)
- Carissa Chu
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eugene Pietzak
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Urology, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
21
|
Nguyen KB, Roerden M, Copeland CJ, Backlund CM, Klop-Packel NG, Remba T, Kim B, Singh NK, Birnbaum ME, Irvine DJ, Spranger S. Decoupled neoantigen cross-presentation by dendritic cells limits anti-tumor immunity against tumors with heterogeneous neoantigen expression. eLife 2023; 12:e85263. [PMID: 37548358 PMCID: PMC10425174 DOI: 10.7554/elife.85263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/06/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer immunotherapies, in particular checkpoint blockade immunotherapy (CBT), can induce control of cancer growth, with a fraction of patients experiencing durable responses. However, the majority of patients currently do not respond to CBT and the molecular determinants of resistance have not been fully elucidated. Mounting clinical evidence suggests that the clonal status of neoantigens (NeoAg) impacts the anti-tumor T cell response. High intratumor heterogeneity (ITH), where the majority of NeoAgs are expressed subclonally, is correlated with poor clinical response to CBT and poor infiltration with tumor-reactive T cells. However, the mechanism by which ITH blunts tumor-reactive T cells is unclear. We developed a transplantable murine lung cancer model to characterize the immune response against a defined set of NeoAgs expressed either clonally or subclonally to model low or high ITH, respectively. Here we show that clonal expression of a weakly immunogenic NeoAg with a relatively strong NeoAg increased the immunogenicity of tumors with low but not high ITH. Mechanistically we determined that clonal NeoAg expression allowed cross-presenting dendritic cells to acquire and present both NeoAgs. Dual NeoAg presentation by dendritic cells was associated with a more mature DC phenotype and a higher stimulatory capacity. These data suggest that clonal NeoAg expression can induce more potent anti-tumor responses due to more stimulatory dendritic cell:T cell interactions. Therapeutic vaccination targeting subclonally expressed NeoAgs could be used to boost anti-tumor T cell responses.
Collapse
Affiliation(s)
- Kim Bich Nguyen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | | | - Coralie M Backlund
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, MITCambridgeUnited States
| | - Nory G Klop-Packel
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tanaka Remba
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Byungji Kim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nishant K Singh
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael E Birnbaum
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, MITCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Darrell J Irvine
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, MITCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Ludwig Center at MIT’s Koch Institute for Integrative Cancer ResearchCambridgeUnited States
| |
Collapse
|
22
|
Hoffmann F, Fröhlich A, Sirokay J, de Vos L, Zarbl R, Dietrich J, Strieth S, Landsberg J, Dietrich D. DNA methylation of GITR, OX40, 4-1BB, CD27 , and CD40 correlates with BAP1 aberrancy and prognosis in uveal melanoma. Melanoma Res 2023; 33:116-125. [PMID: 36735464 DOI: 10.1097/cmr.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma represents an aggressive tumor that responds mostly poorly to established melanoma treatments. Comprehensive methylation profiling of the next-generation immunotherapeutic target genes, for example, members of the tumor necrosis factor receptor superfamily, might allow for the development of companion predictive biomarkers. We have analyzed CpG sites within the immune checkpoint genes GITR, OX40, 4-1BB, CD 27, and CD40 probed by the Illumina Infinium HumanMethylation450 BeadChip in N = 80 uveal melanomas included in The Cancer Genome Atlas with regard to BAP1 aberrancy, mRNA expression, and overall survival. In all analyzed immune checkpoint genes, BAP1 aberrancy was associated with decreased CpG methylation levels. We identified specific CpG sites that significantly correlated with BAP1 aberrancy, mRNA expression levels, and overall survival. Our results suggest epigenetic regulation of the analyzed immune checkpoint genes via DNA methylation in uveal melanoma and provide rationale for methylation testing in biomarker programs in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Romina Zarbl
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
23
|
Liu H, Davila Gonzalez D, Viswanath DI, Vander Pol RS, Saunders SZ, Di Trani N, Xu Y, Zheng J, Chen S, Chua CYX, Grattoni A. Sustained Intratumoral Administration of Agonist CD40 Antibody Overcomes Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206873. [PMID: 36658712 PMCID: PMC10037694 DOI: 10.1002/advs.202206873] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/12/2023]
Abstract
Agonist CD40 monoclonal antibodies (mAb) is a promising immunotherapeutic agent for cold-to-hot tumor immune microenvironment (TIME) conversion. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer known as an immune desert, and therefore urgently needs more effective treatment. Conventional systemic treatment fails to effectively penetrate the characteristic dense tumor stroma. Here, it is shown that sustained low-dose intratumoral delivery of CD40 mAb via the nanofluidic drug-eluting seed (NDES) can modulate the TIME to reduce tumor burden in murine models. NDES achieves tumor reduction at a fourfold lower dosage than systemic treatment while avoiding treatment-related adverse events. Further, abscopal responses are shown where intratumoral treatment yields growth inhibition in distant untreated tumors. Overall, the NDES is presented as a viable approach to penetrate the PDAC immune barrier in a minimally invasive and effective manner, for the overarching goal of transforming treatment.
Collapse
Affiliation(s)
- Hsuan‐Chen Liu
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Daniel Davila Gonzalez
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Dixita Ishani Viswanath
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- Texas A&M University College of Medicine2121 W Holcombe BlvdHoustonTX77003USA
| | - Robin Shae Vander Pol
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Shani Zakiya Saunders
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Nicola Di Trani
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Yitian Xu
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Junjun Zheng
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Shu‐Hsia Chen
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Corrine Ying Xuan Chua
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- Department of SurgeryHouston Methodist Hospital6565 Fannin St.HoustonTX77003USA
- Department of Radiation OncologyHouston Methodist Hospital6565 Fannin St.HoustonTX77003USA
| |
Collapse
|
24
|
Wong JL, Smith P, Angulo-Lozano J, Ranti D, Bochner BH, Sfakianos JP, Horowitz A, Ravetch JV, Knorr DA. IL-15 synergizes with CD40 agonist antibodies to induce durable immunity against bladder cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526266. [PMID: 36778311 PMCID: PMC9915460 DOI: 10.1101/2023.01.30.526266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CD40 is a central co-stimulatory receptor implicated in the development of productive anti-tumor immune responses across multiple cancers, including bladder cancer. Despite strong preclinical rationale, systemic administration of therapeutic agonistic antibodies targeting the CD40 pathway have demonstrated dose limiting toxicities with minimal clinical activity to date, emphasizing an important need for optimized CD40-targeted approaches, including rational combination therapy strategies. Here, we describe an important role for the endogenous IL-15 pathway in contributing to the therapeutic activity of CD40 agonism in orthotopic bladder tumors, with upregulation of trans-presented IL-15/IL-15Rα surface complexes, particularly by cross-presenting cDC1s, and associated enrichment of activated CD8 T cells within the bladder tumor microenvironment. In bladder cancer patient samples, we identify DCs as the primary source of IL-15, however, they lack high levels of IL-15Rα at baseline. Using humanized immunocompetent orthotopic bladder tumor models, we demonstrate the ability to therapeutically augment this interaction through combined treatment with anti-CD40 agonist antibodies and exogenous IL-15, including the fully-human Fc-optimized antibody 2141-V11 currently in clinical development for the treatment of bladder cancer. Combination therapy enhances the crosstalk between Batf3-dependent cDC1s and CD8 T cells, driving robust primary anti-tumor activity and further stimulating long-term systemic anti-tumor memory responses associated with circulating memory-phenotype T and NK cell populations. Collectively, these data reveal an important role for IL-15 in mediating anti-tumor CD40 agonist responses in bladder cancer and provide key proof-of-concept for combined use of Fc-optimized anti-CD40 agonist antibodies and agents targeting the IL-15 pathway. These data support expansion of ongoing clinical studies evaluating anti-CD40 agonist antibodies and IL-15-based approaches to evaluate combinations of these promising therapeutics for the treatment of patients with bladder cancer.
Collapse
Affiliation(s)
- Jeffrey L. Wong
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Current address: Genentech, Inc., South San Francisco, CA, USA
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Juan Angulo-Lozano
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Daniel Ranti
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bernard H. Bochner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John P. Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - David A. Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
25
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
26
|
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, Xiao Z, Liong CS, Brown RA, Maikawa CL, Grosskopf AK, Mann JL, Idoyaga J, Appel EA. Injectable Nanoparticle-Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103677. [PMID: 35975424 PMCID: PMC9534946 DOI: 10.1002/advs.202103677] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/27/2022] [Indexed: 05/31/2023]
Abstract
When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Emily L. Meany
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Emily C. Gale
- Department of BiochemistryStanford University School of MedicineStanfordCA94305USA
| | - John H. Klich
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Olivia M. Saouaf
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Aaron T. Mayer
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Zunyu Xiao
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Celine S. Liong
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ryanne A. Brown
- Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | | | | | - Joseph L. Mann
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Juliana Idoyaga
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
| |
Collapse
|
27
|
Moore C, Bae J, Liu L, Li H, Fu YX, Qiao J. Exogenous signaling repairs defective T cell signaling inside the tumor microenvironment for better immunity. JCI Insight 2022; 7:e159479. [PMID: 36073543 PMCID: PMC9536281 DOI: 10.1172/jci.insight.159479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
It is known that tumor-reactive T cells are initially activated in the draining lymph node, but it is not well known whether and how tumor-infiltrating lymphocytes (TILs) are reactivated in the tumor microenvironment (TME). We hypothesize that defective T cell receptor (TCR) signaling and cosignals in the TME limit T cell reactivation. To address this, we designed a mesenchymal stromal cell-based delivery of local membrane-bound anti-CD3 and/or cosignals to explore their contribution to reactivate T cells inside the TME. Combined anti-CD3 and CD40L rather than CD80 led to superior antitumor efficacy compared with either alone. Mechanistically, TCR activation of preexisting CD8+ T cells synergized with CD40L activation of DCs inside the TME for optimum tumor control. Exogenous TCR signals could better reactivate TILs that then exited to attack distal tumors. This study supplies further evidence that TCR signaling for T cell reactivation in the TME is defective but can be rescued by proper exogenous signals.
Collapse
Affiliation(s)
- Casey Moore
- Department of Immunology
- Department of Pathology, and
| | | | | | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Immunology
- Department of Pathology, and
| | | |
Collapse
|
28
|
Salomon R, Dahan R. Next Generation CD40 Agonistic Antibodies for Cancer Immunotherapy. Front Immunol 2022; 13:940674. [PMID: 35911742 PMCID: PMC9326085 DOI: 10.3389/fimmu.2022.940674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting the immune system to fight the tumor cells. This approach has been demonstrated to be effective in various preclinical models. However, human CD40 Abs displayed only modest antitumor activity in cancer patients, characterized by low efficacy and dose-limiting toxicity. While recent studies highlight the importance of engineering the Fc region of human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting factor, restricting clinical application to suboptimal doses. Here, we discuss the current challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe novel approaches designed to circumvent the systemic toxicity associated with CD40 agonism.
Collapse
|
29
|
Muik A, Adams 3rd HC, Gieseke F, Altintas I, Schoedel KB, Blum JM, Sänger B, Burm SM, Stanganello E, Verzijl D, Spires VM, Vascotto F, Toker A, Quinkhardt J, Fereshteh M, Diken M, Satijn DPE, Kreiter S, Ahmadi T, Breij ECW, Türeci Ö, Sasser K, Sahin U, Jure-Kunkel M. DuoBody-CD40x4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4-1BB agonist activity. J Immunother Cancer 2022; 10:e004322. [PMID: 35688554 PMCID: PMC9189854 DOI: 10.1136/jitc-2021-004322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer. METHODS Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging. The in vivo activity of DuoBody-CD40×4-1BB was assessed in blood samples from patients with advanced solid tumors that were treated with DuoBody-CD40×4-1BB in the dose-escalation phase of the first-in-human clinical trial (NCT04083599). RESULTS DuoBody-CD40×4-1BB exhibited conditional CD40 and 4-1BB agonist activity that was strictly dependent on crosslinking of both targets. Thereby, DuoBody-CD40×4-1BB strengthened the dendritic cell (DC)/T-cell immunological synapse, induced DC maturation, enhanced T-cell proliferation and effector functions in vitro and enhanced expansion of patient-derived tumor-infiltrating lymphocytes ex vivo. The addition of PD-1 blocking antibodies resulted in potentiation of T-cell activation and effector functions in vitro compared with either monotherapy, providing combination rationale. Furthermore, in a first-in-human clinical trial, DuoBody-CD40×4-1BB mediated clear immune modulation of peripheral antigen presenting cells and T cells in patients with advanced solid tumors. CONCLUSION DuoBody-CD40×4-1BB is capable of enhancing antitumor immunity by modulating DC and T-cell functions and shows biological activity in patients with advanced solid tumors. These findings demonstrate that targeting of these two pathways with an Fc-inert bispecific antibody may be an efficacious approach to (re)activate tumor-specific immunity and support the clinical investigation of DuoBody-CD40×4-1BB for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Isil Altintas
- Translational Research and Precision Medicine, Genmab BV, Utrecht, The Netherlands
| | | | | | | | - Saskia M Burm
- Translational Research and Precision Medicine, Genmab BV, Utrecht, The Netherlands
| | - Eliana Stanganello
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Dennis Verzijl
- Translational Research and Precision Medicine, Genmab BV, Utrecht, The Netherlands
| | | | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | | | | | | | | | | | | | - Tahamtan Ahmadi
- Experimental Medicine, Genmab US Inc, Plainsboro, New Jersey, USA
| | - Esther C W Breij
- Translational Research and Precision Medicine, Genmab BV, Utrecht, The Netherlands
| | | | | | - Ugur Sahin
- BioNTech SE, Mainz, Germany
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | | |
Collapse
|
30
|
Eltahir M, Laurén I, Lord M, Chourlia A, Dahllund L, Olsson A, Saleh A, Ytterberg AJ, Lindqvist A, Andersson O, Persson H, Mangsbo SM. An Adaptable Antibody‐Based Platform for Flexible Synthetic Peptide Delivery Built on Agonistic CD40 Antibodies. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamed Eltahir
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Ida Laurén
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Martin Lord
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Aikaterini Chourlia
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Leif Dahllund
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Anders Olsson
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Aljona Saleh
- Department of Pharmacy SciLifeLab Drug Discovery and Development Platform Uppsala University Husargatan 3 Box 580 Uppsala 751 24 Sweden
| | - A. Jimmy Ytterberg
- Department of Pharmacy SciLifeLab Drug Discovery and Development Platform Uppsala University Husargatan 3 Box 580 Uppsala 751 24 Sweden
| | - Annika Lindqvist
- Department of Pharmacy SciLifeLab Drug Discovery and Development Platform Uppsala University Husargatan 3 Box 580 Uppsala 751 24 Sweden
| | - Oskar Andersson
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Helena Persson
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Sara M Mangsbo
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| |
Collapse
|
31
|
Fasoulakis Z, Koutras A, Ntounis T, Pergialiotis V, Chionis A, Katrachouras A, Palios VC, Symeonidis P, Valsamaki A, Syllaios A, Diakosavvas M, Angelou K, Samara AA, Pagkalos A, Theodora M, Schizas D, Kontomanolis EN. The Prognostic Role and Significance of Dll4 and Toll-like Receptors in Cancer Development. Cancers (Basel) 2022; 14:1649. [PMID: 35406423 PMCID: PMC8996945 DOI: 10.3390/cancers14071649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
The Notch signaling pathway regulates the development of embryonic and tissue homeostasis of various types of cells. It also controls cell proliferation, variation, fate and cell death because it emits short-range messages to nearby cells. The pathway plays an important role in the pathophysiology of various malignancies, controlling cancer creation. It also limits cancer development by adjusting preserved angiogenesis and cellular programs. One of the Notch signaling ligands (in mammals) is Delta-like ligand 4 (Dll4), which plays a significant role in the overall malignancies' advancement. Particularly, sequencing Notch gene mutations, including those of Dll4, have been detected in many types of cancers portraying information on the growth of particular gynecological types of tumors. The current research article examines the background theory that implies the ability of Dll4 in the development of endometrial and other cancer types, and the probable therapeutic results of Dll4 inhibition.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Thomas Ntounis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Athanasios Chionis
- Department of Obstetrics and Gynecology, Laiko General Hospital of Athens, Agiou Thoma 17, 11527 Athens, Greece;
| | - Alexandros Katrachouras
- Department of Obstetrics and Gynecology, University of Ioannina, University General Hospital of Ioannina, Stavros Niarchos Str., 45500 Ioannina, Greece;
| | - Vasileios-Chrysovalantis Palios
- Department of Obstetrics and Gynecology, University of Larisa, University General Hospital of Larisa, Mezourlo, 41110 Larisa, Greece;
| | - Panagiotis Symeonidis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Vasilissis Sofias Str. 12, 67100 Alexandroupolis, Greece; (P.S.); (E.N.K.)
| | - Asimina Valsamaki
- Department of Internal Medicine, General Hospital of Larisa, Tsakal of 1, 41221 Larisa, Greece;
| | - Athanasios Syllaios
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Agiou Thoma Str. 17, 11527 Athens, Greece
| | - Michail Diakosavvas
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Kyveli Angelou
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Athina A. Samara
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110 Larissa, Greece;
| | - Athanasios Pagkalos
- Department of Obstetrics and Gynecology, General Hospital of Xanthi, Neapoli, 67100 Xanthi, Greece;
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Dimitrios Schizas
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Vasilissis Sofias Str. 12, 67100 Alexandroupolis, Greece; (P.S.); (E.N.K.)
| |
Collapse
|
32
|
Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. NATURE CANCER 2022; 3:287-302. [PMID: 35190724 DOI: 10.1038/s43018-022-00329-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
Therapeutic use of agonistic anti-CD40 antibodies is a potentially powerful approach for activation of the immune response to eradicate tumors. However, the translation of this approach to clinical practice has been substantially restricted due to the severe dose-limiting toxicities observed in multiple clinical trials. Here, we demonstrate that conventional type 1 dendritic cells are essential for triggering antitumor immunity but not the toxicity of CD40 agonists, while macrophages, platelets and monocytes lead to toxic events. Therefore, we designed bispecific antibodies that target CD40 activation preferentially to dendritic cells, by coupling the CD40 agonist arm with CD11c-, DEC-205- or CLEC9A-targeting arms. These bispecific reagents demonstrate a superior safety profile compared to their parental CD40 monospecific antibody while triggering potent antitumor activity. We suggest such cell-selective bispecific agonistic antibodies as a drug platform to bypass the dose-limiting toxicities of anti-CD40, and of additional types of agonistic antibodies used for cancer immunotherapy.
Collapse
|
33
|
Segués A, van Duijnhoven SMJ, Parade M, Driessen L, Vukovic N, Zaiss D, Sijts AJAM, Berraondo P, van Elsas A. Generation and characterization of novel co-stimulatory anti-mouse TNFR2 antibodies. J Immunol Methods 2021; 499:113173. [PMID: 34699840 DOI: 10.1016/j.jim.2021.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Aina Segués
- Aduro Biotech Europe, Oss, the Netherlands; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | | | | | | | - Nataša Vukovic
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Dietmar Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom; Institute of Immune Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pedro Berraondo
- Division of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
34
|
Leblond MM, Zdimerova H, Desponds E, Verdeil G. Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers (Basel) 2021; 13:cancers13184712. [PMID: 34572939 PMCID: PMC8467100 DOI: 10.3390/cancers13184712] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting.
Collapse
Affiliation(s)
- Marine M. Leblond
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Normandie University, 14000 Caen, France;
| | - Hana Zdimerova
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Emma Desponds
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Grégory Verdeil
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
- Correspondence:
| |
Collapse
|
35
|
Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 2021; 18:558-576. [PMID: 34006998 PMCID: PMC8130796 DOI: 10.1038/s41571-021-00507-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Immune-checkpoint inhibitors and chimeric antigen receptor (CAR) T cells are revolutionizing oncology and haematology practice. With these and other immunotherapies, however, systemic biodistribution raises safety issues, potentially requiring the use of suboptimal doses or even precluding their clinical development. Delivering or attracting immune cells or immunomodulatory factors directly to the tumour and/or draining lymph nodes might overcome these problems. Hence, intratumoural delivery and tumour tissue-targeted compounds are attractive options to increase the in situ bioavailability and, thus, the efficacy of immunotherapies. In mouse models, intratumoural administration of immunostimulatory monoclonal antibodies, pattern recognition receptor agonists, genetically engineered viruses, bacteria, cytokines or immune cells can exert powerful effects not only against the injected tumours but also often against uninjected lesions (abscopal or anenestic effects). Alternatively, or additionally, biotechnology strategies are being used to achieve higher functional concentrations of immune mediators in tumour tissues, either by targeting locally overexpressed moieties or engineering 'unmaskable' agents to be activated by elements enriched within tumour tissues. Clinical trials evaluating these strategies are ongoing, but their development faces issues relating to the administration methodology, pharmacokinetic parameters, pharmacodynamic end points, and immunobiological and clinical response assessments. Herein, we discuss these approaches in the context of their historical development and describe the current landscape of intratumoural or tumour tissue-targeted immunotherapies.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Eduardo Castanon
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France.
- INSERM U1015, Gustave Roussy, Villejuif, France.
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France.
| |
Collapse
|
36
|
van Hooren L, Vaccaro A, Ramachandran M, Vazaios K, Libard S, van de Walle T, Georganaki M, Huang H, Pietilä I, Lau J, Ulvmar MH, Karlsson MCI, Zetterling M, Mangsbo SM, Jakola AS, Olsson Bontell T, Smits A, Essand M, Dimberg A. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun 2021; 12:4127. [PMID: 34226552 PMCID: PMC8257767 DOI: 10.1038/s41467-021-24347-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response. Agonistic CD40 antibodies (αCD40) have broad immunostimulatory properties, however their efficacy in glioma remains unclear. Here the authors show that αCD40 promotes the formation of tertiary lymphoid structures but does not improve survival and impairs the response to immune checkpoint blockade in murine glioma models.
Collapse
Affiliation(s)
- Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Filbert EL, Björck PK, Srivastava MK, Bahjat FR, Yang X. APX005M, a CD40 agonist antibody with unique epitope specificity and Fc receptor binding profile for optimal therapeutic application. Cancer Immunol Immunother 2021; 70:1853-1865. [PMID: 33392713 PMCID: PMC8195934 DOI: 10.1007/s00262-020-02814-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Targeting CD40 with agonist antibodies is a promising approach to cancer immunotherapy. CD40 acts as a master regulator of immunity by mobilizing multiple arms of the immune system to initiate highly effective CD8 + T-cell-mediated responses against foreign pathogens and tumors. The clinical development of CD40 agonist antibodies requires careful optimization of the antibody to maximize therapeutic efficacy while minimizing adverse effects. Both epitope specificity and isotype are critical for CD40 agonist antibody mechanism of action and potency. We developed a novel antibody, APX005M, which binds with high affinity to the CD40 ligand-binding site on CD40 and is optimized for selective interaction with Fcγ receptors to enhance agonistic potency while limiting less desirable Fc-effector functions like antibody-dependent cellular cytotoxicity of CD40-expressing immune cells. APX005M is a highly potent inducer of innate and adaptive immune effector responses and represents a promising CD40 agonist antibody for induction of an effective anti-tumor immune response with a favorable safety profile.
Collapse
Affiliation(s)
- Erin L Filbert
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Pia K Björck
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Minu K Srivastava
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Frances R Bahjat
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Xiaodong Yang
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA.
| |
Collapse
|
38
|
Enell Smith K, Deronic A, Hägerbrand K, Norlén P, Ellmark P. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert Opin Biol Ther 2021; 21:1635-1646. [PMID: 34043482 DOI: 10.1080/14712598.2021.1934446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: CD40 signaling activates dendritic cells leading to improved T cell priming against tumor antigens. CD40 agonism expands the tumor-specific T cell repertoire and has the potential to increase the fraction of patients that respond to established immunotherapies.Areas covered: This article reviews current as well as emerging CD40 agonist therapies with a focus on antibody-based therapies, including next generation bispecific CD40 agonists. The scientific rationale for different design criteria, binding epitopes, and formats are discussed.Expert opinion: The ability of CD40 agonists to activate dendritic cells and enhance antigen cross-presentation to CD8+ T cells provides an opportunity to elevate response rates of cancer immunotherapies. While there are many challenges left to address, including optimal dose regimen, CD40 agonist profile, combination partners and indications, we are confident that CD40 agonists will play an important role in the challenging task of reprogramming the immune system to fight cancer.
Collapse
Affiliation(s)
| | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Sweden.,Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Diggs LP, Ruf B, Ma C, Heinrich B, Cui L, Zhang Q, McVey JC, Wabitsch S, Heinrich S, Rosato U, Lai W, Subramanyam V, Longerich T, Loosen SH, Luedde T, Neumann UP, Desar S, Kleiner D, Gores G, Wang XW, Greten TF. CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. J Hepatol 2021; 74:1145-1154. [PMID: 33276030 PMCID: PMC9662232 DOI: 10.1016/j.jhep.2020.11.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS While cholangiocarcinomas (CCAs) commonly express programmed cell death 1 (PD-1) and its ligand (PD-L1), they respond poorly to immune checkpoint inhibitors (ICIs). We aimed to determine whether stimulating antigen-presenting cells, including macrophages and dendritic cells, using a CD40 agonist could improve this response. METHODS We compared treatment responses in subcutaneous, orthotopic, and 2 plasmid-based murine intrahepatic CCA (iCCA) models. Mice were treated for 4 weeks with weekly IgG control, a CD40 agonistic antibody, anti-PD-1, or the combination of both (anti-CD40/PD-1). Flow cytometric (FACS) analysis of lymphocytes and myeloid cell populations (including activation status) was performed. We used dendritic cell knockout mice, and macrophage, CD4+ and CD8+ T cell depletion models to identify effector cells. Anti-CD40/PD-1 was combined with chemotherapy (gemcitabine/cisplatin) to test for improved therapeutic efficacy. RESULTS In all 4 models, anti-PD-1 alone was minimally efficacious. Mice exhibited a moderate response to CD40 agonist monotherapy. Combination anti-CD40/PD-1 therapy led to a significantly greater reduction in tumor burden. FACS demonstrated increased number and activation of CD4+ and CD8+ T cells, natural killer cells, and myeloid cells in tumor and non-tumor liver tissue of tumor-bearing mice treated with anti-CD40/PD-1. Depletion of macrophages, dendritic cells, CD4+ T cells, or CD8+ T cells abrogated treatment efficacy. Combining anti-CD40/PD-1 with gemcitabine/cisplatin resulted in a significant survival benefit compared to gemcitabine/cisplatin alone. CONCLUSION CD40-mediated activation of macrophages and dendritic cells in iCCA significantly enhances response to anti-PD-1 therapy. This regimen may enhance the efficacy of first-line chemotherapy. LAY SUMMARY Checkpoint inhibition, a common form of immune therapy, is generally ineffective for the treatment of cholangiocarcinoma. These tumors suppress the infiltration and function of surrounding immune cells. Stimulating immune cells such as macrophages and dendritic cells via the CD40 receptor activates downstream immune cells and enhances the response to checkpoint inhibitors.
Collapse
Affiliation(s)
- Laurence P. Diggs
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linda Cui
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qianfei Zhang
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John C. McVey
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Wabitsch
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sophia Heinrich
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Umberto Rosato
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Walter Lai
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Varun Subramanyam
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Germany
| | - Ulf Peter Neumann
- Department of Visceral and Transplantation Surgery, University Hospital RWTH Aachen Aachen, Germany
| | - Sabina Desar
- Laboratory of Pathology, National Institutes of Health, Bethesda, Maryland, USA
| | - David Kleiner
- Laboratory of Pathology, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory Gores
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tim F. Greten
- Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland 20892, USA,Corresponding author. Address: Thoracic and GI Malignancy Section, TGMB NIH/NCI/CCR, Building 10 Rm 2B28B, 9000 Rockville Pike, Bethesda MD 20892, USA. Tel.: +1 (240) 760 6114. (T.F. Greten)
| |
Collapse
|
40
|
Agonistic CD40 Antibodies in Cancer Treatment. Cancers (Basel) 2021; 13:cancers13061302. [PMID: 33804039 PMCID: PMC8000216 DOI: 10.3390/cancers13061302] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CD40 is a costimulatory molecule that is key for the activation of antigen-presenting cells and other innate immune cells. It plays an important role in anti-tumor immunity, and agonists of CD40 have been shown to eliminate tumors in both pre-clinical and clinical settings, alone and in combination with other treatment modalities. Here we assess the expression of CD40 and associations with other mediators of immunity in a variety of tumor types and review the potential of CD40 agonists for cancer treatment, given the promise of enhancing the interplay between innate and adaptive immunity. Abstract CD40 is expressed on a variety of antigen-presenting cells. Stimulation of CD40 results in inflammation by upregulation of other costimulatory molecules, increased antigen presentation, maturation (licensing) of dendritic cells, and activation of CD8+ T cells. Here we analyzed gene expression data from The Cancer Genome Atlas in melanoma, renal cell carcinoma, and pancreatic adenocarcinoma and found correlations between CD40 and several genes involved in antigen presentation and T cell function, supporting further exploration of CD40 agonists to treat cancer. Agonist CD40 antibodies have induced anti-tumor effects in several tumor models and the effect has been more pronounced when used in combination with other treatments (immune checkpoint inhibition, chemotherapy, and colony-stimulating factor 1 receptor inhibition). The reduction in tumor growth and ability to reprogram the tumor microenvironment in preclinical models lays the foundation for clinical development of agonistic CD40 antibodies (APX005M, ChiLob7/4, ADC-1013, SEA-CD40, selicrelumab, and CDX-1140) that are currently being evaluated in early phase clinical trials. In this article, we focus on CD40 expression and immunity in cancer, agonistic human CD40 antibodies, and their pre-clinical and clinical development. With the broad pro-inflammatory effects of CD40 and its ligand on dendritic cells and macrophages, and downstream B and T cell activation, agonists of this pathway may enhance the anti-tumor activity of other systemic therapies.
Collapse
|
41
|
van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy Goes Local: The Central Role of Lymph Nodes in Driving Tumor Infiltration and Efficacy. Front Immunol 2021; 12:643291. [PMID: 33732264 PMCID: PMC7956978 DOI: 10.3389/fimmu.2021.643291] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint blockade (ICB) has changed the therapeutic landscape of oncology but its impact is limited by primary or secondary resistance. ICB resistance has been related to a lack of T cells infiltrating into the tumor. Strategies to overcome this hurdle have so far focused on the tumor microenvironment, but have mostly overlooked the role of tumor-draining lymph nodes (TDLN). Whereas for CTLA-4 blockade TDLN have long since been implicated due to its perceived mechanism-of-action involving T cell priming, only recently has evidence been emerging showing TDLN to be vital for the efficacy of PD-1 blockade as well. TDLN are targeted by developing tumors to create an immune suppressed pre-metastatic niche which can lead to priming of dysfunctional antitumor T cells. In this review, we will discuss the evidence that therapeutic targeting of TDLN may ensure sufficient antitumor T cell activation and subsequent tumor infiltration to facilitate effective ICB. Indeed, waves of tumor-specific, proliferating stem cell-like, or progenitor exhausted T cells, either newly primed or reinvigorated in TDLN, are vital for PD-1 blockade efficacy. Both tumor-derived migratory dendritic cell (DC) subsets and DC subsets residing in TDLN, and an interplay between them, have been implicated in the induction of these T cells, their imprinting for homing and subsequent tumor control. We propose that therapeutic approaches, involving local delivery of immune modulatory agents for optimal access to TDLN, aimed at overcoming hampered DC activation, will enable ICB by promoting T cell recruitment to the tumor, both in early and in advanced stages of cancer.
Collapse
Affiliation(s)
- Kim M. van Pul
- Department of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marieke F. Fransen
- Deparment of Pulmonary Diseases Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rieneke van de Ven
- Department of Otolaryngology/Head-Neck Surgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, Hollebecque A, Le Tourneau C, Subbiah V, Tsai F, Kao S, Cassier PA, Khasraw M, Kindler HL, Fang H, Fan F, Allaire K, Patel M, Ye S, Chao DT, Henner WR, Hayflick JS, McDevitt MA, Fong L. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J Immunother Cancer 2021; 9:jitc-2020-002015. [PMID: 33608377 PMCID: PMC7898862 DOI: 10.1136/jitc-2020-002015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND CD40 agonist immunotherapy can potentially license antigen-presenting cells to promote antitumor T-cell activation and re-educate macrophages to destroy tumor stroma. Systemic administration of CD40 agonists has historically been associated with considerable toxicity, providing the rationale for development of tumor-targeted immunomodulators to improve clinical safety and efficacy. This phase I study assessed the safety, tolerability, preliminary antitumor activity, and preliminary biomarkers of ABBV-428, a first-in-class, mesothelin-targeted, bispecific antibody designed for tumor microenvironment-dependent CD40 activation with limited systemic toxicity. METHODS ABBV-428 was administered intravenously every 2 weeks to patients with advanced solid tumors. An accelerated titration (starting at a 0.01 mg/kg dose) and a 3+3 dose escalation scheme were used, followed by recommended phase II dose cohort expansions in ovarian cancer and mesothelioma, tumor types associated with high mesothelin expression. RESULTS Fifty-nine patients were treated at doses between 0.01 and 3.6 mg/kg. The maximum tolerated dose was not reached, and 3.6 mg/kg was selected as the recommended phase II dose. Seven patients (12%) reported infusion-related reactions. Treatment-related grade ≥3 treatment-emergent adverse events were pericardial effusion, colitis, infusion-related reaction, and pleural effusion (n=1 each, 2%), with no cytokine release syndrome reported. The pharmacokinetic profile demonstrated roughly dose-proportional increases in exposure from 0.4 to 3.6 mg/kg. Best response was stable disease in 9/25 patients (36%) treated at the recommended phase II dose. CD40 receptor occupancy >90% was observed on peripheral B-cells starting from 0.8 mg/kg; however, no consistent changes from baseline in intratumoral CD8+ T-cells, programmed death ligand-1 (PD-L1+) cells, or immune-related gene expression were detected post-ABBV-428 treatment (cycle 2, day 1). Mesothelin membrane staining showed greater correlation with progression-free survival in ovarian cancer and mesothelioma than in the broader dose escalation population. CONCLUSIONS ABBV-428 monotherapy exhibited dose-proportional pharmacokinetics and an acceptable safety profile, particularly for toxicities characteristic of CD40 agonism, illustrating that utilization of a tumor-targeted, bispecific antibody can improve the safety of CD40 agonism as a therapeutic approach. ABBV-428 monotherapy had minimal clinical activity in dose escalation and in a small expansion cohort of patients with advanced mesothelioma or ovarian cancer. TRIAL REGISTRATION NUMBER NCT02955251.
Collapse
Affiliation(s)
- Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fabrice Barlesi
- Multidisciplinary Oncology & Therapeutic Innovations Department, Aix-Marseille University, Assistance Publique Hôpitaux de Marseille, CNRS, INSERM, CRCM, CEPCM CLIP2, Marseille, France
| | - Ki Chung
- Hematology and Oncology, PRISMA Health System, Greenville, South Carolina, USA
| | | | - Karen Kelly
- UC Davis Comprehensive Cancer Center, University of California, Sacramento, California, USA
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Curie Institute, Paris and Saint-Cloud, France.,INSERM U900 Research Unit, Saint-Cloud, France.,Paris-Saclay University, Paris, France
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank Tsai
- Hematology/Oncology, HonorHealth Research Institute, Scottsdale, Arizona, USA
| | - Steven Kao
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | | | - Mustafa Khasraw
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Hedy L Kindler
- Section of Hematology/Oncology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Hua Fang
- Precision Medicine, AbbVie Inc, Redwood City, California, USA
| | - Frances Fan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kathryn Allaire
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Maulik Patel
- Clinical Pharmacology, AbbVie Inc, Redwood City, California, USA
| | - Shiming Ye
- Oncology Discovery, AbbVie Inc, Redwood City, California, USA
| | - Debra T Chao
- Search & Evaluation, Oncology, AbbVie Inc, Redwood City, California, USA
| | | | - Joel S Hayflick
- Oncology Early Development, AbbVie Inc, Redwood City, California, USA
| | | | - Lawrence Fong
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
43
|
Hinterberger M, Giessel R, Fiore G, Graebnitz F, Bathke B, Wennier S, Chaplin P, Melero I, Suter M, Lauterbach H, Berraondo P, Hochrein H, Medina-Echeverz J. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J Immunother Cancer 2021; 9:jitc-2020-001586. [PMID: 33579736 PMCID: PMC7883866 DOI: 10.1136/jitc-2020-001586] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human cancers are extraordinarily heterogeneous in terms of tumor antigen expression, immune infiltration and composition. A common feature, however, is the host′s inability to mount potent immune responses that prevent tumor growth effectively. Often, naturally primed CD8+ T cells against solid tumors lack adequate stimulation and efficient tumor tissue penetration due to an immune hostile tumor microenvironment. Methods To address these shortcomings, we cloned tumor-associated antigens (TAA) and the immune-stimulatory ligand 4-1BBL into the genome of modified vaccinia Ankara (MVA) for intratumoral virotherapy. Results Local treatment with MVA-TAA-4-1BBL resulted in control of established tumors. Intratumoral injection of MVA localized mainly to the tumor with minimal leakage to the tumor-draining lymph node. In situ infection by MVA-TAA-4-1BBL triggered profound changes in the tumor microenvironment, including the induction of multiple proinflammatory molecules and immunogenic cell death. These changes led to the reactivation and expansion of antigen-experienced, tumor-specific cytotoxic CD8+ T cells that were essential for the therapeutic antitumor effect. Strikingly, we report the induction of a systemic antitumor immune response including tumor antigen spread by local MVA-TAA-4-1BBL treatment which controlled tumor growth at distant, untreated lesions and protected against local and systemic tumor rechallenge. In all cases, 4-1BBL adjuvanted MVA was superior to MVA. Conclusion Intratumoral 4-1BBL-armed MVA immunotherapy induced a profound reactivation and expansion of potent tumor-specific CD8+ T cells as well as favorable proinflammatory changes in the tumor microenvironment, leading to elimination of tumors and protective immunological memory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mark Suter
- Bavarian Nordic GmbH, Planegg, Germany.,Vetsuisse Fakultät, Dekanat, Bereich Immunologie, Universität Zürich, Zürich, Switzerland
| | - Henning Lauterbach
- Bavarian Nordic GmbH, Planegg, Germany.,Present address: Hookipa Pharma Inc, 350 Fifth Avenue, Room/Suite 7240, New York City, New York, USA
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | | | | |
Collapse
|
44
|
Eliminating mesothelioma by AAV-vectored, PD1-based vaccination in the tumor microenvironment. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:373-386. [PMID: 33614918 PMCID: PMC7878991 DOI: 10.1016/j.omto.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/16/2021] [Indexed: 12/26/2022]
Abstract
The potency of cancer vaccines is often compromised by a variety of immunoinhibitory mechanisms, including stimulation of the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint pathway. Here, to overcome inhibition, we determined the potential of recombinant adeno-associated virus (rAAV)-vectored, PD1-based vaccination in the tumor microenvironment (TME) to activate antigen-specific T cell responses in the immune-competent murine mesothelioma model. We found that our rAAV-soluble PD1 (sPD1)-TWIST1 vaccine elicited and maintained TWIST1-specific cytotoxic T lymphocyte (CTL) responses and the PD-1 blocker systemically against lethal mesothelioma challenge after intramuscular injection, which was more effective than rAAV-TWIST1 or rAAV-sPD1 alone. More importantly, intratumoral injection of rAAV-sPD1-TWIST1 significantly enhanced immune surveillance by inducing TWIST1-specific CTL responses against vaccine-encoded TWIST1 and bystander gp70-AH1 epitopes, increasing CTL infiltration into the TME and decreasing tumor-associated immunosuppression, leading to complete elimination of established mesothelioma in 5 of 8 tumor-bearing mice. In addition, direct oncosuppression synergized with recruitment of T cells after localized rAAV-sPD1-TWIST1 treatment in a humanized mouse model to inhibit growth of REN human mesothelioma. Our results warrant clinical development of the rAAV-sPD1-TWIST1 vaccine to enhance immunotherapy against a wide range of TWIST1-expressing tumors.
Collapse
|
45
|
Mueller R, Moreau M, Yasmin-Karim S, Protti A, Tillement O, Berbeco R, Hesser J, Ngwa W. Imaging and Characterization of Sustained Gadolinium Nanoparticle Release from Next Generation Radiotherapy Biomaterial. NANOMATERIALS 2020; 10:nano10112249. [PMID: 33202903 PMCID: PMC7697013 DOI: 10.3390/nano10112249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
Smart radiotherapy biomaterials (SRBs) present a new opportunity to enhance image-guided radiotherapy while replacing routinely used inert radiotherapy biomaterials like fiducials. In this study the potential of SRBs loaded with gadolinium-based nanoparticles (GdNPs) is investigated for magnetic resonance imaging (MRI) contrast. GdNP release from SRB is quantified and modelled for accurate prediction. SRBs were manufactured similar to fiducials, with a cylindrical shell consisting of poly(lactic-co-glycolic) acid (PLGA) and a core loaded with GdNPs. Magnetic resonance imaging (MRI) contrast was investigated at 7T in vitro (in agar) and in vivo in subcutaneous tumors grown with the LLC1 lung cancer cell line in C57/BL6 mice. GdNPs were quantified in-phantom and in tumor and their release was modelled by the Weibull distribution. Gd concentration was linearly fitted to the R1 relaxation rate with a detection limit of 0.004 mmol/L and high confidence level (R2 = 0.9843). GdNP loaded SRBs in tumor were clearly visible up to at least 14 days post-implantation. Signal decrease during this time showed GdNP release in vivo, which was calculated as 3.86 ± 0.34 µg GdNPs release into the tumor. This study demonstrates potential and feasibility for SRBs with MRI-contrast, and sensitive GdNP quantification and release from SRBs in a preclinical animal model. The feasibility of monitoring nanoparticle (NP) concentration during treatment, allowing dynamic quantitative treatment planning, is also discussed.
Collapse
Affiliation(s)
- Romy Mueller
- Department Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany;
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Correspondence:
| | - Michele Moreau
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Protti
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02110, USA;
| | - Olivier Tillement
- Institut Lumière Matière, CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen Hesser
- Department Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany;
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Central Institute for Computer Engineering (ZITI), Heidelberg University, 68159 Mannheim, Germany
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
46
|
Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, Massard C, Robert C, Ammari S, De Baère T, Marabelle A. Intratumoral Immunotherapy: From Trial Design to Clinical Practice. Clin Cancer Res 2020; 27:665-679. [PMID: 32943460 DOI: 10.1158/1078-0432.ccr-20-0473] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
Systemic immunotherapies such as immune checkpoint blockade targeted at PD(L)1 and CTLA4 have demonstrated their ability to provide durable tumor responses and long-term overall survival benefits for some patients in several solid tumor types. However, a majority of patients remain resistant to these treatments and a significant proportion of them develop severe autoimmune and inflammatory adverse events. Preclinical studies have demonstrated that intratumoral injections of immunostimulatory products (oncolytics, pattern recognition receptor agonists,…) that are able to trigger type I IFN release and enhance tumor antigen presentation on immune cells could generate a strong antitumor immunity and overcome the resistance to systemic immune checkpoint blockade therapies. The intratumoral immunotherapy strategies that are currently in clinical development offer a unique therapeutic and exploratory setting to better understand the immune contexture across tumor lesions of patients with metastatic cancer. Also these local therapeutic products could turn cold tumors into hot and improve the response rates to cancer immunotherapies while diminishing their systemic exposure and toxicities. Intratumoral immunotherapies could prime or boost the immunity against tumors and therefore radically change the combinatorial therapeutic strategies currently pursued for metastatic and local cancers to improve their long-term survival. We aimed to review and discuss the scientific rationale for intratumoral immunotherapy, the challenges raised by this strategy in terms of drug development within clinical trials and the current state-of-the-art regarding the clinical practice of this innovative approach.
Collapse
Affiliation(s)
- Stéphane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France.,Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Gustave Roussy, Villejuif, France.,Département de Radiologie, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Siham Farhane
- Gustave Roussy Immunotherapy Program (GRIP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Thibault Raoult
- Service de Promotion des Etudes Cliniques (SPEC), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Matthieu Texier
- Service de Biostatistiques et d'Epidémiologie (SBE), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Emilie Lanoy
- Service de Biostatistiques et d'Epidémiologie (SBE), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Caroline Robert
- Département de Médecine Oncologique (DMO), Gustave Roussy, Université Paris Saclay, Villejuif, France.,Université Paris Saclay, Saint-Aubin, France
| | - Samy Ammari
- Département de Radiologie, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Thierry De Baère
- Département de Radiologie, Gustave Roussy, Université Paris Saclay, Villejuif, France.,Université Paris Saclay, Saint-Aubin, France
| | - Aurélien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France. .,Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Gustave Roussy, Villejuif, France.,Gustave Roussy Immunotherapy Program (GRIP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
47
|
Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging technologies for local cancer treatment. ADVANCED THERAPEUTICS 2020; 3:2000027. [PMID: 33072860 PMCID: PMC7567411 DOI: 10.1002/adtp.202000027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Abstract
The fundamental limitations of systemic therapeutic administration have prompted the development of local drug delivery platforms as a solution to increase effectiveness and reduce side effects. By confining therapeutics to the site of disease, local delivery technologies can enhance therapeutic index. This review highlights recent advances and opportunities in local drug delivery strategies for cancer treatment in addition to challenges that need to be addressed to facilitate clinical translation. The benefits of local cancer treatment combined with technological advancements and increased understanding of the tumor microenvironment, present a prime breakthrough opportunity for safer and more effective therapies.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- School of Medicine, Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mauro Ferrari
- University of Washington, Box 357630, H375 Health Science Building, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
48
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Garris CS, Luke JJ. Dendritic Cells, the T-cell-inflamed Tumor Microenvironment, and Immunotherapy Treatment Response. Clin Cancer Res 2020; 26:3901-3907. [PMID: 32332013 PMCID: PMC7607412 DOI: 10.1158/1078-0432.ccr-19-1321] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The development of the most successful cancer immunotherapies in solid tumors, immune-checkpoint blockade, has focused on factors regulating T-cell activation. Until recently, the field has maintained a predominately T-cell centric view of immunotherapy, leaving aside the impact of innate immunity and especially myeloid cells. Dendritic cells (DC) are dominant partners of T cells, necessary for initiation of adaptive immune responses. Emerging evidence supports a broader role for DCs in tumors including the maintenance and support of effector functions during T-cell responses. This relationship is evidenced by the association of activated DCs with immune-checkpoint blockade responses and transcriptional analysis of responding tumors demonstrating the presence of type I IFN transcripts and DC relevant chemokines. T-cell-inflamed tumors preferentially respond to immunotherapies compared with non-T-cell-inflamed tumors and this model suggests a potentially modifiable spectrum of tumor microenvironmental immunity. Although host and commensal factors may limit the T-cell-inflamed phenotype, tumor cell intrinsic factors are gaining prominence as therapeutic targets. For example, tumor WNT/β-catenin signaling inhibits production of chemokine gradients and blocking DC recruitment to tumors. Conversely, mechanisms of innate immune nucleic acid sensing, normally operative during pathogen response, may enhance DC accumulation and make tumors more susceptible to cancer immunotherapy. Elucidating mechanisms whereby DCs infiltrate and become activated within tumors may provide new opportunities for therapeutic intervention. Conceptually, this would facilitate conversion of non-T-cell-inflamed to T-cell-inflamed states or overcome secondary resistance mechanisms in T-cell-inflamed tumors, expanding the proportion of patients who benefit from cancer immunotherapy.
Collapse
Affiliation(s)
| | - Jason J Luke
- Division of Hematology/Oncology, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
50
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|