1
|
Qi YJ, Lu SC, Zhao XW, Chen MQ, Song L, Zhang J, Zheng N, Wang JQ, Zhang YD. Development and validation of an LC-MS method for free monosaccharide analysis in milk from 8 species. J Dairy Sci 2025:S0022-0302(25)00251-6. [PMID: 40250610 DOI: 10.3168/jds.2025-26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Free monosaccharides are important carbohydrates in milk, providing both basic and bioactive nutritional benefits; however, the content and composition of free monosaccharides in milk from different species are still not well understood. The aim of this study was to develop a highly sensitive and accurate liquid chromatography (LC)-MS method for the precise quantification of free monosaccharides in milk from 8 species, including human, cow, goat, sheep, yak, camel, horse, and donkey. The chromatographic conditions and MS parameters were systematically optimized to ensure high resolution, minimal matrix effects, and low detection limits for all 8 target monosaccharides. The method was validated with excellent linearity (R2 > 0.996), high recovery rates (94.18%-115.02%), and low CV (<10%), demonstrating robustness across various concentrations. The compositional analysis revealed significant interspecies differences in monosaccharide profiles. Human milk was uniquely enriched in glucose (4,262.98 ± 246.49 ng/mL) and fucose (1,024.80 ± 61.82 ng/mL). In contrast, ruminant milk, such as cow and sheep milk, exhibited high levels of galactose (1,803.56 ± 94.63 ng/mL and 1,230.31 ± 52.33 ng/mL, respectively) and mannose (375.24 ± 16.27 ng/mL and 55.81 ± 3.76 ng/mL, respectively). Principal component analysis and a complementary stacked bar chart effectively visualized the clustering and relative distribution of monosaccharides among species, highlighting their metabolic and functional diversity. This study provides novel insights into the biological roles and evolutionary significance of milk monosaccharides. The developed LC-MS method offers a robust tool for advancing our understanding of milk composition and its implications for neonatal nutrition, dairy product innovation, and human health.
Collapse
Affiliation(s)
- Y J Qi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - S C Lu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - X W Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - M Q Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - L Song
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - J Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - N Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - J Q Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193
| | - Y D Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China 100193; Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Beijing, P. R. China 100193.
| |
Collapse
|
2
|
Zhong J, Bæk O, Doughty R, Jørgensen BM, Jensen HE, Thymann T, Sangild PT, Brunse A, Nguyen DN. Reduced parenteral glucose supply during neonatal infection attenuates neurological and renal pathology associated with modulation of innate and Th1 immunity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167723. [PMID: 39978441 DOI: 10.1016/j.bbadis.2025.167723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Premature infants are highly susceptible to infections that can lead to sepsis with life-threatening organ dysfunctions. The clinical practice of high parenteral glucose supply in preterm infants can exacerbate infection outcomes through excessive glycolysis-induced inflammatory response. This in turn can affect the health of vital preterm organs, including the brain and kidneys. We hypothesized that reduced parenteral glucose supply to infected preterm newborns may help protect against pathology in these two key organs. METHODS Cesarean-delivered preterm pigs were nourished with high or low parenteral glucose levels (21 % vs. 5 %), infused with Staphylococcus epidermidis or saline, and monitored in heated, oxygenated incubators until 22 h. Blood, brain, and kidney samples were collected for histological, immunohistological, q-PCR, ELISA, and biochemical analyses. RESULTS Infection led to multiple pathological changes (e.g. edema), increased inflammation and tissue injury (indicated by gene expression data) in both brain and kidneys of preterm piglets. Reduced glucose supply in infected animals alleviated histopathological manifestations in the brain, and reduced neuroinflammation with enhanced M2 microglial phenotype. Reduced glucose supply also decreased plasma creatinine, and the severity of renal edema, tubular vacuolization and dilatation. Multiple genes related to innate and Th1 immunity in both organs were dampened by reduced glucose supply. Correlation analysis showed that renal inflammation was more closely connected to systemic inflammation compared to neuroinflammation. CONCLUSION Reduced glucose supply can reduce renal and neuro-inflammation during neonatal infection, thereby protecting brain and kidney health in infected preterm neonates.
Collapse
Affiliation(s)
- Jingren Zhong
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Richard Doughty
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Benjamin Meyer Jørgensen
- Section of Pathological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Section of Pathological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Pediatrics, Odense University Hospital, Odense, Denmark; Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Anders Brunse
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| | - Duc Ninh Nguyen
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
4
|
Soares LG, Tomé SDS, Abreu IS, Lentsck MH, Baratieri T, Sauka JM, Viana IB, Michalczyszyn KC. Adverse childhood experiences among high-risk children living in socially vulnerable areas. Rev Bras Enferm 2025; 78Suppl 2:e20240247. [PMID: 40105645 PMCID: PMC11913427 DOI: 10.1590/0034-7167-2024-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/19/2024] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVES to identify the occurrence of adverse childhood experiences (ACEs) among children classified as high-risk at birth. METHODS this quantitative, cross-sectional, and descriptive study was conducted within an Intermunicipal Health Consortium in Paraná from September 2022 to February 2023, involving 45 caregivers of high-risk children. Data collection took place at the participants' homes using three questionnaires. The results were analyzed descriptively, based on the theory of the adverse childhood events tree. RESULTS the prevalence of adverse childhood events was 18.6%. Regarding the types of events, 64.3% reported violence; 28% reported parental divorce; 22.2% reported substance abuse by caregivers; 73.3% experienced difficulty acquiring basic necessities; 62.2% were unemployed and/or had low income; 55.6% lived in conflict-prone areas; and 44.4% lacked access to sewage systems. CONCLUSIONS adverse childhood events are multifactorial and cross-sectoral, posing significant threats to child development. The 2030 Agenda proposes dimensions for addressing this issue by investing in childhood.
Collapse
Affiliation(s)
- Leticia Gramazio Soares
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| | - Sabrina dos Santos Tomé
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| | - Isabella Schroeder Abreu
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| | - Maicon Henrique Lentsck
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| | - Tatiane Baratieri
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| | - Jorge Marcelo Sauka
- Centro Universitário Campo RealGuarapuavaParanáBrazilCentro Universitário Campo Real. Guarapuava,
Paraná, Brazil
| | - Isadora Bussolaro Viana
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| | - Kelly Cristina Michalczyszyn
- Universidade Estadual do
Centro-OesteGuarapuavaParanáBrazilUniversidade Estadual do Centro-Oeste.
Guarapuava, Paraná, Brazil
| |
Collapse
|
5
|
Gong Y, Li H, Cui H, Gong Y. Microglial Mechanisms and Therapeutic Potential in Brain Injury Post-Intracerebral Hemorrhage. J Inflamm Res 2025; 18:2955-2973. [PMID: 40026311 PMCID: PMC11872102 DOI: 10.2147/jir.s498809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly common public health problem with a high mortality and disability rate and no effective treatments to enhance clinical prognosis. The increased aging population, improved vascular prevention, and augmented use of antithrombotic agents have collectively contributed to the rise in ICH incidence over the past few decades. The exploration and understanding of mechanisms and intervention strategies has great practical significance for expanding treatments and improving prognosis of ICH. Microglia, as resident macrophages of central nervous system, are responsible for the first immune defense post-ICH. After ICH, M1 microglia is firstly activated by primary injury and thrombin; subsequently, reactive microglia can further amplify the immune response and exert secondary injury (eg, oxidative stress, neuronal damage, and brain edema). The pro-inflammatory phenotype transmits to M2 microglia within 7 days post-ICH, which plays a key role in erythrophagocytosis and limiting the inflammatory secondary injury. Microglial M2 polarization has significant implications for improving prognosis, this process can be mediated through crosstalk with other cells, metabolic changes, and microbiota interaction. Clarifying the effect, timing, and potential downstream effects of multiple mechanisms that synergistically trigger anti-inflammatory responses may be necessary for clinical translation. Analyses of such intricate interaction between microglia cells and brain injury/repair mechanisms will contribute to our understanding of the critical microglial responses to microenvironment and facilitating the discovery of appropriate intervention strategies. Here, we present a comprehensive overview of the latest evidences on microglial dynamics following ICH, their role in driving primary/secondary injury mechanisms as well as neurorepair/plasticity, and possible treatment strategies targeting microglia.
Collapse
Affiliation(s)
- Yuhua Gong
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Hui Li
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
| | - Huanglin Cui
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
| | - Yuping Gong
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
6
|
LaSalle JM. DNA methylation biomarkers of intellectual/developmental disability across the lifespan. J Neurodev Disord 2025; 17:10. [PMID: 39972408 PMCID: PMC11841270 DOI: 10.1186/s11689-025-09598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Epigenetic mechanisms, including DNA methylation, act at the interface of genes and environment by allowing a static genome to respond and adapt to a dynamic environment during the lifespan of an individual. Genome-wide DNA methylation analyses on a wide range of human biospecimens are beginning to identify epigenetic biomarkers that can predict risk of intellectual/developmental disabilities (IDD). DNA methylation-based epigenetic signatures are becoming clinically useful in categorizing benign from pathogenic genetic variants following exome sequencing. While DNA methylation marks differ by tissue source, recent studies have shown that accessible perinatal tissues, such as placenta, cord blood, newborn blood spots, and cell free DNA may serve as accessible surrogate tissues for testing epigenetic biomarkers relevant to understanding genetic, environmental, and gene by environment interactions on the developing brain. These DNA methylation signatures may also provide important information about the biological pathways that become dysregulated prior to disease progression that could be used to develop early pharmacological interventions. Future applications could involve preventative screenings using DNA methylation biomarkers during pregnancy or the newborn period for IDDs and other neurodevelopmental disorders. DNA methylation biomarkers in adolescence and adulthood are also likely to be clinically useful for tracking biological aging or co-occurring health conditions that develop across the lifespan. In conclusion, DNA methylation biomarkers are expected to become more common in clinical diagnoses of IDD, to improve understanding of complex IDD etiologies, to improve endpoints for clinical trials, and to monitor potential health concerns for individuals with IDD as they age.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Mileti LN, Baleja JD. The Role of Purine Metabolism and Uric Acid in Postnatal Neurologic Development. Molecules 2025; 30:839. [PMID: 40005150 PMCID: PMC11858483 DOI: 10.3390/molecules30040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the essential roles of purine metabolism including the catabolic product, uric acid, in the development of dopaminergic neurons of the substantia nigra pars compacta. The high energy requirements of the substantia nigra pars compacta alongside necessary purinergic neurotransmission and the influence of oxidative stress during development makes these neurons uniquely susceptible to changes in purine metabolism. Uric acid's role as a central nervous system antioxidant may help to ameliorate these effects in utero. Understanding the mechanisms by which purines and uric acid influence development of the substantia nigra pars compacta can help further explain neurologic consequences of inborn errors of purine metabolism, such as Lesch-Nyhan disease.
Collapse
Affiliation(s)
| | - James D. Baleja
- Master’s Program in Biomedical Sciences, Departments of Medical Education and Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA;
| |
Collapse
|
8
|
Sadeesh EM, Lahamge MS, Kumari S, Singh P. Tissue-Specific Diversity of Nuclear-Encoded Mitochondrial Genes Related to Lipid and Carbohydrate Metabolism in Buffalo. Mol Biotechnol 2025:10.1007/s12033-025-01386-9. [PMID: 39903382 DOI: 10.1007/s12033-025-01386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Buffaloes play a crucial role in Asian agriculture, enhancing food security and rural development. Their distinct metabolic needs drive tissue-specific mitochondrial adaptations, regulated by both mitochondrial and nuclear genomes. This study explores how nuclear-encoded mitochondrial genes involved in lipid and carbohydrate metabolism vary across tissues-an area with significant implications for buffalo health, productivity, and human health. We hypothesize that tissue-specific variations in metabolic pathways are reflected in the expression of nuclear-encoded mitochondrial genes, which are tailored to the metabolic needs of each tissue. We utilized high-throughput RNA sequencing (RNA-seq) data to assess the expression of nuclear-encoded mitochondrial genes related to lipid and carbohydrate metabolism across various tissues in healthy female buffaloes aged 3-5 years, including the kidney, heart, brain, and ovary. Differential expression analysis was performed using DESeq2, with significance set at p < 0.05 for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 164 genes exhibited tissue-specific regulation, with the heart and brain, which have higher energy demands, expressing more genes than the kidney and ovary. Notably, the comparison between the kidney and ovary showed the highest number of differentially expressed genes. Interestingly, the kidney up-regulates gluconeogenesis-related genes (e.g., PCK2, PCCA, LDHD), promoting glucose production, while these genes are down-regulated in the ovary. In contrast, the brain up-regulates pyruvate metabolism genes (e.g., PCCA, PDHA1, LDHD), underscoring its reliance on glucose as a primary energy source, while these genes are down-regulated in the ovary. The higher abundance of EHHADH in the brain compared to the ovary further emphasizes the critical role of fatty acid metabolism in brain function, aligned with the brain's high energy demands. Additionally, down-regulation of the StAR gene in both the kidney versus ovary and brain versus ovary comparisons suggests tissue-specific differences in steroid hormone regulation. These findings highlight tissue-specific variations in nuclear-encoded mitochondrial genes related to lipid and carbohydrate metabolism, reflecting adaptations to each tissue's unique metabolic needs. This study lays a foundation for advancing mitochondrial metabolism research in livestock, with significant implications for human health. Insights could inform dietary or therapeutic strategies for metabolic disorders, such as cardiovascular diseases and metabolic syndrome, while also enhancing livestock productivity.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sweta Kumari
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Prathiksha Singh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
9
|
Zhu Y, Verkhratsky A, Chen H, Yi C. Understanding glucose metabolism and insulin action at the blood-brain barrier: Implications for brain health and neurodegenerative diseases. Acta Physiol (Oxf) 2025; 241:e14283. [PMID: 39822067 PMCID: PMC11737474 DOI: 10.1111/apha.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins. An exception to this are brain regions, such as the hypothalamus and circumventricular organs, which are irrigated by fenestrated capillaries, allowing rapid and direct response to various blood components. We overview the metabolic functions of the BBB, with an emphasis on the impact of altered glucose metabolism and insulin signaling on BBB in the pathogenesis of neurodegenerative diseases. Notably, endothelial cells constituting the BBB exhibit distinct metabolic characteristics, primarily generating ATP through aerobic glycolysis. This occurs despite their direct exposure to the abundant oxygen in the bloodstream, which typically supports oxidative phosphorylation. The effects of insulin on astrocytes, which form the glial limitans component of the BBB, show a marked sexual dimorphism. BBB nutrient sensing in the hypothalamus, along with insulin signaling, regulates systemic metabolism. Insulin modifies BBB permeability by regulating the expression of tight junction proteins, angiogenesis, and vascular remodeling, as well as modulating blood flow in the brain. The disruptions in glucose and insulin signaling are particularly evident in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, where BBB breakdown accelerates cognitive decline. This review highlights the critical role of normal glucose metabolism and insulin signaling in maintaining BBB functionality and investigates how disruptions in these pathways contribute to the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiyi Zhu
- Research CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Department of NeurosciencesUniversity of the Basque Country, CIBERNEDLeioaBizkaiaSpain
- IKERBASQUE Basque Foundation for ScienceBilbaoSpain
- Department of Forensic Analytical Toxicology, School of Forensic MedicineChina Medical UniversityShenyangChina
| | - Hui Chen
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Chenju Yi
- Research CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational ResearchShenzhenChina
| |
Collapse
|
10
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
11
|
Lee KH, Kim UJ, Lee BH, Cha M. Safeguarding the brain from oxidative damage. Free Radic Biol Med 2025; 226:143-157. [PMID: 39547523 DOI: 10.1016/j.freeradbiomed.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Oxidative stress imposes a substantial cellular burden on the brain and contributes to diverse neurodegenerative diseases. Various antioxidant signaling pathways have been implicated in oxidative stress and have a protective effect on brain cells by increasing the release of numerous enzymes and through anti-inflammatory responses to oxidative damage caused by abnormal levels of reactive oxygen species (ROS). Although many molecules evaluated as antioxidants have shown therapeutic potentials in preclinical studies, the results of clinical trials have been less than satisfactory. This review focuses on several signaling pathways involved in oxidative stress that are associated with antioxidants. These pathways have a protective effect against stressors by increasing the release of various enzymes and also exert anti-inflammatory responses against oxidative damage. There is no doubt that oxidative stress is a crucial therapeutic target in the treatment of neurological diseases. Therefore, it is essential to understand the discovery of multiple routes that can efficiently repair the damage caused by ROS and prevent neurodegenerative disorders. This paper aims to provide a concise and objective review of the oxidative and antioxidant pathways and their potential therapeutic applications in treating oxidative injury in the brain.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, South Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Medical Science, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
12
|
Shen Q, Liu N, Jiang Y, Liu L, Hou X. Decreased neuronal excitability in hypertriglyceridemia hamsters with acute seizures. Front Neurol 2024; 15:1500737. [PMID: 39811454 PMCID: PMC11730077 DOI: 10.3389/fneur.2024.1500737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms. The ultimate goal is to identify novel therapeutic targets for the treatment of neonatal seizures. Methods Acute seizure models were established both in vivo and ex vivo using wild-type and Apolipoprotein C2 knockout (Apoc2 -/-) hamsters. The frequency of tonic-clonic seizures was recorded. Excitatory postsynaptic potentials (EPSPs) and evoked action potentials (eAPs) of pyramidal neurons in the frontal cortex were measured. Fatty acid metabolomic analysis was conducted on microdialysate from the frontal cortex tissue post-seizure, and mRNA expression changes were also assessed. Results Apoc2 -/- hamsters exhibited a reduced frequency of tonic-clonic seizures and diminished EPSP and eAP in comparison to wild-type hamsters. Following seizure induction, free palmitic acid levels in the frontal cortex dialysate significantly decreased, while the expression of palmitoyl acyltransferase 14 (ZDHHC14) in the frontal cortex tissue was higher in Apoc2 -/- hamsters than in wild-type hamsters. Additionally, the amplitude of transient outward potassium currents (IA) in cortical neurons of Apoc2 -/- hamsters was observed to be elevated compared to wild-type hamsters. Conclusion Hypertriglyceridemic Apoc2 -/- hamsters exhibited reduced seizure frequency and decreased cortical neuron excitability. The upregulation of ZDHHC14, leading to increased IA, may be a crucial mechanism underlying the observed seizure protection.
Collapse
Affiliation(s)
- Qiuyue Shen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Nana Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Lili Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
14
|
Singh I, Anand S, Gowda DJ, Kamath A, Singh AK. Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders. Biogerontology 2024; 25:899-922. [PMID: 39177917 PMCID: PMC11486790 DOI: 10.1007/s10522-024-10128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shashi Anand
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Deepashree J Gowda
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Amitha Kamath
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
15
|
Zahiri J, Mirzaie M, Duan K, Xiao Y, Aamodt C, Yang X, Nazari S, Andreason C, Lopez L, Barnes CC, Arias S, Nalabolu S, Garmire L, Wang T, Hoekzema K, Eichler EE, Pierce K, Lewis NE, Courchesne E. Beyond the Spectrum: Subtype-Specific Molecular Insights into Autism Spectrum Disorder Via Multimodal Data Integration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.17.24313857. [PMID: 39399028 PMCID: PMC11469458 DOI: 10.1101/2024.09.17.24313857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Some toddlers with autism spectrum disorder (ASD) have mild social symptoms and developmental improvement in skills, but for others, symptoms and abilities are moderately or even severely affected. Those with profound autism have the most severe social, language, and cognitive symptoms and are at the greatest risk of having a poor developmental outcome. The little that is known about the underlying biology of this important profound autism subtype, points clearly to embryonic dysregulation of proliferation, differentiation and neurogenesis. Because it is essential to gain foundational knowledge of the molecular biology associated with profound, moderate, and mild autism clinical subtypes, we used well-validated, data-driven patient subtyping methods to integrate clinical and molecular data at 1 to 3 years of age in a cohort of 363 ASD and controls representative of the general pediatric population in San Diego County. Clinical data were diagnostic, language, cognitive and adaptive ability scores. Molecular measures were 50 MSigDB Hallmark gene pathway activity scores derived from RNAseq gene expression. Subtyping identified four ASD, typical and mixed diagnostic clusters. 93% of subjects in one cluster were profound autism and 93% in a different cluster were control toddlers; a third cluster was 76% moderate ability ASD; and the last cluster was a mix of mild ASD and control toddlers. Among the four clusters, the profound autism subtype had the most severe social symptoms, language, cognitive, adaptive, social attention eye tracking, social fMRI activation, and age-related decline in abilities, while mild autism toddlers mixed within typical and delayed clusters had mild social symptoms, and neurotypical language, cognitive and adaptive scores that improved with age compared with profound and moderate autism toddlers in other clusters. In profound autism, 7 subtype-specific dysregulated gene pathways were found; they control embryonic proliferation, differentiation, neurogenesis, and DNA repair. To find subtype-common dysregulated pathways, we compared all ASD vs TD and found 17 ASD subtype-common dysregulated pathways. These common pathways showed a severity gradient with the greatest dysregulation in profound and least in mild. Collectively, results raise the new hypothesis that the continuum of ASD heterogeneity is moderated by subtype-common pathways and the distinctive nature of profound autism is driven by the differentially added profound subtype-specific embryonic pathways.
Collapse
Affiliation(s)
- Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mehdi Mirzaie
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Caitlin Aamodt
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Xiaotong Yang
- Department of Computation Medicine and Bioinformatics, University of Michigan, MI, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Charlene Andreason
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Lana Garmire
- Department of Computation Medicine and Bioinformatics, University of Michigan, MI, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Autio KJ, Koivisto H, Schmitz W, Puronurmi A, Tanila H, Kastaniotis AJ. Exploration of dietary interventions to treat mitochondrial fatty acid disorders in a mouse model. J Nutr Biochem 2024; 131:109692. [PMID: 38879137 DOI: 10.1016/j.jnutbio.2024.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial fatty acids synthesis (mtFAS) is a conserved metabolic pathway essential for mitochondrial respiration. The best characterized mtFAS product is the medium-chain fatty acid octanoate (C8) used as a substrate in the synthesis of lipoic acid (LA), a cofactor required by several mitochondrial enzyme complexes. In humans, mutations in the mtFAS component enoyl reductase MECR cause childhood-onset neurodegenerative disorder MEPAN. A complete deletion of Mecr in mice is embryonically lethal, while selective deletion of Mecr in cerebellar Purkinje cells causes neurodegeneration in these cells. A fundamental question in the research of mtFAS deficiency is if the defect is amenable to treatment by supplementation with known mtFAS products. Here we used the Purkinje-cell specific mtFAS deficiency neurodegeneration model mice to study if feeding the mice with a medium-chain triacylglycerol-rich formula supplemented with LA could slow down or prevent the neurodegeneration in Purkinje cell-specific Mecr KO mice. Feeding started at the age of 4 weeks and continued until the age of 9 months. The neurological status on the mice was assessed at the age of 3, 6, and 9 months with behavioral tests and the state of the Purkinje cell deterioration in the cerebellum was studied histologically. We showed that feeding the mice with medium chain triacylglycerols and LA affected fatty acid profiles in the cerebellum and plasma but did not prevent the development of neurodegeneration in these mice. Our results indicate that dietary supplementation with medium chain fatty acids and LA alone is not an efficient way to treat mtFAS disorders.
Collapse
Affiliation(s)
- Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Werner Schmitz
- Faculty of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | - Anna Puronurmi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
17
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Murru E, Carta G, Manca C, Verce M, Everard A, Serra V, Aroni S, Melis M, Banni S. Impact of prenatal THC exposure on lipid metabolism and microbiota composition in rat offspring. Heliyon 2024; 10:e35637. [PMID: 39170117 PMCID: PMC11336829 DOI: 10.1016/j.heliyon.2024.e35637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Recent studies have demonstrated that prenatal exposure to the psychoactive ingredient of cannabis that is tetrahydrocannabinol (THC) disrupts fatty acid (FA) signaling pathways in the developing brain, potentially linking to psychopathologic consequences. Our research aims to investigate whether changes in midbrain FA metabolism are linked to modifications in peripheral metabolism of FAs and shifts in microbiota composition. Methods In order to model prenatal exposure to THC (PTE) in rats, Sprague Dawley dams were systemically administered with THC (2 mg/kg, s.c.) or vehicle once daily from gestational day 5-20. To evaluate the metabolic impact of PTE in the offspring during preadolescence (postnatal day, PND, 25-28), we analyzed FA profiles and their bioactive metabolites in liver and midbrain tissues, and microbiota alterations. Results Our findings indicate that PTE leads to sex-specific metabolic changes. In both sexes, PTE resulted in increased liver de novo lipogenesis (DNL) and alterations in FA profiles, as well as changes in N-acylethanolamines (NAEs), ligands of peroxisome proliferator-activated receptor alpha (PPAR-α). In females only, PTE influenced gene expression of PPAR-α and fibroblast growth factor 21 (Fgf21). In male offspring only, PTE was associated with significantly reduced fasting glycaemia and with alterations in the levels of midbrain NAEs. Our analysis of the progeny gut microbiota revealed sex-dependent effects of PTE, notably an increased abundance of Ileibacterium in PTE-exposed male offspring, a change previously associated with the long-term effects of a maternal unbalanced diet. Conclusions Our data suggest that in male PTE offspring a reduced fasting glycaemia, resulting from increased liver DNL and the absence of a compensatory effect by Ppar-α and FGF21 on glycemic homeostasis, are associated to alterations in midbrain NAEs ligands of PPAR-α. These metabolic changes within the midbrain, along with Ileibacterium abundance, may partly elucidate the heightened susceptibility to psychopathologic conditions previously observed in male offspring following PTE.
Collapse
Affiliation(s)
- Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sonia Aroni
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| |
Collapse
|
19
|
Desrosiers J, Caron-Desrochers L, René A, Gaudet I, Pincivy A, Paquette N, Gallagher A. Functional connectivity development in the prenatal and neonatal stages measured by functional magnetic resonance imaging: A systematic review. Neurosci Biobehav Rev 2024; 163:105778. [PMID: 38936564 DOI: 10.1016/j.neubiorev.2024.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The prenatal and neonatal periods are two of the most important developmental stages of the human brain. It is therefore crucial to understand normal brain development and how early connections are established during these periods, in order to advance the state of knowledge on altered brain development and eventually identify early brain markers of neurodevelopmental disorders and diseases. In this systematic review (Prospero ID: CRD42024511365), we compiled resting state functional magnetic resonance imaging (fMRI) studies in healthy fetuses and neonates, in order to outline the main characteristics of typical development of the functional brain connectivity during the prenatal and neonatal periods. A systematic search of five databases identified a total of 12 573 articles. Of those, 28 articles met pre-established selection criteria based determined by the authors after surveying and compiling the major limitations reported within the literature. Inclusion criteria were: (1) resting state studies; (2) presentation of original results; (3) use of fMRI with minimum one Tesla; (4) a population ranging from 20 weeks of GA to term birth (around 37-42 weeks of PMA); (5) singleton pregnancy with normal development (absence of any complications known to alter brain development). Exclusion criteria were: (1) preterm studies; (2) post-mortem studies; (3) clinical or pathological studies; (4) twin studies; (5) papers with a sole focus on methodology (i.e. focused on tool and analysis development); (6) volumetric studies; (7) activation map studies; (8) cortical analysis studies; (9) conference papers. A risk of bias assessment was also done to evaluate each article's methodological rigor. 1877 participants were included across all the reviewed articles. Results consistently revealed a developmental gradient of increasing functional brain connectivity from posterior to anterior regions and from proximal-to-distal regions. A decrease in local small-world organization shortly after birth was also observed; small-world characteristics were present in fetuses and newborns, but appeared weaker in the latter group. Also, the posterior-to-anterior gradient could be associated with earlier development of the sensorimotor networks in the posterior regions while more complex higher-order networks (e.g. attention-related) mature later in the anterior regions. The main limitations of this systematic review stem from the inherent limitations of functional imaging in fetuses, mainly: unevenly distributed populations and limited sample sizes; fetal movements in the womb and other imaging obstacles; and a large voxel resolution when imaging a small brain. Another limitation specific to this review is the relatively small number of included articles compared to very a large search result, which may have led to relevant articles having been overlooked.
Collapse
Affiliation(s)
- Jérémi Desrosiers
- Neurodevelopmental Optical Imaging Laboratory (LIONLAB), Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; School of Psychoeducation, University of Montreal, QC, Canada
| | - Laura Caron-Desrochers
- Neurodevelopmental Optical Imaging Laboratory (LIONLAB), Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Psychology, University of Montreal, QC, Canada
| | - Andréanne René
- Neurodevelopmental Optical Imaging Laboratory (LIONLAB), Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Psychology, University of Montreal, QC, Canada
| | - Isabelle Gaudet
- Neurodevelopmental Optical Imaging Laboratory (LIONLAB), Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Health Sciences, Université du Québec à Chicoutimi, QC, Canada
| | - Alix Pincivy
- Sainte-Justine University Health Center and Research Center Libraries, Montreal, QC, Canada
| | - Natacha Paquette
- Neurodevelopmental Optical Imaging Laboratory (LIONLAB), Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Psychology, University of Montreal, QC, Canada
| | - Anne Gallagher
- Neurodevelopmental Optical Imaging Laboratory (LIONLAB), Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Psychology, University of Montreal, QC, Canada.
| |
Collapse
|
20
|
El-Khawam R, Dumpa V, Islam S, Kohn B, Hanna N. Early blood glucose screening in asymptomatic high-risk neonates. J Pediatr Endocrinol Metab 2024; 0:jpem-2023-0573. [PMID: 38972845 DOI: 10.1515/jpem-2023-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES Detecting and treating severe hypoglycemia promptly after birth is crucial due to its association with adverse long-term neurodevelopmental outcomes. However, limited data are available on the optimal timing of glucose screening in asymptomatic high-risk neonates prone to hypoglycemia. Risk factors associated with asymptomatic high-risk neonates include late prematurity ≥35 and <37 weeks gestation (LPT), small-for-gestational-age (SGA), large-for-gestational-age (LGA), and infant-of-a-diabetic mother (IDM). This study aims to determine the incidence and the impact of individual risk factors on early hypoglycemia (defined as blood glucose ≤25 mg/dL in the initial hour after birth) in asymptomatic high-risk neonates. METHODS All asymptomatic high-risk neonates ≥35 weeks gestation underwent early blood glucose screening within the first hour after birth (n=1,690). A 2-year retrospective analysis was conducted to assess the incidence of early neonatal hypoglycemia in this cohort and its association with hypoglycemia risk factors. RESULTS Out of the 9,919 births, 1,690 neonates (17 %) had risk factors for neonatal hypoglycemia, prompting screening within the first hour after birth. Incidence rates for blood glucose ≤25 mg/dL and ≤15 mg/dL were 3.1 and 0.89 %, respectively. Of concern, approximately 0.5 % of all asymptomatic at-risk neonates had a blood glucose value of ≤10 mg/dL. LPT and LGA were the risk factors significantly associated with early neonatal hypoglycemia. CONCLUSIONS Asymptomatic high-risk neonates, particularly LPT and LGA neonates, may develop early severe neonatal hypoglycemia identified by blood glucose screening in the first hour of life. Additional investigation is necessary to establish protocols for screening and managing asymptomatic high-risk neonates.
Collapse
Affiliation(s)
- Rania El-Khawam
- Division of Neonatology, Department of Pediatrics, 24998 NYU Langone Hospital - Long Island, NYU Grossman Long Island School of Medicine , Mineola, NY, USA
| | - Vikramaditya Dumpa
- Division of Neonatology, Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shahidul Islam
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New Hyde Park, NY, USA
| | - Brenda Kohn
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, 24998 NYU Langone Hospital - Long Island, NYU Grossman Long Island School of Medicine , Mineola, NY, USA
| |
Collapse
|
21
|
Li L, Zhuang L, Xu Z, Jiang L, Zhai Y, Liu D, Wu Q. U-shaped relationship between non-high-density lipoprotein cholesterol and cognitive impairment in Chinese middle-aged and elderly: a cross-sectional study. BMC Public Health 2024; 24:1624. [PMID: 38890653 PMCID: PMC11186169 DOI: 10.1186/s12889-024-19164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The relationship between blood lipids and cognitive function has long been a subject of interest, and the association between serum non-high-density lipoprotein cholesterol (non-HDL-C) levels and cognitive impairment remains contentious. METHODS We utilized data from the 2011 CHARLS national baseline survey, which after screening, included a final sample of 10,982 participants. Cognitive function was assessed using tests of episodic memory and cognitive intactness. We used multiple logistic regression models to estimate the relationship between non-HDL-C and cognitive impairment. Subsequently, utilizing regression analysis results from fully adjusted models, we explored the nonlinear relationship between non-HDL-C as well as cognitive impairment using smooth curve fitting and sought potential inflection points through saturation threshold effect analysis. RESULTS The results showed that each unit increase in non-HDL-C levels was associated with a 5.5% reduction in the odds of cognitive impairment (OR = 0.945, 95% CI: 0.897-0.996; p < 0.05). When non-HDL-C was used as a categorical variable, the results showed that or each unit increase in non-HDL-C levels, the odds of cognitive impairment were reduced by 14.2%, 20.9%, and 24% in the Q2, Q3, and Q4 groups, respectively, compared with Q1. In addition, in the fully adjusted model, analysis of the potential nonlinear relationship by smoothed curve fitting and saturation threshold effects revealed a U-shaped relationship between non-HDL-C and the risk of cognitive impairment, with an inflection point of 4.83. Before the inflection point, each unit increase in non-HDL-C levels was associated with a 12.3% decrease in the odds of cognitive impairment. After the tipping point, each unit increase in non-HDL-C levels was associated with an 18.8% increase in the odds of cognitive impairment (All p < 0.05). CONCLUSION There exists a U-shaped relationship between non-HDL-C and the risk of cognitive impairment in Chinese middle-aged and elderly individuals, with statistical significance on both sides of the turning points. This suggests that both lower and higher levels of serum non-high-density lipoprotein cholesterol increase the risk of cognitive impairment in middle-aged and elderly individuals.
Collapse
Affiliation(s)
- Lei Li
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China
| | - Lingdan Zhuang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China
| | - Zichen Xu
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China
| | - Luqing Jiang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China
| | - Ying Zhai
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China
| | - Daoqin Liu
- Department of Kidney Medicine, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China.
| | - Qiwen Wu
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No. 2, West Zheshan Road, Wuhu, Anhui, 241001, China.
| |
Collapse
|
22
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
23
|
Antunes BC, Mateus T, Morais VA. In the Brain, It Is Not All about Sugar. NEUROSCI 2024; 5:209-221. [PMID: 39483499 PMCID: PMC11493208 DOI: 10.3390/neurosci5020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of energetic homeostasis relies on a tight balance between glycolysis and mitochondrial oxidative phosphorylation. The case of the brain is a peculiar one, as although entailing a constant demand for energy, it is believed to rely mostly on glucose, particularly at the level of neurons. Nonetheless, this has been challenged by studies that show that alternatives such as lactate, ketone bodies, and glutamate can be used as fuels to sustain neuronal activity. The importance of fatty acid (FA) metabolism to this extent is still unclear, albeit sustaining a significant energetic output when compared to glucose. While several authors postulate a possible role of FA for the energetic homeostasis of the brain, several others point out the intrinsic features of this pathway that make its contribution difficult to explain in the context of neuronal bioenergetics. Moreover, fueling preference at the synapse level is yet to be uncovered. In this review, we discuss in detail the arguments for and against the brain usage of FA. Furthermore, we postulate that the importance of this fuel may be greater at the synapse, where local mitochondria possess a set of features that enable a more effective usage of this fuel source.
Collapse
Affiliation(s)
- Bernardo C Antunes
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Tomás Mateus
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Vanessa A Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| |
Collapse
|
24
|
Islam M, Behura SK. Molecular Regulation of Fetal Brain Development in Inbred and Congenic Mouse Strains Differing in Longevity. Genes (Basel) 2024; 15:604. [PMID: 38790233 PMCID: PMC11121069 DOI: 10.3390/genes15050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
25
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Molloy JW, Barry D. The interplay between glucose and ketone bodies in neural stem cell metabolism. J Neurosci Res 2024; 102:e25342. [PMID: 38773878 DOI: 10.1002/jnr.25342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including β-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.
Collapse
Affiliation(s)
- Joseph W Molloy
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Denis Barry
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Granath-Panelo M, Kajimura S. Mitochondrial heterogeneity and adaptations to cellular needs. Nat Cell Biol 2024; 26:674-686. [PMID: 38755301 DOI: 10.1038/s41556-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
Collapse
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
28
|
Parekh R, Hammond BR, Chandradhara D. Lutein and Zeaxanthin Supplementation Improves Dynamic Visual and Cognitive Performance in Children: A Randomized, Double-Blind, Parallel, Placebo-Controlled Study. Adv Ther 2024; 41:1496-1511. [PMID: 38363462 PMCID: PMC10960892 DOI: 10.1007/s12325-024-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Supplementation with dietary neuro-pigments lutein (L) and zeaxanthin (Z) has been shown to improve many aspects of visual and cognitive function in adults. In this study, we tested whether a similar intervention could improve such outcomes in preadolescent children. METHODS Sixty children (age range 5-12 years) were randomized in a 2:1 ratio in this double-blind, placebo-controlled clinical trial. Subjects were supplemented with gummies containing either a combination of 10 mg lutein and 2 mg zeaxanthin (LZ) or placebo for 180 days. Macular pigment optical density (MPOD) was the primary endpoint. The secondary endpoints included serum levels of L and Z, and brain-derived neurotrophic factor (BDNF), critical flicker fusion (CFF), eye strain and fatigue using visual analogue scales (VAS), Children's Sleep Habits Questionnaire-Abbreviated (CSHQ-A), and Creyos Health cognitive domains like attention, focus/concentration, episodic memory and learning, visuospatial working memory, and visuospatial processing speed. Safety was assessed throughout the study on the basis of physical examination, vital signs, clinical laboratory tests, and monitoring of adverse events. RESULTS The LZ group showed significant increases in MPOD at all visits post-supplementation, with significant increases as early as day 42 compared to placebo. The LZ group showed significant increases in serum lutein levels, reduced eye strain and fatigue, and improved cognitive performance (focus, episodic memory and learning, visuospatial working memory) at days 90 and 180 compared to placebo. Further, the LZ group showed significant increases in processing speed (CFF), attention, visuospatial processing, and serum Z and BDNF levels on day 180 compared to placebo. No safety concerns were observed. CONCLUSIONS Supplementing LZ resulted in increased MPOD levels, along with increased serum levels of L, Z, and BDNF. These changes were associated with improved visual and cognitive performances and reduction in eye strain and eye fatigue in the children receiving LZ gummies. The investigational product was safe and well tolerated. TRIAL REGISTRATION http://ctri.nic.in/ Identifier CTRI/2022/05/042364.
Collapse
Affiliation(s)
- Rajesh Parekh
- Sanjeevani Netralaya, Infantry Road (Bhagwan Mahaweer Road), Opp. The Hindu, Near Income Tax Office, Bengaluru, 560001, India
| | - Billy R Hammond
- Department of Psychology, UGA Psychology Department, University of Georgia, 125 Baldwin Street, Athens, GA, 30602, USA
| | - Divya Chandradhara
- Bioagile Therapeutics Pvt. Ltd., #2/5, Dahlia Building, 3rd Floor, 80 Feet Road, RMV 2nd Stage, Bengaluru, 560094, India.
| |
Collapse
|
29
|
Huang Y, Flentke GR, Rivera OC, Saini N, Mooney SM, Smith SM. Alcohol Exposure Induces Nucleolar Stress and Apoptosis in Mouse Neural Stem Cells and Late-Term Fetal Brain. Cells 2024; 13:440. [PMID: 38474404 PMCID: PMC10931382 DOI: 10.3390/cells13050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol is unknown. Pregnant C57BL/6J mice received 3 g alcohol/kg daily at E8.5-E17.5. Transcriptome sequencing was performed on the E17.5 fetal cortex. Additionally, primary neural stem cells (NSCs) were isolated from the E14.5 cerebral cortex and exposed to alcohol to evaluate nucleolar stress and p53/MDM2 signaling. Alcohol suppressed KEGG pathways involving ribosome biogenesis (rRNA synthesis/processing and ribosomal proteins) and genes that are mechanistic in ribosomopathies (Polr1d, Rpl11; Rpl35; Nhp2); this was accompanied by nucleolar dissolution and p53 stabilization. In primary NSCs, alcohol reduced rRNA synthesis, caused nucleolar loss, suppressed proliferation, stabilized nuclear p53, and caused apoptosis that was prevented by dominant-negative p53 and MDM2 overexpression. Alcohol's actions were dose-dependent and rapid, and rRNA synthesis was suppressed between 30 and 60 min following alcohol exposure. The alcohol-mediated deficits in ribosomal protein expression were correlated with fetal brain weight reductions. This is the first report describing that pharmacologically relevant alcohol levels suppress ribosome biogenesis, induce nucleolar stress in neuronal populations, and involve the ribosomal/MDM2/p53 pathway to cause growth arrest and apoptosis. This represents a novel mechanism of alcohol-mediated neuronal damage.
Collapse
Affiliation(s)
- Yanping Huang
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - George R. Flentke
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Olivia C. Rivera
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
30
|
Pariyani R, Zhang Y, Haraldsson GG, Chen K, Linderborg KM, Yang B. Metabolomic Investigation of Brain and Liver in Rats Fed Docosahexaenoic Acid in Regio- and Enantiopure Triacylglycerols. Mol Nutr Food Res 2024; 68:e2300341. [PMID: 38396161 DOI: 10.1002/mnfr.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/30/2023] [Indexed: 02/25/2024]
Abstract
SCOPE N-3 polyunsaturated fatty acids (n-3 PUFAs) play important roles in cognitive functions. However, there is a lack of knowledge on the metabolic impact of regio- and stereo-specific positioning of n-3 PUFAs in dietary triacylglycerols. METHODS AND RESULTS Rats in a state of mild n-3 PUFA deficiency are fed daily with 360 mg triacylglycerols containing DHA (docosahexaenoic acid) at sn (stereospecific numbering)-1, 2, or 3 positions and 18:0 at remaining positions, or an equal amount of tristearin for 5 days. Groups fed with n-3 deficient diet and normal n-3 adequate diet are included as controls. The metabolic profiles of the brain and liver are studied using NMR (nuclear magnetic resonance)-based metabolomics. Several metabolites of significance in membrane integrity and neurotransmission, and glutamate, in particular, are significantly lower in the brain of the groups fed with sn-1 and sn-3 DHA compared to the sn-2 DHA group. Further, the tristearin and DHA groups show a lower lactate level compared to the groups fed on normal or n-3 deficient diet, suggesting a prominent role of C18:0 in regulating energy metabolism. CONCLUSION This study sheds light on the impact of stereospecific positioning of DHA in triacylglycerols and the role of dietary stearic acid on metabolism in the brain and liver.
Collapse
Affiliation(s)
- Raghunath Pariyani
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
| | | | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
31
|
Yim H, Choe DT, Bae JA, Choi MK, Kang HM, Nguyen KCQ, Ahn S, Bahn SK, Yang H, Hall DH, Kim JS, Lee J. Comparative connectomics of dauer reveals developmental plasticity. Nat Commun 2024; 15:1546. [PMID: 38413604 PMCID: PMC10899629 DOI: 10.1038/s41467-024-45943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
A fundamental question in neurodevelopmental biology is how flexibly the nervous system changes during development. To address this, we reconstructed the chemical connectome of dauer, an alternative developmental stage of nematodes with distinct behavioral characteristics, by volumetric reconstruction and automated synapse detection using deep learning. With the basic architecture of the nervous system preserved, structural changes in neurons, large or small, were closely associated with connectivity changes, which in turn evoked dauer-specific behaviors such as nictation. Graph theoretical analyses revealed significant dauer-specific rewiring of sensory neuron connectivity and increased clustering within motor neurons in the dauer connectome. We suggest that the nervous system in the nematode has evolved to respond to harsh environments by developing a quantitatively and qualitatively differentiated connectome.
Collapse
Affiliation(s)
- Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Daniel T Choe
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - J Alexander Bae
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Kyu Choi
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hae-Mook Kang
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ken C Q Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Kyu Bahn
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jinseop S Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
32
|
Piccolo B, Chen A, Louey S, Thornburg K, Jonker S. Physiological response to fetal intravenous lipid emulsion. Clin Sci (Lond) 2024; 138:117-134. [PMID: 38261523 PMCID: PMC10876438 DOI: 10.1042/cs20231419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
In preterm neonates unable to obtain sufficient oral nutrition, intravenous lipid emulsion is life-saving. The contribution of post-conceptional level of maturation to pathology that some neonates experience is difficult to untangle from the global pathophysiology of premature birth. In the present study, we determined fetal physiological responses to intravenous lipid emulsion. Fetal sheep were given intravenous Intralipid 20® (n = 4 females, 7 males) or Lactated Ringer's Solution (n = 7 females, 4 males) between 125 ± 1 and 133 ± 1 d of gestation (term = 147 d). Manufacturer's recommendation for premature human infants was followed: 0.5-1 g/kg/d initial rate, increased by 0.5-1 to 3 g/kg/d. Hemodynamic parameters and arterial blood chemistry were measured, and organs were studied postmortem. Red blood cell lipidomics were analyzed by LC-MS. Intravenous Intralipid did not alter hemodynamic or most blood parameters. Compared with controls, Intralipid infusion increased final day plasma protein (P=0.004; 3.5 ± 0.3 vs. 3.9 ± 0.2 g/dL), albumin (P = 0.031; 2.2 ± 0.1 vs. 2.4 ± 0.2 g/dL), and bilirubin (P<0.001; conjugated: 0.2 ± 0.1 vs. 0.6 ± 0.2 mg/dL; unconjugated: 0.2 ± 0.1 vs. 1.1 ± 0.4 mg/dL). Circulating IGF-1 decreased following Intralipid infusion (P<0.001; 66 ± 24 vs. 46 ± 24 ng/mL). Compared with control Oil Red O liver stains (median score 0), Intralipid-infused fetuses scored 108 (P=0.0009). Lipidomic analysis revealed uptake and processing of infused lipids into red blood cells, increasing abundance of saturated fatty acids. The near-term fetal sheep tolerates intravenous lipid emulsion well, although lipid accumulates in the liver. Increased levels of unconjugated bilirubin may reflect increased red blood cell turnover or impaired placental clearance. Whether Intralipid is less well tolerated earlier in gestation remains to be determined.
Collapse
Affiliation(s)
- Brian D. Piccolo
- USDA/ARS-Arkansas Children’s Nutrition Center, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, Portland, OR, U.S.A
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Kent L.R. Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Sonnet S. Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| |
Collapse
|
33
|
Xiong Z, Wang H, Qu Y, Peng S, He Y, Yang Q, Xu X, Lv D, Liu Y, Xie C, Zhang X. The mitochondria in schizophrenia with 22q11.2 deletion syndrome: From pathogenesis to therapeutic promise of targeted natural drugs. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110831. [PMID: 37451595 DOI: 10.1016/j.pnpbp.2023.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Schizophrenia is a complex multi-factor neurological disorder that caused an array of severe indelible consequences to the individuals and society. Additionally, anti-schizophrenic drugs are unsuitable for treating negative symptoms and have more significant side effects and drug resistance. For better treatment and prevention, we consider exploring the pathogenesis of schizophrenia from other perspectives. A growing body of evidence of 22q11.2 deletion syndrome (22q11DS) suggested that the occurrence and progression of schizophrenia are related to mitochondrial dysfunction. So combing through the literature of 22q11DS published from 2000 to 2023, this paper reviews the mechanism of schizophrenia based on mitochondrial dysfunction, and it focuses on the natural drugs targeting mitochondria to enhance mitochondrial function, which are potential to improve the current treatment of schizophrenia.
Collapse
Affiliation(s)
- Zongxiang Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutian Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingyan Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - De Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
34
|
Kramer BW, Abman S, Daly M, Jobe AH, Niklas V. Insulin-like growth factor-1 replacement therapy after extremely premature birth: An opportunity to optimize lifelong lung health by preserving the natural sequence of lung development. Paediatr Respir Rev 2023; 48:24-29. [PMID: 37268507 DOI: 10.1016/j.prrv.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
The past decades have seen markedly improved survival of increasingly immature preterm infants, yet major health complications persist. This is particularly true for bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, which has become the most common sequelae of prematurity and a significant predictor of respiratory morbidity throughout childhood as well as adult life, neurodevelopmental disability, cardiovascular disease, and even death. The need for novel approaches to reduce BPD and related complications of prematurity has never been more critical. Thus, despite major advances in the use of antenatal steroids, surfactant therapy, and improvements in respiratory support, there is a persistent need for developing therapeutic strategies that more specifically reflect our growing understanding of BPD in the post-surfactant age, or the "new BPD." In contrast with the severe lung injury leading to marked fibroproliferative disease from the past, the "new BPD" is primarily characterized by an arrest of lung development as related to more extreme prematurity. This distinction and the continued high incidence of BPD and related sequelae suggest the need to identify therapies that target critical mechanisms that support lung growth and maturation in conjunction with treatments to improve respiratory outcomes across the lifespan. As the prevention of BPD and its severity remains a primary goal, we highlight the concept from preclinical and early clinical observations that insulin-like growth factor 1 (IGF-1) can potentially support the natural sequence of lung growth as a replacement therapy after preterm birth. Data supporting this hypothesis are robust and include observations that low IGF-1 levels persist after extremely preterm birth in human infants and strong preclinical data from experimental models of BPD highlight the therapeutic benefit of IGF-1 in reducing disease. Importantly, phase 2a clinical data in extremely premature infants where replacement of IGF-1 with a human recombinant human IGF-1 complexed with its main IGF-1 binding protein 3, significantly reduced the most severe form of BPD, which is strongly associated with multiple morbidities that have lifelong consequences. As physiologic replacement therapy of surfactant heralded the success of reducing acute respiratory distress syndrome in preterm infants, the paradigm has the potential to become the platform for discovering the next generation of therapies like IGF-1, which becomes deficient after extremely premature birth where endogenous production by the infant is not sufficient to maintain the physiologic levels adequate to support normal organ development and maturation.
Collapse
Affiliation(s)
- Boris W Kramer
- University of Western Australia, Subiaco, Western Australia, Australia; Neuroplast BV, Maastricht, NL, The Netherlands.
| | - Steven Abman
- University of Colorado Anschutz Medical Center, Department of Pediatrics and Division of Pulmonology, Aurora, CO 80045, USA
| | - Mandy Daly
- Irish Neonatal Health Alliance, Wicklow, Ireland
| | - Alan H Jobe
- Emeritus Professor of Pediatrics, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Victoria Niklas
- Oak Hill Bio Ltd, 1 Ashley Road, Altrincham, Cheshire WA14 2DT, UK
| |
Collapse
|
35
|
Biose IJ, Rutkai I, Clossen B, Gage G, Schechtman K, Adkisson HD, Bix GJ. Recombinant Human Perlecan DV and Its LG3 Subdomain Are Neuroprotective and Acutely Functionally Restorative in Severe Experimental Ischemic Stroke. Transl Stroke Res 2023; 14:941-954. [PMID: 36508132 PMCID: PMC10258221 DOI: 10.1007/s12975-022-01089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Despite recent therapeutic advancements, ischemic stroke remains a major cause of death and disability. It has been previously demonstrated that ~ 85-kDa recombinant human perlecan domain V (rhPDV) binds to upregulated integrin receptors (α2β1 and α5β1) associated with neuroprotective and functional improvements in various animal models of acute ischemic stroke. Recombinant human perlecan laminin-like globular domain 3 (rhPDVLG3), a 21-kDa C-terminal subdomain of rhPDV, has been demonstrated to more avidly bind to the α2β1 integrin receptor than its parent molecule and consequently was postulated to evoke significant neuroprotective and functional effects. To test this hypothesis, fifty male C57Bl/6 J mice studied in a t-MCAO model were randomly allocated to either rhPDV treatment, rhPDVLG3, or equivalent volume of PBS at the time of reperfusion in a study where all procedures and analyses were conducted blind to treatment. On post-MCAO day 7, 2,3,5-triphenyltetrazolium chloride staining of brain slices was used to quantify infarct volume. We observed that treatment with rhPDVLG3 reduced infarct volume by 65.6% (p = 0.0001), improved weight loss (p < 0.05), and improved functional outcome measures (p < 0.05) when compared to PBS controls, improvements which were generally greater in magnitude than those observed for 2 mg/kg of rhPDV. In addition, treatment with 6 mg/kg of rhPDVLG3 was observed to significantly reduce mortality due to stroke in one model, an outcome not previously observed for rhPDV. Our initial findings suggest that treatment with rhPDVLG3 provides significant improvement in neuroprotective and functional outcomes in experimental stroke models and that further investigation of rhPDVLG3 as a novel neuroprotective therapy for patients with stroke is warranted.
Collapse
Affiliation(s)
- Ifechukwude Joachim Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Bryan Clossen
- Stream Biomedical, Inc., 2450 Holcombe, Suite J, Houston, TX, 77021, USA
| | - Gary Gage
- Stream Biomedical, Inc., 2450 Holcombe, Suite J, Houston, TX, 77021, USA
| | - Kenneth Schechtman
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Davis Adkisson
- Stream Biomedical, Inc., 2450 Holcombe, Suite J, Houston, TX, 77021, USA.
| | - Gregory J Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
36
|
Pinar-Martí A, Fernández-Barrés S, Gignac F, Persavento C, Delgado A, Romaguera D, Lázaro I, Ros E, López-Vicente M, Salas-Salvadó J, Sala-Vila A, Júlvez J. Red blood cell omega-3 fatty acids and attention scores in healthy adolescents. Eur Child Adolesc Psychiatry 2023; 32:2187-2195. [PMID: 35960396 PMCID: PMC10576734 DOI: 10.1007/s00787-022-02064-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Omega-3 fatty acids are critical for brain function. Adolescence is increasingly believed to entail brain vulnerability to dietary intake. In contrast to the abundant research on the omega-3 docosahexaenoic acid (DHA) in cognition, research on DHA and attention in healthy adolescents is scarce. In addition, the role of alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid, is unexplored. We examined associations between DHA and ALA and attention function among a healthy young population. In this cross-sectional study conducted in 372 adolescents (13.8 ± 0.9 years-old), we determined the red blood cell proportions of DHA and ALA by gas chromatography (objective biomarkers of their long-term dietary intake) and measured attention scores through the Attention Network Test. We constructed multivariable linear regression models to analyze associations, controlling for known confounders. Compared to participants at the lowest DHA tertile (reference), those at the highest DHA tertile showed significantly lower hit reaction time-standard error (higher attentiveness) (28.13 ms, 95% confidence interval [CI] = - 52.30; - 3.97), lower hit reaction time ( - 38.30 ms, 95% CI = - 73.28; - 3.33) and lower executive conflict response ( - 5.77 ms, 95% CI = - 11.44; - 0.09). In contrast, higher values were observed in those at the top tertile of ALA in hit reaction time compared to the lowest one (46.14 ms, 95% CI = 9.90; 82.34). However, a beneficial association was observed for ALA, with decreasing impulsivity index across tertiles. Overall, our results suggest that DHA (reflecting its dietary intake) is associated with attention performance in typically developing adolescents. The role of dietary ALA in attention is less clear, although higher blood levels of ALA appear to result in lower impulsivity. Future intervention studies are needed to determine the causality of these associations and to better shape dietary recommendations for brain health during the adolescence period.
Collapse
Affiliation(s)
- Ariadna Pinar-Martí
- Unversitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Silvia Fernández-Barrés
- Unversitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
- CIBER Epidemiología Y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Florence Gignac
- Unversitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Cecilia Persavento
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Anna Delgado
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Dora Romaguera
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
- Instituto de Investigación Sanitaria Illes Balears, Hospital Universitari Son Espases, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de La Obesidad Y Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Mònica López-Vicente
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de La Obesidad Y Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Reus (Tarragona), Catalonia, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
| | - Aleix Sala-Vila
- Cardiovascular Risk and Nutrition, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Jordi Júlvez
- Unversitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.
- CIBER Epidemiología Y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Reus (Tarragona), Catalonia, Spain.
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
37
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
38
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
39
|
Siddiqui M, Pinti P, Brigadoi S, Lloyd-Fox S, Elwell CE, Johnson MH, Tachtsidis I, Jones EJH. Using multi-modal neuroimaging to characterise social brain specialisation in infants. eLife 2023; 12:e84122. [PMID: 37818944 PMCID: PMC10624424 DOI: 10.7554/elife.84122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
The specialised regional functionality of the mature human cortex partly emerges through experience-dependent specialisation during early development. Our existing understanding of functional specialisation in the infant brain is based on evidence from unitary imaging modalities and has thus focused on isolated estimates of spatial or temporal selectivity of neural or haemodynamic activation, giving an incomplete picture. We speculate that functional specialisation will be underpinned by better coordinated haemodynamic and metabolic changes in a broadly orchestrated physiological response. To enable researchers to track this process through development, we develop new tools that allow the simultaneous measurement of coordinated neural activity (EEG), metabolic rate, and oxygenated blood supply (broadband near-infrared spectroscopy) in the awake infant. In 4- to 7-month-old infants, we use these new tools to show that social processing is accompanied by spatially and temporally specific increases in coupled activation in the temporal-parietal junction, a core hub region of the adult social brain. During non-social processing, coupled activation decreased in the same region, indicating specificity to social processing. Coupling was strongest with high-frequency brain activity (beta and gamma), consistent with the greater energetic requirements and more localised action of high-frequency brain activity. The development of simultaneous multimodal neural measures will enable future researchers to open new vistas in understanding functional specialisation of the brain.
Collapse
Affiliation(s)
- Maheen Siddiqui
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Paola Pinti
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Sabrina Brigadoi
- Department of Development and Social Psychology, University of PadovaPadovaItaly
- Department of Information Engineering, University of PadovaPadovaItaly
| | - Sarah Lloyd-Fox
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Mark H Johnson
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Emily JH Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
40
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
41
|
Bornstein R, Mulholland MT, Sedensky M, Morgan P, Johnson SC. Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol Cell Neurosci 2023; 126:103887. [PMID: 37586651 PMCID: PMC10773532 DOI: 10.1016/j.mcn.2023.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial dysfunction can arise from genetic defects or environmental exposures and impact a wide range of biological processes. Among these are metabolic pathways involved in glutamine catabolism, anabolism, and glutamine-glutamate cycling. In recent years, altered glutamine metabolism has been found to play important roles in the pathologic consequences of mitochondrial dysfunction. Glutamine is a pleiotropic molecule, not only providing an alternate carbon source to glucose in certain conditions, but also playing unique roles in cellular communication in neurons and astrocytes. Glutamine consumption and catabolic flux can be significantly altered in settings of genetic mitochondrial defects or exposure to mitochondrial toxins, and alterations to glutamine metabolism appears to play a particularly significant role in neurodegenerative diseases. These include primary mitochondrial diseases like Leigh syndrome (subacute necrotizing encephalopathy) and MELAS (mitochondrial myopathy with encephalopathy, lactic acidosis, and stroke-like episodes), as well as complex age-related neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Pharmacologic interventions targeting glutamine metabolizing and catabolizing pathways appear to provide some benefits in cell and animal models of these diseases, indicating glutamine metabolism may be a clinically relevant target. In this review, we discuss glutamine metabolism, mitochondrial disease, the impact of mitochondrial dysfunction on glutamine metabolic processes, glutamine in neurodegeneration, and candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael T Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Phil Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Department of Neurology, University of Washington, Seattle, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
42
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
43
|
Prajjwal P, Asharaf S, Makhanasa D, Yamparala A, Tariq H, Aleti S, Gadam S, Vora N. Association of Alzheimer's dementia with oral bacteria, vitamin B12, folate, homocysteine levels, and insulin resistance along with its pathophysiology, genetics, imaging, and biomarkers. Dis Mon 2023; 69:101546. [PMID: 36931946 DOI: 10.1016/j.disamonth.2023.101546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Alzheimer's disease is a prevalent form of dementia, particularly among the elderly population. It is characterized by progressive cognitive decline and neurodegeneration. Despite numerous studies, the exact cause of Alzheimer's disease remains uncertain, and various theories have been proposed, including Aβ amyloid deposition in the brain and tau protein hyper-phosphorylation. This review article explores the potential pathogenesis of Alzheimer's disease, focusing on the effects of derangements in the levels of vitamin B12, folate, and homocysteine, as well as the impact of oral bacteria causing periodontitis and insulin resistance, and their relationship to Alzheimer's. Studies have shown that high levels of homocysteine and low levels of vitamin B12 and folate, are associated with an increased risk of developing Alzheimer's disease. The article also explores the link between Alzheimer's disease and oral bacteria, specifically dental infections and periodontitis, which contribute to the inflammatory processes in the nervous system of Alzheimer's patients. There could be derangement in the insulin signaling further causing disruption in glucose metabolism within the brain, suggesting that Alzheimer's disease may represent a form of type 2 diabetes mellitus associated with the brain, commonly known as type 3 diabetes. Neuroimaging techniques, including MRI, PET, and tau PET, can identify the predictive characteristics of Alzheimer's disease, with amyloid PET being the most useful in ruling out the disease. The article concludes by stressing the importance of understanding genetic and neuroimaging factors in the diagnosing and treating Alzheimer's disease.
Collapse
Affiliation(s)
| | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | | | | | - Halla Tariq
- Internal Medicine, Multan Medical and Dental College, Multan, Pakistan
| | - Soumya Aleti
- Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | - Neel Vora
- Internal Medicine, B. J. Medical College, Ahmedabad, India
| |
Collapse
|
44
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
45
|
Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci 2023; 24:ijms24032710. [PMID: 36769032 PMCID: PMC9916529 DOI: 10.3390/ijms24032710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders. Therefore, advancement in the creation of robust and sensitive in vitro BBB models for drug screening might allow us to expedite neurological drug development. This review discusses the major in vitro BBB models developed as of now for exploring the barrier properties of the cerebral vasculature. Our main focus is describing existing in vitro models, including the 2D transwell models covering both single-layer and co-culture models, 3D organoid models, and microfluidic models with their construction, permeability measurement, applications, and limitations. Although microfluidic models are better at recapitulating the in vivo properties of BBB than other models, significant gaps still exist for their use in predicting the performance of neurotherapeutics. However, this comprehensive account of in vitro BBB models can be useful for researchers to create improved models in the future.
Collapse
|
46
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
47
|
Chegodaev D, Gusev V, Lvova O, Pavlova P. Possible role of ketone bodies in the generation of burst suppression electroencephalographic pattern. Front Neurosci 2022; 16:1021035. [PMID: 36590288 PMCID: PMC9800049 DOI: 10.3389/fnins.2022.1021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
|
48
|
Kramer BW, Niklas V, Abman S. Bronchopulmonary Dysplasia and Impaired Neurodevelopment-What May Be the Missing Link? Am J Perinatol 2022; 39:S14-S17. [PMID: 36318942 DOI: 10.1055/s-0042-1756677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bronchopulmonary dysplasia (BPD) and poor neurodevelopmental outcome after preterm birth are closely associated. However, mechanistic links are uncertain. We are exploring the hypothesis that decreased circulating insulin-like growth factor (IGF)-1 after preterm birth due to the abrupt end of supply by the placenta impairs growth during critical windows of development in most organs, including the lung and brain. Throughout gestation, the fetus uses glycolysis as its main source of energy. Metabolism is mainly stopped at pyruvate, which serves as a "metabolic crossroad", allowing for the production of amino acids and other "building blocks" for new cells. Metabolic pathways are differentially regulated in the nucleus and the cytoplasm. The ratio between pyruvate dehydrogenase (PDH) and pyruvate dehydrogenase kinase (PDK) determines the biochemical activity which irreversibly metabolizes pyruvate to acetyl-co-A. Metabolites in the nucleus modulate epigenetic remodeling, an essential mechanism of normal growth and maturation during development. IGF-1 has been shown to contribute significantly to the development of virtually all organs, especially related to the regulation of microvascular growth, based on extensive studies of the brain, retina, lung, and intestine. With a preterm birth, the abrupt withdrawal of the placental supply of IGF-1 and its local production directly affects metabolism and microvascular development, which may contribute to a high risk for organ maldevelopment and injury after birth. We speculate that reduced bioavailability of IGF-1 is a possible link between lung and brain development disruption and increases susceptibility for major pulmonary and neurocognitive morbidities in preterm babies. KEY POINTS: · Metabolic changes inherent to prterm birth may cause epigenetic changes which cause "dysmaturational" development.. · IGF-1 may be the potential link between BPD and brain development.. · The ratio between pyruvate dehydrogenase and pyruvate dehydrogenase kinase determines the biochemical activity..
Collapse
Affiliation(s)
- Boris W Kramer
- University of Western Australia, Subiaco, Western Australia, Australia.,Neuroplast BV, Maastricht, The Netherlands
| | - Victoria Niklas
- Oak Hill Bio Ltd., 1 Ashley Road, Altrincham, Cheshire, United Kingdom
| | - Steven Abman
- Department of Pediatrics and Division of Pulmonology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
49
|
Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders. Neurosci Biobehav Rev 2022; 142:104892. [PMID: 36181925 DOI: 10.1016/j.neubiorev.2022.104892] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
Abstract
Here we discuss the role of diverse environmental manipulations affecting cognition with special regard to psychiatric conditions. We present evidence supporting a direct causal correlation between the valence of the environmental stimulation and some psychopathological traits and how the environment influences brain structure and function with special regard to oxidative stress and mitochondrial activity. Increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. In this review we discuss the role of diverse environmental manipulations to affect cognition with special regard to psychiatric conditions. How the environment influences brain structure and function, and the interactions between rearing conditions, oxidative stress and mitochondrial activity are fundamental questions that are still poorly understood. As will be discussed, increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. The brain requires considerable mitochondrial reserve not only to sustain basal neuronal needs but a also to provide increasing energy demands during stress. Consistently with these high energetic requirements, it is reasonable to hypothesise that the brain is particularly vulnerable to mitochondrial defects. Thus, even subtle metabolic alterations might have a substantial impact on cognitive functions. Over the last decade, several experimental evidence supported the hypothesis that a suboptimal mitochondrial function, which could be of genetic origin or acquired following adverse life events, is a key vulnerability factor for stress-related psychopathologies. Chronic psychological stress is a major promoter of anxiety as well as of oxidative damage, as shown in several studies. Recent evidence from mouse models harbouring mutations in mitochondrial genes demonstrated the role of mitochondria in modulating the response to acute psychological stress. However, it has yet to be determined whether mitochondrial dysfunctions are the cause or the consequence of anxiety. In this review, we discuss how adverse psychosocial environments can impact mitochondrial bioenergetics at the molecular level and we gather evidence from several studies linking energy metabolism and stress resilience/vulnerability. Moreover, we review recent findings supporting that metabolic dysfunction can underlie deficits in complex social behaviours. As will be discussed, aberrations in mitochondrial functionality have been found in the nucleus accumbens of highly anxious mice and mediate low social competitiveness. In addition, alterations in sociability can be reversed by enhancing mitochondrial functions. Recent evidence also demonstrated that a specific mutation in mitochondrial DNA, previously linked to autism spectrum disorder, produces autistic endophenotypes in mice by altering respiration chain and reactive oxygen species (ROS) production. Finally, we discuss a "Negative Enrichment" model that can explain some of the psychopathological conditions relevant to humans. Evidence of a direct causal correlation of valence of environmental stimulation and psychopathological traits will be presented, and possible molecular mechanisms that focus on oxidative stress. Collectively, the findings described here have been achieved with a wide set of behavioural and cognitive tasks with translational validity. Thus, they will be useful for future work aimed to elucidate the fine metabolic alterations in psychopathologies and devise novel approaches targeting mitochondria to alleviate these conditions.
Collapse
|
50
|
Abstract
The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
Collapse
|