1
|
Aminbakhsh AP, Théberge ET, Burden E, Adejumo CK, Gravely AK, Lehman A, Sedlak TL. Exploring associations between estrogen and gene candidates identified by coronary artery disease genome-wide association studies. Front Cardiovasc Med 2025; 12:1502985. [PMID: 40182431 PMCID: PMC11965610 DOI: 10.3389/fcvm.2025.1502985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Coronary artery disease (CAD) is the leading cause of death around the world, with epidemiological sex and gender differences in prevalence, pathophysiology and outcomes. It has been hypothesized that sex steroids, like estrogen, may contribute to these sex differences. There is a relatively large genetic component to developing CAD, with heritability estimates ranging between 40%-60%. In the last two decades, genome-wide association studies (GWAS) have contributed substantially to advancing the understanding of genetic candidates contributing to CAD. The aim of this study was to determine if genes discovered in CAD GWASs are affected by estrogen via direct modulation or indirect down-stream targets. Methods A scoping review was conducted using MEDLINE and EMBASE for studies of atherosclerotic coronary artery disease and a genome-wide association study (GWAS) design. Analysis was limited to candidate genes with corresponding single nucleotide polymorphisms (SNPs) surpassing genome-wide significance and had been mapped to genes by study authors. The number of studies that conducted sex-stratified analyses with significant genes were quantified. A literature search of the final gene lists was done to examine any evidence suggesting estrogen may modulate the genes and/or gene products. Results There were 60 eligible CAD GWASs meeting inclusion criteria for data extraction. Of these 60, only 36 had genome-wide significant SNPs reported, and only 3 of these had significant SNPs from sex-stratified analyses mapped to genes. From these 36 studies, a total of 61 genes were curated, of which 26 genes (43%) were found to have modulation by estrogen. All 26 were discovered in studies that adjusted for sex. 12/26 genes were also discovered in studies that conducted sex-stratified analyses. 12/26 genes were classified as having a role in lipid synthesis, metabolism and/or lipoprotein mechanisms, while 11/26 were classified as having a role in vascular integrity, and 3/26 were classified as having a role in thrombosis. Discussion This study provides further evidence of the relationship between estrogen, genetic risk and the development of CAD. More sex-stratified research will need to be conducted to further characterize estrogen's relation to sex differences in the pathology and progression of CAD.
Collapse
Affiliation(s)
- Ava P. Aminbakhsh
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Emilie T. Théberge
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth Burden
- Division of Internal Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver Coastal Health, Vancouver, BC, Canada
| | - Cindy Kalenga Adejumo
- Division of Internal Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver Coastal Health, Vancouver, BC, Canada
| | - Annabel K. Gravely
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver Coastal Health, Vancouver, BC, Canada
| | - Tara L. Sedlak
- Vancouver Coastal Health, Vancouver, BC, Canada
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Huang X, Liu Y, Liu X, Liu P, Lin J. OTUB1 facilitates lipid accumulation in oxLDL-induced THP-1 macrophages by stabilizing scavenger receptor-A. IUBMB Life 2025; 77:e70012. [PMID: 40114404 DOI: 10.1002/iub.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
The formation of foam cells triggered by excessive lipid accumulation within macrophages is a hallmark of atherosclerosis development. Scavenger receptor-A (SR-A) is a key regulator of lipid uptake by macrophages during oxidized low-density lipoprotein (oxLDL)-induced foam cell formation. Ubiquitination is a crucial post-translational modification that regulates the stability and function of targeted proteins, but whether SR-A is ubiquitinated and how ubiquitination affects SR-A function is unknown. We found that ovarian tumor domain protease 1 (OTUB1), a deubiquitinase (DUBs) that removes ubiquitination of targeted proteins, can stabilize SR-A in 293 T cells and THP-1 macrophages. Knockdown of OTUB1 in THP-1 macrophages reduced the SR-A protein level and impaired lipid accumulation in oxLDL-treated THP-1 macrophages, which can be rescued by excessive SR-A. These data suggested that OTUB1-mediated stabilization of SR-A may be critical for lipid accumulation in macrophages during foam cell formation.
Collapse
Affiliation(s)
- Xianwei Huang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| | - Yixuan Liu
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiong Liu
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| | - Ping Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiyan Lin
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| |
Collapse
|
3
|
Yamamoto T, Okuno M, Kuwano K, Ogura Y. Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation. Int J Med Microbiol 2025; 318:151646. [PMID: 39862618 DOI: 10.1016/j.ijmm.2025.151646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events. Recent studies have suggested that various pathogens are involved in the development of atherosclerosis, with Mycoplasma pneumoniae considered one of the potential candidates. Therefore, this study investigated whether this bacterium induces lipid accumulation in macrophages, which play a crucial role in the development of atherosclerosis, using the Raw264.7 model. Our findings revealed that M. pneumoniae infection promotes lipid droplet formation in macrophages. Glycerol 3-phosphate oxidase, GlpD, in the bacterium is involved in this process by producing reactive oxygen species, which in turn causes the oxidation of low-density lipoprotein. Furthermore, the significant increase in the expression of oxidized lipid receptors involved in the uptake of this oxidized lipid indicates that the bacteria promote lipid uptake in infected macrophages. These results suggest that M. pneumoniae has a direct pro-atherogenic effect, promoting the formation of atherosclerotic lesions through foam cell formation. Understanding the mechanisms by which M. pneumoniae influences atherosclerosis provides valuable insights for devising new therapeutic strategies for the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Koichi Kuwano
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
4
|
He RR, Ma CR, He X, Dong YX, Li H, Chu ZX, Yang XH, Wang JQ, Wang T, Wang FQ, Du FF, Rao Y, Yu WX, Gao XM, Fan GW, Cheng C, Li C. Circulating metabolites of Borneolum syntheticum (Bingpian) ameliorate atherosclerosis in ApoE -/- mice via inhibiting macrophage foam-cell formation. Acta Pharmacol Sin 2025; 46:759-776. [PMID: 39472494 PMCID: PMC11845446 DOI: 10.1038/s41401-024-01406-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 02/23/2025]
Abstract
Translational pharmacological research on traditional medicines lays the foundation for precisely understanding how the medicines function in the body to deliver therapeutic benefits. Borneolum syntheticum (Bingpian) is commonly used in Chinese herbal medicines for coronary heart disease, but its specific cardiovascular impact remains poorly understood. Isoborneol, a constituent of Bingpian, has been found to reduce lipid accumulation in macrophages in vitro, but its oral bioavailability is limited. This investigation aimed to evaluate anti-atherosclerotic effects of Bingpian, based on understanding its first-pass metabolism. Human subjects orally received an herbal medicine containing Bingpian and their plasma samples were analyzed to identify the major circulating compounds of Bingpian, with the metabolism that was also characterized in vitro and in mice. The identified compounds were evaluated for their ability to inhibit macrophage foam-cell formation induced by oxidized low-density lipoprotein. Furthermore, the anti-atherosclerotic effect of repeatedly dosed Bingpian was assessed in ApoE-/- mice fed a high-fat diet. In human subjects, the major circulating compounds of Bingpian were metabolites, rather than their precursor constituents borneol and isoborneol. These constituents were efficiently absorbed in the intestinal tract but underwent significant first-pass metabolism, involving UGT2B7-mediated glucuronidation into borneol-2-O-glucuronide and isoborneol-2-O-glucuronide, respectively, and CYP2A6/2B6/3A-mediated oxidation both into camphor. Despite their poor membrane permeability, hepatic efflux of borneol-2-O-glucuronide and isoborneol-2-O-glucuronide into the systemic circulation was enhanced by MRP3/4. The circulating metabolites, particularly their combinations, markedly inhibited macrophage foam-cell formation induced by oxidized low-density lipoprotein in vitro. Sub-chronic administration of Bingpian (30 mg·kg-1·d-1, i.g.) for 12 weeks significantly decreased atherosclerotic lesion size and enhanced plaque stability in ApoE-/- mice. Systemic exposure to Bingpian metabolites in mice closely resembles that in humans, suggesting that the pharmacodynamic effects of Bingpian in mice are likely applicable to humans. Overall, the cardiovascular benefits of Bingpian involve reducing atherosclerosis by inhibiting foam-cell formation through its metabolites. This investigation supports that oral Bingpian could be a druggable agent for reducing atherosclerosis.
Collapse
Affiliation(s)
- Rong-Rong He
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chuan-Rui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Xin He
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Xi Dong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Xuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi-He Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia-Qi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ting Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei-Fei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Rao
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Wen-Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiu-Mei Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guan-Wei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China.
| | - Chen Cheng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
| |
Collapse
|
5
|
Vera OD, Mishra RC, Khaddaj-Mallat R, Hamm L, Almarzouq B, Chen YX, Belke DD, Singh L, Wulff H, Braun AP. Administration of the K Ca channel activator SKA-31 improves endothelial function in the aorta of atherosclerosis-prone mice. Front Pharmacol 2025; 16:1545050. [PMID: 40093319 PMCID: PMC11906683 DOI: 10.3389/fphar.2025.1545050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Atherosclerosis remains a major risk factor for vascular dysfunction and cardiovascular (CV) disease. Pharmacological enhancement of endothelial Ca2+-activated K+ channel activity (i.e., KCa2.3 and KCa3.1) opposes vascular dysfunction associated with ageing and type 2 diabetes (T2D) in ex vivo and in vivo preparations. In the current study, we have investigated the efficacy of this strategy to mitigate endothelial dysfunction in the setting of atherogenesis. Methods Male apolipoprotein E knockout (Apoe-/-) mice fed a high fat diet (HFD) were treated daily with the KCa channel activator SKA-31 (10 mg/kg), the KCa3.1 channel blocker senicapoc (40 mg/kg), or drug vehicle for 12-weeks. Endothelium-dependent and -independent relaxation and vasocontractility were measured in abdominal aorta by wire myography. The development of atherosclerosis in the thoracic aorta was characterized by Oil Red O staining and immunohistochemistry. Key vasorelaxant signaling proteins were quantified by q-PCR. Results Endothelium-dependent relaxation of phenylephrine-constricted aortic rings was impaired in Apoe-/- HFD mice (53%) vs. wild-type (WT) controls (80%, P < 0.0001), consistent with endothelial dysfunction. Treatment of Apoe-/- HFD mice with SKA-31, but not senicapoc, restored maximal relaxation to the WT level. Phenylephrine-evoked contraction was similar in WT and vehicle/drug treated Apoe-/- mice, as was the maximal relaxation induced by the endothelium-independent vasodilator sodium nitroprusside. mRNA expression for eNOS, KCa3.1, KCa2.3 and TRPV4 channels in the abdominal aorta was unaffected by either SKA-31 or senicapoc treatment. Fatty plaque formation, tissue collagen, α-smooth muscle actin and resident macrophages in the aortic sinus were also unaltered by either treatment vs. vehicle treated Apoe-/- HFD mice. Conclusion Our data show that prolonged administration of the KCa channel activator SKA-31 improved endothelial function without modifying fatty plaque formation in the aorta of Apoe-/- mice.
Collapse
Affiliation(s)
- O. Daniel Vera
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ramesh C. Mishra
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rayan Khaddaj-Mallat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Hamm
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barak Almarzouq
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yong-Xiang Chen
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Darrell D. Belke
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
He W, MacRenaris KW, Griebel A, Kwesiga MP, Freitas E, Gillette A, Schaffer J, O'Halloran TV, Guillory II RJ. Semi-quantitative elemental imaging of corrosion products from bioabsorbable Mg vascular implants in vivo. Bioact Mater 2025; 43:225-239. [PMID: 39386222 PMCID: PMC11462046 DOI: 10.1016/j.bioactmat.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024] Open
Abstract
While metal materials historically have served as permanent implants and were designed to avoid degradation, next generation bioabsorbable metals for medical devices such as vascular stents are under development, which would elute metal ions and corrosion byproducts into tissues. The fate of these eluted products and their local distribution in vascular tissue largely under studied. In this study, we employ a high spatial resolution spectrometric imaging modality, laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) to map the metal distribution, (herein refered to as laser ablation mapping, or LAM) from Mg alloys within the mouse vascular system and approximate their local concentrations. We used a novel rare earth element bearing Mg alloy (WE22) wire implanted within the abdominal aorta of transgenic hypercholesterolemic mice (APOE-/-) to simulate a bioabsorbable vascular prosthesis for up to 30 days. We describe qualitatively and semi-quantitatively implant-derived corrosion product presence throughout the tissue cross sections, and their approximate concentrations within the various vessel structures. Additionally, we report the spatial changes of corrosion products, which we postulate are mediated by phagocytic inflammatory cells such as macrophages (MΦ's).
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith W. MacRenaris
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | | | - Maria P. Kwesiga
- Department of Biomedical Sciences, Grand Valley State University, USA
| | - Erico Freitas
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Amani Gillette
- Department of Biomedical Engineering, Morgridge Institute for Research, USA
| | | | - Thomas V. O'Halloran
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | - Roger J. Guillory II
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, USA
| |
Collapse
|
7
|
Park HJ, Kim MK, Kim Y, Kim HJ, Park HR, Bae SK, Bae MK. Gastrin-releasing peptide receptor antagonist RC-3095 inhibits Porphyromonas gingivalis lipopolysaccharide-accelerated atherosclerosis by suppressing inflammatory responses in endothelial cells and macrophages. Inflamm Res 2024; 73:1833-1846. [PMID: 39164592 DOI: 10.1007/s00011-024-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE Porphyromonas gingivalis (P. gingivalis), one of the major periodontopathogens, is associated with the progression and exacerbation of atherosclerosis. In this study, we aimed to investigate whether the gastrin-releasing peptide receptor antagonist, RC-3095, could attenuate P. gingivalis LPS-induced inflammatory responses in endothelial cells and macrophages, as well as atherosclerosis in an ApoE-/- mouse model treated with P. gingivalis LPS. METHODS The effect of RC-3095 on P. gingivalis LPS-induced endothelial inflammation was examined using HUVECs and rat aortic endothelium. THP-1 cells were polarized into M1 macrophages by exposure to P. gingivalis LPS, with or without RC-3095. The effect of RC-3095 on atherosclerosis progression was assessed in high-fat-fed male ApoE-/- mice through injections of P. gingivalis LPS, RC-3095, or a combination of both. RESULTS RC-3095 significantly reduced P. gingivalis LPS-induced leukocyte adhesion to endothelial cells and aortic endothelium by suppressing NF-κB-dependent expressions of ICAM-1 and VCAM-1. In addition, RC-3095 inhibited the P. gingivalis LPS-induced polarization of M1 macrophages by blocking the MAPK and NF-κB signaling pathways. Moreover, RC-3095 decreased the area of atherosclerotic lesions in ApoE-/- mice, which was accelerated by P. gingivalis LPS injection, and lowered the expressions of ICAM-1 and VCAM-1 in the aortic tissue of mice with atherosclerosis. CONCLUSIONS RC-3095 can alleviate P. gingivalis LPS-induced endothelial inflammation, macrophage polarization, and atherosclerosis progression, suggesting its potential as a therapeutic approach for periodontal pathogen-associated atherosclerosis.
Collapse
Affiliation(s)
- Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Hae Ryoun Park
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, 50610, Korea
| | - Soo-Kyung Bae
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea.
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea.
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
8
|
Park SH, Kang MK, Kim DY, Lim SS, Kang YH. Dietary ellagic acid blocks inflammation-associated atherosclerotic plaque formation in cholesterol-fed apoE-deficient mice. Nutr Res Pract 2024; 18:617-632. [PMID: 39398881 PMCID: PMC11464280 DOI: 10.4162/nrp.2024.18.5.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis particularly due to high circulating level of low-density lipoprotein is a major cause of cardiovascular diseases. Ellagic acid is a natural polyphenolic compound rich in pomegranates and berries. Our previous study showed that ellagic acid improved functionality of reverse cholesterol transport in murine model of atherosclerosis. The aim of this study is to investigate whether ellagic acid inhibited inflammation-associated atherosclerotic plaque formation in cholesterol-fed apolipoprotein E (apoE)-knockout (KO) mice. MATERIALS/METHODS Wild type mice and apoE-KO mice were fed a cholesterol-rich Paigen diet for 10 weeks to induce severe atherosclerosis. Concurrently, 10 mg/kg ellagic acid was orally administered to the apoE-KO mice. Plaque lesion formation and lipid deposition were examined by staining with hematoxylin and eosin, Sudan IV and oil red O. RESULTS The plasma leukocyte profile of cholesterol-fed mice was not altered by apoE deficiency. Oral administration of ellagic acid attenuated plaque lesion formation and lipid deposition in the aorta tree of apoE-KO mice. Ellagic acid substantially reduced plasma levels of soluble vascular cell adhesion molecule and interferon-γ in Paigen diet-fed apoE-KO mice. When 10 mg/kg ellagic acid was administered to cholesterol-fed apoE-KO mice, the levels of CD68 and MCP-1 were strongly reduced in aorta vessels. The protein expression level of nitric oxide synthase-2 (NOS2) in the aorta was highly enhanced by supplementation of ellagic acid to apoE-KO mice, but the expression level of heme oxygenase-1 (HO-1) in the aorta was reduced. Furthermore, ellagic acid diminished the increased aorta expression of the inflammatory adhesion molecules in cholesterol-fed apoE-KO mice. The treatment of ellagic acid inhibited the scavenger receptor-B1 expression in the aorta of apoE-KO mice, while the cholesterol efflux-related transporters were not significantly changed. CONCLUSION These results suggest that ellagic acid may be an atheroprotective compound by attenuating apoE deficiency-induced vascular inflammation and reducing atherosclerotic plaque lesion formation.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
9
|
Shen MQ, Guo Q, Li W, Qian ZM. Apolipoprotein E deficiency leads to the polarization of splenic macrophages towards M1 phenotype by increasing iron content. Genes Immun 2024; 25:381-388. [PMID: 39103538 DOI: 10.1038/s41435-024-00290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Apolipoprotein E (ApoE) plays a crucial role in iron homeostasis in the body, while macrophages are the principal cells responsible for handling iron in mammals. However, it is unknown whether ApoE can affect the functional subtypes and the iron handling capacity of splenic macrophages (SM). Here, we investigated the effects of ApoE deficiency (ApoE-/-) on the polarization and iron content of SM and its potential mechanisms. ApoE-/- was found to induce a significant increase in the expressions of M1 marker genes CD86, IL-1β, IL-6, IL-12, TNF-α and iNOS and a reduction in M2 marker genes CD206, Arg-1, IL-10 and Ym-1 in SM of mice aged 28 weeks, Meanwhile, ApoE-/- caused a significant increase in iron content and expression of ferritin, transferrin receptor 1 (TfR1), iron regulatory protein 1 (IRP1) and heme oxygenase-1 (HO-1) and a reduction in ferroportin1 (Fpn1) in spleen and/or SM of mice aged 28 weeks. It was concluded that ApoE-/- can increase iron content through increased iron uptake mediated by TfR/ IRPs and decreased iron release mediated by Fpn1, leading to polarization of the SM to M1 phenotype.
Collapse
Affiliation(s)
- Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
- School of Health Medicine, Nantong Polytechnic College, Nantong, China
| | - Qian Guo
- School of Medicine, Shanghai University, Shanghai, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Liu Y, Wang Z, Fang L, Xu Y, Zhao B, Kang X, Zhao Y, Han J, Zhang Y, Dong E, Wang N. Deficiency of 5-HT 2B receptors alleviates atherosclerosis by regulating macrophage phenotype through inhibiting interferon signalling. Br J Pharmacol 2024. [PMID: 39232850 DOI: 10.1111/bph.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Elevated levels of 5-HT have been correlated with coronary artery disease and cardiac events, suggesting 5-HT is a potential novel factor in the development of atherosclerotic cardiovascular disease. However, the underlying pathological mechanisms of the 5-HT system in atherosclerosis remain unclear. The 5-HT2B receptor (5-HT2BR), which establishes a positive feedback loop with 5-HT, has been identified as a contributor to pathophysiological processes in various vascular disorders. In this study, we investigated the immunological impact of 5-HT2BR in atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) mice. EXPERIMENTAL APPROACH Plasma levels of 5-HT were measured in mice using an ELISA kit. Atherosclerotic plaque formation, macrophage infiltration and inflammatory signalling were assessed in ApoE-/- mice by employing both pharmacological inhibition and genetic deficiency of 5-HT2BR. Inflammasome activation was elucidated using peritoneal macrophages isolated from 5-HT2BR-deficient mice. KEY RESULTS An upregulation of 5-HT2BR expression was observed in the aortas of ApoE-/- mice, exhibiting a strong correlation with the presence of macrophages in plaques. Atherosclerosis was attenuated in mice through pharmacological inhibition and genetic deficiency of 5-HT2BR. Additionally, a significant reduction in atherosclerotic plaque size was achieved through bone marrow reconstitution with 5-HT2BR-deficient cells. 5-HT2BR-deficient macrophages showed attenuated interferon (IFN) signalling, NLRP3 inflammasome activation, and interleukin-1β release. Moreover, macrophages primed with 5-HT2BR deficiency displayed an anti-inflammatory phenotype. CONCLUSION AND IMPLICATIONS These findings support the hypothesis that 5-HT2BR in macrophages plays a causal role in the development of atherosclerosis, revealing a novel perspective for potential therapeutic strategies in atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhipeng Wang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Li Fang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaohua Xu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Beilei Zhao
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yanqing Zhao
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, China
| | - Erdan Dong
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital); School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Nanping Wang
- Wuhu Hospital, East China Normal University (ECNU), Wuhu, China
- East China Normal University Health Science Center, Shanghai, China
| |
Collapse
|
11
|
Del Vecchio L, Girelli D, Vinchi F, Cozzolino M, Elliott S, Mark PB, Valenti L, Qian C, Guo Q, Qian ZM, Ciceri P, Locatelli F. Iron biology. Nephrol Dial Transplant 2024; 39:1404-1415. [PMID: 38658189 DOI: 10.1093/ndt/gfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Indexed: 04/26/2024] Open
Abstract
Iron is a fundamental element for biological life, from bacteria to humans. Iron is essential for cell function and survival, energy production and metabolism, whereas increased levels cause oxidative stress. It is also a constituent of haemoglobin and thus it is necessary for oxygen transportation through the body. Given these multiple functions, the regulation of iron metabolism is complex and tight coupled with oxygen homeostasis at tissue and cellular levels, thanks to the interaction with the hypoxia inducible factor system. In patients with chronic kidney disease (CKD), iron deficiency significantly contributes to anaemia development. This frequently overlaps with chronic inflammation, causing iron- restricted erythropoiesis. To add further complexity, metabolic hyperferritinemia may, on one hand, increase the risk for CKD and, on the other, overlaps with functional iron deficiency. Excessive intracellular iron in certain cell types during CKD can also mediate cellular death (called ferroptosis), and contribute to the pathogenesis of kidney damage, atherosclerosis and vascular calcifications. This review is aimed at broadening the perspective of iron metabolism in the setting of CKD not just as a contributor to anaemia in CKD patients, but also as an important player with an impact on cell metabolism, renal fibrosis and the cardiovascular system.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como 22100, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NY, USA
| | - Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | | | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Qian Guo
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS, China
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai; and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesco Locatelli
- Department of Nephrology and Dialysis, (Past Director) Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| |
Collapse
|
12
|
Yigit E, Deger O, Korkmaz K, Huner Yigit M, Uydu HA, Mercantepe T, Demir S. Propolis Reduces Inflammation and Dyslipidemia Caused by High-Cholesterol Diet in Mice by Lowering ADAM10/17 Activities. Nutrients 2024; 16:1861. [PMID: 38931216 PMCID: PMC11206409 DOI: 10.3390/nu16121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1β (IL-1β), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1β, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition.
Collapse
Affiliation(s)
- Ertugrul Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Orhan Deger
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Katip Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey; (K.K.); (S.D.)
| | - Merve Huner Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Huseyin Avni Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Samsun University, 55080 Samsun, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey; (K.K.); (S.D.)
| |
Collapse
|
13
|
Deng Y, Yang X, Ye X, Yuan Y, Zhang Y, Teng F, You D, Zhou X, Liu W, Li K, Luo S, Yang Z, Chen R, Shi G, Li J, Zhang H. Alternate day fasting aggravates atherosclerosis through the suppression of hepatic ATF3 in Apoe-/- mice. LIFE METABOLISM 2024; 3:loae009. [PMID: 39872376 PMCID: PMC11749235 DOI: 10.1093/lifemeta/loae009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 01/30/2025]
Abstract
Atherosclerosis is the major contributor to cardiovascular mortality worldwide. Alternate day fasting (ADF) has gained growing attention due to its metabolic benefits. However, the effects of ADF on atherosclerotic plaque formation remain inconsistent and controversial in atherosclerotic animal models. The present study was designed to investigate the effects of ADF on atherosclerosis in apolipoprotein E-deficient (Apoe -/- ) mice. Eleven-week-old male Apoe -/- mice fed with Western diet (WD) were randomly grouped into ad libitum (AL) group and ADF group, and ADF aggravated both the early and advanced atherosclerotic lesion formation, which might be due to the disturbed cholesterol profiles caused by ADF intervention. ADF significantly altered cholesterol metabolism pathways and down-regulated integrated stress response (ISR) in the liver. The hepatic expression of activating transcription factor 3 (ATF3) was suppressed in mice treated with ADF and hepatocyte-specific overexpression of Aft3 attenuated the effects of ADF on atherosclerotic plaque formation in Apoe -/- mice. Moreover, the expression of ATF3 could be regulated by Krüppel-like factor 6 (KLF6) and both the expressions of ATF3 and KLF6 were regulated by hepatic cellular ISR pathway. In conclusion, ADF aggravates atherosclerosis progression in Apoe -/- mice fed on WD. ADF inhibits the hepatic ISR signaling pathway and decreases the expression of KLF6, subsequently inhibiting ATF3 expression. The suppressed ATF3 expression in the liver mediates the deteriorated effects of ADF on atherosclerosis in Apoe -/- mice. The findings suggest the potentially harmful effects when ADF intervention is applied to the population at high risk of atherosclerosis.
Collapse
Affiliation(s)
- Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoyu Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xueru Ye
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanan Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Danming You
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuan Zhou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenhui Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kangli Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruxin Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jin Li
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
14
|
Sun F, Chen X, Zhang S, Jiang H, Chen T, Xing T, Li X, Sultan R, Wang Z, Jia J. Cross-species signaling pathways analysis inspire animal model selections for drug screening and target prediction in vascular aging diseases. Evol Appl 2024; 17:e13708. [PMID: 38863828 PMCID: PMC11164676 DOI: 10.1111/eva.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
Age is a significant contributing factor to the occurrence and progression of cardiovascular disease (CVD). Pharmacological treatment can effectively alleviate CVD symptoms caused by aging. However, 90% of the drugs have failed in clinics because of the loss of drug effects or the occurrence of the side effects. One of the reasons is the disparity between animal models used and the actual physiological levels in humans. Therefore, we integrated multiple datasets from single-cell and bulk-seq RNA-sequencing data in rats, monkeys, and humans to identify genes and pathways with consistent/differential expression patterns across these three species. An approach called "Cross-species signaling pathway analysis" was developed to select suitable animal models for drug screening. The effectiveness of this method was validated through the analysis of the pharmacological predictions of four known anti-vascular aging drugs used in animal/clinical experiments. The effectiveness of drugs was consistently observed between the models and clinics when they targeted pathways with the same trend in our analysis. However, drugs might have exhibited adverse effects if they targeted pathways with opposite trends between the models and the clinics. Additionally, through our approach, we discovered four targets for anti-vascular aging drugs, which were consistent with their pharmaceutical effects in literatures, showing the value of this approach. In the end, software was established to facilitate the use of "Cross-species signaling pathway analysis." In sum, our study suggests utilizing bioinformatics analysis based on disease characteristics can help in choosing more appropriate animal models.
Collapse
Affiliation(s)
- Fei Sun
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Xingxing Chen
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Shuqing Zhang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Haihong Jiang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Tianhong Chen
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Tongying Xing
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Xueyi Li
- Sino‐Swiss Institute of Advanced Technology, School of Micro‐ElectronicsShanghai UniversityShanghaiChina
| | - Rabia Sultan
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Zhimin Wang
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghaiChina
| | - Jia Jia
- School of Life SciencesShanghai UniversityShanghaiChina
- Sino‐Swiss Institute of Advanced Technology, School of Micro‐ElectronicsShanghai UniversityShanghaiChina
| |
Collapse
|
15
|
Christ C, Ocskay Z, Kovács G, Jakus Z. Characterization of Atherosclerotic Mice Reveals a Sex-Dependent Susceptibility to Plaque Calcification but No Major Changes in the Lymphatics in the Arterial Wall. Int J Mol Sci 2024; 25:4046. [PMID: 38612867 PMCID: PMC11012298 DOI: 10.3390/ijms25074046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lymphatics participate in reverse cholesterol transport, and their presence in the arterial wall of the great vessels and prior experimental results suggest their possible role in the development of atherosclerosis. The aim of this study was to characterize the lymphatic vasculature of the arterial wall in atherosclerosis. Tissue sections and tissue-cleared aortas of wild-type mice unveiled significant differences in the density of the arterial lymphatic network throughout the arterial tree. Male and female Ldlr-/- and ApoE-/- mice on a Western diet showed sex-dependent differences in plaque formation and calcification. Female mice on a Western diet developed more calcification of atherosclerotic plaques than males. The lymphatic vessels within the aortic wall of these mice showed no major changes regarding the number of lymphatic junctions and end points or the lymphatic area. However, female mice on a Western diet showed moderate dilation of lymphatic vessels in the abdominal aorta and exhibited indications of increased peripheral lymphatic function, findings that require further studies to understand the role of lymphatics in the arterial wall during the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; (C.C.); (Z.O.); (G.K.)
| |
Collapse
|
16
|
Park SH, Kang MK, Kim DY, Lim SS, Kang IJ, Kang YH. Ellagic acid, a functional food component, ameliorates functionality of reverse cholesterol transport in murine model of atherosclerosis. Nutr Res Pract 2024; 18:194-209. [PMID: 38584811 PMCID: PMC10995779 DOI: 10.4162/nrp.2024.18.2.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND/OBJECTIVES High levels of plasma low-density lipoprotein (LDL) cholesterol are an important determinant of atherosclerotic lesion formation. The disruption of cholesterol efflux or reverse cholesterol transport (RCT) in peripheral tissues and macrophages may promote atherogenesis. The aim of the current study was to examine whether bioactive ellagic acid, a functional food component, improved RCT functionality and high-density lipoprotein (HDL) function in diet-induced atherogenesis of apolipoproteins E (apoE) knockout (KO) mice. MATERIALS/METHODS Wild type mice and apoE KO mice were fed a high-cholesterol Paigen diet for 10 weeks to induce hypercholesterolemia and atherosclerosis, and concomitantly received 10 mg/kg ellagic acid via gavage. RESULTS Supplying ellagic acid enhanced induction of apoE and ATP-binding cassette (ABC) transporter G1 in oxidized LDL-exposed macrophages, facilitating cholesterol efflux associated with RCT. Oral administration of ellagic acid to apoE KO mice fed on Paigen diet improved hypercholesterolemia with reduced atherogenic index. This compound enhanced the expression of ABC transporters in peritoneal macrophages isolated from apoE KO mice fed on Paigen diet, indicating increased cholesterol efflux. Plasma levels of cholesterol ester transport protein and phospholipid transport protein involved in RCT were elevated in mice lack of apoE gene, which was substantially reduced by supplementing ellagic acid to Paigen diet-fed mice. In addition, ellagic acid attenuated hepatic lipid accumulation in apoE KO mice, evidenced by staining of hematoxylin and eosin and oil red O. Furthermore, the supplementation of 10 mg/kg ellagic acid favorably influenced the transcriptional levels of hepatic LDL receptor and scavenger receptor-B1 in Paigen diet-fed apoE KO mice. CONCLUSION Ellagic acid may be an athero-protective dietary compound encumbering diet-induced atherogenesis though improving the RCT functionality.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
17
|
Deng Y, Ding W, Peng Q, Wang W, Duan R, Zhang Y. Advancement in Beneficial Effects of AVE 0991: A Brief Review. Mini Rev Med Chem 2024; 24:139-158. [PMID: 36998128 DOI: 10.2174/1389557523666230328134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.
Collapse
Affiliation(s)
- Yang Deng
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangli Ding
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
18
|
Alakhtar B, Guilbert C, Subramaniam N, Caruana V, Makhani K, Baglole CJ, Mann KK. E-cigarette exposure causes early pro-atherogenic changes in an inducible murine model of atherosclerosis. FRONTIERS IN TOXICOLOGY 2023; 5:1244596. [PMID: 38164438 PMCID: PMC10757938 DOI: 10.3389/ftox.2023.1244596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Evidence suggests that e-cigarette use (vaping) increases cardiovascular disease risk, but decades are needed before people who vape would develop pathology. Thus, murine models of atherosclerosis can be utilized as tools to understand disease susceptibility, risk and pathogenesis. Moreover, there is a poor understanding of how risk factors for atherosclerosis (i.e., hyperlipidemia, high-fat diet) intersect with vaping to promote disease risk. Herein, we evaluated whether there was early evidence of atherosclerosis in an inducible hyperlipidemic mouse exposed to aerosol from commercial pod-style devices and e-liquid. Methods: Mice were injected with adeno-associated virus containing the human protein convertase subtilisin/kexin type 9 (PCSK9) variant to promote hyperlipidemia. These mice were fed a high-fat diet and exposed to room air or aerosol derived from JUUL pods containing polyethylene glycol/vegetable glycerin (PG/VG) or 5% nicotine with mango flavoring for 4 weeks; this timepoint was utilized to assess markers of atherosclerosis that may occur prior to the development of atherosclerotic plaques. Results: These data show that various parameters including weight, circulating lipoprotein/glucose levels, and splenic immune cells were significantly affected by exposure to PG/VG and/or nicotine-containing aerosols. Discussion: Not only can this mouse model be utilized for chronic vaping studies to assess the vascular pathology but these data support that vaping is not risk-free and may increase CVD outcomes later in life.
Collapse
Affiliation(s)
- Bayan Alakhtar
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Nivetha Subramaniam
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vincenza Caruana
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kiran Makhani
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J. Baglole
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Koren K. Mann
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Terasawa M, Zang L, Hiramoto K, Shimada Y, Mitsunaka M, Uchida R, Nishiura K, Matsuda K, Nishimura N, Suzuki K. Oral Administration of Rhamnan Sulfate from Monostroma nitidum Suppresses Atherosclerosis in ApoE-Deficient Mice Fed a High-Fat Diet. Cells 2023; 12:2666. [PMID: 37998401 PMCID: PMC10670814 DOI: 10.3390/cells12222666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Oral administration of rhamnan sulfate (RS), derived from the seaweed Monostroma nitidum, markedly suppresses inflammatory damage in the vascular endothelium and organs of lipopolysaccharide-treated mice. This study aimed to analyze whether orally administered RS inhibits the development of atherosclerosis, a chronic inflammation of the arteries. ApoE-deficient female mice were fed a normal or high-fat diet (HFD) with or without RS for 12 weeks. Immunohistochemical and mRNA analyses of atherosclerosis-related genes were performed. The effect of RS on the migration of RAW264.7 cells was also examined in vitro. RS administration suppressed the increase in blood total cholesterol and triglyceride levels. In the aorta of HFD-fed mice, RS reduced vascular smooth muscle cell proliferation, macrophage accumulation, and elevation of VCAM-1 and inhibited the reduction of Robo4. Increased mRNA levels of Vcam1, Mmp9, and Srebp1 in atherosclerotic areas of HFD-fed mice were also suppressed with RS. Moreover, RS directly inhibited the migration of RAW264.7 cells in vitro. Thus, in HFD-fed ApoE-deficient mice, oral administration of RS ameliorated abnormal lipid metabolism and reduced vascular endothelial inflammation and hyperpermeability, macrophage infiltration and accumulation, and smooth muscle cell proliferation in the arteries leading to atherosclerosis. These results suggest that RS is an effective functional food for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Masahiro Terasawa
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (L.Z.); (N.N.)
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| | - Yasuhito Shimada
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.S.); (M.M.)
| | - Mari Mitsunaka
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.S.); (M.M.)
| | - Ryota Uchida
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| | - Kaoru Nishiura
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
| | - Koichi Matsuda
- Konan Chemical Manufacturing Co., Ltd., Kitagomizuka, Kusu-cho, Yokkaichi 510-0103, Japan; (M.T.); (R.U.); (K.N.); (K.M.)
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (L.Z.); (N.N.)
| | - Koji Suzuki
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan;
| |
Collapse
|
20
|
Allphin AJ, Mahzarnia A, Clark DP, Qi Y, Han ZY, Bhandari P, Ghaghada KB, Badea A, Badea CT. Advanced photon counting CT imaging pipeline for cardiac phenotyping of apolipoprotein E mouse models. PLoS One 2023; 18:e0291733. [PMID: 37796905 PMCID: PMC10553338 DOI: 10.1371/journal.pone.0291733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is associated with the apolipoprotein E (APOE) gene and lipid metabolism. This study aimed to develop an imaging-based pipeline to comprehensively assess cardiac structure and function in mouse models expressing different APOE genotypes using photon-counting computed tomography (PCCT). METHODS 123 mice grouped based on APOE genotype (APOE2, APOE3, APOE4, APOE knockout (KO)), gender, human NOS2 factor, and diet (control or high fat) were used in this study. The pipeline included PCCT imaging on a custom-built system with contrast-enhanced in vivo imaging and intrinsic cardiac gating, spectral and temporal iterative reconstruction, spectral decomposition, and deep learning cardiac segmentation. Statistical analysis evaluated genotype, diet, sex, and body weight effects on cardiac measurements. RESULTS Our results showed that PCCT offered high quality imaging with reduced noise. Material decomposition enabled separation of calcified plaques from iodine enhanced blood in APOE KO mice. Deep learning-based segmentation showed good performance with Dice scores of 0.91 for CT-based segmentation and 0.89 for iodine map-based segmentation. Genotype-specific differences were observed in left ventricular volumes, heart rate, stroke volume, ejection fraction, and cardiac index. Statistically significant differences were found between control and high fat diets for APOE2 and APOE4 genotypes in heart rate and stroke volume. Sex and weight were also significant predictors of cardiac measurements. The inclusion of the human NOS2 gene modulated these effects. CONCLUSIONS This study demonstrates the potential of PCCT in assessing cardiac structure and function in mouse models of CVD which can help in understanding the interplay between genetic factors, diet, and cardiovascular health.
Collapse
Affiliation(s)
- Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Darin P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Yi Qi
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Zay Y. Han
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Prajwal Bhandari
- Department of Radiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Alexandra Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
- Department of Neurology, Duke University Medical Center, Durham, NC, United States of America
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
21
|
Lu CW, Wu WJ, Nguyen TKN, Shen SC, Wu YB, Liang HJ, Wu CH. Alleviating Effects of Ovatodiolide and Antcin K Supplements on High-Fat Diet-Induced Cardiovascular Dysfunction in ApoE-Knockout Mice by Attenuating Oxidative Stress. Nutrients 2023; 15:4074. [PMID: 37764856 PMCID: PMC10538160 DOI: 10.3390/nu15184074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
A high-fat diet (HFD) is a major risk factor for cardiovascular diseases. Many pure compounds have been demonstrated to be effective in treating cardiovascular diseases. In this study, we investigated the alleviating effects of oral ovatodiolide and antcin K (OAK) supplements on HFD-induced cardiovascular dysfunction in apolipoprotein E (ApoE)-knockout mice. Cardiovascular dysfunction was induced in ApoE-knockout mice by feeding them an HFD for 12 weeks. The degree of cardiovascular dysfunction was assessed through echocardiography, hematological and biochemical analyses, and immunofluorescence and immunohistochemical staining. The HFD-fed mice exhibited cardiovascular dysfunction-abnormal blood biochemical index. The arterial wall tissue exhibited the marked deposition of lipids, upregulated expression of vascular cell adhesion molecule-1 and CD36 receptors, and downregulated expression of the ABCA1 receptor. Macrophages isolated from the peritoneal cavity of the mice exhibited increased levels of lipid accumulation, reactive oxygen species, and CD11b expression but reduced mitochondrial membrane potential. The expression of superoxide dismutase 2 was downregulated and that of tumor necrosis factor-α was upregulated in the myocardial tissue. Oral OAK supplements twice a day for 12 weeks significantly mitigated HFD-induced cardiovascular dysfunction in the experimental mice. Oral OAK supplements appear to be a promising strategy for treating HFD-induced cardiovascular dysfunction. The underlying mechanisms may involve the reduction of lipid accumulation in the artery and oxidative stress and inflammation in the cardiovascular tissue.
Collapse
Affiliation(s)
- Chen-Wen Lu
- School of Life Science, National Taiwan Normal University, Taipei City 11677, Taiwan; (C.-W.L.); (W.-J.W.); (T.K.N.N.); (S.-C.S.)
| | - Wen-Jhen Wu
- School of Life Science, National Taiwan Normal University, Taipei City 11677, Taiwan; (C.-W.L.); (W.-J.W.); (T.K.N.N.); (S.-C.S.)
| | - Thi Kim Ngan Nguyen
- School of Life Science, National Taiwan Normal University, Taipei City 11677, Taiwan; (C.-W.L.); (W.-J.W.); (T.K.N.N.); (S.-C.S.)
| | - Szu-Chuan Shen
- School of Life Science, National Taiwan Normal University, Taipei City 11677, Taiwan; (C.-W.L.); (W.-J.W.); (T.K.N.N.); (S.-C.S.)
| | - Yeh-B. Wu
- ARJIL Pharmaceuticals LLC, Hsinchu City 30013, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Hui-Ju Liang
- ARJIL Pharmaceuticals LLC, Hsinchu City 30013, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei City 11677, Taiwan; (C.-W.L.); (W.-J.W.); (T.K.N.N.); (S.-C.S.)
| |
Collapse
|
22
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
23
|
Guo Q, Qian C, Qian ZM. Iron metabolism and atherosclerosis. Trends Endocrinol Metab 2023:S1043-2760(23)00090-5. [PMID: 37210298 DOI: 10.1016/j.tem.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
Despite several decades of study, whether iron is involved in the development of atherosclerosis remains a controversial and unresolved issue. Here, we focus on the up-to-date advances in studies on role of iron in atherosclerosis and discuss possible reasons why patients with hereditary hemochromatosis (HH) do not show any increased incidence of atherosclerosis. In addition, we analyze conflicting results concerning the role of iron in atherogenesis from several epidemiological and animal studies. We argue that atherosclerosis is not observed in HH because iron homeostasis in the arterial wall, the actual location of atherosclerosis, is not significantly affected, and support a causal link between iron in the arterial wall and atherosclerosis.
Collapse
Affiliation(s)
- Qian Guo
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS 226001, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS 226001, China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
24
|
Hara T, Sata M, Fukuda D. Emerging roles of protease-activated receptors in cardiometabolic disorders. J Cardiol 2023; 81:337-346. [PMID: 36195252 DOI: 10.1016/j.jjcc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis, share sterile chronic inflammation as a major cause; however, the precise underlying mechanisms of chronic inflammation in cardiometabolic disorders are not fully understood. Accumulating evidence suggests that several coagulation proteases, including thrombin and activated factor X (FXa), play an important role not only in the coagulation cascade but also in the proinflammatory responses through protease-activated receptors (PARs) in many cell types. Four members of the PAR family have been cloned (PAR 1-4). For instance, thrombin activates PAR-1, PAR-3, and PAR-4. FXa activates both PAR-1 and PAR-2, while it has no effect on PAR-3 or PAR-4. Previous studies demonstrated that PAR-1 and PAR-2 activated by thrombin or FXa promote gene expression of inflammatory molecules mainly via the NF-κB and ERK1/2 pathways. In obese adipose tissue and atherosclerotic vascular tissue, various stresses increase the expression of tissue factor and procoagulant activity. Recent studies indicated that the activation of PARs in adipocytes and vascular cells by coagulation proteases promotes inflammation in these tissues, which leads to the development of cardiometabolic diseases. This review briefly summarizes the role of PARs and coagulation proteases in the pathogenesis of inflammatory diseases and describes recent findings (including ours) on the potential participation of this system in the development of cardiometabolic disorders. New insights into PARs may ensure a better understanding of cardiometabolic disorders and suggest new therapeutic options for these major health threats.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
25
|
Son H, Choi HS, Baek SE, Kim YH, Hur J, Han JH, Moon JH, Lee GS, Park SG, Woo CH, Eo SK, Yoon S, Kim BS, Lee D, Kim K. Shear stress induces monocyte/macrophage-mediated inflammation by upregulating cell-surface expression of heat shock proteins. Biomed Pharmacother 2023; 161:114566. [PMID: 36963359 DOI: 10.1016/j.biopha.2023.114566] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
The loss of endothelial cells is associated with the accumulation of monocytes/macrophages underneath the surface of the arteries, where cells are prone to mechanical stimulation, such as shear stress. However, the impact of mechanical stimuli on monocytic cells remains unclear. To assess whether mechanical stress affects monocytic cell function, we examined the expression of inflammatory molecules and surface proteins, whose levels changed following shear stress in human THP-1 cells. Shear stress increased the inflammatory chemokine CCL2, which enhanced the migration of monocytic cells and tumor necrosis factor (TNF)-α and interleukin (IL)- 1β at transcriptional and protein levels. We identified that the surface levels of heat shock protein 70 (HSP70), HSP90, and HSP105 increased using mass spectrometry-based proteomics, which was confirmed by western blot analysis, flow cytometry, and immunofluorescence. Treatment with HSP70/HSP105 and HSP90 inhibitors suppressed the expression and secretion of CCL2 and monocytic cell migration, suggesting an association between HSPs and inflammatory responses. We also demonstrated the coexistence and colocalization of increased HSP90 immunoreactivity and CD68 positive cells in atherosclerotic plaques of ApoE deficient mice fed a high-fat diet and human femoral artery endarterectomy specimens. These results suggest that monocytes/macrophages affected by shear stress polarize to a pro-inflammatory phenotype and increase surface protein levels involved in inflammatory responses. The regulation of the abovementioned HSPs upregulated on the monocytes/macrophages surface may serve as a novel therapeutic target for inflammation due to shear stress.
Collapse
Affiliation(s)
- Hyojae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun-Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Bioinformatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 49415, Republic of Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
26
|
Centner AM, Khalili L, Ukhanov V, Kadyan S, Nagpal R, Salazar G. The Role of Phytochemicals and Gut Microbiome in Atherosclerosis in Preclinical Mouse Models. Nutrients 2023; 15:1212. [PMID: 36904211 PMCID: PMC10005405 DOI: 10.3390/nu15051212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Gut microbiome alterations have recently been linked to many chronic conditions including cardiovascular disease (CVD). There is an interplay between diet and the resident gut microbiome, where the food eaten affects populations of certain microbes. This is important, as different microbes are associated with various pathologies, as they can produce compounds that are disease-promoting or disease-protecting. The Western diet negatively affects the host gut microbiome, ultimately resulting in heightened arterial inflammation and cell phenotype changes as well as plaque accumulation in the arteries. Nutritional interventions including whole foods rich in fiber and phytochemicals as well as isolated compounds including polyphenols and traditional medicinal plants show promise in positively influencing the host gut microbiome to alleviate atherosclerosis. This review investigates the efficacy of a vast array of foods and phytochemicals on host gut microbes and atherosclerotic burden in mice. Reduction in plaque by interventions was associated with increases in bacterial diversity, reduction in the Firmicutes/Bacteroidetes (F/B) ratio, and upregulation of Akkermansia. Upregulation in CYP7 isoform in the liver, ABC transporters, bile acid excretion, and the level of acetic acid, propionic acid, and butyric acid were also noted in several studies reducing plaque. These changes were also associated with attenuated inflammation and oxidative stress. In conclusion, an increase in the abundance of Akkermansia with diets rich in polyphenols, fiber, and grains is likely to reduce plaque burden in patients suffering from CVD.
Collapse
Affiliation(s)
- Ann M. Centner
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Leila Khalili
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir Ukhanov
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
27
|
Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol 2023; 11:971091. [PMID: 36910156 PMCID: PMC9997679 DOI: 10.3389/fcell.2023.971091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lipid metabolism disorder is the basis of atherosclerotic lesions, in which cholesterol and low-density lipoprotein (LDL) is the main factor involved with the atherosclerotic development. A high-fat and high-cholesterol diet can lead to this disorder in the human body, thus accelerating the process of disease. The development of single-cell RNA sequencing in recent years has opened the possibility to unbiasedly map cellular heterogeneity with high throughput and high resolution; alterations mediated by a high-fat and high-cholesterol diet at the single-cell transcriptomic level can be explored with this mean afterward. We assessed the aortic arch of 16-week old Apoe-/- mice of two control groups (12 weeks of chow diet) and two HFD groups (12 weeks of high fat, high cholesterol diet) to process single-cell suspension and use single-cell RNA sequencing to anatomize the transcripts of 5,416 cells from the control group and 2,739 from the HFD group. Through unsupervised clustering, 14 cell types were divided and defined. Among these cells, the cellular heterogeneity exhibited in endothelial cells and immune cells is the most prominent. Subsequent screening delineated ten endothelial cell subsets with various function based on gene expression profiling. The distribution of endothelial cells and immune cells differs significantly between the control group versus the HFD one. The existence of pathways that inhibit atherosclerosis was found in both dysfunctional endothelial cells and foam cells. Our data provide a comprehensive transcriptional landscape of aortic arch cells and unravel the cellular heterogeneity brought by a high-fat and high-cholesterol diet. All these findings open new perspectives at the transcriptomic level to studying the pathology of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Huang HS, Lin YE, Panyod S, Chen RA, Lin YC, Chai LMX, Hsu CC, Wu WK, Lu KH, Huang YJ, Sheen LY. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE -/- mice exposed to unpredictable chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115872. [PMID: 36343797 DOI: 10.1016/j.jep.2022.115872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aβ-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aβ-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.
Collapse
Affiliation(s)
- Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ying-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Lee J, Wang J, Ally R, Trzaska S, Hickey J, Mujica A, Miloscio L, Mastaitis J, Morse B, Smith J, Atanasio A, Chiao E, Chen H, Latuszek A, Hu Y, Valenzuela D, Romano C, Zambrowicz B, Auerbach W. Production of large, defined genome modifications in rats by targeting rat embryonic stem cells. Stem Cell Reports 2023; 18:394-409. [PMID: 36525967 PMCID: PMC9860120 DOI: 10.1016/j.stemcr.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Rats were more frequently used than mice to model human disease before mouse embryonic stem cells (mESCs) revolutionized genetic engineering in mice. Rat ESCs (rESCs) were first reported over 10 years ago, yet they are not as frequently used as mESCs. CRISPR-based gene editing in zygotes is widely used in rats but is limited by the difficulty of inserting or replacing DNA sequences larger than about 10 kb. We report here the generation of germline-competent rESC lines from several rat strains. These rESC lines maintain their potential for germline transmission after serial targeting with bacterial artificial chromosome (BAC)-based targeting vectors, and CRISPR-Cas9 cutting can increase targeting efficiency. Using these methods, we have successfully replaced entire rat genes spanning up to 101 kb with the human ortholog.
Collapse
Affiliation(s)
- Jeffrey Lee
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA.
| | | | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sean Trzaska
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Alejo Mujica
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Brian Morse
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Janell Smith
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Henry Chen
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Ying Hu
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | |
Collapse
|
30
|
Bessueille L, Kawtharany L, Quillard T, Goettsch C, Briolay A, Taraconat N, Balayssac S, Gilard V, Mebarek S, Peyruchaud O, Duboeuf F, Bouillot C, Pinkerton A, Mechtouff L, Buchet R, Hamade E, Zibara K, Fonta C, Canet-Soulas E, Millan JL, Magne D. Inhibition of alkaline phosphatase impairs dyslipidemia and protects mice from atherosclerosis. Transl Res 2023; 251:2-13. [PMID: 35724933 DOI: 10.1016/j.trsl.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.
Collapse
Affiliation(s)
- Laurence Bessueille
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Lynn Kawtharany
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Thibaut Quillard
- CNRS, INSERM, l'institut du thorax, Nantes Université, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen University, Aachen Germany
| | - Anne Briolay
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Nirina Taraconat
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Saida Mebarek
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | | | | | | | | | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France; CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - René Buchet
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de Toulouse, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | | | - David Magne
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France.
| |
Collapse
|
31
|
Mitra R, Nersesyan A, Pentland K, Melin MM, Levy RM, Ebong EE. Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. FASEB J 2022; 36:e22630. [PMID: 36315163 DOI: 10.1096/fj.202200053rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.
Collapse
Affiliation(s)
- Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Alina Nersesyan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Kaleigh Pentland
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - M Mark Melin
- M Health Fairview Wound Healing Institute, Edina, Minnesota, USA
| | - Robert M Levy
- Director of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, Arizona, USA
| | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States
| |
Collapse
|
32
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Jung IH, Elenbaas JS, Burks KH, Amrute JM, Xiangyu Z, Alisio A, Stitziel NO. Vascular smooth muscle- and myeloid cell-derived integrin α9β1 does not directly mediate the development of atherosclerosis in mice. Atherosclerosis 2022; 360:15-20. [PMID: 36215801 PMCID: PMC9615102 DOI: 10.1016/j.atherosclerosis.2022.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Sushi, von Willebrand factor type A, EGF pentraxin domain-containing 1 (SVEP1), an extracellular matrix protein, is a human coronary artery disease locus that promotes atherosclerosis. We previously demonstrated that SVEP1 induces vascular smooth muscle cell (VSMC) proliferation and an inflammatory phenotype in the arterial wall to enhance the development of atherosclerotic plaque. The only receptor known to interact with SVEP1 is integrin α9β1, a cell surface receptor that is expressed by VSMCs and myeloid lineage-derived monocytes and macrophages. Our previous in vitro studies suggested that integrin α9β1 was necessary for SVEP1-induced VSMC proliferation and inflammation; however, the underlying mechanisms mediated by integrin α9β1 in these cell types during the development of atherosclerosis remain poorly understood. METHODS AND RESULTS Here, using cell-specific gene targeting, we investigated the effects of the integrin α9β1 receptor on VSMCs and myeloid cells in mouse models of atherosclerosis. Interestingly, we found that depleting integrin α9β1 in either VSMCs or myeloid cells did not affect the formation or complexity of atherosclerotic plaque in vessels after either 8 or 16 weeks of high fat diet feeding. CONCLUSIONS Our results indicate that integrin α9β1 in these two cell types does not mediate the in vivo effect of SVEP1 in the development of atherosclerosis. Instead, our results suggest either the presence of other potential receptor(s) or alternative integrin α9β1-expressing cell types responsible for SVEP1 induced signaling in the development of atherosclerosis.
Collapse
Affiliation(s)
- In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kendall H Burks
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Zhang Xiangyu
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA; Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Limited effects of systemic or renal lipoprotein lipase deficiency on renal physiology and diseases. Biochem Biophys Res Commun 2022; 620:15-20. [DOI: 10.1016/j.bbrc.2022.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
|
35
|
Iwamoto M, Kubota T, Sakurai Y, Wada N, Shioda S, Yamauchi T, Kadowaki T, Kubota N. The sodium-glucose co-transporter 2 inhibitor tofogliflozin suppresses atherosclerosis through glucose lowering in ApoE-deficient mice with streptozotocin-induced diabetes. Pharmacol Res Perspect 2022; 10:e00971. [PMID: 35707828 PMCID: PMC9201373 DOI: 10.1002/prp2.971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
Epidemiological and animal studies have revealed that sodium-glucose cotransporter 2 (SGLT2) inhibitors suppress cardiovascular events in subjects with type 2 diabetes and atherosclerosis in animal models of diabetes. However, it still remains unclear if the anti-atherosclerotic effect of SGLT2 inhibitors is entirely dependent on their glucose-lowering effect. Tofogliflozin, a highly specific SGLT2 inhibitor, was administrated to apolipoprotein-E-deficient (ApoEKO) with streptozotocin (STZ)-induced diabetes and nondiabetic ApoEKO mice. After 6 weeks, samples were collected to investigate the histological changes and peritoneal macrophage inflammatory cytokine levels. Tofogliflozin suppressed atherosclerosis in the diabetic ApoEKO mice. The atherosclerosis lesion areas and accumulation of macrophages in these areas were reduced by tofogliflozin treatment. The expression levels of interleukin (IL)-1β and IL-6 in the peritoneal macrophages were significantly suppressed in the tofogliflozin-treated diabetic ApoEKO mice. Tofogliflozin treatment failed to inhibit atherosclerosis in the nondiabetic ApoEKO mice. No significant difference in the anti-atherosclerotic effects of insulin and tofogliflozin was observed between diabetic ApoEKO mice with equivalent degrees of glycemic control achieved with the two treatments. Insulin treatment significantly reduced the IL-1β and IL-6 expression levels in the peritoneal macrophages of the diabetic ApoEKO mice. Significant decrease of the LPS-stimulated IL-1β concentrations was also observed in the conditioned medium of the peritoneal macrophages collected from insulin- and tofogliflozin-treated diabetic ApoEKO mice. These results suggest that tofogliflozin suppresses atherosclerosis by improving glucose intolerance associated with inhibition of inflammation. Tofogliflozin suppresses atherosclerosis in ApoEKO mice with STZ-induced diabetes via its glucose-lowering effect.
Collapse
Affiliation(s)
- Masahiko Iwamoto
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Division of Diabetes and MetabolismThe Institute of Medical ScienceAsahi Life FoundationTokyoJapan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Division of Diabetes and MetabolismThe Institute of Medical ScienceAsahi Life FoundationTokyoJapan
- Department of Clinical NutritionNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)TokyoJapan
- Laboratory for Intestinal EcosystemRIKEN Center for Integrative Medical Sciences (IMS)KanagawaJapan
- Intestinal Microbiota ProjectKanagawa Institute of Industrial Science and Technology EbinaKanagawaJapan
- Division of Cardiovascular MedicineToho University Ohashi Medical CenterTokyoJapan
| | - Yoshitaka Sakurai
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuhiro Wada
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of Clinical NutritionNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)TokyoJapan
| | - Seiji Shioda
- Global Research Center for Innovative Life SciencePeptide Drug InnovationSchool of Pharmacy and Pharmaceutical SciencesHoshi UniversityTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Toranomon HospitalTokyoJapan
| | - Naoto Kubota
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of Clinical Nutrition TherapyThe University of TokyoTokyoJapan
| |
Collapse
|
36
|
Santos-Sánchez G, Cruz-Chamorro I, Álvarez-Ríos AI, Álvarez-Sánchez N, Rodríguez-Ortiz B, Álvarez-López AI, Fernández-Pachón MS, Pedroche J, Millán F, Millán-Linares MDC, Lardone PJ, Bejarano I, Carrillo-Vico A. Bioactive Peptides from Lupin ( Lupinus angustifolius) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8243-8253. [PMID: 35767743 PMCID: PMC9284549 DOI: 10.1021/acs.jafc.2c00809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have previously reported the in vitro hypocholesterolemic, anti-inflammatory, and antioxidant effects of Alcalase-generated lupin protein hydrolysate (LPH). Given that lipoprotein deposition, oxidative stress, and inflammation are the main components of atherogenesis, we characterized the LPH composition, in silico identified LPH-peptides with activities related to atherosclerosis, and evaluated the in vivo LPH effects on atherosclerosis risk factors in a mouse model of atherosclerosis. After 15 min of Alcalase hydrolysis, peptides smaller than 8 kDa were obtained, and 259 peptides out of 278 peptides found showed biological activities related to atherosclerosis risk factors. Furthermore, LPH administration for 12 weeks reduced the plasma lipids, as well as the cardiovascular and atherogenic risk indexes. LPH also increased the total antioxidant capacity, decreased endothelial permeability, inflammatory response, and atherogenic markers. Therefore, this study describes for the first time that LPH prevents the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- .
Phone: +34955923106
| | - Ana Isabel Álvarez-Ríos
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Clínica, Unidad de Gestión de Laboratorios, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Nuria Álvarez-Sánchez
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
| | - Beatriz Rodríguez-Ortiz
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ana Isabel Álvarez-López
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
| | - María-Soledad Fernández-Pachón
- Área
de Nutrición y Bromatología, Departamento de Biología
Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra Utrera Km 1, 41013 Seville, Spain
| | - Justo Pedroche
- Department
of Food & Health, Instituto de la grasa,
CSIC, Ctra Utrera Km
1, 41013 Seville, Spain
| | - Francisco Millán
- Department
of Food & Health, Instituto de la grasa,
CSIC, Ctra Utrera Km
1, 41013 Seville, Spain
| | - María del Carmen Millán-Linares
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Department
of Food & Health, Instituto de la grasa,
CSIC, Ctra Utrera Km
1, 41013 Seville, Spain
| | - Patricia Judith Lardone
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ignacio Bejarano
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
37
|
Liao J, Chen G, Liu X, Wei ZZ, Yu SP, Chen Q, Ye K. C/EBPβ/AEP signaling couples atherosclerosis to the pathogenesis of Alzheimer's disease. Mol Psychiatry 2022; 27:3034-3046. [PMID: 35422468 PMCID: PMC9912845 DOI: 10.1038/s41380-022-01556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Atherosclerosis (ATH) and Alzheimer's disease (AD) are both age-dependent inflammatory diseases, associated with infiltrated macrophages and vascular pathology and overlapping molecules. C/EBPβ, an Aβ or inflammatory cytokine-activated transcription factor, and AEP (asparagine endopeptidase) are intimately implicated in both ATH and AD; however, whether C/EBPβ/AEP signaling couples ATH to AD pathogenesis remains incompletely understood. Here we show that C/EBPβ/AEP pathway mediates ATH pathology and couples ATH to AD. Deletion of C/EBPβ or AEP from primary macrophages diminishes cholesterol load, and inactivation of this pathway reduces foam cell formation and lesions in aorta in ApoE-/- mice, fed with HFD (high-fat-diet). Knockout of ApoE from 3xTg AD mouse model augments serum LDL and increases lesion areas in the aorta. Depletion of C/EBPβ or AEP from 3xTg/ApoE-/- mice substantially attenuates these effects and elevates cerebral blood flow and vessel length, improving cognitive functions. Strikingly, knockdown of ApoE from the hippocampus of 3xTg mice decreases the cerebral blood flow and vessel length and aggravates AD pathologies, leading to cognitive deficits. Inactivation of C/EBPβ/AEP pathway alleviates these events and restores cognitive functions. Hence, our findings demonstrate that C/EBPβ/AEP signaling couples ATH to AD via mediating vascular pathology.
Collapse
Affiliation(s)
- Jianming Liao
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Guiqin Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
38
|
Crowley LN, Le BL, Cicalo C, Brown J, Li Y, Kim YJ, Lee JH, Pan JH, Lennon SL, Han BK, Kim JK. Acrolein, an environmental toxicant and its applications to in vivo and in vitro atherosclerosis models: An update. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103890. [PMID: 35613694 DOI: 10.1016/j.etap.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/03/2023]
Abstract
Cardiovascular disease, the foremost cause of death worldwide, is an overarching disease term that encompasses a number of disorders involving the heart and circulatory system, including atherosclerosis. Atherosclerosis is a primary cause of cardiovascular diseases and is caused by buildup of plaque and narrowing of blood vessels. Epidemiological studies have suggested that environmental pollutants are implicated in atherosclerosis disease progression. Among many environmental pollutants, acrolein (Acr) is an abundant reactive aldehyde and is ubiquitously present in cigarette smoke as well as food products (e.g., overheated oils and wine). Despite its ubiquitous presence and potential impact on the etiology of cardiovascular disease, a limited consensus has been made in regard to Acr exposure conditions to induce atherosclerosis in vivo. This mini-review summarizes in vivo atherosclerosis models using Acr to investigate biochemical and phenotypic changes related to atherosclerosis and in vitro mechanistic studies involving Acr and atherosclerosis.
Collapse
Affiliation(s)
- Liana N Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Brandy L Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Cara Cicalo
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Justin Brown
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yali Li
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
39
|
Ma J, Ma HM, Shen MQ, Wang YY, Bao YX, Liu Y, Ke Y, Qian ZM. The Role of Iron in Atherosclerosis in Apolipoprotein E Deficient Mice. Front Cardiovasc Med 2022; 9:857933. [PMID: 35669479 PMCID: PMC9163807 DOI: 10.3389/fcvm.2022.857933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The role of iron in atherosclerosis is still a controversial and unsolved issue. Here, we investigated serum iron, expression of iron regulatory, transport and storage proteins, pro-inflammatory chemokines and cytokines in ApoE–/– mice. We demonstrated that ApoE–/– induced atherosclerosis and an increase in iron contents, expression of transferrin receptor 1 (TfR1), iron regulatory proteins (IRPs), heme oxygenase 1 (HO1), cellular adhesion molecules and pro-inflammatory cytokines, production of reactive oxygen species (ROS), and a reduction in expression of superoxide dismutase and glutathione peroxidase enzyme in aortic tissues. All of these changes induced by ApoE deficiency could be significantly abolished by deferoxamine. The data showed that the increased iron in aortic tissues was mainly due to the increased iron uptake via IRP/TfR1 upregulation. These findings plus a brief analysis of the controversial results reported previously showed that ApoE deficiency-induced atherosclerosis is partly mediated by the increased iron in aortic tissues.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
| | - Yuan Yuan Wang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Center, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- *Correspondence: Ya Ke,
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
- Zhong-Ming Qian,
| |
Collapse
|
40
|
Puylaert P, Van Praet M, Vaes F, Neutel CHG, Roth L, Guns PJ, De Meyer GRY, Martinet W. Gasdermin D Deficiency Limits the Transition of Atherosclerotic Plaques to an Inflammatory Phenotype in ApoE Knock-Out Mice. Biomedicines 2022; 10:biomedicines10051171. [PMID: 35625908 PMCID: PMC9138554 DOI: 10.3390/biomedicines10051171] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Gasdermin D (GSDMD) is the key executor of pyroptotic cell death. Recent studies suggest that GSDMD-mediated pyroptosis is involved in atherosclerotic plaque destabilization. We report that cleaved GSDMD is expressed in macrophage- and smooth muscle cell-rich areas of human plaques. To determine the effects of GSDMD deficiency on atherogenesis, ApoE−/− Gsdmd−/− (n = 16) and ApoE−/−Gsdmd+/+ (n = 18) mice were fed a western-type diet for 16 weeks. Plaque initiation and formation of stable proximal aortic plaques were not altered. However, plaques in the brachiocephalic artery (representing more advanced lesions compared to aortic plaques) of ApoE−/− Gsdmd−/− mice were significantly smaller (115 ± 18 vs. 186 ± 16 × 103 µm2, p = 0.006) and showed features of increased stability, such as decreased necrotic core area (19 ± 4 vs. 37 ± 7 × 103 µm2, p = 0.03) and increased αSMA/MAC3 ratio (1.6 ± 0.3 vs. 0.7 ± 0.1, p = 0.01), which was also observed in proximal aortic plaques. Interestingly, a significant increase in TUNEL positive cells was observed in brachiocephalic artery plaques from ApoE−/− Gsdmd−/− mice (141 ± 25 vs. 62 ± 8 cells/mm2, p = 0.005), indicating a switch to apoptosis. This switch from pyroptosis to apoptosis was also observed in vitro in Gsdmd−/− macrophages. In conclusion, targeting GSDMD appears to be a promising approach for limiting the transition to an inflammatory, vulnerable plaque phenotype.
Collapse
|
41
|
Genetic Deficiency of Indoleamine 2,3-dioxygenase Aggravates Vascular but Not Liver Disease in a Nonalcoholic Steatohepatitis and Atherosclerosis Comorbidity Model. Int J Mol Sci 2022; 23:ijms23095203. [PMID: 35563591 PMCID: PMC9099704 DOI: 10.3390/ijms23095203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that increases cardiovascular disease risk. Indoleamine 2,3-dioxygenase-1 (IDO1)-mediated tryptophan (Trp) metabolism has been proposed to play an immunomodulatory role in several diseases. The potential of IDO1 to be a link between NASH and cardiovascular disease has never been investigated. Using Apoe−/− and Apoe−/−Ido1−/− mice that were fed a high-fat, high-cholesterol diet (HFCD) to simultaneously induce NASH and atherosclerosis, we found that Ido1 deficiency significantly accelerated atherosclerosis after 7 weeks. Surprisingly, Apoe−/−Ido1−/− mice did not present a more aggressive NASH phenotype, including hepatic lipid deposition, release of liver enzymes, and histopathological parameters. As expected, a lower L-kynurenine/Trp (Kyn/Trp) ratio was found in the plasma and arteries of Apoe−/−Ido1−/− mice compared to controls. However, no difference in the hepatic Kyn/Trp ratio was found between the groups. Hepatic transcript analyses revealed that HFCD induced a temporal increase in tryptophan 2,3-dioxygenase (Tdo2) mRNA, indicating an alternative manner to maintain Trp degradation during NASH development in both Apoe−/− and Apoe−/−Ido1−/mice−. Using HepG2 hepatoma cell and THP1 macrophage cultures, we found that iron, TDO2, and Trp degradation may act as important mediators of cross-communication between hepatocytes and macrophages regulating liver inflammation. In conclusion, we show that Ido1 deficiency aggravates atherosclerosis, but not liver disease, in a newly established NASH and atherosclerosis comorbidity model. Our data indicate that the overexpression of TDO2 is an important mechanism that helps in balancing the kynurenine pathway and inflammation in the liver, but not in the artery wall, which likely determined disease outcome in these two target tissues.
Collapse
|
42
|
Vasyutina M, Alieva A, Reutova O, Bakaleiko V, Murashova L, Dyachuk V, Catapano AL, Baragetti A, Magni P. The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism 2022; 129:155138. [PMID: 35051509 DOI: 10.1016/j.metabol.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Dyslipidemias and atherosclerosis play a pivotal role in cardiovascular risk and disease. Although some pathophysiological mechanisms underlying these conditions have been unveiled, several knowledge gaps still remain. Experimental models, both in vitro and in vivo, have been instrumental to our better understanding of such complex processes. The latter have often been based on rodent species, either wild-type or, in several instances, genetically modified. In this context, the zebrafish may represent an additional very useful in vivo experimental model for dyslipidemia and atherosclerosis. Interestingly, the lipid metabolism of zebrafish shares several features with that present in humans, recapitulating some molecular features and pathophysiological aspects in a better way than that of rodents. The zebrafish model may be of help to address questions related to exposome factors as well as to genetic features, aiming to dissect selected aspects of the more complex scenario observed in humans. Indeed, exposome-related dyslipidemia/atherosclerosis research in zebrafish may target different scientific questions, related to nutrition, microbiota, temperature, light exposure at the larval stage, exposure to chemicals and epigenetic consequences of such external factors. Addressing genetic features related to dyslipidemia/atherosclerosis using the zebrafish model is already a reality and active research is now ongoing in this promising area. Novel technologies (gene and genome editing) may help to identify new candidate genes involved in dyslipidemia and dyslipidemia-related diseases. Based on these considerations, the zebrafish experimental model appears highly suitable for the study of exposome factors, genes and molecules involved in the development of atherosclerosis-related disease as well as for the validation of novel potential treatment options.
Collapse
Affiliation(s)
- Marina Vasyutina
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia.
| | - Asiiat Alieva
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | - Olga Reutova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Lada Murashova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
43
|
Perez C, Felty Q. Molecular basis of the association between transcription regulators nuclear respiratory factor 1 and inhibitor of DNA binding protein 3 and the development of microvascular lesions. Microvasc Res 2022; 141:104337. [PMID: 35143811 PMCID: PMC8923910 DOI: 10.1016/j.mvr.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of patients with microvascular lesions remains poor because vascular remodeling eventually obliterates the lumen. Here we have focused our efforts on vessel dysfunction in two different organs, the lung and brain. Despite tremendous progress in understanding the importance of blood vessel integrity, gaps remain in our knowledge of the underlying molecular factors contributing to vessel injury, including microvascular lesions. Most of the ongoing research on these lesions have focused on oxidative stress but have not found major molecular targets for the discovery of new treatment or early diagnosis. Herein, we have focused on elucidating the molecular mechanism(s) based on two new emerging molecules NRF1 and ID3, and how they may contribute to microvascular lesions in the lung and brain. Redox sensitive transcriptional activation of target genes depends on not only NRF1, but the recruitment of co-activators such as ID3 to the target gene promoter. Our review highlights the fact that targeting NRF1 and ID3 could be a promising therapeutic approach as they are major players in influencing cell growth, cell repair, senescence, and apoptotic cell death which contribute to vascular lesions. Knowledge about the molecular biology of these processes will be relevant for future therapeutic approaches to not only PAH but cerebral angiopathy and other vascular disorders. Therapies targeting transcription regulators NRF1 or ID3 have the potential for vascular disease-modification because they will address the root causes such as genomic instability and epigenetic changes in vascular lesions. We hope that our findings will serve as a stimulus for further research towards an effective treatment of microvascular lesions.
Collapse
Affiliation(s)
- Christian Perez
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
44
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Luderer U, Lim J, Ortiz L, Nguyen JD, Shin JH, Allen BD, Liao LS, Malott K, Perraud V, Wingen LM, Arechavala RJ, Bliss B, Herman DA, Kleinman MT. Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM 2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Part Fibre Toxicol 2022; 19:5. [PMID: 34996492 PMCID: PMC8740366 DOI: 10.1186/s12989-021-00445-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.
Collapse
Affiliation(s)
- Ulrike Luderer
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Jinhwan Lim
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Laura Ortiz
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Johnny D. Nguyen
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Joyce H. Shin
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Barrett D. Allen
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Lisa S. Liao
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Kelli Malott
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA
| | - Veronique Perraud
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Lisa M. Wingen
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Rebecca J. Arechavala
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Bishop Bliss
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - David A. Herman
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Michael T. Kleinman
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| |
Collapse
|
46
|
Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis (Review). Mol Med Rep 2021; 24:871. [PMID: 34713295 PMCID: PMC8569513 DOI: 10.3892/mmr.2021.12511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that threatens human health and lives by causing vascular stenosis and plaque rupture. Various animal models have been employed for elucidating the pathogenesis, drug development and treatment validation studies for atherosclerosis. To the best of our knowledge, the species used for atherosclerosis research include mice, rats, hamsters, rabbits, pigs, dogs, non-human primates and birds, among which the most commonly used ones are mice and rabbits. Notably, apolipoprotein E knockout (KO) or low-density lipoprotein receptor KO mice have been the most widely used animal models for atherosclerosis research since the late 20th century. Although the aforementioned animal models can form atherosclerotic lesions, they cannot completely simulate those in humans with respect to lesion location, lesion composition, lipoprotein composition and physiological structure. Hence, an appropriate animal model needs to be selected according to the research purpose. Additionally, it is necessary for atherosclerosis research to include quantitative analysis results of atherosclerotic lesion size and plaque composition. Laboratory animals can provide not only experimental tissues for in vivo studies but also cells needed for in vitro experiments. The present review first summarizes the common animal models and their practical applications, followed by focus on mouse and rabbit models and elucidating the methods to quantify atherosclerotic lesions. Finally, the methods of culturing endothelial cells, macrophages and smooth muscle cells were elucidated in detail and the experiments involved in atherosclerosis research were discussed.
Collapse
Affiliation(s)
- Yali Zhang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Mahreen Fatima
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Siyuan Hou
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Bai
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
47
|
Karlsen TR, Kong XY, Holm S, Quiles-Jiménez A, Dahl TB, Yang K, Sagen EL, Skarpengland T, S Øgaard JD, Holm K, Vestad B, Olsen MB, Aukrust P, Bjørås M, Hov JR, Halvorsen B, Gregersen I. NEIL3-deficiency increases gut permeability and contributes to a pro-atherogenic metabolic phenotype. Sci Rep 2021; 11:19749. [PMID: 34611194 PMCID: PMC8492623 DOI: 10.1038/s41598-021-98820-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis and its consequences cause considerable morbidity and mortality world-wide. We have previously shown that expression of the DNA glycosylase NEIL3 is regulated in human atherosclerotic plaques, and that NEIL3-deficiency enhances atherogenesis in Apoe-/- mice. Herein, we identified a time point prior to quantifiable differences in atherosclerosis between Apoe-/-Neil3-/- mice and Apoe-/- mice. Mice at this age were selected to explore the metabolic and pathophysiological processes preceding extensive atherogenesis in NEIL3-deficient mice. Untargeted metabolomic analysis of young Apoe-/-Neil3-/- mice revealed significant metabolic disturbances as compared to mice expressing NEIL3, particularly in metabolites dependent on the gut microbiota. 16S rRNA gene sequencing of fecal bacterial DNA indeed confirmed that the NEIL3-deficient mice had altered gut microbiota, as well as increased circulating levels of the bacterially derived molecule LPS. The mice were challenged with a FITC-conjugated dextran to explore gut permeability, which was significantly increased in the NEIL3-deficient mice. Further, immunohistochemistry showed increased levels of the proliferation marker Ki67 in the colonic epithelium of NEIL3-deficient mice, suggesting increased proliferation of intestinal cells and gut leakage. We suggest that these metabolic alterations serve as drivers of atherosclerosis in NEIL3-deficient mice.
Collapse
Affiliation(s)
- Tom Rune Karlsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ellen L Sagen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jonas D S Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria B Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
48
|
Qian Z, Yang H, Li H, Liu C, Yang L, Qu Z, Li X. The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe-/- Mice through Modulating Macrophage Functions. Biomedicines 2021; 9:biomedicines9091150. [PMID: 34572339 PMCID: PMC8464862 DOI: 10.3390/biomedicines9091150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the progression of AS. (2) Methods: The Apoe-/- mice were subjected to sham, bilateral cervical vagotomy surgery (VGX), and VGX supplemented with Gainesville Tokushima scientists (GTS)-21 (4 mg/kg/d) and then fed with a high-fat diet for 10 weeks. Atherosclerotic lesion size and inflammation levels were investigated by histology and inflammatory cytokines analysis. The blood M1/M2 macrophages were analyzed by flow cytometry. Primary mouse bone marrow-derived macrophages (BMDM), peritoneal macrophages, and RAW264.7 cells were treated with CAP agonists acetylcholine (Ach) and GTS-21 to study their effects on macrophage functions. (3) Results: Compared with the sham group, inhibition of CAP by the VGX resulted in growing aortic lipid plaque area, deteriorated inflammatory levels, and aberrant quantity of M1/M2 macrophages in Apoe-/- mice. However, these detrimental effects of VGX were significantly ameliorated by the reactivation of CAP through GTS-21 treatment. The in vitro study using macrophages revealed that stimulation with CAP agonists suppressed M1, but promoted M2 macrophage polarization through the upregulation of TNFAIP3 and phosphorylation STAT3 levels, respectively. Moreover, the activation of CAP inhibited the formation of macrophage foam cells in the peritoneal cavity by regulating genes related to cholesterol metabolism. (4) Conclusions: This study provides novel evidence and mechanisms that the CAP plays an important role in the regulation of AS development by controlling macrophage functions, implying a potential use of CAP activation as a therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Liang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Zehui Qu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| |
Collapse
|
49
|
Santos-Sánchez G, Cruz-Chamorro I, Álvarez-Ríos AI, Fernández-Santos JM, Vázquez-Román MV, Rodríguez-Ortiz B, Álvarez-Sánchez N, Álvarez-López AI, Millán-Linares MDC, Millán F, Pedroche J, Fernández-Pachón MS, Lardone PJ, Guerrero JM, Bejarano I, Carrillo-Vico A. Lupinus angustifolius Protein Hydrolysates Reduce Abdominal Adiposity and Ameliorate Metabolic Associated Fatty Liver Disease (MAFLD) in Western Diet Fed-ApoE -/- Mice. Antioxidants (Basel) 2021; 10:antiox10081222. [PMID: 34439470 PMCID: PMC8388992 DOI: 10.3390/antiox10081222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most important cause of liver disease worldwide. It is characterized by the accumulation of fat in the liver and is closely associated with abdominal obesity. In addition, oxidative stress and inflammation are significant features involved in MAFLD. Recently, our group demonstrated that lupin protein hydrolysates (LPHs) had lipid lowering, antioxidant, and anti-inflammatory effects. Sixty male mice fed with a Western diet were intragastrically treated with LPHs (or vehicle) for 12 weeks. Liver and adipose tissue lipid accumulation and hepatic inflammatory and oxidant status were evaluated. A significant decrease in steatosis was observed in LPHs-treated mice, which presented a decreased gene expression of CD36 and LDL-R, crucial markers in MAFLD. In addition, LPHs increased the hepatic total antioxidant capacity and reduced the hepatic inflammatory status. Moreover, LPHs-treated mice showed a significant reduction in abdominal adiposity. This is the first study to show that the supplementation with LPHs markedly ameliorates the generation of the steatotic liver caused by the intake of a Western diet and reduces abdominal obesity in ApoE−/− mice. Future clinical trials should shed light on the effects of LPHs on MAFLD.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (I.C.-C.); (A.C.-V.); Tel.: +34-955-923-106 (I.C.-C. & A.C.-V.)
| | - Ana Isabel Álvarez-Ríos
- Departamento de Bioquímica Clínica, Unidad de Gestión de Laboratorios, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| | - José María Fernández-Santos
- Departamento Citología e Histología Normal y Patológica, Universidad de Sevilla, 41009 Seville, Spain; (J.M.F.-S.); (M.V.V.-R.)
| | - María Victoria Vázquez-Román
- Departamento Citología e Histología Normal y Patológica, Universidad de Sevilla, 41009 Seville, Spain; (J.M.F.-S.); (M.V.V.-R.)
| | - Beatriz Rodríguez-Ortiz
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | | | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain; (F.M.); (J.P.)
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain; (F.M.); (J.P.)
| | - María Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra Utrera Km 1, 41013 Seville, Spain;
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Miguel Guerrero
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Departamento de Bioquímica Clínica, Unidad de Gestión de Laboratorios, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (G.S.-S.); (B.R.-O.); (N.Á.-S.); (A.I.Á.-L.); (P.J.L.); (J.M.G.); (I.B.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (I.C.-C.); (A.C.-V.); Tel.: +34-955-923-106 (I.C.-C. & A.C.-V.)
| |
Collapse
|
50
|
De Giorgi M, Li A, Hurley A, Barzi M, Doerfler AM, Cherayil NA, Smith HE, Brown JD, Lin CY, Bissig KD, Bao G, Lagor WR. Targeting the Apoa1 locus for liver-directed gene therapy. Mol Ther Methods Clin Dev 2021; 21:656-669. [PMID: 34141821 PMCID: PMC8166646 DOI: 10.1016/j.omtm.2021.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
Clinical application of somatic genome editing requires therapeutics that are generalizable to a broad range of patients. Targeted insertion of promoterless transgenes can ensure that edits are permanent and broadly applicable while minimizing risks of off-target integration. In the liver, the Albumin (Alb) locus is currently the only well-characterized site for promoterless transgene insertion. Here, we target the Apoa1 locus with adeno-associated viral (AAV) delivery of CRISPR-Cas9 and achieve rates of 6% to 16% of targeted hepatocytes, with no evidence of toxicity. We further show that the endogenous Apoa1 promoter can drive robust and sustained expression of therapeutic proteins, such as apolipoprotein E (APOE), dramatically reducing plasma lipids in a model of hypercholesterolemia. Finally, we demonstrate that Apoa1-targeted fumarylacetoacetate hydrolase (FAH) can correct and rescue the severe metabolic liver disease hereditary tyrosinemia type I. In summary, we identify and validate Apoa1 as a novel integration site that supports durable transgene expression in the liver for gene therapy applications.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ang Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mercedes Barzi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Alexandria M. Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nikitha A. Cherayil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harrison E. Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - William R. Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|