1
|
Tsuda T, Robinson BW. Beneficial Effects of Exercise on Hypertension-Induced Cardiac Hypertrophy in Adolescents and Young Adults. Curr Hypertens Rep 2024; 26:451-462. [PMID: 38888690 DOI: 10.1007/s11906-024-01313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Hypertension-induced cardiac hypertrophy is widely known as a major risk factor for increased cardiovascular morbidity and mortality. Although exercise is proven to exert overall beneficial effects on hypertension and hypertension-induced cardiac hypertrophy, there are some concerns among providers about potential adverse effects induced by intense exercise, especially in hypertensive athletes. We will overview the underlying mechanisms of physiological and pathological hypertrophy and delineate the beneficial effects of exercise in young people with hypertension and consequent hypertrophy. RECENT FINDINGS Multiple studies have demonstrated that exercise training, both endurance and resistance types, reduces blood pressure and ameliorates hypertrophy in hypertensives, but certain precautions are required for hypertensive athletes when allowing competitive sports: Elevated blood pressure should be controlled before allowing them to participate in high-intensity exercise. Non-vigorous and recreational exercise are always recommended to promote cardiovascular health. Exercise-induced cardiac adaptation is a benign and favorable response that reverses or attenuates pathological cardiovascular remodeling induced by persistent hypertension. Exercise is the most effective nonpharmacological treatment for hypertensive individuals. Distinction between recreational-level exercise and competitive sports should be recognized by medical providers when allowing sports participation for adolescents and young adults.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadephia, PA, 19107, USA.
| | - Bradley W Robinson
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadephia, PA, 19107, USA
| |
Collapse
|
2
|
Yu X, Wang J, Wang T, Song S, Su H, Huang H, Luo P. Ellagic acid-enhanced biocompatibility and bioactivity in multilayer core-shell gold nanoparticles for ameliorating myocardial infarction injury. J Nanobiotechnology 2024; 22:554. [PMID: 39261890 PMCID: PMC11389385 DOI: 10.1186/s12951-024-02796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is the main contributor to most cardiovascular diseases (CVDs), and the available post-treatment clinical therapeutic options are limited. The development of nanoscale drug delivery systems carrying natural small molecules provides biotherapies that could potentially offer new treatments for reactive oxygen species (ROS)-induced damage in MI. Considering the stability and reduced toxicity of gold-phenolic core-shell nanoparticles, this study aims to develop ellagic acid-functionalized gold nanoparticles (EA-AuNPs) to overcome these limitations. RESULTS We have successfully synthesized EA-AuNPs with enhanced biocompatibility and bioactivity. These core-shell gold nanoparticles exhibit excellent ROS-scavenging activity and high dispersion. The results from a label-free imaging method on optically transparent zebrafish larvae models and micro-CT imaging in mice indicated that EA-AuNPs enable a favorable excretion-based metabolism without overburdening other organs. EA-AuNPs were subsequently applied in cellular oxidative stress models and MI mouse models. We found that they effectively inhibit the expression of apoptosis-related proteins and the elevation of cardiac enzyme activities, thereby ameliorating oxidative stress injuries in MI mice. Further investigations of oxylipin profiles indicated that EA-AuNPs might alleviate myocardial injury by inhibiting ROS-induced oxylipin level alterations, restoring the perturbed anti-inflammatory oxylipins. CONCLUSIONS These findings collectively emphasized the protective role of EA-AuNPs in myocardial injury, which contributes to the development of innovative gold-phenolic nanoparticles and further advances their potential medical applications.
Collapse
Affiliation(s)
- Xina Yu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jie Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Tiantian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shanshan Song
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Hongna Su
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-HongKong-Macao, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China.
- Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
AlAsmari AF, Alshehri MM, Ali N, AlAsmari F, Sari Y, Childers WE, Abou-Gharbia M, Alharbi M, Elnagar DM, AL-Qahtani WS. Ceftriaxone and MC-100093 mitigate fentanyl-induced cardiac injury in mice: Preclinical investigation of its underlying molecular mechanisms. Saudi Pharm J 2024; 32:102148. [PMID: 39157423 PMCID: PMC11327467 DOI: 10.1016/j.jsps.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Drug addiction is considered a worldwide concern and one of the most prevailing causes of death globally. Opioids are highly addictive drugs, and one of the most common opioids that is frequently used clinically is fentanyl. The potential harmful effects of chronic exposure to opioids on the heart are still to be elucidated. Although β-lactam antibiotics are well recognized for their ability to fight bacteria, its protective effect in the brain and liver has been reported. In this study, we hypothesize that β-lactam antibiotic, ceftriaxone, and the novel synthetic non-antibiotic β-lactam, MC-100093, are cardioprotective against fentanyl induced-cardiac injury by upregulating xCT expression. Mice were exposed to repeated low dose (0.05 mg/kg, i.p.) of fentanyl for one week and then challenged on day 9 with higher dose of fentanyl (1 mg/kg, i.p.). This study investigated cardiac histopathology and target genes and proteins in serum and cardiac tissues in mice exposed to fentanyl overdose and β-lactams. We revealed that fentanyl treatment induced cardiac damage as evidenced by elevated cardiac enzymes (troponin I). Furthermore, fentanyl treatment caused large aggregations of inflammatory cells and elevation in the areas and volumes of myocardial fibers, indicating hypertrophy and severe cardiac damage. Ceftriaxone and MC-100093 treatment, However, induced cardioprotective effects as evidenced by marked reduction in cardiac enzymes (troponin I) and changes in histopathology. Furthermore, ceftriaxone and MC-100093 treatment decreased the levels of hypertrophic genes (α-MHC & β-MHC), apoptotic (caspase-3), and inflammatory markers (IL-6 & NF-κB). This study reports for the first time the cardioprotective effect of β-lactams against fentanyl-induced cardiac injury. Further studies are greatly encouraged to completely identify the cardioprotective properties of ceftriaxone and MC-100093.
Collapse
Affiliation(s)
- Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M. Elnagar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wejdan S. AL-Qahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Cardiovascular toxicities by calcineurin inhibitors: Cellular mechanisms behind clinical manifestations. Acta Physiol (Oxf) 2024; 240:e14199. [PMID: 38984711 DOI: 10.1111/apha.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Calcineurin inhibitors (CNI), including cyclosporine A (CsA) and tacrolimus (TAC), are cornerstones of immunosuppressive therapy in solid organ transplant recipients. While extensively recognized for their capacity to induce nephrotoxicity, hypertension, and dyslipidemia, emerging reports suggest potential direct cardiovascular toxicities associated with CNI. Evidence from both in vitro and in vivo studies has demonstrated direct cardiotoxic impact of CNI, manifesting itself as induction of cardiomyocyte apoptosis, enhanced oxidative stress, inflammatory cell infiltration, and cardiac fibrosis. CNI enhances cellular apoptosis through CaSR via activation of the p38 MAPK pathway and deactivation of the ERK pathway, and enhancement of miR-377 axis. Although CNI could attenuate cardiac hypertrophy in certain animal models, CNI concurrently impaired systolic function, enhanced cardiac fibrosis, and increased the risk of heart failure. Evidence from in vivo studies demonstrated that CNI prolong the duration of action potentials through a decrease in potassium current. CNI also exerted direct effects on endothelial cell injury, inducing apoptosis and enhancing oxidative stress. CNI may induce vascular inflammation through TLR4 via MyD88 and TRIF pathways. In addition, CNI affects vascular function by impairing endothelial-dependent vasodilation and promoting vasoconstriction. Clinical studies in transplant patients also revealed an increased incidence of cardiac remodeling. However, the evidence is constrained by the limited number of participants and potential confounding factors. Several studies indicate differing cardiovascular toxicity profiles between CsA and TAC, and these could be potentially due to their different interactions with calcineurin subunits and calcineurin-independent effects. Further studies are needed to clarify these mechanisms to improve cardiovascular outcomes for transplant patients with CNI.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Meredith T, Roy D, Hayward C, Feneley M, Kovacic J, Muller D, Namasivayam M. Strain Assessment in Aortic Stenosis: Pathophysiology and Clinical Utility. J Am Soc Echocardiogr 2024; 37:64-76. [PMID: 37805144 DOI: 10.1016/j.echo.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Contemporary echocardiographic criteria for grading aortic stenosis severity have remained relatively unchanged, despite significant advances in noninvasive imaging techniques over the last 2 decades. More recently, attention has shifted to the ventricular response to aortic stenosis and how this might be quantified. Global longitudinal strain, semiautomatically calculated from standard two-dimensional echocardiographic images, has been the focus of extensive research. Global longitudinal strain is a sensitive marker of subtle hypertrophy-related impairment in left ventricular function and has shown promise as a relatively robust prognostic marker, both independently and when added to severity classification systems. Herein we review the pathophysiological basis underpinning the potential utility of global longitudinal strain in the assessment of aortic stenosis, as well as its potential role in quantifying myocardial recovery and prognostic discrimination following aortic valve replacement.
Collapse
Affiliation(s)
- Thomas Meredith
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David Roy
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher Hayward
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Feneley
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jason Kovacic
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David Muller
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Mayooran Namasivayam
- Department of Cardiology, St. Vincent's Hospital, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Jeong A, Lim Y, Kook T, Kwon DH, Cho YK, Ryu J, Lee YG, Shin S, Choe N, Kim YS, Cho HJ, Kim JC, Choi Y, Lee SJ, Kim HS, Kee HJ, Nam KI, Ahn Y, Jeong MH, Park WJ, Kim YK, Kook H. Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102071. [PMID: 38046397 PMCID: PMC10690640 DOI: 10.1016/j.omtn.2023.102071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice. RNA sequencing datasets were obtained from cardiac fibroblasts isolated by use of a Langendorff apparatus and then further processed by use of selection criteria such as differential expression and conservation in species. CircSMAD4 was upregulated by TAC in mice or by transforming growth factor (TGF)-β1 in primarily cultured human cardiac fibroblasts. Delivery of si-circSMAD4 attenuated myofibroblast activation and cardiac fibrosis in mice treated with isoproterenol (ISP). si-circSmad4 significantly reduced cardiac fibrosis and remodeling at 8 weeks. Mechanistically, circSMAD4 acted as a sponge against the microRNA miR-671-5p in a sequence-specific manner. miR-671-5p was downregulated during myofibroblast activation and its mimic form attenuated cardiac fibrosis. miR-671-5p mimic destabilized fibroblast growth factor receptor 2 (FGFR2) mRNA in a sequence-specific manner and interfered with the fibrotic action of FGFR2. The circSMAD4-miR-671-5p-FGFR2 pathway is involved in the differentiation of cardiac myofibroblasts and thereby the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Anna Jeong
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yongwoon Lim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Taewon Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Duk-Hwa Kwon
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Juhee Ryu
- Collage of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Gyeong Lee
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yong Sook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye Jung Cho
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hae Jin Kee
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kwang-Il Nam
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Kook Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hyun Kook
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| |
Collapse
|
7
|
Nemtsova V, Burkard T, Vischer AS. Hypertensive Heart Disease: A Narrative Review Series-Part 2: Macrostructural and Functional Abnormalities. J Clin Med 2023; 12:5723. [PMID: 37685790 PMCID: PMC10488346 DOI: 10.3390/jcm12175723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hypertensive heart disease (HHD) remains a major global public health concern despite the implementation of new approaches for the management of hypertensive patients. The pathological changes occurring during HHD are complex and involve the development of structural and functional cardiac abnormalities. HHD describes a broad spectrum ranging from uncontrolled hypertension and asymptomatic left ventricular hypertrophy (LVH), either a concentric or an eccentric pattern, to the final development of clinical heart failure. Pressure-overload-induced LVH is recognised as the most important predictor of heart failure and sudden death and is associated with an increased risk of cardiac arrhythmias. Cardiac arrhythmias are considered to be one of the most important comorbidities affecting hypertensive patients. This is the second part of a three-part set of review articles. Here, we focus on the macrostructural and functional abnormalities associated with chronic high pressure, their involvement in HHD pathophysiology, and their role in the progression and prognosis of HHD.
Collapse
Affiliation(s)
- Valeriya Nemtsova
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Internal Diseases and Family Medicine Department, Educational and Scientific Medical Institute, National Technical University “Kharkiv Polytechnic Institute”, 61002 Kharkiv, Ukraine
| | - Thilo Burkard
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Annina S. Vischer
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Schafstedde M, Nordmeyer S. The role of androgens in pressure overload myocardial hypertrophy. Front Endocrinol (Lausanne) 2023; 14:1112892. [PMID: 36817598 PMCID: PMC9929540 DOI: 10.3389/fendo.2023.1112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Pressure overload hypertrophy of the left ventricle is a common result of many cardiovascular diseases. Androgens show anabolic effects in skeletal muscles, but also in myocardial hypertrophy. We carefully reviewed literature regarding possible effects of androgens on specific left ventricular hypertrophy in pressure overload conditions excluding volume overload conditions or generel sex differences.
Collapse
Affiliation(s)
- Marie Schafstedde
- Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
- *Correspondence: Sarah Nordmeyer,
| |
Collapse
|
9
|
Parabiosis Improves Endothelial Dysfunction in Aged Female Mice. J Surg Res 2022; 278:119-131. [DOI: 10.1016/j.jss.2022.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
10
|
Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM, Hegyi B. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure. J Am Heart Assoc 2022; 11:e027573. [PMID: 36172952 DOI: 10.1161/jaha.122.027573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Structural and electrophysiological remodeling characterize heart failure (HF) enhancing arrhythmias. PKD1 (protein kinase D1) is upregulated in HF and mediates pathological hypertrophic signaling, but its role in K+ channel remodeling and arrhythmogenesis in HF is unknown. Methods and Results We performed echocardiography, electrophysiology, and expression analysis in wild-type and PKD1 cardiomyocyte-specific knockout (cKO) mice following transverse aortic constriction (TAC). PKD1-cKO mice exhibited significantly less cardiac hypertrophy post-TAC and were protected from early decline in cardiac contractile function (3 weeks post-TAC) but not the progression to HF at 7 weeks post-TAC. Wild-type mice exhibited ventricular action potential duration prolongation at 8 weeks post-TAC, which was attenuated in PKD1-cKO, consistent with larger K+ currents via the transient outward current, sustained current, inward rectifier K+ current, and rapid delayed rectifier K+ current and increased expression of corresponding K+ channels. Conversely, reduction of slowly inactivating K+ current was independent of PKD1 in HF. Acute PKD inhibition slightly increased transient outward current in TAC and sham wild-type myocytes but did not alter other K+ currents. Sham PKD1-cKO versus wild-type also exhibited larger transient outward current and faster early action potential repolarization. Tachypacing-induced action potential duration alternans in TAC animals was increased and independent of PKD1, but diastolic arrhythmogenic activities were reduced in PKD1-cKO. Conclusions Our data indicate an important role for PKD1 in the HF-related hypertrophic response and K+ channel downregulation. Therefore, PKD1 inhibition may represent a therapeutic strategy to reduce hypertrophy and arrhythmias; however, PKD1 inhibition may not prevent disease progression and reduced contractility in HF.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology University of California Davis CA
| | - Johanna M Borst
- Department of Pharmacology University of California Davis CA
| | | | | | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Bence Hegyi
- Department of Pharmacology University of California Davis CA
| |
Collapse
|
11
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
12
|
Kolkhof P, Lawatscheck R, Filippatos G, Bakris GL. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 2022; 23:9243. [PMID: 36012508 PMCID: PMC9408839 DOI: 10.3390/ijms23169243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Precision Medicines, Research & Early Development, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Robert Lawatscheck
- Clinical Development, Bayer AG, Müller Straße 178, Building P300, 13342 Berlin, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Mikras Asias 75, 115 27 Athina, Greece
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
13
|
Romaine A, Melleby AO, Alam J, Lobert VH, Lu N, Lockwood FE, Hasic A, Lunde IG, Sjaastad I, Stenmark H, Herum KM, Gullberg D, Christensen G. Integrin α11β1 and syndecan-4 dual receptor ablation attenuates cardiac hypertrophy in the pressure overloaded heart. Am J Physiol Heart Circ Physiol 2022; 322:H1057-H1071. [PMID: 35522553 DOI: 10.1152/ajpheart.00635.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathological myocardial hypertrophy in response to an increase in left ventricular (LV) afterload may ultimately lead to heart failure. Cell surface receptors bridge the interface between the cell and the ECM in cardiac myocytes and cardiac fibroblasts, and have been suggested to be important mediators of pathological myocardial hypertrophy. We identify for the first time that integrin α11 (α11) is preferentially upregulated amongst integrin beta 1 heterodimer-forming α subunits in response to increased afterload induced by aortic banding (AB) in wild type mice (WT). Mice were anesthetized in a chamber with 4% isoflurane and 95% oxygen before being intubated and ventilated with 2.5% isoflurane and 97% oxygen. For pre- and post-operative analgesia, animals were administered 0.02 mL buprenorphine (0.3 mg/mL) subcutaneously. Surprisingly, mice lacking α11 develop myocardial hypertrophy following AB comparable to WT. In the mice lacking α11, we further show a compensatory increase in the expression of another mechanoreceptor, syndecan-4, following AB compared to WT AB mice, indicating that syndecan-4 compensated for lack of α11. Intriguingly, mice lacking mechanoreceptors α11 and syndecan-4 show ablated myocardial hypertrophy following AB compared to WT mice. Expression of the main cardiac collagen isoforms col1a2 and col3a1 was significantly reduced in AB mice lacking mechanoreceptors α11 and syndecan-4 compared to WT AB.
Collapse
Affiliation(s)
- Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway.,Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Ning Lu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Francesca E Lockwood
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Institute for Cancer Research, Oslo University Hospital, Norway
| | - Kate M Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
15
|
Winkle AJ, Nassal DM, Shaheen R, Thomas E, Mohta S, Gratz D, Weinberg SH, Hund TJ. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets 2022; 26:29-40. [PMID: 35076342 PMCID: PMC8885901 DOI: 10.1080/14728222.2022.2031974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiac hypertrophy is associated with adverse outcomes across cardiovascular disease states. Despite strides over the last three decades in identifying molecular and cellular mechanisms driving hypertrophy, the link between pathophysiological stress stimuli and specific myocyte/heart growth profiles remains unclear. Moreover, the optimal strategy for preventing pathology in the setting of hypertrophy remains controversial. AREAS COVERED This review discusses molecular mechanisms underlying cardiac hypertrophy with a focus on factors driving the orientation of myocyte growth and the impact on heart function. We highlight recent work showing a novel role for the spectrin-based cytoskeleton, emphasizing regulation of myocyte dimensions but not hypertrophy per se. Finally, we consider opportunities for directing the orientation of myocyte growth in response to hypertrophic stimuli as an alternative therapeutic approach. Relevant publications on the topic were identified through Pubmed with open-ended search dates. EXPERT OPINION To define new therapeutic avenues, more precision is required when describing changes in myocyte and heart structure/function in response to hypertrophic stimuli. Recent developments in computational modeling of hypertrophic networks, in concert with more refined experimental approaches will catalyze translational discovery to advance the field and further our understanding of cardiac hypertrophy and its relationship with heart disease.
Collapse
Affiliation(s)
- Alex J. Winkle
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Drew M. Nassal
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Shivangi Mohta
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Seth H. Weinberg
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Hund
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
16
|
JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine. PLoS One 2021; 16:e0261388. [PMID: 34914791 PMCID: PMC8675748 DOI: 10.1371/journal.pone.0261388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac hypertrophy is a complex process induced by the activation of multiple signaling pathways. We previously reported that anacardic acid (AA), a histone acetyltransferase (HAT) inhibitor, attenuates phenylephrine (PE)-induced cardiac hypertrophy by downregulating histone H3 acetylation at lysine 9 (H3K9ac). Unfortunately, the related upstream signaling events remained unknown. The mitogen-activated protein kinase (MAPK) pathway is an important regulator of cardiac hypertrophy. In this study, we explored the role of JNK/MAPK signaling pathway in cardiac hypertrophy induced by PE. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. This study showed that p-JNK directly interacts with HATs (P300 and P300/CBP-associated factor, PCAF) and alters H3K9ac. In addition, both the JNK inhibitor SP600125 and the HAT inhibitor AA attenuated p-JNK overexpression and H3K9ac hyperacetylation by inhibiting P300 and PCAF during PE-induced cardiomyocyte hypertrophy. Moreover, we demonstrated that both SP600125 and AA attenuate the overexpression of cardiac hypertrophy-related genes (MEF2A, ANP, BNP, and β-MHC), preventing cardiomyocyte hypertrophy and dysfunction. These results revealed a novel mechanism through which AA might protect mice from PE-induced cardiomyocyte hypertrophy. In particular, AA inhibits the effects of JNK signaling on HATs-mediated histone acetylation, and could therefore be used to prevent and treat pathological cardiac hypertrophy.
Collapse
|
17
|
Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond) 2021; 135:2265-2283. [PMID: 34643676 PMCID: PMC8543140 DOI: 10.1042/cs20210127] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health concern, with rising incidence alongside high morbidity and mortality. However, the pathophysiology of HFpEF is not yet fully understood. The association between HFpEF and the metabolic syndrome (MetS) suggests that dysregulated lipid metabolism could drive diastolic dysfunction and subsequent HFpEF. Herein we summarise recent advances regarding the pathogenesis of HFpEF in the context of MetS, with a focus on impaired lipid handling, myocardial lipid accumulation and subsequent lipotoxicity.
Collapse
|
18
|
Tsuda T. Clinical Assessment of Ventricular Wall Stress in Understanding Compensatory Hypertrophic Response and Maladaptive Ventricular Remodeling. J Cardiovasc Dev Dis 2021; 8:122. [PMID: 34677191 PMCID: PMC8538325 DOI: 10.3390/jcdd8100122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
Ventricular wall stress (WS) is an important hemodynamic parameter to represent myocardial oxygen demand and ventricular workload. The normalization of WS is regarded as a physiological feedback signal that regulates the rate and extent of ventricular hypertrophy to maintain myocardial homeostasis. Although hypertrophy is an adaptive response to increased biomechanical stress, persistent hypertrophic stimulation forces the stressed myocardium into a progressive maladaptive process called ventricular remodeling, consisting of ventricular dilatation and dysfunction in conjunction with the development of myocyte hypertrophy, apoptosis, and fibrosis. The critical determinant of this pathological transition is not fully understood, but an energetic mismatch due to uncontrolled WS is thought to be a central mechanism. Despite extensive basic investigations conducted to understand the complex signaling pathways involved in this maladaptive process, clinical diagnostic studies that translate these molecular and cellular changes are relatively limited. Echocardiographic assessment with or without direct measurement of left ventricular pressure used to be a mainstay in estimating ventricular WS in clinical medicine, but in recent years more and more noninvasive applications with magnetic resonance imaging have been studied. In this review article, basic clinical applications of WS assessment are discussed to help understand the progression of ventricular remodeling.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children’s Hospital Delaware, 1600 Rockland Rd, Wilmington, DE 19803, USA; ; Tel.: +1-(302)-651-6677; Fax: +1-(302)-651-6601
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, 11th and Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Li Q, Li C, Elnwasany A, Sharma G, An YA, Zhang G, Elhelaly WM, Lin J, Gong Y, Chen G, Wang M, Zhao S, Dai C, Smart CD, Liu J, Luo X, Deng Y, Tan L, Lv SJ, Davidson SM, Locasale JW, Lorenzi PL, Malloy CR, Gillette TG, Vander Heiden MG, Scherer PE, Szweda LI, Fu G, Wang ZV. PKM1 Exerts Critical Roles in Cardiac Remodeling Under Pressure Overload in the Heart. Circulation 2021; 144:712-727. [PMID: 34102853 PMCID: PMC8405569 DOI: 10.1161/circulationaha.121.054885] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated. Here, we aimed to dissect the role of cardiac PKM1 (pyruvate kinase muscle isozyme 1) in glucose metabolic regulation and cardiac response under pressure overload. METHODS Cardiac-specific deletion of PKM1 was achieved by crossing the floxed PKM1 mouse model with the cardiomyocyte-specific Cre transgenic mouse. PKM1 transgenic mice were generated under the control of tetracycline response elements, and cardiac-specific overexpression of PKM1 was induced by doxycycline administration in adult mice. Pressure overload was triggered by transverse aortic constriction. Primary neonatal rat ventricular myocytes were used to dissect molecular mechanisms. Moreover, metabolomics and nuclear magnetic resonance spectroscopy analyses were conducted to determine cardiac metabolic flux in response to pressure overload. RESULTS We found that PKM1 expression is reduced in failing human and mouse hearts. It is important to note that cardiomyocyte-specific deletion of PKM1 exacerbates cardiac dysfunction and fibrosis in response to pressure overload. Inducible overexpression of PKM1 in cardiomyocytes protects the heart against transverse aortic constriction-induced cardiomyopathy and heart failure. At the mechanistic level, PKM1 is required for the augmentation of glycolytic flux, mitochondrial respiration, and ATP production under pressure overload. Furthermore, deficiency of PKM1 causes a defect in cardiomyocyte growth and a decrease in pyruvate dehydrogenase complex activity at both in vitro and in vivo levels. CONCLUSIONS These findings suggest that PKM1 plays an essential role in maintaining a homeostatic response in the heart under hemodynamic stress.
Collapse
Affiliation(s)
- Qinfeng Li
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Abdallah Elnwasany
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Waleed M. Elhelaly
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Guihao Chen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chongshan Dai
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles D. Smart
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuang-Jie Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shawn M. Davidson
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jason W. Locasale
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luke I. Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, Chen G, Li Q, Li C, Rothermel BA, Jiang D, Lavandero S, Gillette TG, Hill JA. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation 2021; 144:34-51. [PMID: 33821668 PMCID: PMC8247545 DOI: 10.1161/circulationaha.120.052384] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.
Collapse
Affiliation(s)
- Yuxuan Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Herman I. May
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Xiang Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Anwarul Ferdous
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G. Schiattarella
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Guihao Chen
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Qinfeng Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Chao Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Beverly A. Rothermel
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
| | - Sergio Lavandero
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Thomas G. Gillette
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A. Hill
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
21
|
Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep 2021; 32:108087. [PMID: 32877669 PMCID: PMC7520916 DOI: 10.1016/j.celrep.2020.108087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
The heart manifests hypertrophic growth in response to high blood pressure, which may decompensate and progress to heart failure under persistent stress. Metabolic remodeling is an early event in this process. However, its role remains to be fully characterized. Here, we show that lactate dehydrogenase A (LDHA), a critical glycolytic enzyme, is elevated in the heart in response to hemodynamic stress. Cardiomyocyte-restricted deletion of LDHA leads to defective cardiac hypertrophic growth and heart failure by pressure overload. Silencing of LDHA in cultured cardiomyocytes suppresses cell growth from pro-hypertrophic stimulation in vitro, while overexpression of LDHA is sufficient to drive cardiomyocyte growth. Furthermore, we find that lactate is capable of rescuing the growth defect from LDHA knockdown. Mechanistically, lactate stabilizes NDRG3 (N-myc downregulated gene family 3) and stimulates ERK (extracellular signal-regulated kinase). Our results together suggest that the LDHA/NDRG3 axis may play a critical role in adaptive cardiomyocyte growth in response to hemodynamic stress. Dai et al. find that LDHA is significantly increased in the heart under hemodynamic stress, and cardiomyocyte-specific deletion of LDHA leads to severe cardiac dysfunction in response to pressure overload. LDHA may govern adaptive growth through elevation of NDRG3 and activation of ERK.
Collapse
|
22
|
Abstract
Aortic stenosis is the most common valvular disease requiring valve replacement. Valve replacement therapies have undergone progressive evolution since the 1960s. Over the last 20 years, transcatheter aortic valve replacement has radically transformed the care of aortic stenosis, such that it is now the treatment of choice for many, particularly elderly, patients. This review provides an overview of the pathophysiology, presentation, diagnosis, indications for intervention, and current therapeutic options for aortic stenosis.
Collapse
Affiliation(s)
- Marko T Boskovski
- Division of Cardiac Surgery, Brigham and Women's Hospital, Boston, MA
| | - Thomas G Gleason
- Division of Cardiac Surgery, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
23
|
Guo S, Okyere AD, McEachern E, Strong JL, Carter RL, Patwa VC, Thomas TP, Landy M, Song J, Lucchese AM, Martin TG, Gao E, Rajan S, Kirk JA, Koch WJ, Cheung JY, Tilley DG. Epidermal growth factor receptor-dependent maintenance of cardiac contractility. Cardiovasc Res 2021; 118:1276-1288. [PMID: 33892492 DOI: 10.1093/cvr/cvab149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodeling. METHODS AND RESULTS A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, hemodynamic and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodeling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the β-adrenergic receptor (βAR) agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2 A (PP2A) regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban (PLB) and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS Altogether our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression. TRANSLATIONAL PERSPECTIVE Our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72, a PP2A regulatory subunit with an unknown impact on cardiac function. Further, we have shown that cardiomyocyte-expressed EGFR is required for the promotion of cardiac hypertrophy under conditions of chronic catecholamine stress. Altogether, our study provides new insight into the dynamic nature of cardiomyocyte-specific EGFR.
Collapse
Affiliation(s)
- Shuchi Guo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joshua L Strong
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Viren C Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Toby P Thomas
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Melissa Landy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ana Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
24
|
Zhang Y, Bi M, Chen Z, Dai M, Zhou G, Hu Y, Yang H, Guan W. Hydrogen gas alleviates acute alcohol-induced liver injury by inhibiting JNK activation. Exp Ther Med 2021; 21:453. [PMID: 33767761 PMCID: PMC7976433 DOI: 10.3892/etm.2021.9884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
Binge alcohol drinking is fast becoming a global health concern, with the liver among the first organ involved and the one afflicted with the greatest degree of injury. Oxidative stress, alterations in hepatic metabolism, immunity and inflammation have all been reported to contribute to the development of alcoholic liver disease (ALD). Hydrogen gas (H2) serves a key role in the modulation of hepatic redox, immune and inflammatory homeostasis. However, the effects of treatment using intraperitoneal injection of H2 on ALD remain unexplored. Therefore, the aim of the present study was to investigate the effects and underlying mechanism of intraperitoneal injection of H2 on acute alcohol-induced liver injury in a mouse model. H2 was administered by daily intraperitoneal injections (1.0 ml/100 g) for 4 days. On day 4, the mice received H2 after fasting for 5.5 h. After 30 min, the mice were administered with 33% (v/v) ethanol at a cumulative dose of 4.5 g/kg body weight by four equally divided gavages at 20-min intervals. Blood and liver tissues were collected at 16 h after the first ethanol gavage. Subsequently, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and total cholesterol (TC) levels were analyzed using an Automatic Clinical Analyzer. Hepatic JNK activity and GAPDH levels were examined by western blotting. It was observed that acute ethanol gavage induced liver injury, as indicated by significantly increased serum ALT and AST levels, which were effectively decreased by H2 at 16 h after the first ethanol gavage. In addition, H2 treatment reduced serum TC levels in the Alcohol+H2 group when compared with those in Alcohol group. Mechanistically, H2 attenuated hepatic JNK phosphorylation induced by acute ethanol gavage. Therefore, the results of the present study demonstrated that treatment with exogenous H2 by intraperitoneal injection may alleviate acute alcohol-induced liver injury by inhibiting hepatic JNK activation, which may represent a novel therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zifeng Chen
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China.,Department of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Min Dai
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ge Zhou
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuxuan Hu
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Weibing Guan
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
25
|
Kohno M, Kobayashi S, Yamamoto T, Yoshitomi R, Kajii T, Fujii S, Nakamura Y, Kato T, Uchinoumi H, Oda T, Okuda S, Watanabe K, Mizukami Y, Yano M. Enhancing calmodulin binding to cardiac ryanodine receptor completely inhibits pressure-overload induced hypertrophic signaling. Commun Biol 2020; 3:714. [PMID: 33244105 PMCID: PMC7691336 DOI: 10.1038/s42003-020-01443-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a well-known major risk factor for poor prognosis in patients with cardiovascular diseases. Dysregulation of intracellular Ca2+ is involved in the pathogenesis of cardiac hypertrophy. However, the precise mechanism underlying cardiac hypertrophy remains elusive. Here, we investigate whether pressure-overload induced hypertrophy can be induced by destabilization of cardiac ryanodine receptor (RyR2) through calmodulin (CaM) dissociation and subsequent Ca2+ leakage, and whether it can be genetically rescued by enhancing the binding affinity of CaM to RyR2. In the very initial phase of pressure-overload induced cardiac hypertrophy, when cardiac contractile function is preserved, reactive oxygen species (ROS)-mediated RyR2 destabilization already occurs in association with relaxation dysfunction. Further, stabilizing RyR2 by enhancing the binding affinity of CaM to RyR2 completely inhibits hypertrophic signaling and improves survival. Our study uncovers a critical missing link between RyR2 destabilization and cardiac hypertrophy.
Collapse
Affiliation(s)
- Michiaki Kohno
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Ryosuke Yoshitomi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshiro Kajii
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shohei Fujii
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takayoshi Kato
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
26
|
Patwa V, Guo S, Carter RL, Kraus L, Einspahr J, Teplitsky D, Sabri A, Tilley DG. Epidermal growth factor receptor association with β1-adrenergic receptor is mediated via its juxtamembrane domain. Cell Signal 2020; 78:109846. [PMID: 33238186 DOI: 10.1016/j.cellsig.2020.109846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/20/2023]
Abstract
β1-adrenergic receptor (β1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with β1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with β1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with β1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent β1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted β1AR-EGFR association over time and prevented β1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with β1AR, and its disruption prevents β1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting β1AR-EGFR downstream signaling.
Collapse
Affiliation(s)
- Viren Patwa
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuchi Guo
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Lindsay Kraus
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jeanette Einspahr
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - David Teplitsky
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Miranda-Silva D, G Rodrigues P, Alves E, Rizo D, Fonseca ACRG, Lima T, Baganha F, Conceição G, Sousa C, Gonçalves A, Miranda I, Vasques-Nóvoa F, Magalhães J, Leite-Moreira A, Falcão-Pires I. Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling. Circ Heart Fail 2020; 13:e006170. [PMID: 33176457 DOI: 10.1161/circheartfailure.119.006170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Often, pressure overload-induced myocardial remodeling does not undergo complete reverse remodeling after decreasing afterload. Recently, mitochondrial abnormalities and oxidative stress have been successively implicated in the pathogenesis of several chronic pressure overload cardiac diseases. Therefore, we aim to clarify the myocardial energetic dysregulation in (reverse) remodeling, mainly focusing on the mitochondria. METHODS Thirty-five Wistar Han male rats randomly underwent sham or ascending (supravalvular) aortic banding procedure. Echocardiography revealed that banding induced concentric hypertrophy and diastolic dysfunction (early diastolic transmitral flow velocity to peak early-diastolic annular velocity ratio, E/E': sham, 13.6±2.1, banding, 18.5±4.1, P=0.014) accompanied by increased oxidative stress (dihydroethidium fluorescence: sham, 1.6×108±6.1×107, banding, 2.6×108±4.5×107, P<0.001) and augmented mitochondrial function. After 8 to 9 weeks, half of the banding animals underwent overload relief by an aortic debanding surgery (n=10). RESULTS Two weeks later, hypertrophy decreased with the decline of oxidative stress (dihydroethidium fluorescence: banding, 2.6×108±4.5×107, debanding, 1.96×108±6.8×107, P<0.001) and diastolic dysfunction improved simultaneously (E/E': banding, 18.5±4.1, debanding, 15.1±1.8, P=0.029). The reduction of energetic demands imposed by overload relief allowed the mitochondria to reduce its activity and myocardial levels of phosphocreatine, phosphocreatine/ATP, and ATP/ADP to normalize in debanding towards sham values (phosphocreatine: sham, 38.4±7.4, debanding, 35.6±8.7, P=0.71; phosphocreatine/ATP: sham, 1.22±0.23 debanding, 1.11±0.24, P=0.59; ATP/ADP: sham, 6.2±0.9, debanding, 5.6±1.6, P=0.66). Despite the decreased mitochondrial area, complex III and V expression increased in debanding compared with sham or banding. Autophagy and mitophagy-related markers increased in banding and remained higher in debanding rats. CONCLUSIONS During compensatory and maladaptive hypertrophy, mitochondria become more active. However, as the disease progresses, the myocardial energetic demands increase and the myocardium becomes energy deficient. During reverse remodeling, the concomitant attenuation of cardiac hypertrophy and oxidative stress allowed myocardial energetics, left ventricle hypertrophy, and diastolic dysfunction to recover. Autophagy and mitophagy are probably involved in the myocardial adaptation to overload and to unload. We conclude that these mitochondrial reversible changes underlie diastolic function adaptations during myocardial (reverse) remodeling.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Patrícia G Rodrigues
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Estela Alves
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - David Rizo
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - Ana Catarina R G Fonseca
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal (A.C.R.G.F.)
| | - Tânia Lima
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Fabiana Baganha
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Gloria Conceição
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Cláudia Sousa
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Alexandre Gonçalves
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Isabel Miranda
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - José Magalhães
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| |
Collapse
|
28
|
Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo M, Zhang Q, Mapuskar KA, Milne GL, Hinton AO, Guo DF, Weiss R, Bradberry K, Taylor EB, Rauckhorst AJ, Dick DW, Akurathi V, Falls-Hubert KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC. Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes. Cell Metab 2020; 32:561-574.e7. [PMID: 33027675 PMCID: PMC7819711 DOI: 10.1016/j.cmet.2020.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce a remarkable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.
Collapse
Affiliation(s)
- Calvin S Carter
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.
| | - Sunny C Huang
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Charles C Searby
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Benjamin Cassaidy
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Michael J Miller
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Wojciech J Grzesik
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Thomas K Pak
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan A Walsh
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Michael Acevedo
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Qihong Zhang
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor O Hinton
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Robert Weiss
- Department of Internal Medicine, Division of Cardiology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kyle Bradberry
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - David W Dick
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Vamsidhar Akurathi
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kelly C Falls-Hubert
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Walter A Carter
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kai Wang
- College of Public Health, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Andrew W Norris
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.
| |
Collapse
|
29
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Genomic characterization reveals novel mechanisms underlying the valosin-containing protein-mediated cardiac protection against heart failure. Redox Biol 2020; 36:101662. [PMID: 32795937 PMCID: PMC7426568 DOI: 10.1016/j.redox.2020.101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic hypertension is a key risk factor for heart failure. However, the underlying molecular mechanisms are not fully understood. Our previous studies found that the valosin-containing protein (VCP), an ATPase-associated protein, was significantly decreased in the hypertensive heart tissues. In this study, we tested the hypothesis that restoration of VCP protected the heart against pressure overload-induced heart failure. With a cardiac-specific transgenic (TG) mouse model, we showed that a moderate increase of VCP was able to attenuate chronic pressure overload-induced maladaptive cardiac hypertrophy and dysfunction. RNA sequencing and a comprehensive bioinformatic analysis further demonstrated that overexpression of VCP in the heart normalized the pressure overload-stimulated hypertrophic signals and repressed the stress-induced inflammatory response. In addition, VCP overexpression promoted cell survival by enhancing the mitochondria resistance to the oxidative stress via activating the Rictor-mediated-gene networks. VCP was also found to be involved in the regulation of the alternative splicing and differential isoform expression for some genes that are related to ATP production and protein synthesis by interacting with long no-coding RNAs and histone deacetylases, indicating a novel epigenetic regulation of VCP in integrating coding and noncoding genomic network in the stressed heart. In summary, our study demonstrated that the rescuing of a deficient VCP in the heart could prevent pressure overload-induced heart failure by rectifying cardiac hypertrophic and inflammatory signaling and enhancing the cardiac resistance to oxidative stress, which brought in novel insights into the understanding of the mechanism of VCP in protecting patients from hypertensive heart failure. Deficiency of VCP contributes to the pathogenesis of hypertensive heart failure. Rescue of VCP prevents stress-induced cardiac remodeling and cell death. VCP attenuates stress-induced inflammatory and hypertrophic signaling. VCP promotes cardiac resistance to oxidative stress. VCP mediates a novel epigenetic integrating regulation in the stressed heart.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
30
|
Peterson MR, Getiye Y, Bosch L, Sanders AJ, Smith AR, Haller S, Wilson K, Paul Thomas D, He G. A potential role of caspase recruitment domain family member 9 (Card9) in transverse aortic constriction-induced cardiac dysfunction, fibrosis, and hypertrophy. Hypertens Res 2020; 43:1375-1384. [PMID: 32647279 DOI: 10.1038/s41440-020-0507-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022]
Abstract
Macrophage- and monocyte-derived cytokines are elevated in the myocardium of pressure-overloaded hearts, where they play critical roles in pathological remodeling. Caspase recruitment domain family member 9 (CARD9) regulates macrophage cytokine secretion, but its role in a transverse aortic constriction (TAC) model of pressure overload has not been evaluated. To investigate whether CARD9 may serve as a valuable therapeutic target, wild-type (WT) and CARD9-knockout mice were subjected to 3 months of TAC, and then cardiac function, hypertrophy, and fibrosis were analyzed. The expression of protein markers of myocardial autophagy and nuclear factor kappa B signaling was also investigated. At 1 month after TAC, cardiomyocyte contractile dynamics were measured in a separate cohort to further assess contractility and diastolic function. In WT but not CARD9-/- mice, TAC resulted in severe cardiomyocyte contractile dysfunction at 1 month and functional decrements in fractional shortening at 3 months in vivo. Furthermore, CARD9-/- mice did not develop cardiac fibrosis or hypertrophy. CARD9-/- mice also had decreased protein expression of inhibitor of κB kinase-α/β, decreased phosphorylation of p65, and increased expression of protein markers of autophagy. These findings suggest that CARD9 plays a role in pathological remodeling and cardiac dysfunction in mouse hearts subjected to TAC and should be investigated further.
Collapse
Affiliation(s)
- Matthew R Peterson
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Yohannes Getiye
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Luiza Bosch
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Alyssa J Sanders
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Aspen R Smith
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Samantha Haller
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Kayla Wilson
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - D Paul Thomas
- Division of Kinesiology & Health, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Guanglong He
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| |
Collapse
|
31
|
Gong L, Wang S, Shen L, Liu C, Shenouda M, Li B, Liu X, Shaw JA, Wineman AL, Yang Y, Xiong D, Eichmann A, Evans SM, Weiss SJ, Si MS. SLIT3 deficiency attenuates pressure overload-induced cardiac fibrosis and remodeling. JCI Insight 2020; 5:136852. [PMID: 32644051 PMCID: PMC7406261 DOI: 10.1172/jci.insight.136852] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/06/2020] [Indexed: 01/28/2023] Open
Abstract
In pulmonary hypertension and certain forms of congenital heart disease, ventricular pressure overload manifests at birth and is an obligate hemodynamic abnormality that stimulates myocardial fibrosis, which leads to ventricular dysfunction and poor clinical outcomes. Thus, an attractive strategy is to attenuate the myocardial fibrosis to help preserve ventricular function. Here, by analyzing RNA-sequencing databases and comparing the transcript and protein levels of fibrillar collagen in WT and global-knockout mice, we found that slit guidance ligand 3 (SLIT3) was present predominantly in fibrillar collagen-producing cells and that SLIT3 deficiency attenuated collagen production in the heart and other nonneuronal tissues. We then performed transverse aortic constriction or pulmonary artery banding to induce left and right ventricular pressure overload, respectively, in WT and knockout mice. We discovered that SLIT3 deficiency abrogated fibrotic and hypertrophic changes and promoted long-term ventricular function and overall survival in both left and right ventricular pressure overload. Furthermore, we found that SLIT3 stimulated fibroblast activity and fibrillar collagen production, which coincided with the transcription and nuclear localization of the mechanotransducer yes-associated protein 1. These results indicate that SLIT3 is important for regulating fibroblast activity and fibrillar collagen synthesis in an autocrine manner, making it a potential therapeutic target for fibrotic diseases, especially myocardial fibrosis and adverse remodeling induced by persistent afterload elevation.
Collapse
Affiliation(s)
- Lianghui Gong
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuyun Wang
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Shen
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine Liu
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mena Shenouda
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Baolei Li
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoxiao Liu
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Alan L. Wineman
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingding Xiong
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences,,Department of Medicine, and,Department of Pharmacology, UCSD, La Jolla, California, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine,,Department of Internal Medicine,,Life Sciences Institute,,Cellular and Molecular Biology Graduate Program, and,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ming-Sing Si
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Gonzales H, Douglas PS, Pibarot P, Hahn RT, Khalique OK, Jaber WA, Cremer P, Weissman NJ, Asch FM, Zhang Y, Gertz ZM, Elmariah S, Clavel MA, Thourani VH, Daubert M, Alu MC, Leon MB, Lindman BR. Left Ventricular Hypertrophy and Clinical Outcomes Over 5 Years After TAVR. JACC Cardiovasc Interv 2020; 13:1329-1339. [DOI: 10.1016/j.jcin.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
|
33
|
Ferdous A, Wang ZV, Luo Y, Li DL, Luo X, Schiattarella GG, Altamirano F, May HI, Battiprolu PK, Nguyen A, Rothermel BA, Lavandero S, Gillette TG, Hill JA. FoxO1-Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nat Commun 2020; 11:2551. [PMID: 32439985 PMCID: PMC7242347 DOI: 10.1038/s41467-020-16345-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O (FoxO) proteins and thyroid hormone (TH) have well established roles in cardiovascular morphogenesis and remodeling. However, specific role(s) of individual FoxO family members in stress-induced growth and remodeling of cardiomyocytes remains unknown. Here, we report that FoxO1, but not FoxO3, activity is essential for reciprocal regulation of types II and III iodothyronine deiodinases (Dio2 and Dio3, respectively), key enzymes involved in intracellular TH metabolism. We further show that Dio2 is a direct transcriptional target of FoxO1, and the FoxO1-Dio2 axis governs TH-induced hypertrophic growth of neonatal cardiomyocytes in vitro and in vivo. Utilizing transverse aortic constriction as a model of hemodynamic stress in wild-type and cardiomyocyte-restricted FoxO1 knockout mice, we unveil an essential role for the FoxO1-Dio2 axis in afterload-induced pathological cardiac remodeling and activation of TRα1. These findings demonstrate a previously unrecognized FoxO1-Dio2 signaling axis in stress-induced cardiomyocyte growth and remodeling and intracellular TH homeostasis.
Collapse
Affiliation(s)
- Anwarul Ferdous
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Zhao V Wang
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Yuxuan Luo
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Dan L Li
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Xiang Luo
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Herman I May
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Pavan K Battiprolu
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Annie Nguyen
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Sergio Lavandero
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
- Advanced Center for Chronic Diseases (ACCDiS) and Corporacion Centro de Estudios Cientificos de las Enfermedades Cronicas (CECEC), Universidad de Chile, Santiago, 8380492, Chile
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| |
Collapse
|
34
|
Pitoulis FG, Terracciano CM. Heart Plasticity in Response to Pressure- and Volume-Overload: A Review of Findings in Compensated and Decompensated Phenotypes. Front Physiol 2020; 11:92. [PMID: 32116796 PMCID: PMC7031419 DOI: 10.3389/fphys.2020.00092] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The adult human heart has an exceptional ability to alter its phenotype to adapt to changes in environmental demand. This response involves metabolic, mechanical, electrical, and structural alterations, and is known as cardiac plasticity. Understanding the drivers of cardiac plasticity is essential for development of therapeutic agents. This is particularly important in contemporary cardiology, which uses treatments with peripheral effects (e.g., on kidneys, adrenal glands). This review focuses on the effects of different hemodynamic loads on myocardial phenotype. We examine mechanical scenarios of pressure- and volume overload, from the initial insult, to compensated, and ultimately decompensated stage. We discuss how different hemodynamic conditions occur and are underlined by distinct phenotypic and molecular changes. We complete the review by exploring how current basic cardiac research should leverage available cardiac models to study mechanical load in its different presentations.
Collapse
|
35
|
Meng Q, Guo Y, Zhang D, Zhang Q, Li Y, Bian H. Tongsaimai reverses the hypertension and left ventricular remolding caused by abdominal aortic constriction in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112154. [PMID: 31415848 DOI: 10.1016/j.jep.2019.112154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Treating ventricular remodeling continues to be a clinical challenge. Studies have shown that hypertension is one of the most common causes of ventricular remodeling, and is a major cause of cardiovascular risk in adults. Here, we report that Tongsaimai (TSM), a Chinese traditional medicine, could inhibit arterial pressure and left ventricular pressure to improve hemodynamic abnormalities in rats impaired by abdominal aortic constriction (AAC). Administration of TSM significantly reduced the heart mass index and the left ventricular mass index significantly in AAC rats. TSM could also markedly ameliorate cardiac collagen deposition and reduce the concentration of hydroxyproline in the heart of AAC rats. Moreover, TSM alleviated cardiac histomorphology injury resulting from AAC, including reducing cardiomyocyte hypertrophy, fibrous connective tissue hyperplasia, cardiomyocyte apoptosis, replacement fibrosis and the disorders of myocardial myofibrils, intercalated discs, mitochondria and mitochondrial crista. In addition, the levels of transforming growth factor (TGF) - β and inflammation-related molecules including tumor necrosis factor-α (TNF-α), which were over-expressed with AAC, were decreased by STM. In conclusion, STM could reverse the hypertension and left ventricular remolding caused by abdominal aortic constriction in rats.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Yao Guo
- Nanjing TechBoon Biotechnology Company Limited, Nanjing, Jiangsu, 211899, China.
| | - Dini Zhang
- Department of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, Jiangsu, 210042, China.
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
36
|
Ca 2+/calmodulin-dependent protein kinase II is essential in hyperacute pressure overload. J Mol Cell Cardiol 2019; 138:212-221. [PMID: 31836540 DOI: 10.1016/j.yjmcc.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) is established as a central intracellular trigger for various cardiac pathologies such as hypertrophy, heart failure or arrhythmias in animals and humans suggesting CaMKII as a promising target protein for future medical treatments. However, the physiological role of CaMKII is scarcely well defined. AIM & METHODS To investigate the role of CaMKII in hyperacute pressure overload, we evaluated the effects of pressure overload induced by transverse aortic constriction (TAC) on survival, cardiac function, protein expression and excitation-contraction coupling (ECC) in female WT littermate vs. AC3-I mice 2 days after TAC (2d post TAC). AC3-I mice express the CaMKII inhibitor autocamtide-3 related inhibitory peptide (AiP) under the control of the α-myosin heavy chain promotor in the heart. RESULTS CaMKII activation is significantly increased in WT TAC vs. sham mice 2d post TAC. Interestingly, survival is significantly reduced in AC3-I animals within the first five days after TAC compared to WT TAC littermates, while systolic cardiac function is markedly reduced in AC3-I TAC vs. AC3-I sham mice, but preserved in WT TAC vs. WT sham mice. Proteins regulating ECC such as ryanodine receptors (RyR2) and phospholamban (PLB) are hypophosphorylated at their CaMKII phosphorylation site in AC3-I TAC mice, but hyperphosphorylated in WT TAC mice compared to controls. In isolated cardiomyocytes fractional shortening is significantly impaired in AC3-I compared to WT mice 2d post TAC, and CaMKII incubation with AiP mimics the AC3-I phenotype in cardiomyocytes from WT TAC mice in vitro. In summary, this suggests cardiac dysfunction due to CaMKII inhibition as a potential cause of increased mortality in AC3-I TAC mice. However, proarrhythmic spontaneous Ca2+ release events (SCR) appear less frequent in cardiomyocytes from AC3-I TAC mice than in WT TAC mice. CONCLUSIONS Our data indicate that excessive CaMKII inhibition as present in AC3-I transgenic mice leads to an impaired adaptation of ECC to hyperacute pressure overload resulting in diminished cardiac contractility and increased death. Thus, our data suggest that in pressure overload the activation of CaMKII is a pivotal, but previously unknown part of hyperacute stress physiology in the heart, while CaMKII inhibition, albeit potentially antiarrhythmic, can be detrimental. This should be taken into account for future studies with CaMKII inhibitors as therapeutic agents.
Collapse
|
37
|
Zhang G, Wang X, Bi X, Li C, Deng Y, Al-Hashimi AA, Luo X, Gillette TG, Austin RC, Wang Y, Wang ZV. GRP78 (Glucose-Regulated Protein of 78 kDa) Promotes Cardiomyocyte Growth Through Activation of GATA4 (GATA-Binding Protein 4). Hypertension 2019; 73:390-398. [PMID: 30580686 DOI: 10.1161/hypertensionaha.118.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heart manifests hypertrophic growth in response to elevation of afterload pressure. Cardiac myocyte growth involves new protein synthesis and membrane expansion, of which a number of cellular quality control machineries are stimulated to maintain function and homeostasis. The unfolded protein response is potently induced during cardiac hypertrophy to enhance protein-folding capacity and eliminate terminally misfolded proteins. However, whether the unfolded protein response directly regulates cardiac myocyte growth remains to be fully determined. Here, we show that GRP78 (glucose-regulated protein of 78 kDa)-an endoplasmic reticulum-resident chaperone and a critical unfolded protein response regulator-is induced by cardiac hypertrophy. Importantly, overexpression of GRP78 in cardiomyocytes is sufficient to potentiate hypertrophic stimulus-triggered growth. At the in vivo level, TG (transgenic) hearts overexpressing GRP78 mount elevated hypertrophic growth in response to pressure overload. We went further to show that GRP78 increases GATA4 (GATA-binding protein 4) level, which may stimulate Anf (atrial natriuretic factor) expression and promote cardiac hypertrophic growth. Silencing of GATA4 in cultured neonatal rat ventricular myocytes significantly diminishes GRP78-mediated growth response. Our results, therefore, reveal that protein-folding chaperone GRP78 may directly enhance cardiomyocyte growth by stimulating cardiac-specific transcriptional factor GATA4.
Collapse
Affiliation(s)
- Guangyu Zhang
- From the Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z., Y.W.).,Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Xukun Bi
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas.,Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B.)
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Yingfeng Deng
- Department of Internal Medicine, Touchstone Diabetes Center (Y.D.), University of Texas Southwestern Medical Center, Dallas
| | - Ali A Al-Hashimi
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Center for Kidney Research, ON, Canada (A.A.A.-H., R.C.A.)
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Center for Kidney Research, ON, Canada (A.A.A.-H., R.C.A.)
| | - Yanggan Wang
- From the Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z., Y.W.).,Medical Research Institute of Wuhan University, Wuhan University, Hubei, China (Y.W.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
38
|
Skaria T, Mitchell KJ, Vogel O, Wälchli T, Gassmann M, Vogel J. Blood Pressure Normalization-Independent Cardioprotective Effects of Endogenous, Physical Activity-Induced αCGRP (α Calcitonin Gene-Related Peptide) in Chronically Hypertensive Mice. Circ Res 2019; 125:1124-1140. [PMID: 31665965 DOI: 10.1161/circresaha.119.315429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RATIONALE αCGRP (α calcitonin gene-related peptide), one of the strongest vasodilators, is cardioprotective in hypertension by reducing the elevated blood pressure. OBJECTIVE However, we hypothesize that endogenous, physical activity-induced αCGRP has blood pressure-independent cardioprotective effects in chronic hypertension. METHODS AND RESULTS Chronically hypertensive (one-kidney-one-clip surgery) wild-type and αCGRP-/- sedentary or voluntary wheel running mice were treated with vehicle, αCGRP, or the αCGRP receptor antagonist CGRP8-37. Cardiac function and myocardial phenotype were evaluated echocardiographically and by molecular, cellular, and histological analysis, respectively. Blood pressure was similar among all hypertensive experimental groups. Endogenous αCGRP limited pathological remodeling and heart failure in sedentary, chronically hypertensive wild-type mice. In these mice, voluntary wheel running significantly improved myocardial phenotype and function, which was abolished by CGRP8-37 treatment. In αCGRP-/- mice, αCGRP treatment, in contrast to voluntary wheel running, improved myocardial phenotype and function. Specific inhibition of proliferation and myofibroblast differentiation of primary, murine cardiac fibroblasts by αCGRP suggests involvement of these cells in αCGRP-dependent blunting of pathological cardiac remodeling. CONCLUSIONS Endogenous, physical activity-induced αCGRP has blood pressure-independent cardioprotective effects and is crucial for maintaining cardiac function in chronic hypertension. Consequently, inhibiting endogenous αCGRP signaling, as currently approved for migraine prophylaxis, could endanger patients with hypertension.
Collapse
Affiliation(s)
- Tom Skaria
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland.,Zürich Center for Integrative Human Physiology (ZIHP), Switzerland (T.S., M.G., J.V.)
| | - Katharyn Jean Mitchell
- Clinic for Equine Internal Medicine, Equine Department (K.J.M.), Vetsuisse Faculty, University of Zürich, Switzerland
| | - Olga Vogel
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland
| | - Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Institute for Regenerative Medicine, Neuroscience Center Zürich (T.W.), University Hospital Zürich, Switzerland.,Division of Neurosurgery (T.W.), University Hospital Zürich, Switzerland.,Group of Brain Vasculature and Neurovascular Unit, Division of Neurosurgery, Department of Clinical Neurosciences, University Hospital Geneva, Switzerland (T.W.).,Department of Fundamental Neurobiology, Krembil Research Institute (T.W.), University Health Network, University of Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital (T.W.), University Health Network, University of Toronto, Canada
| | - Max Gassmann
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland.,Zürich Center for Integrative Human Physiology (ZIHP), Switzerland (T.S., M.G., J.V.).,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru (M.G.)
| | - Johannes Vogel
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland.,Zürich Center for Integrative Human Physiology (ZIHP), Switzerland (T.S., M.G., J.V.)
| |
Collapse
|
39
|
Affiliation(s)
- Gabriele G Schiattarella
- From Departments of Internal Medicine (Cardiology) (G.G.S., T.M.H., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Theodore M Hill
- From Departments of Internal Medicine (Cardiology) (G.G.S., T.M.H., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A Hill
- From Departments of Internal Medicine (Cardiology) (G.G.S., T.M.H., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
40
|
Green LC, Anthony SR, Slone S, Lanzillotta L, Nieman ML, Wu X, Robbins N, Jones SM, Roy S, Owens AP, Aube J, Xu L, Lorenz JN, Blaxall BC, Rubinstein J, Benoit JB, Tranter M. Human antigen R as a therapeutic target in pathological cardiac hypertrophy. JCI Insight 2019; 4:121541. [PMID: 30668549 DOI: 10.1172/jci.insight.121541] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
RNA binding proteins represent an emerging class of proteins with a role in cardiac dysfunction. We show that activation of the RNA binding protein human antigen R (HuR) is increased in the failing human heart. To determine the functional role of HuR in pathological cardiac hypertrophy, we created an inducible cardiomyocyte-specific HuR-deletion mouse and showed that HuR deletion reduces left ventricular hypertrophy, dilation, and fibrosis while preserving cardiac function in a transverse aortic constriction (TAC) model of pressure overload-induced hypertrophy. Assessment of HuR-dependent changes in global gene expression suggests that the mechanistic basis for this protection occurs through a reduction in fibrotic signaling, specifically through a reduction in TGF-β (Tgfb) expression. Finally, pharmacological inhibition of HuR at a clinically relevant time point following the initial development of pathological hypertrophy after TAC also yielded a significant reduction in pathological progression, as marked by a reduction in hypertrophy, dilation, and fibrosis and preserved function. In summary, this study demonstrates a functional role for HuR in the progression of pressure overload-induced cardiac hypertrophy and establishes HuR inhibition as a viable therapeutic approach for pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Lisa C Green
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sarah R Anthony
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Samuel Slone
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lindsey Lanzillotta
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Nathan Robbins
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Shannon M Jones
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - A Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Jeffrey Aube
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Burns C Blaxall
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| |
Collapse
|
41
|
Li S, Peng B, Luo X, Sun H, Peng C. Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases. J Cell Mol Med 2019; 23:2744-2752. [PMID: 30712293 PMCID: PMC6433722 DOI: 10.1111/jcmm.14181] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/27/2023] Open
Abstract
Cardiac hypertrophy has become a major cardiovascular problem wordwide and is considered the early stage of heart failure. Treatment and prevention strategies are needed due to the suboptimal efficacy of current treatment methods. Recently, many studies have demonstrated the important role of histone acetylation in myocardium remodelling along with cardiac hypertrophy. A Chinese herbal extract containing anacardic acid (AA) is known to possess strong histone acetylation inhibitory effects. In previous studies, we demonstrated that AA could reverse alcohol‐induced cardiac hypertrophy in an animal model at the foetal stage. Here, we investigated whether AA could attenuate cardiac hypertrophy through the modulation of histone acetylation and explored its potential mechanisms in the hearts of transverse aortic constriction (TAC) mice. This study showed that AA attenuated hyperacetylation of acetylated lysine 9 on histone H3 (H3K9ac) by inhibiting the expression of p300 and p300/CBP‐associated factor (PCAF) in TAC mice. Moreover, AA normalized the transcriptional activity of the heart nuclear transcription factor MEF2A. The high expression of cardiac hypertrophy‐linked genes (ANP, β‐MHC) was reversed through AA treatment in the hearts of TAC mice. Additionally, we found that AA improved cardiac function and survival rate in TAC mice. The current results further highlight the mechanism by which histone acetylation is controlled by AA treatment, which may help prevent and treat hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| | - Xiaomei Luo
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huichao Sun
- Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| |
Collapse
|
42
|
Unudurthi SD, Nassal D, Greer-Short A, Patel N, Howard T, Xu X, Onal B, Satroplus T, Hong D, Lane C, Dalic A, Koenig SN, Lehnig AC, Baer LA, Musa H, Stanford KI, Smith S, Mohler PJ, Hund TJ. βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload. J Clin Invest 2018; 128:5561-5572. [PMID: 30226828 DOI: 10.1172/jci99245] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/13/2018] [Indexed: 01/19/2023] Open
Abstract
Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin-KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based "statosome" will be effective at suppressing maladaptive remodeling in response to chronic stress.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deborah Hong
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Cemantha Lane
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Alyssa Dalic
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sara N Koenig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Adam C Lehnig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Lisa A Baer
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Hassan Musa
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kristin I Stanford
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Sakima Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
43
|
Trembley MA, Quijada P, Agullo-Pascual E, Tylock KM, Colpan M, Dirkx RA, Myers JR, Mickelsen DM, de Mesy Bentley K, Rothenberg E, Moravec CS, Alexis JD, Gregorio CC, Dirksen RT, Delmar M, Small EM. Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors Is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy. Circulation 2018; 138:1864-1878. [PMID: 29716942 PMCID: PMC6202206 DOI: 10.1161/circulationaha.117.031788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hypertrophic cardiomyocyte growth and dysfunction accompany various forms of heart disease. The mechanisms responsible for transcriptional changes that affect cardiac physiology and the transition to heart failure are not well understood. The intercalated disc (ID) is a specialized intercellular junction coupling cardiomyocyte force transmission and propagation of electrical activity. The ID is gaining attention as a mechanosensitive signaling hub and hotspot for causative mutations in cardiomyopathy. METHODS Transmission electron microscopy, confocal microscopy, and single-molecule localization microscopy were used to examine changes in ID structure and protein localization in the murine and human heart. We conducted detailed cardiac functional assessment and transcriptional profiling of mice lacking myocardin-related transcription factor (MRTF)-A and MRTF-B specifically in adult cardiomyocytes to evaluate the role of mechanosensitive regulation of gene expression in load-induced ventricular remodeling. RESULTS We found that MRTFs localize to IDs in the healthy human heart and accumulate in the nucleus in heart failure. Although mice lacking MRTFs in adult cardiomyocytes display normal cardiac physiology at baseline, pressure overload leads to rapid heart failure characterized by sarcomere disarray, ID disintegration, chamber dilation and wall thinning, cardiac functional decline, and partially penetrant acute lethality. Transcriptional profiling reveals a program of actin cytoskeleton and cardiomyocyte adhesion genes driven by MRTFs during pressure overload. Indeed, conspicuous remodeling of gap junctions at IDs identified by single-molecule localization microscopy may partially stem from a reduction in Mapre1 expression, which we show is a direct mechanosensitive MRTF target. CONCLUSIONS Our study describes a novel paradigm in which MRTFs control an acute mechanosensitive signaling circuit that coordinates cross-talk between the actin and microtubule cytoskeleton and maintains ID integrity and cardiomyocyte homeostasis in heart disease.
Collapse
MESH Headings
- Aged
- Animals
- Animals, Newborn
- COS Cells
- Case-Control Studies
- Chlorocebus aethiops
- Connexin 43/genetics
- Connexin 43/metabolism
- Female
- Gene Expression Regulation
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mechanotransduction, Cellular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- NIH 3T3 Cells
- Single Molecule Imaging
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Michael A. Trembley
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | - Pearl Quijada
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Kevin M. Tylock
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Mert Colpan
- Department of Cellular and Molecular Medicine, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | - Jason R. Myers
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | | | - Jeffrey D. Alexis
- Division of Cardiology, Department of Medicine, University of Rochester, Rochester, NY
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Mario Delmar
- The Leon H Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Eric M. Small
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Author for correspondence: Eric M. Small, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, Phone: (585)276-7706, Fax: (585) 276-9839,
| |
Collapse
|
44
|
Weiss RM, Chu Y, Brooks RM, Lund DD, Cheng J, Zimmerman KA, Kafa MK, Sistla P, Doshi H, Shao JQ, El Accaoui RN, Otto CM, Heistad DD. Discovery of an Experimental Model of Unicuspid Aortic Valve. J Am Heart Assoc 2018; 7:JAHA.117.006908. [PMID: 29960994 PMCID: PMC6064885 DOI: 10.1161/jaha.117.006908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The epithelial growth factor receptor family of tyrosine kinases modulates embryonic formation of semilunar valves. We hypothesized that mice heterozygous for a dominant loss‐of‐function mutation in epithelial growth factor receptor, which are EgfrVel/+ mice, would develop anomalous aortic valves, valve dysfunction, and valvular cardiomyopathy. Methods and Results Aortic valves from EgfrVel/+ mice and control mice were examined by light microscopy at 2.5 to 4 months of age. Additional EgfrVel/+ and control mice underwent echocardiography at 2.5, 4.5, 8, and 12 months of age, followed by histologic examination. In young mice, microscopy revealed anatomic anomalies in 79% of EgfrVel/+ aortic valves, which resembled human unicuspid aortic valves. Anomalies were not observed in control mice. At 12 months of age, histologic architecture was grossly distorted in EgfrVel/+ aortic valves. Echocardiography detected moderate or severe aortic regurgitation, or aortic stenosis was present in 38% of EgfrVel/+ mice at 2.5 months of age (N=24) and in 74% by 8 months of age. Left ventricular enlargement, hypertrophy, and reversion to a fetal myocardial gene expression program occurred in EgfrVel/+ mice with aortic valve dysfunction, but not in EgfrVel/+ mice with near‐normal aortic valve function. Myocardial fibrosis was minimal or absent in all groups. Conclusions A new mouse model uniquely recapitulates salient functional, structural, and histologic features of human unicuspid aortic valve disease, which are phenotypically distinct from other forms of congenital aortic valve disease. The new model may be useful for elucidating mechanisms by which congenitally anomalous aortic valves become critically dysfunctional.
Collapse
Affiliation(s)
- Robert M Weiss
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Yi Chu
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Robert M Brooks
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Donald D Lund
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Justine Cheng
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Kathy A Zimmerman
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Melissa K Kafa
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Phanicharan Sistla
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Hardik Doshi
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Jian Q Shao
- The Central Microscopy Core, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Ramzi N El Accaoui
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Catherine M Otto
- Division of Cardiology, University of Washington School of Medicine, Seattle, WA
| | - Donald D Heistad
- Division of Cardiovascular Medicine, Carver College of Medicine University of Iowa, Iowa City, IA.,Department of Pharmacology, Carver College of Medicine University of Iowa, Iowa City, IA
| |
Collapse
|
45
|
A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD + Decline. Cell Metab 2018; 27:1081-1095.e10. [PMID: 29719225 PMCID: PMC5935140 DOI: 10.1016/j.cmet.2018.03.016] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/10/2018] [Accepted: 02/24/2018] [Indexed: 11/22/2022]
Abstract
Aging is characterized by the development of metabolic dysfunction and frailty. Recent studies show that a reduction in nicotinamide adenine dinucleotide (NAD+) is a key factor for the development of age-associated metabolic decline. We recently demonstrated that the NADase CD38 has a central role in age-related NAD+ decline. Here we show that a highly potent and specific thiazoloquin(az)olin(on)e CD38 inhibitor, 78c, reverses age-related NAD+ decline and improves several physiological and metabolic parameters of aging, including glucose tolerance, muscle function, exercise capacity, and cardiac function in mouse models of natural and accelerated aging. The physiological effects of 78c depend on tissue NAD+ levels and were reversed by inhibition of NAD+ synthesis. 78c increased NAD+ levels, resulting in activation of pro-longevity and health span-related factors, including sirtuins, AMPK, and PARPs. Furthermore, in animals treated with 78c we observed inhibition of pathways that negatively affect health span, such as mTOR-S6K and ERK, and attenuation of telomere-associated DNA damage, a marker of cellular aging. Together, our results detail a novel pharmacological strategy for prevention and/or reversal of age-related NAD+ decline and subsequent metabolic dysfunction.
Collapse
|
46
|
Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2 + Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload. ACTA ACUST UNITED AC 2018; 3:230-244. [PMID: 30062209 PMCID: PMC6059350 DOI: 10.1016/j.jacbts.2017.12.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/11/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
Hypothesis: CCR2+ monocyte-derived cardiac macrophages are required for adverse LV remodeling, cardiac T-cell expansion, and the transition to HF following pressure overload. The imposition of pressure overload via TAC resulted in the early up-regulation of CCL2, CCL7, and CCL12 chemokines in the LV, increased Ly6ChiCCR2+ monocytes in the blood, and augmented CCR2+ infiltrating macrophages in the heart. Specific and circumscribed inhibition of CCR2+ monocytes and macrophages early during pressure overload reduced pathological hypertrophy, fibrosis, and systolic dysfunction during the late phase of pressure overload. The early expansion of CCR2+ macrophages after pressure overload was required for long-term cardiac T-cell expansion. CCR2+ monocytes/macrophages may represent key targets for immunomodulation to delay or prevent HF in pressure-overload states.
Although chronic inflammation is a central feature of heart failure (HF), the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2)+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF.
Collapse
Key Words
- APC, antigen presenting cell
- BNP, B-type natriuretic peptide
- CCL, C-C motif chemokine ligand
- CCR2, C-C chemokine receptor 2
- DC, dendritic cell
- EDTA, ethylenediaminetetraacetic acid
- EF, ejection fraction
- HF, heart failure
- ICAM, intercellular adhesion molecule
- IFN, interferon
- IL, interleukin
- LN, lymph node
- LV, left ventricular
- MerTK, c-mer proto-oncogene tyrosine kinase
- PBS, phosphate-buffered saline
- T cells
- TAC, transverse aortic constriction
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- VCAM, vascular cell adhesion molecule
- cardiac remodeling
- heart failure
- i.p., intraperitoneally
- inflammation
- macrophages
Collapse
Affiliation(s)
- Bindiya Patel
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shyam S Bansal
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohamed Ameen Ismahil
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tariq Hamid
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregg Rokosh
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama.,Medical Service, Birmingham VAMC, Birmingham, Alabama
| |
Collapse
|
47
|
Gottlieb M, Long B, Koyfman A. Evaluation and Management of Aortic Stenosis for the Emergency Clinician: An Evidence-Based Review of the Literature. J Emerg Med 2018. [PMID: 29525246 DOI: 10.1016/j.jemermed.2018.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Aortic stenosis is a common condition among older adults that can be associated with dangerous outcomes, due to both the disease itself and its influence on other conditions. OBJECTIVE This review provides an evidence-based summary of the current emergency department (ED) evaluation and management of aortic stenosis. DISCUSSION Aortic stenosis refers to significant narrowing of the aortic valve and can be caused by calcific disease, congenital causes, or rheumatic valvular disease. Symptoms of advanced disease include angina, dyspnea, and syncope. Patients with these symptoms have a much higher mortality rate than asymptomatic patients. Initial evaluation should include an electrocardiogram, complete blood count, basic metabolic profile, coagulation studies, troponin, brain natriuretic peptide, type and screen, and a chest radiograph. Transthoracic echocardiogram is the test of choice, but point-of-care ultrasound has been found to have good accuracy when a formal echocardiogram is not feasible. Initial management should begin with restoring preload and ensuring a normal heart rate, as both bradycardia and tachycardia can lead to clinical decompensation. For patients with high blood pressure and heart failure symptoms, nitrate agents may be reasonable, but hypotension should be avoided. Dobutamine can increase inotropy. For hypotensive patients, vasopressors should be used at the lowest effective dose. The treatment of choice is valve replacement, but extracorporeal membrane oxygenation and percutaneous balloon dilatation of the aortic valve have been described as temporizing measures. CONCLUSION Aortic stenosis is an important condition that can lead to dangerous outcomes and requires prompt recognition and disease-specific management in the ED.
Collapse
Affiliation(s)
- Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, Illinois
| | - Brit Long
- Department of Emergency Medicine, San Antonio Military Medical Center, Fort Sam Houston, Texas
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
48
|
Alterations of Ocular Hemodynamics Impair Ophthalmic Vascular and Neuroretinal Function. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:818-827. [PMID: 29309745 DOI: 10.1016/j.ajpath.2017.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
Abstract
Hypertension is associated with numerous diseases, but its direct impact on the ocular circulation and neuroretinal function remains unclear. Herein, mouse eyes were challenged with different levels of hemodynamic insult via transverse aortic coarctation, which increased blood pressure and flow velocity by 50% and 40%, respectively, in the right common carotid artery, and reduced those parameters by 30% and 40%, respectively, in the left common carotid artery. Blood velocity in the right central retinal artery gradually increased up to 40% at 4 weeks of transverse aortic coarctation, and the velocity in the left central retinal artery gradually decreased by 20%. The fundus and retinal architecture were unaltered by hemodynamic changes. Endothelium-dependent vasodilations to acetylcholine and adenosine were reduced only in right (hypertensive) ophthalmic arteries. Increased cellularity in the nerve fiber/ganglion cell layers, enhanced glial fibrillary acidic protein expression, and elevated superoxide level were found only in hypertensive retinas. The electroretinogram showed decreased scotopic b-waves in the hypertensive eyes and decreased scotopic oscillatory potentials in both hypertensive and hypotensive eyes. In conclusion, hypertension sustained for 4 weeks causes ophthalmic vascular dysfunction, retinal glial cell activation, oxidative stress, and neuroretinal impairment. Although ophthalmic vasoregulation is insensitive to hypotensive insult, the ocular hypoperfusion causes neuroretinal dysfunction.
Collapse
|
49
|
A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat Med 2017; 24:62-72. [DOI: 10.1038/nm.4452] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
|
50
|
Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Circ Res 2017; 121:1000-1020. [DOI: 10.1161/circresaha.117.310355] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium (Ca
2+
) is a universal regulator of various cellular functions. In cardiomyocytes, Ca
2+
is the central element of excitation–contraction coupling, but also impacts diverse signaling cascades and influences the regulation of gene expression, referred to as excitation–transcription coupling. Disturbances in cellular Ca
2+
-handling and alterations in Ca
2+
-dependent gene expression patterns are pivotal characteristics of failing cardiomyocytes, with several excitation–transcription coupling pathways shown to be critically involved in structural and functional remodeling processes. Thus, targeting Ca
2+
-dependent transcriptional pathways might offer broad therapeutic potential. In this article, we (1) review cytosolic and nuclear Ca
2+
dynamics in cardiomyocytes with respect to their impact on Ca
2+
-dependent signaling, (2) give an overview on Ca
2+
-dependent transcriptional pathways in cardiomyocytes, and (3) discuss implications of excitation–transcription coupling in the diseased heart.
Collapse
Affiliation(s)
- Matthias Dewenter
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Albert von der Lieth
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Hugo A. Katus
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Johannes Backs
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| |
Collapse
|