1
|
Song J, Du J, Tan X, Chen H, Cong B. Bradykinin attenuates endothelial-mesenchymal transition following cardiac ischemia-reperfusion injury. Eur J Pharmacol 2024; 971:176556. [PMID: 38574840 DOI: 10.1016/j.ejphar.2024.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
AIMS Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined. MATERIALS AND METHODS Rats were subjected to ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5 μg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro. RESULTS Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor β1 (TGFβ1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition. CONCLUSION Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.
Collapse
Affiliation(s)
- Jinchao Song
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China; Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiankui Du
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China; Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Haiyan Chen
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China
| | - Binhai Cong
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
2
|
Nourbakhsh F, Askari VR. Biological and pharmacological activities of noscapine: Focusing on its receptors and mechanisms. Biofactors 2021; 47:975-991. [PMID: 34534373 DOI: 10.1002/biof.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Noscapine has been mentioned as one of the effective drugs with potential therapeutic applications. With few side effects and amazing capabilities, noscapine can be considered different from other opioids-like structure compounds. Since 1930, extensive studies have been conducted in the field of pharmacological treatments from against malaria to control cough and cancer treatment. Furthermore, recent studies have shown that noscapine and some analogues, like 9-bromonoscapine, amino noscapine, and 9-nitronoscapine, can be used to treat polycystic ovaries syndrome, stroke, and other diseases. Given the numerous results presented in this field and the role of different receptors in the therapeutic effects of noscapine, we aimed to review the properties, therapeutic effects, and the role of receptors in the treatment of noscapine.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ahmed T, Archie SR, Faruk A, Chowdhury FA, Al Shoyaib A, Ahsan CR. Evaluation of the Anti-Inflammatory Activities of Diclofenac Sodium, Prednisolone and Atorvastatin in Combination with Ascorbic Acid. Antiinflamm Antiallergy Agents Med Chem 2021; 19:291-301. [PMID: 31084596 PMCID: PMC7499360 DOI: 10.2174/1871523018666190514112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Objectives: Inflammation is our body’s normal defense mechanism, but in some cases, it may be responsible for causing different kinds of disorders. Several anti-inflammatory drugs are present for the treatment of these disorders; however, the conventional anti-inflammatory drugs cause side effects when used in the long term and therefore, it is better to use them in a low dose for a shorter duration of time. This study was designed to find out whether there is an augmentation of the therapeutic effectiveness of the anti-inflammatory drugs like diclofenac sodium (NSAID), prednisolone (steroid) and atorvastatin (statin) when used in combination with ascorbic acid (antioxidant). Methods: Wistar Rats (n=144) were selected and divided into 24 groups of 6 rats in each. Carrageenan and formalin were used to induce local inflammation and neuropsychiatric effects, respectively. The inhibitions of such responses were measured after administering a drug alone and in combination with ascorbic acid. Results: In case of carrageenan mediated inflammation, the combination of 5 mg/kg diclofenac and 200 mg/kg ascorbic acid gave the highest inhibition of 74.19% compared to other groups of drugs. The combination of 5 mg/kg diclofenac and 200 mg/kg ascorbic acid gave 97.25% inhibition for formalin-mediated inflammation group. In both cases, combination therapy showed statistically significant anti-inflammatory activities compared to monotherapy (p values <0.05). Conclusion: All the data clearly indicate new combinations of drug therapy comprising diclofenac sodium, prednisolone, atorvastatin with ascorbic acid, which may be more effective against both local edema and the neuropsychiatric effect caused due to inflammation.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmacy, BRAC University, Dhaka-1212, Bangladesh
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Asef Faruk
- Department of Pharmacy, BRAC University, Dhaka-1212, Bangladesh
| | | | - Abdullah Al Shoyaib
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | | |
Collapse
|
4
|
Hariri MA, Jaffa MA, Saoud R, Zhao J, Zhu R, Jaffa AA, El-Achkar GA, Moussa M, Kobeissy F, Hassan A, Ziyadeh FN, Mechref Y, Jaffa AA. Vascular Cells Proteome Associated with Bradykinin and Leptin Inflammation and Oxidative Stress Signals. Antioxidants (Basel) 2020; 9:antiox9121251. [PMID: 33316969 PMCID: PMC7764689 DOI: 10.3390/antiox9121251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Among the primary contributors to cardiovascular diseases are inflammation and oxidative imbalance within the vessel walls as well as the fibrosis of rat aortic smooth muscle cell (RASMC). Bradykinin (BK) and leptin are inflammatory modulators that are linked to vascular injury. In this study, we employed tandem LC-MS/MS to identify protein signatures that encompass protein abundance in RASMC treated with BK or leptin followed by systems biology analyses to gain insight into the biological pathways and processes linked to vascular remodeling. In the study, 1837 proteins were identified in control untreated RASMC. BK altered the expression of 72 (4%) and 120 (6.5%) proteins, whereas leptin altered the expression of 189 (10.2%) and 127 (6.5%) proteins after 24 and 48 h, respectively, compared to control RASMC. BK increased the protein abundance of leptin receptor, transforming growth factor-β. On the other hand, leptin increased the protein abundance of plasminogen activator inhibitor 1 but decreased the protein abundance of cofilin. BK and leptin induced the expression of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) and pathway analysis revealed the activation of mitogen-activated protein kinases (MAPKs) and AKT pathways. The proteome profile in response to BK and leptin revealed mechanistic interplay of multiple processes that modulate inflammation and oxidative stress signals in the vasculature.
Collapse
Affiliation(s)
- Moustafa Al Hariri
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Richard Saoud
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.Z.); (R.Z.)
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.Z.); (R.Z.)
| | - Aneese A. Jaffa
- Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Ghewa A. El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar;
| | - Fuad N. Ziyadeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.Z.); (R.Z.)
- Correspondence: (Y.M.); (A.A.J.); Tel.: +1812-219-1972 (Y.M.); +961-1-350000 (A.A.J.)
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (M.A.H.); (R.S.); (G.A.E.-A.); (M.M.); (F.K.); (F.N.Z.)
- Correspondence: (Y.M.); (A.A.J.); Tel.: +1812-219-1972 (Y.M.); +961-1-350000 (A.A.J.)
| |
Collapse
|
5
|
Ashcheulova TV, Gerasimchuk NN, Kovalyova ON, Kompaniiets KN, Honchar OV. Effects of antihypertensive treatment on systemic inflammation, oxidative stress and proinflammatory cytokine levels. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hypertension in its origin is a heterogeneous and multisystemic disease. Evaluation of oxidative stress activity based on the level of 8-iso-PgF2α, proinflammatory activity based on tumour necrosis factor-α, its type I soluble receptor, and C-reactive protein levels is relevant for further understanding of pathogenesis of hypertension and improvement of the early diagnostics of heart failure. 186 hypertensive patients were observed during a 2-months course of treatment, aged 30 to 65 years. Serum levels of 8-iso-PgF2α (n = 34), tumour necrosis factor-α and its type I soluble receptor were determined by ELISA before and after course of treatment. C-reactive protein level was determined by biochemical method. The control group included 16 clinically healthy individuals, aged 27 to 55 years. Hypertensive patients enrolled into the study were randomized into three groups that received different protocols of combined anti-hypertensive therapy: I clinical group – а combination of bisoprolol and indapamid, II – а combination of lacidipine and candesartan, III – а combination of fosinopril sodium and hydrochlorothiazide. On the background of combined antihypertensive therapy, we observed favourable dynamics of 8-iso-PgF2α, tumour necrosis factor-α and its type I soluble receptor, and C-reactive protein levels. Taking into account the insignificance of the correlations revealed, a one-factor dispersion analysis was applied which allowed us to determine the influence of the grade and duration of hypertension on the dynamics of the studied parameters. It has been found that the grade of hypertension is related to an increase in TNF-α and 8-iso-PgF2α serum levels, but not in TNF-α type I soluble receptor, and the duration of hypertension is related to an increase in C-reactive protein, TNF-α and its type I soluble receptor levels, with no relation to the level of 8-iso-PgF2α. Thus, oxidative stress possibly promotes the activation of potentially damaging immune mechanisms mediated by proinflammatory cytokines, nonspecific inflammation and drives the further progression of lesions in the target organs.
Collapse
|
6
|
Cheng MH, Kim SJ. Inhibitory Effect of Probenecid on Osteoclast Formation via JNK, ROS and COX-2. Biomol Ther (Seoul) 2020; 28:104-109. [PMID: 31474032 PMCID: PMC6939694 DOI: 10.4062/biomolther.2019.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022] Open
Abstract
Probenecid is a representative drug used in the treatment of gout. A recent study showed that probenecid effectively inhibits oxidative stress in neural cells. In the present study, we investigated whether probenecid can affect osteoclast formation through the inhibition of reactive oxygen species (ROS) formation in RAW264.7 cells. Lipopolysaccharide (LPS)-induced ROS levels were dose-dependently reduced by probenecid. Fluorescence microscopy analysis clearly showed that probenecid inhibits the generation of ROS. Western blot analysis indicated that probenecid affects two downstream signaling molecules of ROS, cyclooxygenase 2 (COX-2) and c-Jun N-terminal kinase (JNK). These results indicate that probenecid inhibits ROS generation and exerts antiosteoclastogenic activity by inhibiting the COX-2 and JNK pathways. These results suggest that probenecid could potentially be used as a therapeutic agent to prevent bone resorption.
Collapse
Affiliation(s)
- Mi Hyun Cheng
- Department of Pharmacology and Toxicology, School of Dentistry, Graduate School, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, School of Dentistry, Graduate School, Kyung Hee University, Seoul 02447,
Republic of Korea
| |
Collapse
|
7
|
Kubota Y, Musashi M, Nagasawa T, Shimura N, Igarashi R, Yamaguchi Y. Novel nanocapsule of α-lipoic acid reveals pigmentation improvement: α-Lipoic acid stimulates the proliferation and differentiation of keratinocyte in murine skin by topical application. Exp Dermatol 2019; 28 Suppl 1:55-63. [DOI: 10.1111/exd.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshiki Kubota
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Mina Musashi
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Teruaki Nagasawa
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Nanako Shimura
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Rie Igarashi
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
- Institute of Medical Science; School of Medicine; St. Marianna University; Kawasaki-shi Kanagawa Japan
| | - Yoko Yamaguchi
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
- Institute of Medical Science; School of Medicine; St. Marianna University; Kawasaki-shi Kanagawa Japan
| |
Collapse
|
8
|
Niewiarowska-Sendo A, Kozik A, Guevara-Lora I. Influence of bradykinin B2 receptor and dopamine D2 receptor on the oxidative stress, inflammatory response, and apoptotic process in human endothelial cells. PLoS One 2018; 13:e0206443. [PMID: 30427893 PMCID: PMC6241119 DOI: 10.1371/journal.pone.0206443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/13/2018] [Indexed: 01/11/2023] Open
Abstract
Endothelial dysfunction is a hallmark of a wide range of cardiovascular diseases and is often linked to oxidative stress and inflammation. Our earlier study reported the formation of a functional heterodimer between bradykinin receptor 2 (B2R) and dopamine receptor 2 (D2R) that may modulate cell responses, dependent on intracellular signaling. Here, for the first time, we showed a cooperative effect of these receptors on the modulation of processes involved in oxidative stress, inflammation, and apoptosis in endothelial cells. Sumanirole, a specific D2R agonist, was shown to diminish the excessive production of reactive oxygen species induced by bradykinin, a proinflammatory B2R-activating peptide. This effect was accompanied by modified activities of antioxidant enzymes and increased phosphorylation of endothelial nitric oxide synthase, leading to enhance NO production. In turn, endothelial cell co-stimulation with B2R and D2R agonists inhibited the release of interleukin-6 and endothelin-1 and modulated the expression of apoptosis markers, such as Bcl-2, Bcl-xL, Bax, and caspase 3/7 activity. All these observations argue that the D2R agonist counteracts the pro-oxidative, pro-inflammatory, and pro-apoptotic effects induced through B2R, finally markedly improving endothelial functions.
Collapse
Affiliation(s)
- Anna Niewiarowska-Sendo
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
- * E-mail:
| |
Collapse
|
9
|
Zhuang Y, Mao JQ, Yu M, Dong LY, Fan YL, Lv ZQ, Xiao MD, Yuan ZX. Hyperlipidemia induces vascular smooth muscle cell proliferation involving Wnt/β-catenin signaling. Cell Biol Int 2015; 40:121-30. [PMID: 26346812 DOI: 10.1002/cbin.10543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
Abstract
Hyperlipidemia has been shown to stimulate vascular smooth muscle cell (VSMC) proliferation. Wnt signaling pathway plays a critical role in embryonic development and cell proliferation. In this study, Sprague-Dawley rats fed with high-fat or normal diet for 12 weeks were sacrificed, and the thoracic aorta was harvested to determine wnt3a, β-catenin, T-cell factor 4 (TCF4), and cyclin D1 expressions. VSMC proliferation within thoracic aorta and lipid accumulation within VSMCs were detected. Rat aortic VSMCs were cultured in serum from rats with hyperlipidemia or DKK-1; Wnt3a, β-catenin, TCF4, and cyclin D1 expressions, and cell cycle distribution were determined. The findings demonstrated that increased number of VSMCs, lipid droplets, and vacuoles within thoracic aorta in the high-fat-fed group. Compared with controls, VSMCs from high-fat-fed rats showed higher mRNA expressions of wnt3a, β-catenin, TCF4, and cyclin D1, as well as in VSMCs cultured with hyperlipidemic serum. After 24 h, VSMCs stimulated with hyperlipidemic serum showed significantly increased cell number and S-phase entry compared with cells exposed to normolipidemic serum. These effects were blocked by DKK-1. These results suggest that Wnt/β-catenin signaling plays an important role in hyperlipidemia-induced VSMC proliferation.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Jian-Qiang Mao
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Li-Ya Dong
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Yong-Liang Fan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Zhi-Qian Lv
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, PR China
| | - Ming-Di Xiao
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Zhong-Xiang Yuan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| |
Collapse
|
10
|
Popescu T, Lupu AR, Feder M, Tarabasanu-Mihaila D, Teodorescu VS, Vlaicu AM, Diamandescu L. In vitro toxicity evaluation of Ti(4+)-stabilized γ-Bi2O3 sillenites. Toxicol In Vitro 2014; 28:1523-30. [PMID: 25025181 DOI: 10.1016/j.tiv.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
We report results regarding the in vitro toxicology of γ-Bi2O3 represented by its isomorphous phase Bi12TiO20 (γ-BTO). The γ-BTO microparticles were synthesized by two methods: coprecipitation from a bismuth nitrate-tetrabutyl titanate solution and solid state reaction of Bi2O3 and TiO2 oxides. The structural and morphological characteristics of the obtained materials were determined using X-ray diffraction (XRD), selected area electron diffraction (SAED), transmission (TEM) and scanning (SEM) electron microscopy. The elemental composition was investigated using energy dispersive spectrometry (EDS). The cytotoxicity and oxidative/nitrosative stress (intracellular reactive oxygen species (ROS) and nitric oxide (NO) release) induced by the studied microparticles in HepG2, SH-SY5Y and 3T3-L1 cell cultures were determined using the MTT, DCF-DA (2',7'-dichlorfluorescein-diacetate) and Griess methods respectively. Depending on the cell type and γ-BTO concentration, results showed only weak cytotoxic effects after 24h of γ-BTO exposure and cell proliferation effects for longer treatment times. Only reduced NO release increases (corresponding to high γ-BTO concentrations) were detected in case of SH-SY5Y and 3T3-L1 cells. The intracellular ROS production (higher for HepG2 cells) appeared inversely proportional to the γ-BTO concentration. The obtained results indicated a promising in vitro biocompatibility of γ-BTO and encourage further studies regarding its potential for biomedical applications.
Collapse
Affiliation(s)
- T Popescu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania; University of Bucharest, Faculty of Physics, Bucharest, Romania.
| | - A R Lupu
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Bucharest, Romania
| | - M Feder
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| | | | - V S Teodorescu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| | - A M Vlaicu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| | - L Diamandescu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| |
Collapse
|
11
|
Ienaga K, Sohn M, Naiki M, Jaffa AA. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells. J Recept Signal Transduct Res 2014; 34:195-200. [DOI: 10.3109/10799893.2013.876039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Lee WR, Kim A, Kim KS, Park YY, Park JH, Kim KH, Kim SJ, Park KK. Alpha-lipoic acid attenuates atherosclerotic lesions and inhibits proliferation of vascular smooth muscle cells through targeting of the Ras/MEK/ERK signaling pathway. Mol Biol Rep 2012; 39:6857-6866. [PMID: 22302393 DOI: 10.1007/s11033-012-1511-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/24/2012] [Indexed: 12/12/2022]
Abstract
An infectious burden has been suggested to be associated with atherosclerosis in humans, based on the shared and underlying inflammatory responses during infection and atherosclerosis. However, the efficacy of anti-atherogenic drugs is yet to be tested against atherosclerosis in a scenario involving an infectious burden. We have examined alpha-lipoic acid (ALA) for anti-atherogenic effects in a hypercholesterolemic diet-induced atherosclerotic mouse model with inflammatory stimulation. C57BL/6 mice were fed with a hypercholesterolemic diet for 12 weeks to induce atherosclerosis. Lipopolysaccharide was intraperitoneally injected for the 1st week of study to simulate underlying infectious burden during development of atherosclerosis. ALA treatment alleviated atherosclerotic pathologies and reduced serum cholesterol and inflammatory cytokines. Consistently, atherosclerotic markers were improved by ALA treatment. In addition, ALA attenuated the proliferation and migration of vascular smooth muscle cells upon platelet-derived growth factor stimulation through the targeting of the Ras-MEK1/2-ERK1/2 pathway. This study demonstrates the efficacy of ALA on atherosclerosis with immunological complication, by showing that ALA modulates multiple pathogenic aspects of atherosclerosis induced by a hypercholesterolemic diet with inflammatory stimulation consisting of hypercholesterolemia, inflammation and VSMC activation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/blood
- Diet, Atherogenic
- Female
- Lipids/blood
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Rats
- Rats, Sprague-Dawley
- Thioctic Acid/pharmacology
- Thioctic Acid/therapeutic use
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Nam-Gu, Daegu, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yuan G, Liu Y, Sun T, Xu Y, Zhang J, Yang Y, Zhang M, Cianflone K, Wang DW. The Therapeutic Role of Very Low-Density Lipoprotein Receptor Gene in Hyperlipidemia in Type 2 Diabetic Rats. Hum Gene Ther 2011; 22:302-12. [PMID: 21087152 DOI: 10.1089/hum.2010.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gang Yuan
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yongjian Liu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Endocrinology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tingting Sun
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yongping Xu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianhuan Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan Yang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Muxun Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Katherine Cianflone
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
14
|
Morand-Contant M, Anand-Srivastava MB, Couture R. Kinin B1 receptor upregulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms. Am J Physiol Heart Circ Physiol 2010; 299:H1625-32. [DOI: 10.1152/ajpheart.00735.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress upregulates the kinin B1 receptor (B1R) in diabetes and hypertension. Since angiotensin II (ANG II) and endothelin-1 (ET-1) are increased in these disorders, this study aims at determining the role of these two prooxidative peptides in B1R expression in rat vascular smooth muscle cells (VSMC). In the A10 cell line and aortic VSMC, ANG II enhanced B1R protein expression in a concentration- and time-dependent manner (maximal at 1 μM and 6 h). In A10 cells, ANG II (1 μM) also increased B1R mRNA expression at 3 h and the activation of induced B1R with the agonist [Sar-d-Phe8]-des-Arg9-BK (10 nM, 5 min) significantly enhanced mitogen -activated protein kinase (MAPK1/2) phosphorylation. The enhancing effect of ANG II on B1R protein expression in A10 cells was normalized by the AT1 (losartan) but not by the AT2 (PD123319) receptor antagonist. Furthermore, it was inhibited by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and NF-κB (MG132) but not of MAPK (PD098059). Whereas the ETB receptor antagonist (BQ788) had no effect, the ETA receptor antagonist (BQ123) blocked the effect of ANG II at 6–8 h but not at an early time point. BQ123 and BQ788 also blocked the increasing effect of ET-1 on B1R protein expression. Antioxidants ( N-acetyl-l-cysteine and diphenyleneiodonium) abolished ANG II- and ET-1-increased B1R protein expression. In conclusion, B1R induction is linked to oxidative stress and activation of phosphatidylinositol 3-kinase and NF-κB. The newly synthesized B1R is functional and can activate MAPK signaling in VSMC. The effect of ANG II is mediated by the AT1 receptor and the subsequent activation of ETA through ET-1 release.
Collapse
Affiliation(s)
- Marielle Morand-Contant
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Madhu B. Anand-Srivastava
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
15
|
Wang P, Du Y, Li Y, Ren D, Song CP. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. THE PLANT CELL 2010; 22:2981-98. [PMID: 20870959 PMCID: PMC2965546 DOI: 10.1105/tpc.109.072959] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 08/26/2010] [Accepted: 09/10/2010] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological and developmental processes in plants, including lateral root development. In this study, we used biochemical and genetic approaches to analyze the function of Arabidopsis thaliana mitogen-activated protein kinase 6 (MPK6) in the regulation of NO synthesis in response to hydrogen peroxide (H₂O₂) during lateral root development. In both mpk6 mutants studied, H₂O₂-induced NO synthesis and nitrate reductase (NR) activity were decreased dramatically. Furthermore, one NR isoform, NIA2, was required for the MPK6-mediated production of NO induced by H₂O₂. Notably, NIA2 interacted physically with MPK6 in vitro and in vivo and also served as a substrate of MPK6. Phosphorylation of NIA2 by MPK6 led to an increase in NR activity, and Ser-627 was identified as the putative phosphorylation site on NIA2. Phenotypical analysis revealed that mpk6-2 and mpk6-3 seedlings produce more and longer lateral roots than wild-type plants did after application of the NO donor sodium nitroprusside or H₂O₂. These data support strongly a function of MPK6 in modulating NO production and signal transduction in response to H₂O₂ during Arabidopsis root development.
Collapse
Affiliation(s)
- Pengcheng Wang
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yanyan Du
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
16
|
Zhang Y, Song L, Zhao J, Wang L, Kong P, Liu L, Wang M, Qiu L. Protective immunity induced by CpG ODNs against white spot syndrome virus (WSSV) via intermediation of virus replication indirectly in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:418-424. [PMID: 19963004 DOI: 10.1016/j.dci.2009.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
The worldwide shrimp culture is beset with diseases mainly caused by white spot syndrome virus (WSSV) and suffered huge economic losses, which bring out an urgent need to develop the novel strategies to better protect shrimps against WSSV. In the present study, CpG-rich plasmid pUC57-CpG, plasmid pUC57 and PBS were employed to pretreat shrimps comparatively to evaluate the protective effects of CpG ODNs on shrimps against WSSV. The survival rates, WSSV copy numbers, and antiviral associated factors (Dicer, Argonaute, STAT and ROS) were detected in Litopenaeus vannamei. There were higher survival proportion, lower WSSV copy numbers, and higher mRNA expression of Dicer and STAT in pUC57-CpG-pretreatment shrimps than those in pUC57- and PBS-pretreatment shrimps after WSSV infection. The Argonaute mRNA expression in pUC57-CpG-, pUC57- and PBS-pretreatment shrimps after WSSV infection was significantly higher than that of shrimps post PBS stimulation on the first day. The ROS levels in pUC57-CpG-pretreatment shrimps post secondary stimulation of PBS were significantly higher than those post WSSV infection on the first day. These results together demonstrated that pUC57-CpG induced partial protective immunity in shrimps against WSSV via intermediation of virus replication indirectly and could be used as a potential candidate in the development of therapeutic agents for disease control of WSSV in L. vannamei.
Collapse
Affiliation(s)
- Ying Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sui H, Wang W, Wang PH, Liu LS. Effect of glutathione peroxidase mimic ebselen (PZ51) on endothelium and vascular structure of stroke‐prone spontaneously hypertensive rats. Blood Press 2009; 14:366-72. [PMID: 16403691 DOI: 10.1080/08037050500210781] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND To investigate whether extrinsic antioxidant seleno-glutathione peroxidase mimic ebselen (PZ51) can protect endothelium and vascular structure of stroke-prone spontaneously hypertensive rats (SHRsp) during the chronic process of hypertension. METHODS Twenty-two 8-week-old SHRsp were randomized into a PZ51 group and a control group, and administered by gavage for 6 weeks. We examined the level of nitric oxide (NO) and malonaldehyde (MDA) in plasma. The intima-media thickness (IMT) of the common carotid artery (CCA) was measured by an image-analysis system. The endothelium of the CCA was observed by scanning electron microscopy. The eNOS protein of the major artery was assayed by immunohistochemistry and western blotting. RESULTS Compared with the control group, PZ51 decreased plasma MDA (7.88+/-1.06 vs 10.88+/-1.73 nmol/l, p<0.001) and increased plasma NO (40.02+/-9.74 vs 22.22+/-10.05 micromol/l, p<0.001), increased eNOS protein expression (8.25+/-2.36 vs 4.46+/-3.14, p=0.026), decreased IMT (69.85+/-5.47 vs 76.60+/-6.53 microm, p<0.05) significantly and alleviated the damage to the endothelium of the CCA. CONCLUSION Administration of PZ51 for 6 weeks can protect the endothelium and inhibit vascular remodeling, maybe due to its suppression of lipid peroxide formation and increase in eNOS protein expression.
Collapse
Affiliation(s)
- Hui Sui
- Cardiovascular Institute & FuWai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
18
|
|
19
|
Tinahones FJ, Rubio MA, Garrido-Sánchez L, Ruiz C, Gordillo E, Cabrerizo L, Cardona F. Green tea reduces LDL oxidability and improves vascular function. J Am Coll Nutr 2008; 27:209-13. [PMID: 18689551 DOI: 10.1080/07315724.2008.10719692] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Several different epidemiological studies have examined the association between the consumption of tea and coronary heart disease. Some, though not all, support the view that tea or flavonoids reduce the risk of cardiovascular heart disease. The aim of this study was to determine the short-to medium-term effect of a green tea extract on vascular function and lipid peroxidation as compared with placebo. METHODS The study was undertaken with 14 healthy women, none of whom were receiving any medical treatment. Measurements were made of antibodies and immune complexes by ELISA, endothelial dependent vascular function by Doppler ultrasound, and the concentration of oxidized LDL by TBARS. RESULTS The mean diameter of the brachial artery following the post-compression hyperaemia phase rose significantly (p < 0.0001) after treatment with green tea extract. Flow-mediated brachial artery vasodilation ranged from 5.68% for the placebo phase to 11.98% after the green tea extract (p = 0.02). The consumption of green tea extract was associated with a significant 37.4% reduction in the concentration of oxidized LDL (TBARS) (p = 0.017). The levels of anti-oxidized LDL IgM antibodies fell significantly after treatment (p = 0.002). CONCLUSION This study found that consumption of green tea extract by women for five weeks produced modifications in vascular function and an important decrease in serum oxidizability.
Collapse
Affiliation(s)
- F J Tinahones
- Servicio de Endocrinología, Hospital Clinico Virgen de la Victoria de Málaga, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Chiang WC, Chen YM, Lin SL, Wu KD, Tsai TJ. Bradykinin enhances reactive oxygen species generation, mitochondrial injury, and cell death induced by ATP depletion--a role of the phospholipase C-Ca(2+) pathway. Free Radic Biol Med 2007; 43:702-10. [PMID: 17664134 DOI: 10.1016/j.freeradbiomed.2007.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/26/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
This study aimed to study the effect of bradykinin on reactive oxygen species (ROS) generation, mitochondrial injury, and cell death induced by ATP depletion in cell culture. Renal tubular cells were subjected to ATP depletion. Cell death was evaluated with LDH release, sub-G0/G1 fraction, Hoechst staining, and annexin V binding assay. ROS generation, mitochondrial membrane potential (DeltaPsi(m)), and intramitochondrial calcium were evaluated with flow cytometry. Translocation of cytochrome c and activation of apoptotic protein were analyzed with cell fractionating and Western blotting. Intracellular calcium was measured with a spectrofluorometer. Bradykinin enhanced cellular LDH release, apoptosis, generation of superoxide, and hydrogen peroxide induced by ATP depletion. Bradykinin also enhanced the loss of DeltaPsi(m), translocation of cytochrome c into cytosol, and activation of apoptotic protein. The intracellular/mitochondrial calcium was higher in bradykinin-treated cells. All these effects were reversed by coadministration with bradykinin B2 receptor (B2R) antagonist. Besides, blocking the phospholipase C (PLC) could reverse the synergistic effect of bradykinin with ATP depletion on ROS generation, mitochondrial damage, accumulation of intracellular/mitochondrial calcium, and apoptosis. Activation of B2R aggravates ROS generation, mitochondrial damage, and cell death induced by ATP depletion. These effects may act through the PLC-Ca(2+) signaling pathway.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhongshan S. Rd., Taipei 10016, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Yuan G, Deng J, Wang T, Zhao C, Xu X, Wang P, Voltz JW, Edin ML, Xiao X, Chao L, Chao J, Zhang XA, Zeldin DC, Wang DW. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways. Endocrinology 2007; 148:2016-26. [PMID: 17272402 PMCID: PMC2084357 DOI: 10.1210/en.2006-0602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported that iv delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV-HK) as a sole, long-term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high-fat diet induced systemic hypertension, diabetes, and renal damage in rats. Delivery of rAAV-HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV-HK group than in the control group. The expression of phosphatidylinositol 3-kinase p110 catalytic subunit and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B, and AMP-activated protein kinases were significantly decreased in organs from diabetic animals. These changes were significantly attenuated after rAAV-mediated HK gene therapy. Moreover, rAAV-HK significantly decreased urinary microalbumin excretion, improved creatinine clearance, and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV-HK delivery can efficiently attenuate hypertension, insulin resistance, and diabetic nephropathy in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| | - Juanjuan Deng
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| | - Tao Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| | - Chunxia Zhao
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| | - Xizheng Xu
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| | - Peihua Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| | - James W. Voltz
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC USA
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC USA
| | - Xiao Xiao
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
- Departments of Molecular Genetics and Biochemistry & Gene Therapy Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xin A. Zhang
- Vascular Biology Center and Department of Medicine and Department of Molecular Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC USA
| | - Dao Wen Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People's Rep. of China
| |
Collapse
|
23
|
Vokurkova M, Xu S, Touyz RM. Reactive oxygen species, cell growth, cell cycle progression and vascular remodeling in hypertension. Future Cardiol 2007; 3:53-63. [DOI: 10.2217/14796678.3.1.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) include superoxide, hygrogen peroxide and hydroxyl radical. Under physiological conditions, all vascular cell types produce ROS in a controlled and regulated fashion, mainly through nonphagocyte NADPH oxidase. An imbalance between pro-oxidants and antioxidants results in oxidative stress. ROS are important intracellular signaling molecules. There is growing evidence that increased oxidative stress and associated oxidative damage are mediators of vascular injury in hypertension, as well as in other cardiovascular diseases. Oxidative stress causes vascular injury by reducing nitric oxide bioavailability, altering endothelial function and vascular contraction/dilation, promoting vascular smooth muscle cell proliferation and hypertrophy, and increasing extracellular matrix deposition and inflammation. The present review focuses on the regulatory role of ROS on cell growth and cell cycle progression and discusses implications of these events in vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Martina Vokurkova
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Canada
| | - Shaoping Xu
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Canada
| | - Rhian M Touyz
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8MS, Canada
| |
Collapse
|
24
|
Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J, Tsai TJ. Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 2006; 41:1304-14. [PMID: 17015177 DOI: 10.1016/j.freeradbiomed.2006.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 06/09/2006] [Accepted: 07/11/2006] [Indexed: 11/20/2022]
Abstract
The kallikrein/kinin system is beneficial in ischemia/reperfusion injury in heart, controversial in brain, but detrimental in lung, liver, and intestine. We examined the role of the kallikrein/kinin system in acute ischemia/reperfusion renal injury induced by 40 min occlusion of the renal artery followed by reperfusion. Rats were infused with tissue kallikrein protein 5 days before (pretreated group) or after (treated group) ischemia. Two days later, the pretreated group exhibited the worst renal dysfunction, followed by the treated group, then the control group. Kallikrein increased tubular necrosis and inflammatory cell infiltration with generation of more tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Reactive oxygen species (ROS), malondialdehyde, and reduced/oxidized glutathione measurement revealed that the oxidative stress was augmented by kallikrein administration in both ischemic and reperfusion phases. The groups with more ROS generation also had more apoptotic renal cells. The deleterious effects of kallikrein on ischemia/reperfusion injury were reversed by cotreatment with bradykinin B2 receptor (B2R) antagonist, but not B1 receptor antagonist, and were not associated with hemodynamic changes. We conclude that early activation of B2R augmented ROS generation in ischemia/reperfusion renal injury, resulting in subsequent apoptosis, inflammation, and tissue damage. This finding suggests the potential application of B2R antagonists in acute ischemic renal disease associated with bradykinin activation.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10016, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schwartz EA, Reaven PD. Molecular and signaling mechanisms of atherosclerosis in insulin resistance. Endocrinol Metab Clin North Am 2006; 35:525-49, viii. [PMID: 16959584 DOI: 10.1016/j.ecl.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the prevalence of cardiovascular complications is increased in insulin-resistant individuals, the underlying causes of this link have been elusive. Recent work suggests that several intracellular signal transduction pathways are inappropriately activated by hyperinsulinemia, hyperglycemia, increased free fatty acids, dyslipidemia, various inflammatory cytokines and adipokines--factors that are increased in insulin resistance. Once activated, substantial cross talk occurs between these pathways, especially a self-reinforcing cascade of vascular inflammation and cell dysfunction, greatly increasing the risk and severity of atherosclerosis in the insulin-resistant individual. We review several key cell-signalling pathways, describe how they are activated in they insulin-resistant state and the damage they induce, and discusses possible therapeutic approaches to limit vascular damage.
Collapse
Affiliation(s)
- Eric A Schwartz
- Division of Research, Carl T. Hayden VA Medical Center, 650 East Indian School Road, Phoenix, AZ 85012, USA
| | | |
Collapse
|
26
|
Kobayashi N, Honda T, Yoshida K, Nakano S, Ohno T, Tsubokou Y, Matsuoka H. Critical role of bradykinin-eNOS and oxidative stress-LOX-1 pathway in cardiovascular remodeling under chronic angiotensin-converting enzyme inhibition. Atherosclerosis 2006; 187:92-100. [PMID: 16214149 DOI: 10.1016/j.atherosclerosis.2005.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 07/01/2005] [Accepted: 08/03/2005] [Indexed: 11/21/2022]
Abstract
To elucidate the molecular mechanisms of the cardioprotective effect of angiotensin-converting enzyme (ACE) inhibitors, we evaluated whether the effect of quinapril involved in bradykinin-endothelial nitric oxide synthase (eNOS) and oxidative stress-lectin-like oxidized LDL receptor-1 (LOX-1) pathway. Dahl salt-sensitive hypertensive (DS) rats were fed a diet containing 8% NaCl and treated with one of the following drug combinations for 5 weeks, from 6 weeks of age to left ventricular hypertrophy stage (11 weeks): vehicle; quinapril; quinapril plus the bradykinin B2 receptor antagonist FR172357; the NAD(P)H oxidase inhibitor apocynin; or quinapril plus apocynin. eNOS expression, which was decreased in hypertrophy stage, was significantly increased by quinapril and/or apocynin, but not by quinapril plus FR172357. Upregulated expression of NAD(P)H oxidase p22phox, p47phox, gp91phox and LOX-1 was significantly decreased by quinapril to a similar degree as after treatment with apocynin, but not by quinapril plus FR172357. Quinapril and/or apocynin treatment effectively ameliorated left ventricular weight and vascular changes such as increase in medial thickness and perivascular fibrosis and suppressed expression of transforming growth factor-beta1, type I collagen and fibronectin mRNA, but not that of quinapril plus FR172357. These results suggest that the ACE inhibitor quinapril may have cardioprotective effects in this model of hypertension mediated at least in part through effects on the bradykinin-eNOS and oxidative stress-LOX-1 pathway.
Collapse
Affiliation(s)
- Naohiko Kobayashi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fratelli M, Gianazza E, Ghezzi P. Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 2006; 1:365-76. [PMID: 15966832 DOI: 10.1586/14789450.1.3.365] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although radical oxygen and nitrogen species are harmful molecules that destroy cell functions, many operate as mediators of important cell signaling pathways when not in excess. Oxidants can modify protein function through the covalent, reversible addition of glutathione to cysteine. This review addresses different proteomic methods of identifying glutathionylation targets and emphasizes ways of defining their pattern of modification in response to oxidative stimuli in cells. Finally, the literature on nonproteomic studies that investigate the functional changes induced by glutathionylation are reviewed and future studies are commented on.
Collapse
Affiliation(s)
- Maddalena Fratelli
- Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, I-20157 Milan, Italy.
| | | | | |
Collapse
|
28
|
Muzaffar S, Shukla N, Angelini GD, Jeremy JY. Superoxide auto-augments superoxide formation and upregulates gp91phox expression in porcine pulmonary artery endothelial cells: Inhibition by iloprost. Eur J Pharmacol 2006; 538:108-14. [PMID: 16647052 DOI: 10.1016/j.ejphar.2006.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 11/23/2022]
Abstract
Central to the aetiology of Acute Respiratory Distress Syndrome (ARDS) is superoxide, the principal source of which is nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). To test whether superoxide may influence NADPH oxidase expression directly, the effect of incubation of superoxide with porcine pulmonary arterial endothelial cells on the expression of gp91(phox) (a catalytic subunit of NADPH oxidase) and superoxide formation was investigated. Since iloprost has been purported to be potentially effective in treating ARDS, the effect of iloprost on superoxide-mediated effects was also studied. Pulmonary artery endothelial cells were incubated with xanthine/xanthine oxidase which generates superoxide, or tumour necrosis factor alpha (TNFalpha) or thromboxane A(2) analogue, U46619 (+/- superoxide dismutase [SOD] or catalase or iloprost) for 16 h. Cells were then washed and superoxide formation assessed spectrophometrically and gp91(phox) expression using Western blotting. The role of NADPH oxidase was also studied in the above settings using apocynin, an NADPH oxidase inhibitor. Superoxide, TNFalpha and U46619 elicited an increase in the formation of superoxide and induced gp91(phox) expression in pulmonary artery endothelial cells following a 16 h incubation an effect blocked by the continual presence of SOD and apocynin but not catalase. Apocynin completely inhibited superoxide formation induced with xanthine/xanthine oxidase after the 16 h incubation. Rotenone and allopurinol were without effect. Iloprost inhibited the formation of superoxide and gp91(phox) expression. These data demonstrate that superoxide upregulates gp91(phox) expression in pulmonary artery endothelial cells and thus augments superoxide formation, an effect blocked by iloprost. This constitutes a novel mechanism by which vascular superoxide creates a self-perpetuating cascade that may be of importance to the etiology of ARDS and other vasculopathies.
Collapse
Affiliation(s)
- Saima Muzaffar
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
29
|
Bergmann S, Zheng D, Barredo J, Abboud MR, Jaffa AA. Renal kallikrein: a risk marker for nephropathy in children with sickle cell disease. J Pediatr Hematol Oncol 2006; 28:147-53. [PMID: 16679937 DOI: 10.1097/01.mph.0000203722.91189.9d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although improvements in the management of sickle cell disease (SCD) have increased patient survival into adulthood, morbidity and mortality from end-organ damage remain major concerns. One of the most serious complications of SCD is renal failure, affecting about 20% of patients. The clinical manifestations of sickle cell nephropathy (SCN) involve changes in glomerular ultrastructure, albuminuria, and a progressive decline in glomerular hemodynamics. The mechanisms or factors that promote SCN are not fully elucidated. In the present study, the role of renal kallikrein as a risk marker for promoting SCN was explored in a cross-sectional study. METHODS AND RESULTS We measured the urinary excretion rate of active kallikrein in 73 children with sickle cell anemia (hemoglobin SS, SC, or S thalassemia) and in 30 control healthy African American children. The findings demonstrated that a significant difference in the excretion rate of log kallikrein in male versus female patients with SCD, P<0.0078 was observed. In children with SCD, cross-sectional analysis revealed a positive and significant correlation between the excretion rate of active kallikrein and log albumin excretion rate (AER), P<0.0088. Regression analysis also determined that the excretion rate of active kallikrein negatively correlates with hemoglobin in children with SCD, P<0.0096. In addition, an inverse relationship between log AER and hemoglobin was observed in male patients with SCD, P<0.0143. In children with SCD, cross-sectional analysis revealed a positive and significant correlation between log AER and age, suggesting age as a risk marker for AER in SCD. In multivariate regression analysis, our findings demonstrate a strong association between log AER and age and log kallikrein in children with SCD. About 20% of the variability in log AER in SCD patients is influenced by age and 6% is influenced by log kallikrein, P<0.0001 and P<0.02, respectively. CONCLUSIONS These findings provide the first evidence that the excretion rate of active kallikrein is positively and independently correlated with log AER in children with SCD, and suggest that kallikrein could be a marker for progressive nephropathy. Longitudinal studies are essential to address this issue.
Collapse
Affiliation(s)
- Shayla Bergmann
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
30
|
Rodriguez JA, De la Cerda P, Collyer E, Decap V, Vio CP, Velarde V. Cyclooxygenase-2 induction by bradykinin in aortic vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2006; 290:H30-6. [PMID: 16143655 DOI: 10.1152/ajpheart.00349.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cell proliferation and migration play an important role in the pathophysiology of several vascular diseases, including atherosclerosis. Prostaglandins that have been implicated in this process are synthesized by two isoforms of cyclooxygenase (COX), with the expression of the regulated COX-2 isoform increased in atherosclerotic plaques. Bradykinin (BK), a vasoactive peptide increased in inflammation, induces the formation of prostaglandins through specific receptor activation. We hypothesized that BK plays an important role in the regulation of COX-2, contributing to the increase in production of prostaglandins in vascular smooth muscle cells. Herein we examined the signaling pathways that participate in the BK regulation of COX-2 protein levels in primary cultured aortic vascular smooth muscle cells. We observed an increase in COX-2 protein levels induced by BK that was maximal at 24 h. This increase was blocked by a B2 kinin receptor antagonist but not a B1 receptor antagonist, suggesting that the B2 receptor is involved in this pathway. In addition, we conclude that the activation of mitogen-activated protein kinases p42/p44, protein kinase C, and nitric oxide synthase is necessary for the increase in COX-2 levels induced by BK because either of the specific inhibitors for these enzymes blocked the effect of BK. Using a similar approach, we further demonstrated that reactive oxygen species and cAMP were not mediators on this pathway. These results suggest that BK activates several intracellular pathways that act in combination to increase COX-2 protein levels. This study suggests a role for BK on the evolution of the atheromatous plaque by virtue of controlling the levels of COX-2.
Collapse
Affiliation(s)
- Jorge A Rodriguez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, PO Box 114D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
31
|
Greene EL, Farell G, Yu S, Matthews T, Kumar V, Lieske JC. Renal cell adaptation to oxalate. ACTA ACUST UNITED AC 2005; 33:340-8. [PMID: 16284879 DOI: 10.1007/s00240-005-0491-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Renal manifestations of chronic hyperoxaluria include nephrolithiasis and, when extreme, interstitial scarring and progressive loss of function. Exposure of cultured renal cells to oxalate has been reported to cause cell death, as well as proliferation. The current study was performed to assess the time course and cell-type specificity of these responses. Proximal (LLC-PK(1)) and distal [cIMCD and primary human renal (HRC1)] renal epithelial cells, as well as interstitial KNRK cells, were exposed to oxalate (0.5-2.0 mM) for 24-72 h. The generation of reactive oxygen species (ROS) was measured using the fluorescent probe DCF, and cell number was determined with CyQuant reagent. HSP-70 expression was assessed via real time PCR and quantitative Western blot. In response to all oxalate concentrations (0.5-2.0 mM) and lengths of exposure (15 min-2 h), cultured proximal and distal renal epithelial cells and renal fibroblasts generated ROS. After 24 h, cells demonstrated initial cell death and decrease in cell numbers, but by 48-72 h adapted and grew, despite the continued presence of oxalate. This response was associated with increased expression of HSP-70 mRNA and protein. Renal cells in vivo may possess adaptive mechanisms to withstand chronic hyperoxaluria, including increased expression of chaperone molecules such as HSP-70.
Collapse
Affiliation(s)
- Eddie L Greene
- Division of Nephrology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
32
|
Fratelli M, Goodwin LO, Ørom UA, Lombardi S, Tonelli R, Mengozzi M, Ghezzi P. Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc Natl Acad Sci U S A 2005; 102:13998-4003. [PMID: 16172407 PMCID: PMC1236550 DOI: 10.1073/pnas.0504398102] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 07/22/2005] [Indexed: 11/18/2022] Open
Abstract
Proteins can form reversible mixed disulfides with glutathione (GSH). It has been hypothesized that protein glutathionylation may represent a mechanism of redox regulation, in a fashion similar to that mediated by protein phosphorylation. We investigated whether GSH has a signaling role in the response of HL60 cells to hydrogen peroxide (H2O2), in addition to its obvious antioxidant role. We identified early changes in gene expression induced at different times by H2O2 treatment, under conditions that increase protein glutathionylation and minimal toxicity. We then investigated the effect of prior GSH depletion by buthionine sulfoximine and diethylmaleate on this response. The analysis revealed 2,016 genes regulated by H2O2. Of these, 215 genes showed GSH-dependent expression changes, classifiable into four clusters displaying down- or up-regulation by H2O2, either potentiated or inhibited by GSH depletion. The modulation of 20 selected genes was validated by real-time RT-PCR. The biological process categories overrepresented in the largest cluster (genes whose up-regulation was inhibited by GSH depletion) were NF-kappaB activation, transcription, and DNA methylation. This cluster also included several cytokine and chemokine ligands and receptors, the redox regulator thioredoxin interacting protein, and the histone deacetylase sirtuin. The cluster of genes whose up-regulation was potentiated by GSH depletion included two HSPs (HSP40 and HSP70) and the AP-1 transcription factor components Fos and FosB. This work demonstrates that GSH, in addition to its antioxidant and protective function against oxidative stress, has a specific signaling role in redox regulation.
Collapse
Affiliation(s)
- Maddalena Fratelli
- Laboratory of Neuroimmunology "Mario Negri," Institute for Pharmacological Research, 20157 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Matturri L, Ottaviani G, Lavezzi AM. Early atherosclerotic lesions in infancy: role of parental cigarette smoking. Virchows Arch 2005; 447:74-80. [PMID: 15947947 DOI: 10.1007/s00428-005-1224-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 02/06/2005] [Indexed: 02/05/2023]
Abstract
Cigarette smoking is associated with an increased incidence of atherosclerotic diseases. The aim of this study was to examine the progression of the pre atherosclerotic lesions previously observed by us in coronary arteries of fetuses of smoker mothers and in infants with smoker parents. We examined the coronary arteries of 34 infants, aged 1-36 months, and the histological and biological [c-fos, proliferating cell nuclear antigen (PCNA), and apoptosis] features of the early atherosclerotic lesions. In 17 infants (50%), at least one parent smoked, generally more than five cigarettes a day. In 18 cases (53%), we observed variable thickening of the coronary walls from pre-atherosclerotic lesions to juvenile atherosclerotic plaques, related to parental smoking habit. This morphological progression of the lesions was accompanied by a sequence of biological changes in the smooth muscle cells of the tunica media. We suggest that the oxidants present in the gas phase of the parental cigarette smoke pass through the endothelium and induce at first the c-fos gene activation and subsequently the PCNA positivity, that is, a proliferative process.
Collapse
MESH Headings
- Apoptosis/drug effects
- Arteriosclerosis/etiology
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Child, Preschool
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Female
- Humans
- Infant
- Male
- Maternal Exposure/adverse effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Paternal Exposure/adverse effects
- Proliferating Cell Nuclear Antigen/biosynthesis
- Proto-Oncogene Proteins c-fos/biosynthesis
- Smoking/adverse effects
Collapse
Affiliation(s)
- Luigi Matturri
- Institute of Pathology, Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death (of term fetus-stillbirth- and neonatal) and Sudden Infant Death Syndrome (SIDS), University of Milan, Milan, Italy.
| | | | | |
Collapse
|
34
|
Abstract
The aim of this study was to reconstruct dynamic biological steps of human atherosclerosis at different ages of life and, in particular, to clarify the role of the smooth muscle cells (SMCs) by means of evaluation of several markers implicated in proliferative diseases (c-fos, proliferating cell nuclear antigen: PCNA, apoptosis, chromosome 7). We examined the biological features of 67 atherosclerotic arterial lesions obtained from fetuses, infants, young people and adults. From each case serial sections were stained for histological examination, PCNA, c-fos and apoptosis detection by immunohistochemical methods and for chromosome 7 number evaluation by fluorescence in situ hybridization. In coronary specimens of fetuses we observed SMCs with c-fos positivity. In infant lesions the predominant result was positivity for PCNA. Similar results were obtained from the plaques from young subjects with a greater presence of PCNA-positive cells. In adult subjects numerous apoptotic cells were present in the stable plaques, whereas in the unstable plaques we frequently detected joint positivity for both PCNA and c-fos gene and supernumerary chromosomes 7. During the evolution of the atherosclerotic process we observed a biological modulation of SMC proliferation, which begins after activation of the c-fos gene, increases during progression of the lesion and declines in stable plaques, when apoptosis increases. In unstable plaques, the same early steps observed in fetus and infant arteries occur. The observation in some cases of chromosome 7 alterations, markers of tumorigenesis, suggests the possible transformation of an advanced atherosclerotic plaque into a neoplastic-like process.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/physiology
- Child, Preschool
- Chromosome Aberrations
- Chromosomes, Human, Pair 7/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Female
- Fetus
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Infant
- Male
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
Collapse
|
35
|
Tan Y, Wang B, Keum JS, Jaffa AA. Mechanisms through which bradykinin promotes glomerular injury in diabetes. Am J Physiol Renal Physiol 2005; 288:F483-92. [PMID: 15692059 DOI: 10.1152/ajprenal.00165.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In diabetes, mesangial cell proliferation and extracellular matrix expansion are critical components in the development of glomerulosclerosis. We reported that diabetes alters the activity of the kallikrein-kinin system and that these alterations contribute to the development of diabetic nephropathy. The present study examined the influence of streptozotocin-induced diabetes on the renal expression of bradykinin (BK) B2 receptors (B2KR), connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta), and TGF-beta type II receptor (TGF-betaRII) and assessed the signaling mechanisms through which B2KR activation may promote glomerular injury. Eight weeks after the induction of diabetes, renal mRNA levels of B2KR, CTGF, and TGF-beta as well as protein levels of CTGF and TGF-betaRII were measured in control (C), diabetic (D), and insulin-treated diabetic (D+I) rats. Renal B2KR and TGF-beta mRNA levels expressed relative to beta-actin mRNA levels and CTGF and TGF-betaRII protein levels were significantly increased in D and D+I rats compared with C rats (P < 0.03, n = 5). To assess the contribution of B2KR activation on modulating the expression of CTGF, TGF-betaRII, and collagen I, mesangial cells (MC) were treated with BK (10(-8) M) for 24 h and CTGF and TGF-betaRII protein levels were measured by Western blots and collagen I mRNA levels were measured by RT-PCR. A two- to threefold increase in CTGF and TGF-betaRII protein levels was observed in response to BK stimulation (P < 0.001, n = 6). In addition, a marked increase in collagen I mRNA levels was observed in response to BK stimulation. Treatment of MC with BK (10(-8) M) for 5 min significantly increased the tyrosine phosphorylation of p60src kinase and of p42/p44 MAPK (P < 0.05, n = 4). Inhibition of src kinase by PP1 (10 microM) inhibited the increase in p42/p44 MAPK activation in response to BK. Finally, to determine whether BK stimulates CTGF, TGF-betaRII, and collagen I expression via activation of MAPK pathways, MC were pretreated with an inhibitor of p42/p44 MAPK (PD-98059) for 45 min, followed by BK (10(-8) M) stimulation for 24 h. Selective inhibition of p42/p44 MAPK significantly inhibited the BK-induced increase in CTGF, TGF-betaRII, and collagen I levels. These findings are the first to demonstrate that BK regulates the expression of CTGF, TGF-betaRII, and collagen I in MC and provide a mechanistic pathway through which B2KR activation may contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Yan Tan
- Dept. of Medicine, Division of Endocrinology-Diabetes-Medical Genetics, Medical Univ. of South Carolina, 114 Doughty St., PO Box 250776, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
36
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 744] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Kumari R, Maulik M, Manchanda SC, Maulik SK. Protective effect of bradykinin antagonist Hoe-140 during in vivo myocardial ischemic-reperfusion injury in the cat. ACTA ACUST UNITED AC 2004; 115:211-8. [PMID: 14556963 DOI: 10.1016/s0167-0115(03)00169-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of icatibant (Hoe-140), a selective bradykinin receptor (B(2)) antagonist on myocardial ischemic-reperfusion injury was studied in open chest barbiturate anaesthetized cats. The left anterior descending coronary artery was occluded for 15 min, followed by 60 min of reperfusion. Saline or icatibant (200 microg/kg) was administered intravenously slowly over 2 min, 5 min before reperfusion. In the saline-treated group, myocardial ischemic-reperfusion injury was evidenced by depressed MAP, depressed peak positive and negative dP/dt and elevated left ventricular end-diastolic pressure and enhanced oxidative stress [elevated plasma thiobarbituric acid reactive substances (TBARS; a marker for lipid peroxidation), depressed myocardial GSH (reduced glutathione), superoxide dismutase (SOD), catalase] and depletion of adenosine triphosphate (ATP) along with rise in plasma creatine phosphokinase (CPK). Administration of icatibant resulted in complete hemodynamic recovery together with repletion of ATP and reduction in plasma TBARS without any significant change in myocardial SOD, catalase and GSH. The results of the present study suggest a protective role of icatibant in myocardial ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | |
Collapse
|
38
|
Abstract
Senescence is now established as a genetically controlled phenomenon that alters different cell functions, including proliferation, apoptosis, resistance to stress, and energetic metabolism. Underlying changes in gene expression are governed by some transcription factors, whose expression or activity must change with senescence as well. Transcription factors of the Rel/NF-kappa B family are good candidates to participate in the establishment of senescence. Arguments range from correlation between cell functions controlled by these factors and cell functions altered during senescence, to phenotypes resulting from in vitro manipulations of Rel/NF-kappa B activity.
Collapse
Affiliation(s)
- Karo Gosselin
- UMR 8117 CNRS-Institut Pasteur de Lille-Université Lille 1, Institut de Biologie de Lille, 1 rue Calmette, BP 447, 59021 Lille Cedex, France
| | | |
Collapse
|
39
|
Vulin AI, Stanley FM. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem 2004; 279:25172-8. [PMID: 15069077 DOI: 10.1074/jbc.m403184200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is one of the characteristics of diabetes and is thought to be responsible for many of the pathophysiological changes caused by the disease. We previously identified an insulin response element in the promoter of plasminogen activator inhibitor 1 (PAI-1) that was activated by an unidentified member of the forkhead/winged helix (Fox) family of transcription factors. This element mediated a 5-7-fold increase in PAI-1 transcription because of insulin. Here we report that oxidative stress also caused a 3-fold increase in PAI-1 transcription and that the effect was additive with that of insulin. Antioxidants prevent this response. Mutational analysis of the PAI-1 promoter revealed that oxidative stress acted at an AP-1 site at -60/52 of the promoter. Gel mobility shift analysis demonstrated that binding to an AP-1 oligonucleotide was increased 4-fold by oxidative stress. Jun levels were increased by oxidants as assessed by reverse transcriptase-PCR. Western blotting demonstrated that a rapid and prolonged nuclear accumulation of phospho-c-Jun followed oxidant stimulation. The nuclear c-Jun phosphorylation was not observed in cells treated with reduced glutathione. Finally, JNK/SAPK activity was found to increase in response to oxidants, and inhibition of JNK/SAP blocked TBHQ-increased PAI-1-luciferase expression. Thus, oxidative stress stimulated AP-1 and activated the PAI-1 promoter.
Collapse
Affiliation(s)
- Anthony I Vulin
- Department of Pharmacology, Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
40
|
Tan Y, Hutchison FN, Jaffa AA. Mechanisms of angiotensin II-induced expression of B2 kinin receptors. Am J Physiol Heart Circ Physiol 2004; 286:H926-32. [PMID: 14766673 DOI: 10.1152/ajpheart.00757.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the primary roles of the kallikreinkinin system and the renin-angiotensin system are quite divergent, they are often intertwined under pathophysiological conditions. We examined the effect of ANG II on regulation of B(2) kinin receptors (B2KR) in vascular cells. Vascular smooth muscle cells (VSMC) were treated with ANG II in a concentration (10(-9)-10(-6) M)- and time (0-24 h)-dependent manner, and B2KR protein and mRNA levels were measured by Western blots and PCR, respectively. A threefold increase in B2KR protein levels was observed as early as 6 h, with a peak response at 10(-7) M. ANG II (10(-7) M) also increased B2KR mRNA levels twofold 4 h after stimulation. Actinomycin D suppressed the increase in B2KR mRNA and protein levels induced by ANG II. To elucidate the receptor subtype involved in mediating this regulation, VSMC were pretreated with losartan (AT(1) receptor antagonist) and/or PD-123319 (AT(2) receptor antagonist) at 10 microM for 30 min, followed by ANG II (10(-7) M) stimulation. Losartan completely blocked the ANG II-induced B2KR increase, whereas PD-123319 had no effect. In addition, expression of B2KR mRNA levels was decreased in AT(1A) receptor knockout mice. Finally, to determine whether ANG II stimulates B2KR expression via activation of the MAPK pathway, VSMC were pretreated with an inhibitor of p42/p44(mapk) (PD-98059) and/or an inhibitor of p38(mapk) (SB-202190), followed by ANG II (10(-7) M) for 24 h. Selective inhibition of the p42/p44(mapk) pathway significantly blocked the ANG II-induced increase in B2KR expression. These findings demonstrate that ANG II regulates expression of B2KR in VSMC and provide a rationale for studying the interaction between ANG II and bradykinin in the pathogenesis of vascular dysfunction.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Cells, Cultured
- Extracellular Fluid/metabolism
- Gene Expression/drug effects
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Signal Transduction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Yan Tan
- Dept. of Medicine, Endocrinology-Diabetes-Medical Genetics, Medical Univ. of South Carolina, 114 Doughty St., PO Box 250776, Charleston, SC 29425, USA
| | | | | |
Collapse
|
41
|
Gu W, Weihrauch D, Tanaka K, Tessmer JP, Pagel PS, Kersten JR, Chilian WM, Warltier DC. Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol Heart Circ Physiol 2003; 285:H1582-9. [PMID: 12816750 DOI: 10.1152/ajpheart.00318.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that reactive oxygen species (ROS) promote proliferation and migration of vascular smooth muscle (VSMC) and endothelial cells (EC). We tested the hypothesis that ROS serve as crucial messengers during coronary collateral development. Dogs were subjected to brief (2 min), repetitive coronary artery occlusions (1/h, 8/day, 21 day duration) in the absence (occlusion, n = 8) or presence of N-acetylcysteine (NAC) (occlusion + NAC, n = 8). A sham group (n = 8) was instrumented identically but received no occlusions. In separate experiments, ROS generation after a single 2-min coronary artery occlusion was assessed with dihydroethidium fluorescence. Coronary collateral blood flow (expressed as a percentage of normal zone flow) was significantly increased (71 +/- 7%) in occlusion dogs after 21 days but remained unchanged (13 +/- 3%) in sham dogs. Treatment with NAC attenuated increases in collateral blood flow (28 +/- 8%). Brief coronary artery occlusion and reperfusion caused ROS production (256 +/- 33% of baseline values), which was abolished with NAC (104 +/- 12%). Myocardial interstitial fluid produced tube formation and proliferation of VSMC and EC in occlusion but not in NAC-treated or sham dogs. The results indicate that ROS are critical for the development of the coronary collateral circulation.
Collapse
Affiliation(s)
- Weidong Gu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Water-town Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, Schmaier AH. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 2003; 52:1215-21. [PMID: 12716755 DOI: 10.2337/diabetes.52.5.1215] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The relevance and significance of the plasma kallikrein/kinin system as a risk factor for the development of vascular complications in diabetic patients was explored in a cross-sectional study. We measured the circulating levels of plasma prekallikrein (PK) activity, factor XII, and high-molecular weight kininogen in the plasma of 636 type 1 diabetic patients from the Diabetes Control and Complications Trial/Epidemiology and Diabetes Intervention and Complications Study cohort. The findings demonstrated that type 1 diabetic patients with blood pressure > or =140/90 mmHg have increased PK levels compared with type 1 diabetic patients with blood pressure <140/90 (1.53 +/- 0.07 vs. 1.27 +/- 0.02 units/ml; P < 0.0001). Regression analysis also determined that plasma PK levels positively and significantly correlated with diastolic (DBP) and systolic blood pressures (SBP) as continuous variables (r = 0.17 and 0.18, respectively; P < 0.0001). In multivariate regression analysis, the semipartial r(2) value for PK was 2.93% for SBP and 2.92% for DBP (P < 0.0001). A positive correlation between plasma PK levels and the urinary albumin excretion rate (AER) was also observed (r = 0.16, P < 0.0001). In categorical analysis, patients with macroalbuminuria had a significantly higher level of plasma PK than normoalbuminuric patients (1.45 +/- 0.08 vs. 1.27 +/- 0.02 units/ml; P < 0.01), whereas microalbuminuric patients had an intermediate PK value (1.38 +/- 0.05 units/ml; P = NS). Among patients in the microalbuminuric subgroup, we observed a positive and independent correlation between PK and AER in univariate and multivariate regression analysis (r = 0.27, P < 0.03; n = 63). We concluded that in type 1 diabetes, 1) PK levels are elevated in association with increased blood pressure; 2) PK levels are independently correlated with AER and are categorically elevated in patients with macroalbuminuria; and 3) although the positive correlation between PK and AER within the subgroups of patients with microalbuminuria suggest that PK could be a marker for progressive nephropathy, longitudinal studies will be necessary to address this issue.
Collapse
Affiliation(s)
- Ayad A Jaffa
- Department of Medicine, Endocrinology-Diabetes-Medical Genetics, Medical University of South Carolina, 114 Doughty Street, PO Box 250776, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Pelletier S, Duhamel F, Coulombe P, Popoff MR, Meloche S. Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol Cell Biol 2003; 23:1316-33. [PMID: 12556491 PMCID: PMC141129 DOI: 10.1128/mcb.23.4.1316-1333.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As do cytokine receptors and receptor tyrosine kinases, G protein-coupled receptors (GPCRs) signal to Janus kinases (Jaks) and signal transducers and activators of transcription (STATs). However, the early biochemical events linking GPCRs to this signaling pathway have been unclear. Here we show that GPCR-stimulated Rac activity and the subsequent generation of reactive oxygen species are necessary for activating tyrosine phosphorylation of Jaks and STAT-dependent transcription. The requirement for Rac activity can be overcome by addition of hydrogen peroxide. Expression of activated mutants of Rac1 is sufficient to activate Jak2 and STAT-dependent transcription, and the activation of Jak2 correlates with the ability of Rac1 to bind to NADPH oxidase subunit p67(phox). We further show that GPCR agonists stimulate tyrosine phosphorylation of STAT1 and STAT3 proteins in a Rac-dependent manner. The tyrosine phosphorylation of STAT3 is biphasic; the first peak of phosphorylation is weak and correlates with rapid activation of Jaks by GPCRs, whereas the second peak is stronger and requires the synthesis of an autocrine factor. Rho also plays an essential role in the induction of STAT transcriptional activity. Our results highlight a novel role for Rho GTPases in mediating the regulatory effects of GPCRs on STAT-dependent gene expression.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Antioxidants/pharmacology
- Bacterial Toxins/pharmacology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- GTP-Binding Proteins/metabolism
- Humans
- Janus Kinase 2
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Oxidants/pharmacology
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Rats
- Reactive Oxygen Species/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- STAT1 Transcription Factor
- STAT2 Transcription Factor
- STAT3 Transcription Factor
- Signal Transduction
- Thrombin/pharmacology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Tyrosine/metabolism
- rac1 GTP-Binding Protein/drug effects
- rac1 GTP-Binding Protein/genetics
- rac1 GTP-Binding Protein/metabolism
- rho GTP-Binding Proteins/drug effects
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Stéphane Pelletier
- Institut de recherches cliniques de Montréal and Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
44
|
Prado GN, Taylor L, Zhou X, Ricupero D, Mierke DF, Polgar P. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J Cell Physiol 2002; 193:275-86. [PMID: 12384980 DOI: 10.1002/jcp.10175] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bradykinin (BK) is a potent short-lived effector belonging to a class of peptides known as kinins. It participates in inflammatory and vascular regulation and processes including angioedema, tissue permeability, vascular dilation, and smooth muscle contraction. BK exerts its biological effects through the activation of the bradykinin B2 receptor (BKB2R) which is G-protein-coupled and is generally constitutively expressed. Upon binding, the receptor is activated and transduces signal cascades which have become paradigms for the actions of the Galphai and Galphaq G-protein subunits. Following activation the receptor is then desensitized, endocytosed, and resensitized. The bradykinin B1 (BKB1R) is a closely related receptor. It is activated by desArg(10)-kallidin or desArg(9)-BK, metabolites of kallidin and BK, respectively. This receptor is induced following tissue injury or after treatment with bacterial endotoxins such as lipopolysacharide or cytokines such as interleukin-1 or tumor necrosis factor-alpha. In this review we will summarize the BKB2R and BKB1R mediated signal transduction pathways. We will then emphasize the relevance of key residues and domains of the intracellular regions of the BKB2R as they relate to modulating its function (signal transduction) and self-maintenance (desensitization, endocytosis, and resensitization). We will examine the features of the BKB1R gene promoter and its mRNA as these operate in the expression and self-maintenance of this inducible receptor. This communication will not cover areas discussed in earlier reviews pertaining to the actions of peptide analogs. For these we refer you to earlier reviews (Regoli and Barabé, 1980, Pharmacol Rev 32:1-46; Regoli et al., 1990, J Cardiovasc Pharmacol 15(Suppl 6):S30-S38; Regoli et al., 1993, Can J Physiol Pharmacol 71:556-557; Marceau, 1995, Immunopharmacology 30:1-26; Regoli et al., 1998, Eur J Pharmacol 348:1-10).
Collapse
Affiliation(s)
- Gregory N Prado
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
45
|
Negre-Salvayre A, Augé N, Duval C, Robbesyn F, Thiers JC, Nazzal D, Benoist H, Salvayre R. Detection of intracellular reactive oxygen species in cultured cells using fluorescent probes. Methods Enzymol 2002; 352:62-71. [PMID: 12125377 DOI: 10.1016/s0076-6879(02)52007-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anne Negre-Salvayre
- Department of Biochemistry, INSERM U-466, Institut Louis Bugnard IFR 31, 31403 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Van Heerebeek L, Meischl C, Stooker W, Meijer CJLM, Niessen HWM, Roos D. NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J Clin Pathol 2002; 55:561-8. [PMID: 12147646 PMCID: PMC1769734 DOI: 10.1136/jcp.55.8.561] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Reactive oxygen species play an important role in a variety of (patho)physiological vascular processes. Recent publications have produced evidence of a role for putative non-phagocyte NADP oxidase(s) in the vascular production of reactive oxygen species. In the present review, we discuss the detection of the different components of NADP oxidase(s) in the vascular system, together with the putative role of reactive oxygen species produced by vascular NADPH oxidase(s), in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- L Van Heerebeek
- Institute of Cardiovascular Research, Free University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Nickenig G, Baudler S, Müller C, Werner C, Werner N, Welzel H, Strehlow K, Böhm M. Redox-sensitive vascular smooth muscle cell proliferation is mediated by GKLF and Id3 in vitro and in vivo. FASEB J 2002; 16:1077-86. [PMID: 12087069 DOI: 10.1096/fj.01-0570com] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species such as superoxide and hydroxyl radicals have been implicated in the pathogenic growth of various cell types. The molecular mechanisms involved in redox-sensitive cell growth control are poorly understood. Stimulation of cultured vascular smooth muscle cells (VSMC) with xanthin/xanthin oxidase (X/XO) increases proliferation, whereas stimulation with hydrogen peroxide and Fe3+NTA (H-Fe) causes growth arrest of VSMC. Differential Display led to the identification of two novel, differentially regulated redox-sensitive genes. The dominant negative helix-loop-helix protein Id3 is induced by X/XO and down-regulated by H-Fe. The transcription factor gut-enriched Kruppel-like factor (GKLF) is induced by H-Fe but not by X/XO. Induction of GKLF and inhibition of Id3 via transfection experiments leads to growth arrest, whereas overexpression of Id3 and inhibition of GKLF cause cell growth. Id3 down-regulation is induced via binding of GKLF to the Id3 promotor and concomitantly reduced Id3 gene transcription rate. GKLF induction by H-Fe is mediated through hydroxyl radicals, p38MAP kinase-, calcium-, and protein synthesis-dependent pathways. Id3 is induced by X/XO via superoxide, calcium, p38, and p42/44 MAP kinase. GKLF induces and Id3 depresses expression of p21WAF1/Cip1, p27KIP1, p53. Induction of Id3 is accomplished by angiotensin II via superoxide release. A vascular injury mouse model revealed that Id3 is overexpressed in proliferating vascular tissue in vivo. These findings reveal novel mechanisms of redox-controlled cellular proliferation involving GKLF and Id3 that may have general implications for our understanding of vascular and nonvascular growth control.
Collapse
Affiliation(s)
- Georg Nickenig
- Universitätskliniken des Saarlandes, Medizinische Klinik und Poliklinik, Innere Medizin III, 66424 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gao F, Yi J, Shi GY, Li H, Shi XG, Tang XM. The sensitivity of digestive tract tumor cells to As 2O 3 is associated with the inherent cellular level of reactive oxygen species. World J Gastroenterol 2002; 8:36-9. [PMID: 11833067 PMCID: PMC4656621 DOI: 10.3748/wjg.v8.i1.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the correlation of the inherent cellular ROS level with the susceptibility of the digestive tract tumor cells to apoptosis inducted by As2O3.
METHODS: Two gastric carcinoma cell lines, SGC7901 and MKN45, and two esophageal carcinoma cell lines, EC/CUHK1(alternatively named EC1.71) and EC1867 with low concentration(2 μmol·L-1)of As2O3 were cultured respectly, which confirmed the difference in apoptosis susceptibility between SGC7901 and MKN45, and between EC/CUHK1 and EC1867. The cells were incubated with dihydrogenrhodamine123 (DHR123), used as a ROS capture in absence of As2O3. The fluorescent intensity of rhodamine123, which was the product of cellular oxidation of DHR123, was detected by flow cytometry, and ROS was measured.
RESULTS: Apoptosis induced by a low concentration of As2O3 was more readily to occur in SGC7901 (22.4% ± 2.4%) and EC/CUHK1(27.0% ± 2.9%) than in MKN45(2.1% ± 0.5%) and EC1867(0.8% ± 0.5%). In other words, SGC7901 was more sensitive than MKN45 to As2O3, meanwhile EC/CUHK1 was more sensitive than EC1867 to As2O3. The level of inherent cellular ROS in SGC7901(650 ± 37) was higher than that in MKN45(507 ± 22)(P < 0.01), and the level of inherent cellular ROS in EC/CUHK1(462 ± 17) was higher than that in EC1867(187 ± 12) (P < 0.01).
CONCLUSIONS: The cellular sensitivity to apoptosis induced by As2O3 is associated with the difference in cellular ROS level. The inherent ROS level might determinate the apoptotic sensitivity of tumor cells to As2O3.
Collapse
Affiliation(s)
- Fei Gao
- Department of Cell Biology, Shanghai Second Medical University, Shanghai 200025 China
| | | | | | | | | | | |
Collapse
|
49
|
Locher R, Emmanuele L, Suter PM, Vetter W, Barton M. Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein. Eur J Pharmacol 2002; 434:1-7. [PMID: 11755158 DOI: 10.1016/s0014-2999(01)01535-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study investigated whether human vascular smooth muscle cell proliferation induced by native low-density lipoprotein (LDL) is affected by green tea catechins. Furthermore, the effects of native LDL on extracellular signal-regulated kinase (ERK) 1/2 activity were determined. Cell proliferation stimulated by native LDL was concentration-dependently inhibited by epigallocatechin, epigallocatechin-3-gallate, green tea polyphenon, and the nonspecific antioxidant N-acetylcysteine (P<0.05). Combined treatment of green tea polyphenon and N-acetylcysteine markedly potentiated the effect of each drug on vascular smooth muscle cell proliferation. ERK1/2 activity was only partly inhibited by green tea catechins alone or in combination with N-acetylcysteine (P<0.05). These data suggest that green tea constituents inhibit proliferation of human vascular smooth muscle cells exposed to high levels of native LDL. Green tea constituents and antioxidants may exert vascular protection by inhibiting human vascular smooth muscle cell growth associated with hypercholesterolemia.
Collapse
Affiliation(s)
- Rudolf Locher
- Department of Internal Medicine, Medical Policlinic and Clinical Atherosclerosis Research Laboratory, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Yau L, Wilson DP, Werner JP, Zahradka P. Bradykinin receptor antagonists attenuate neointimal proliferation postangioplasty. Am J Physiol Heart Circ Physiol 2001; 281:H1648-56. [PMID: 11557555 DOI: 10.1152/ajpheart.2001.281.4.h1648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin has been linked to the development of restenosis in response to vascular injury. We therefore examined the effect of bradykinin on vascular smooth muscle cell growth and neointimal formation in organ culture. Bradykinin stimulated both RNA and DNA synthesis (by 175%) in smooth muscle cells from either porcine or human coronary arteries and increased cell number in a concentration-dependent manner. Both p42/44 mitogen-activated protein kinase (MAPK) and p38 kinase were also activated. Treatment with [Hyp(3),Tyr(Me)(8)]bradykinin, a B(2) receptor agonist, stimulated thymidine incorporation by 146%, whereas B(1)-selective Lys-des-Arg(9)-bradykinin had no effect. Addition of the B(2) antagonist HOE-140 reduced the stimulation by 56%, whereas B(1)-selective des-Arg-HOE-140 had no significant effect. Similarly, HOE-140 attenuated angioplasty-induced neointimal formation in organ culture with an efficacy approaching 100% inhibition. These experiments suggest that bradykinin promotes smooth muscle proliferation after vascular injury, presumably via B(2) receptor-dependent activation of MAPK family pathways, and may explain the negative outcome of angiotensin converting enzyme inhibitor therapy on restenosis in nonrodent models.
Collapse
Affiliation(s)
- L Yau
- Department of Physiology, University of Manitoba and Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | |
Collapse
|