1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Stone M, Choi CS, Dey N, Swain G, Stevens T, Sayner SL. Pseudomonas aeruginosa ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment. Am J Physiol Lung Cell Mol Physiol 2024; 327:L756-L768. [PMID: 39316682 PMCID: PMC11560077 DOI: 10.1152/ajplung.00038.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether P. aeruginosa primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with P. aeruginosa expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following P. aeruginosa ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, P. aeruginosa infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent P. aeruginosa.NEW & NOTEWORTHY P. aeruginosa exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. P. aeruginosa infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.
Collapse
Affiliation(s)
- Madeline Stone
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Nandita Dey
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Grace Swain
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Sarah L Sayner
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| |
Collapse
|
3
|
deWeever A, Paudel SS, Zhou C, Francis CM, Tambe DT, Frank DW, Balczon R, Stevens T. cUMP elicits interendothelial gap formation during Pseudomonas aeruginosa infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L395-L405. [PMID: 39076085 PMCID: PMC11444506 DOI: 10.1152/ajplung.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Pseudomonas aeruginosa utilizes a type 3 secretion system to intoxicate host cells with the nucleotidyl cyclase ExoY. After activation by its host cell cofactor, filamentous actin, ExoY produces purine and pyrimidine cyclic nucleotides, including cAMP, cGMP, and cUMP. ExoY-generated cyclic nucleotides promote interendothelial gap formation, impair motility, and arrest cell growth. The disruptive activities of cAMP and cGMP during the P. aeruginosa infection are established; however, little is known about the function of cUMP. Here, we tested the hypothesis that cUMP contributes to endothelial cell barrier disruption during P. aeruginosa infection. Using a membrane permeable cUMP analog, cUMP-AM, we revealed that during infection with catalytically inactive ExoY, cUMP promotes interendothelial gap formation in cultured pulmonary microvascular endothelial cells (PMVECs) and contributes to increased filtration coefficient in the isolated perfused lung. These findings indicate that cUMP contributes to endothelial permeability during P. aeruginosa lung infection.NEW & NOTEWORTHY During pneumonia, bacteria utilize a virulence arsenal to communicate with host cells. The Pseudomonas aeruginosa T3SS directly introduces virulence molecules into the host cell cytoplasm. These molecules are enzymes that trigger interkingdom communication. One of the exoenzymes is a nucleotidyl cyclase that produces noncanonical cyclic nucleotides like cUMP. Little is known about how cUMP acts in the cell. Here we found that cUMP instigates pulmonary edema during Pseudomonas aeruginosa infection of the lung.
Collapse
Grants
- R01 HL167997 NHLBI NIH HHS
- HL136689 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL066299 NHLBI NIH HHS
- AI104922 HHS | NIH | NIAID | Division of Microbiology and Infectious Diseases (DMID)
- R01 HL140182 NHLBI NIH HHS
- HL167997 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AI104922 NIAID NIH HHS
- HL148069 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL148069 NHLBI NIH HHS
- HL140182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL66299 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Althea deWeever
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
4
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Curtis TM, Nilon AM, Greenberg AJ, Besner M, Scibek JJ, Nichols JA, Huie JL. Odorant Binding Causes Cytoskeletal Rearrangement, Leading to Detectable Changes in Endothelial and Epithelial Barrier Function and Micromotion. BIOSENSORS 2023; 13:329. [PMID: 36979541 PMCID: PMC10046532 DOI: 10.3390/bios13030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Non-olfactory cells have excellent biosensor potential because they express functional olfactory receptors (ORs) and are non-neuronal cells that are easy to culture. ORs are G-protein coupled receptors (GPCRs), and there is a well-established link between different classes of G-proteins and cytoskeletal structure changes affecting cellular morphology that has been unexplored for odorant sensing. Thus, the present study was conducted to determine if odorant binding in non-olfactory cells causes cytoskeletal changes that will lead to cell changes detectable by electric cell-substrate impedance sensing (ECIS). To this end, we used the human umbilical vein endothelial cells (HUVECs), which express OR10J5, and the human keratinocyte (HaCaT) cells, which express OR2AT4. Using these two different cell barriers, we showed that odorant addition, lyral and Sandalore, respectively, caused an increase in cAMP, changes in the organization of the cytoskeleton, and a decrease in the integrity of the junctions between the cells, causing a decrease in cellular electrical resistance. In addition, the random cellular movement of the monolayers (micromotion) was significantly decreased after odorant exposure. Collectively, these data demonstrate a new physiological role of olfactory receptor signaling in endothelial and epithelial cell barriers and represent a new label-free method to detect odorant binding.
Collapse
Affiliation(s)
- Theresa M. Curtis
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | - Annabella M. Nilon
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | | | - Matthew Besner
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | - Jacob J. Scibek
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | | | | |
Collapse
|
6
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
7
|
Annamdevula N, Johnson S, Pleshinger D, Castleberry S, Russell W, Britain A, Francis C, Rich T, Leavesley S. Hyperspectral imaging and adaptive thresholding to identify agonist-induced cAMP signals in pulmonary microvascular endothelial cells. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11966:1196604. [PMID: 35756693 PMCID: PMC9215167 DOI: 10.1117/12.2608292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cyclic AMP (cAMP) is a second messenger that regulates a wide variety of cellular functions. There is increasing evidence suggesting that signaling specificity is due in part to cAMP compartmentalization. In the last 15 years, development of cAMP-specific Förster resonance energy transfer (FRET) probes have allowed us to visualize spatial distributions of intracellular cAMP signals. The use of FRET-based sensors is not without its limitations, as FRET probes display low signal to noise ratio (SNR). Hyperspectral imaging and analysis approaches have, in part, allowed us to overcome these limitations by improving the SNR of FRET measurements. Here we demonstrate that the combination of hyperspectral imaging approaches, linear unmixing, and adaptive thresholding allow us to visualize regions of elevated cAMP (regions of interest - ROIs) in an unbiased manner. We transfected cDNA encoding the H188 FRET-based cAMP probe into pulmonary microvascular endothelial cells. Application of isoproterenol and prostaglandin E1 (PGE1) triggered complex cAMP responses. Spatial and temporal aspects of cAMP responses were quantified using an adaptive thresholding approach and compared between agonist treatment groups. Our data indicate that both the origination sites and spatial/temporal distributions of cAMP signals are agonist dependent in PMVECs. We are currently analyzing the data in order to better quantify the distribution of cAMP signals triggered by different agonists.
Collapse
Affiliation(s)
- N. Annamdevula
- Pharmacology, University of South Alabama, Mobile, AL 36688
| | - S. Johnson
- Pharmacology, University of South Alabama, Mobile, AL 36688
| | | | | | | | - A.L. Britain
- Pharmacology, University of South Alabama, Mobile, AL 36688
| | - C.M. Francis
- Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688
| | - T.C. Rich
- Pharmacology, University of South Alabama, Mobile, AL 36688
| | - S.J. Leavesley
- Pharmacology, University of South Alabama, Mobile, AL 36688,Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
8
|
Chen T, Zhou Y, Liu X, Liu Y, Yuan J, Wang Z. Adenylyl cyclase 3 deficiency results in dysfunction of blood-testis barrier during mouse spermiogenesis. Theriogenology 2021; 180:40-52. [PMID: 34953349 DOI: 10.1016/j.theriogenology.2021.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Human infertility has become a global medical and social health problem. Mice deficient in type 3 adenylyl cyclase (AC3), a key enzyme that synthesizes cyclic adenosine monophosphate (cAMP), develop male infertility, although the underlying molecular mechanisms remain unknown. We performed a label-free quantitative (LFQ) proteomics analyses to identify testicular differentially expressed proteins (DEPs) and their respective biological processes. Furthermore, histological examination demonstrated that AC3 deficiency in mice led to mild impairment of spermatogenesis, including the thinning of seminiferous epithelium and local lesions in the testis. We further identified that the integrity of the blood-testis barrier (BTB) was impaired in AC3 knockout (AC3-/-) mice accompanied with the reduction in the expression of tight junctions (TJs) and ectoplasmic specialization (ESs)-related proteins. In addition, the deletion of AC3 in mice also reduced the germ cell proliferation, increased apoptosis, and decreased lipid deposition in the seminiferous tubules. Collectively, our results revealed a role of AC3 in regulating the BTB integrity during spermatogenesis. Thus, our findings provide new perspectives for future research in male infertility.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Yanfen Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Xinxia Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Yuxin Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Junkai Yuan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Zhenshan Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China.
| |
Collapse
|
9
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
10
|
Zhang X, Pizzoni A, Hong K, Naim N, Qi C, Korkhov V, Altschuler DL. CAP1 binds and activates adenylyl cyclase in mammalian cells. Proc Natl Acad Sci U S A 2021; 118:e2024576118. [PMID: 34099549 PMCID: PMC8214675 DOI: 10.1073/pnas.2024576118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CAP1 (Cyclase-Associated Protein 1) is highly conserved in evolution. Originally identified in yeast as a bifunctional protein involved in Ras-adenylyl cyclase and F-actin dynamics regulation, the adenylyl cyclase component seems to be lost in mammalian cells. Prompted by our recent identification of the Ras-like small GTPase Rap1 as a GTP-independent but geranylgeranyl-specific partner for CAP1, we hypothesized that CAP1-Rap1, similar to CAP-Ras-cyclase in yeast, might play a critical role in cAMP dynamics in mammalian cells. In this study, we report that CAP1 binds and activates mammalian adenylyl cyclase in vitro, modulates cAMP in live cells in a Rap1-dependent manner, and affects cAMP-dependent proliferation. Utilizing deletion and mutagenesis approaches, we mapped the interaction of CAP1-cyclase with CAP's N-terminal domain involving critical leucine residues in the conserved RLE motifs and adenylyl cyclase's conserved catalytic loops (e.g., C1a and/or C2a). When combined with a FRET-based cAMP sensor, CAP1 overexpression-knockdown strategies, and the use of constitutively active and negative regulators of Rap1, our studies highlight a critical role for CAP1-Rap1 in adenylyl cyclase regulation in live cells. Similarly, we show that CAP1 modulation significantly affected cAMP-mediated proliferation in an RLE motif-dependent manner. The combined study indicates that CAP1-cyclase-Rap1 represents a regulatory unit in cAMP dynamics and biology. Since Rap1 is an established downstream effector of cAMP, we advance the hypothesis that CAP1-cyclase-Rap1 represents a positive feedback loop that might be involved in cAMP microdomain establishment and localized signaling.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Kyoungja Hong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Chao Qi
- Institute of Molecular Biology and Biophysics, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Volodymyr Korkhov
- Institute of Molecular Biology and Biophysics, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261;
| |
Collapse
|
11
|
Annamdevula NS, Sweat R, Gunn H, Griswold JR, Britain AL, Rich TC, Leavesley SJ. Measurement of 3-Dimensional cAMP Distributions in Living Cells using 4-Dimensional (x, y, z, and λ) Hyperspectral FRET Imaging and Analysis. J Vis Exp 2020. [PMID: 33191928 DOI: 10.3791/61720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyclic AMP is a second messenger that is involved in a wide range of cellular and physiological activities. Several studies suggest that cAMP signals are compartmentalized, and that compartmentalization contributes to signaling specificity within the cAMP signaling pathway. The development of Fӧrster resonance energy transfer (FRET) based biosensors has furthered the ability to measure and visualize cAMP signals in cells. However, these measurements are often confined to two spatial dimensions, which may result in misinterpretation of data. To date, there have been only very limited measurements of cAMP signals in three spatial dimensions (x, y, and z), due to the technical limitations in using FRET sensors that inherently exhibit low signal to noise ratio (SNR). In addition, traditional filter-based imaging approaches are often ineffective for accurate measurement of cAMP signals in localized subcellular regions due to a range of factors, including spectral crosstalk, limited signal strength, and autofluorescence. To overcome these limitations and allow FRET-based biosensors to be used with multiple fluorophores, we have developed hyperspectral FRET imaging and analysis approaches that provide spectral specificity for calculating FRET efficiencies and the ability to spectrally separate FRET signals from confounding autofluorescence and/or signals from additional fluorescent labels. Here, we present the methodology for implementing hyperspectral FRET imaging as well as the need to construct an appropriate spectral library that is neither undersampled nor oversampled to perform spectral unmixing. While we present this methodology for measurement of three-dimensional cAMP distributions in pulmonary microvascular endothelial cells (PMVECs), this methodology could be used to study spatial distributions of cAMP in a range of cell types.
Collapse
Affiliation(s)
- Naga S Annamdevula
- Department of Pharmacology, University of South Alabama; Center for Lung Biology, University of South Alabama
| | - Rachel Sweat
- Department of Chemical and Biomolecular Engineering, University of South Alabama
| | - Hayden Gunn
- Department of Pharmacology, University of South Alabama
| | - John R Griswold
- Department of Chemical and Biomolecular Engineering, University of South Alabama
| | - Andrea L Britain
- Department of Pharmacology, University of South Alabama; Center for Lung Biology, University of South Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama; Center for Lung Biology, University of South Alabama
| | - Silas J Leavesley
- Department of Pharmacology, University of South Alabama; Center for Lung Biology, University of South Alabama; Department of Chemical and Biomolecular Engineering, University of South Alabama;
| |
Collapse
|
12
|
Xiong S, Hong Z, Huang LS, Tsukasaki Y, Nepal S, Di A, Zhong M, Wu W, Ye Z, Gao X, Rao GN, Mehta D, Rehman J, Malik AB. IL-1β suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury. J Clin Invest 2020; 130:3684-3698. [PMID: 32298238 PMCID: PMC7324198 DOI: 10.1172/jci136908] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture-induced (CLP-induced) polymicrobial sepsis decreased the expression of transcription factor cAMP response element binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. The inflammatory cytokine IL-1β reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits type 4 cyclic nucleotide phosphodiesterase-mediated (PDE4-mediated) hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of the endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.
Collapse
Affiliation(s)
- Shiqin Xiong
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zhigang Hong
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Long Shuang Huang
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Saroj Nepal
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Anke Di
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Ming Zhong
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Wei Wu
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaopei Gao
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dolly Mehta
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine and
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
13
|
Renema P, Hardy KS, Housley N, Dunbar G, Annamdevula N, Britain A, Spadafora D, Leavesley S, Rich T, Audia JP, Alvarez DF. cAMP signaling primes lung endothelial cells to activate caspase-1 during Pseudomonas aeruginosa infection. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1074-L1083. [PMID: 32186399 DOI: 10.1152/ajplung.00185.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the inflammasome-caspase-1 axis in lung endothelial cells is emerging as a novel arm of the innate immune response to pneumonia and sepsis caused by Pseudomonas aeruginosa. Increased levels of circulating autacoids are hallmarks of pneumonia and sepsis and induce physiological responses via cAMP signaling in targeted cells. However, it is unknown whether cAMP affects other functions, such as P. aeruginosa-induced caspase-1 activation. Herein, we describe the effects of cAMP signaling on caspase-1 activation using a single cell flow cytometry-based assay. P. aeruginosa infection of cultured lung endothelial cells caused caspase-1 activation in a distinct population of cells. Unexpectedly, pharmacological cAMP elevation increased the total number of lung endothelial cells with activated caspase-1. Interestingly, addition of cAMP agonists augmented P. aeruginosa infection of lung endothelial cells as a partial explanation underlying cAMP priming of caspase-1 activation. The cAMP effect(s) appeared to function as a priming signal because addition of cAMP agonists was required either before or early during the onset of infection. However, absolute cAMP levels measured by ELISA were not predictive of cAMP-priming effects. Importantly, inhibition of de novo cAMP synthesis decreased the number of lung endothelial cells with activated caspase-1 during infection. Collectively, our data suggest that lung endothelial cells rely on cAMP signaling to prime caspase-1 activation during P. aeruginosa infection.
Collapse
Affiliation(s)
- Phoibe Renema
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Kierra S Hardy
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Nicole Housley
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Grace Dunbar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Naga Annamdevula
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Andrea Britain
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | | | - Silas Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Jonathon P Audia
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Diego F Alvarez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
14
|
Ma ZF, Zhang H, Teh SS, Wang CW, Zhang Y, Hayford F, Wang L, Ma T, Dong Z, Zhang Y, Zhu Y. Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2437397. [PMID: 30728882 PMCID: PMC6343173 DOI: 10.1155/2019/2437397] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Goji berries (Lycium fruits) are usually found in Asia, particularly in northwest regions of China. Traditionally, dried goji berries are cooked before they are consumed. They are commonly used in Chinese soups and as herbal tea. Moreover, goji berries are used for the production of tincture, wine, and juice. Goji berries are high antioxidant potential fruits which alleviate oxidative stress to confer many health protective benefits such as preventing free radicals from damaging DNA, lipids, and proteins. Therefore, the aim of the review was to focus on the bioactive compounds and pharmacological properties of goji berries including their molecular mechanisms of action. The health benefits of goji berries include enhancing hemopoiesis, antiradiation, antiaging, anticancer, improvement of immunity, and antioxidation. There is a better protection through synergistic and additive effects in fruits and herbal products from a complex mixture of phytochemicals when compared to one single phytochemical.
Collapse
Affiliation(s)
- Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, 15200 Kelantan, Malaysia
| | - Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Sue Siang Teh
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Department of Food Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia
| | - Chee Woon Wang
- Department of Biochemistry, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Jenjarom, 42610 Selangor, Malaysia
| | - Yutong Zhang
- Jinzhou Medical University, Jinzhou 121000, China
| | - Frank Hayford
- Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB143, Korle-Bu, Accra, Ghana
| | - Liuyi Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Zihan Dong
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yan Zhang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yifan Zhu
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
15
|
Naim N, White AD, Reece JM, Wankhede M, Zhang X, Vilardaga JP, Altschuler DL. Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis. J Biol Chem 2018; 294:1095-1103. [PMID: 30559293 DOI: 10.1074/jbc.ac118.004905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fine-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
Collapse
Affiliation(s)
- Nyla Naim
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Alex D White
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeff M Reece
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | | | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
16
|
Annamdevula NS, Sweat R, Griswold JR, Trinh K, Hoffman C, West S, Deal J, Britain AL, Jalink K, Rich TC, Leavesley SJ. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry A 2018; 93:1029-1038. [PMID: 30176184 DOI: 10.1002/cyto.a.23572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
Cyclic AMP is a ubiquitous second messenger that orchestrates a variety of cellular functions over different timescales. The mechanisms underlying specificity within this signaling pathway are still not well understood. Several lines of evidence suggest the existence of spatial cAMP gradients within cells, and that compartmentalization underlies specificity within the cAMP signaling pathway. However, to date, no studies have visualized cAMP gradients in three spatial dimensions (3D: x, y, z).This is in part due to the limitations of FRET-based cAMP sensors, specifically the low signal-to-noise ratio intrinsic to all intracellular FRET probes. Here, we overcome this limitation, at least in part, by implementing spectral imaging approaches to estimate FRET efficiency when multiple fluorescent labels are used and when signals are measured from weakly expressed fluorescent proteins in the presence of background autofluorescence and stray light. Analysis of spectral image stacks in two spatial dimensions (2D) from single confocal slices indicates little or no cAMP gradients formed within pulmonary microvascular endothelial cells (PMVECs) under baseline conditions or following 10 min treatment with the adenylyl cyclase activator forskolin. However, analysis of spectral image stacks in 3D demonstrates marked cAMP gradients from the apical to basolateral face of PMVECs. Results demonstrate that spectral imaging approaches can be used to assess cAMP gradients-and in general gradients in fluorescence and FRET-within intact cells. Results also demonstrate that 2D imaging studies of localized fluorescence signals and, in particular, cAMP signals, whether using epifluorescence or confocal microscopy, may lead to erroneous conclusions about the existence and/or magnitude of gradients in either FRET or the underlying cAMP signals. Thus, with the exception of cellular structures that can be considered in one spatial dimension, such as neuronal processes, 3D measurements are required to assess mechanisms underlying compartmentalization and specificity within intracellular signaling pathways.
Collapse
Affiliation(s)
- Naga S Annamdevula
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Rachel Sweat
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - John R Griswold
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Kenny Trinh
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Chase Hoffman
- Medical Sciences, University of South Alabama, Mobile, Alabama
| | - Savannah West
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama
| | - Joshua Deal
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Kees Jalink
- The Netherlands Cancer Institute and van Leeuwenhoek Center for Advanced Microscopy, Amsterdam, the Netherlands
| | - Thomas C Rich
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama.,College of Engineering, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
17
|
Perrot CY, Sawada J, Komatsu M. Prolonged activation of cAMP signaling leads to endothelial barrier disruption via transcriptional repression of RRAS. FASEB J 2018; 32:fj201700818RRR. [PMID: 29775418 PMCID: PMC6181640 DOI: 10.1096/fj.201700818rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
Abstract
The increase in cAMP levels in endothelial cells triggers cellular signaling to alter vascular permeability. It is generally considered that cAMP signaling stabilizes the endothelial barrier function and reduces permeability. However, previous studies have only examined the permeability shortly after cAMP elevation and thus have only investigated acute responses. Because cAMP is a key regulator of gene expression, elevated cAMP may have a delayed but profound impact on the endothelial permeability by altering the expression of the genes that are vital for the vessel wall stability. The small guanosine triphosphate hydrolase Ras-related protein (R-Ras) stabilizes VE-cadherin clustering and enhances endothelial barrier function, thereby stabilizing the integrity of blood vessel wall. Here we show that cAMP controls endothelial permeability through RRAS gene regulation. The prolonged cAMP elevation transcriptionally repressed RRAS in endothelial cells via a cAMP response element-binding protein (CREB) 3-dependent mechanism and significantly disrupted the adherens junction. These effects resulted in a marked increase of endothelial permeability that was reversed by R-Ras transduction. Furthermore, cAMP elevation in the endothelium by prostaglandin E2 or phosphodiesterase type 4 inhibition caused plasma leakage from intact microvessels in mouse skin. Our study demonstrated that, contrary to the widely accepted notion, cAMP elevation in endothelial cells ultimately increases vascular permeability, and the cAMP-dependent RRAS repression critically contributes to this effect.-Perrot, C. Y., Sawada, J., Komatsu, M. Prolonged activation of cyclic AMP signaling leads to endothelial barrier disruption via transcriptional repression of RRAS.
Collapse
Affiliation(s)
- Carole Y. Perrot
- Cancer Center and Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA
| | - Junko Sawada
- Cancer Center and Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA
| | - Masanobu Komatsu
- Cancer Center and Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA
| |
Collapse
|
18
|
Pozdniakova S, Ladilov Y. Functional Significance of the Adcy10-Dependent Intracellular cAMP Compartments. J Cardiovasc Dev Dis 2018; 5:E29. [PMID: 29751653 PMCID: PMC6023465 DOI: 10.3390/jcdd5020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence confirms the compartmentalized structure of evolutionarily conserved 3'⁻5'-cyclic adenosine monophosphate (cAMP) signaling, which allows for simultaneous participation in a wide variety of physiological functions and ensures specificity, selectivity and signal strength. One important player in cAMP signaling is soluble adenylyl cyclase (sAC). The intracellular localization of sAC allows for the formation of unique intracellular cAMP microdomains that control various physiological and pathological processes. This review is focused on the functional role of sAC-produced cAMP. In particular, we examine the role of sAC-cAMP in different cellular compartments, such as cytosol, nucleus and mitochondria.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| | - Yury Ladilov
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| |
Collapse
|
19
|
Chang JC, Go S, Verhoeven AJ, Beuers U, Oude Elferink RP. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1232-1239. [DOI: 10.1016/j.bbadis.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
|
20
|
Fertig BA, Baillie GS. PDE4-Mediated cAMP Signalling. J Cardiovasc Dev Dis 2018; 5:jcdd5010008. [PMID: 29385021 PMCID: PMC5872356 DOI: 10.3390/jcdd5010008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
cAMP is the archetypal and ubiquitous second messenger utilised for the fine control of many cardiovascular cell signalling systems. The ability of cAMP to elicit cell surface receptor-specific responses relies on its compartmentalisation by cAMP hydrolysing enzymes known as phosphodiesterases. One family of these enzymes, PDE4, is particularly important in the cardiovascular system, where it has been extensively studied and shown to orchestrate complex, localised signalling that underpins many crucial functions of the heart. In the cardiac myocyte, cAMP activates PKA, which phosphorylates a small subset of mostly sarcoplasmic substrate proteins that drive β-adrenergic enhancement of cardiac function. The phosphorylation of these substrates, many of which are involved in cardiac excitation-contraction coupling, has been shown to be tightly regulated by highly localised pools of individual PDE4 isoforms. The spatial and temporal regulation of cardiac signalling is made possible by the formation of macromolecular “signalosomes”, which often include a cAMP effector, such as PKA, its substrate, PDE4 and an anchoring protein such as an AKAP. Studies described in the present review highlight the importance of this relationship for individual cardiac PKA substrates and we provide an overview of how this signalling paradigm is coordinated to promote efficient adrenergic enhancement of cardiac function. The role of PDE4 also extends to the vascular endothelium, where it regulates vascular permeability and barrier function. In this distinct location, PDE4 interacts with adherens junctions to regulate their stability. These highly specific, non-redundant roles for PDE4 isoforms have far reaching therapeutic potential. PDE inhibitors in the clinic have been plagued with problems due to the active site-directed nature of the compounds which concomitantly attenuate PDE activity in all highly localised “signalosomes”.
Collapse
|
21
|
Schneberger D, Sethi RS, Singh B. Comparative View of Lung Vascular Endothelium of Cattle, Horses, and Water Buffalo. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:21-39. [DOI: 10.1007/978-3-319-68483-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
23
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 630] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Chang JC, Beuers U, Oude Elferink RP. The Emerging Role of Soluble Adenylyl Cyclase in Primary Biliary Cholangitis. Dig Dis 2017; 35:217-223. [PMID: 28249274 PMCID: PMC5516404 DOI: 10.1159/000450914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC; previously referred to as primary biliary cirrhosis) is a chronic fibrosing cholangiopathy with the signature of an autoimmune disease and features of intrahepatic cholestasis. Immunosuppressing treatments are largely unsuccessful. Responsiveness to ursodeoxycholic acid and reduced expression of anion exchanger 2 (AE2) on canalicular membranes and small bile ducts underline the importance of bicarbonate transportation in its disease mechanism. Soluble adenylyl cyclase (sAC; ADCY10) is an evolutionarily conserved bicarbonate sensor that regulates apoptosis, barrier function and TNF signaling. Key Messages: The biliary epithelium defends against the toxic bile by bicarbonate secretion and by maintaining a tight barrier. Passive diffusion of weak acid conjugates (e.g. bile salts and other toxins) across plasma membrane is pH-dependent. Reduced AE2 expression results in both reduced bicarbonate secretion and accumulation of bicarbonate in the cells. Increased intracellular bicarbonate leads to increased sAC activity, which regulates bile salt-induced apoptosis. Reduced bicarbonate secretion causes more bile salts to enter cells, which further increase sAC activity by releasing intracellular Ca2+ store. In vitro studies demonstrate that inhibition of sAC not only corrects sensitization to bile salt-induced apoptosis as a result of AE2 down-regulation but also prevents bile salt-induced apoptosis altogether. Targeting sAC is also likely to slow down disease progression by strengthening the barrier function of biliary epithelia and by reducing oxidative stress as a result of chronic inflammation. CONCLUSIONS sAC is a potential therapeutic target for PBC. More in vitro and in vivo studies are needed to understand how sAC regulates bile salt-induced apoptosis and to establish its therapeutic value in PBC and other cholestatic cholangiopathies.
Collapse
Affiliation(s)
| | | | - Ronald P.J. Oude Elferink
- *Ronald P.J. Oude Elferink, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center S1-162, Meibergdreef 69-71, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
25
|
Chang J, Go S, de Waart DR, Munoz‐Garrido P, Beuers U, Paulusma CC, Oude Elferink R. Soluble Adenylyl Cyclase Regulates Bile Salt-Induced Apoptosis in Human Cholangiocytes. Hepatology 2016; 64:522-34. [PMID: 26991014 PMCID: PMC5111777 DOI: 10.1002/hep.28550] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Anion exchanger 2 (AE2), the principal bicarbonate secretor in the human biliary tree, is down-regulated in primary biliary cholangitis. AE2 creates a "bicarbonate umbrella" that protects cholangiocytes from the proapoptotic effects of bile salts by maintaining them deprotonated. We observed that knockdown of AE2 sensitized immortalized H69 human cholangiocytes to not only bile salt-induced apoptosis (BSIA) but also etoposide-induced apoptosis. Because the toxicity of etoposide is pH-independent, there could be a more general mechanism for sensitization of AE2-depleted cholangiocytes to apoptotic stimuli. We found that AE2 deficiency led to intracellular bicarbonate accumulation and increased expression and activity of soluble adenylyl cyclase (sAC), an evolutionarily conserved bicarbonate sensor. Thus, we hypothesized that sAC regulates BSIA. H69 cholangiocytes and primary mouse cholangiocytes were used as models. The sAC-specific inhibitor KH7 not only reversed sensitization to BSIA in AE2-depleted H69 cholangiocytes but even completely prevented BSIA. sAC knockdown by tetracycline-inducible short hairpin RNA also prevented BSIA. In addition, sAC inhibition reversed BSIA membrane blebbing, nuclear condensation, and DNA fragmentation. Furthermore, sAC inhibition also prevented BSIA in primary mouse cholangiocytes. Mechanistically, sAC inhibition prevented Bax phosphorylation at Thr167 and mitochondrial translocation of Bax and cytochrome c release but not c-Jun N-terminal kinase activation during BSIA. Finally, BSIA in H69 cholangiocytes was inhibited by intracellular Ca(2+) chelation, aggravated by thapsigargin, and unaffected by removal of extracellular calcium. CONCLUSIONS BSIA is regulated by sAC, depends on intracellular Ca(2+) stores, and is mediated by the intrinsic apoptotic pathway; down-regulation of AE2 in primary biliary cholangitis sensitizes cholangiocytes to apoptotic insults by activating sAC, which may play a crucial role in disease pathogenesis. (Hepatology 2016;64:522-534).
Collapse
Affiliation(s)
- Jung‐Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Dirk R. de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Patricia Munoz‐Garrido
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastiánSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III)MadridSpain
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
26
|
Chen W, Spitzl A, Mathes D, Nikolaev VO, Werner F, Weirather J, Špiranec K, Röck K, Fischer JW, Kämmerer U, Stegner D, Baba HA, Hofmann U, Frantz S, Kuhn M. Endothelial Actions of ANP Enhance Myocardial Inflammatory Infiltration in the Early Phase After Acute Infarction. Circ Res 2016; 119:237-48. [PMID: 27142162 DOI: 10.1161/circresaha.115.307196] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE In patients after acute myocardial infarction (AMI), the initial extent of necrosis and inflammation determine clinical outcome. One early event in AMI is the increased cardiac expression of atrial natriuretic peptide (NP) and B-type NP, with their plasma levels correlating with severity of ischemia. It was shown that NPs, via their cGMP-forming guanylyl cyclase-A (GC-A) receptor and cGMP-dependent kinase I (cGKI), strengthen systemic endothelial barrier properties in acute inflammation. OBJECTIVE We studied whether endothelial actions of local NPs modulate myocardial injury and early inflammation after AMI. METHODS AND RESULTS Necrosis and inflammation after experimental AMI were compared between control mice and littermates with endothelial-restricted inactivation of GC-A (knockout mice with endothelial GC-A deletion) or cGKI (knockout mice with endothelial cGKI deletion). Unexpectedly, myocardial infarct size and neutrophil infiltration/activity 2 days after AMI were attenuated in knockout mice with endothelial GC-A deletion and unaltered in knockout mice with endothelial cGKI deletion. Molecular studies revealed that hypoxia and tumor necrosis factor-α, conditions accompanying AMI, reduce the endothelial expression of cGKI and enhance cGMP-stimulated phosphodiesterase 2A (PDE2A) levels. Real-time cAMP measurements in endothelial microdomains using a novel fluorescence resonance energy transfer biosensor revealed that PDE2 mediates NP/cGMP-driven decreases of submembrane cAMP levels. Finally, intravital microscopy studies of the mouse cremaster microcirculation showed that tumor necrosis factor-α-induced endothelial NP/GC-A/cGMP/PDE2 signaling impairs endothelial barrier functions. CONCLUSIONS Hypoxia and cytokines, such as tumor necrosis factor-α, modify the endothelial postreceptor signaling pathways of NPs, with downregulation of cGKI, induction of PDE2A, and altered cGMP/cAMP cross talk. Increased expression of PDE2 can mediate hyperpermeability effects of paracrine endothelial NP/GC-A/cGMP signaling and facilitate neutrophil extravasation during the early phase after MI.
Collapse
Affiliation(s)
- Wen Chen
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Annett Spitzl
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Denise Mathes
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Viacheslav O Nikolaev
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Franziska Werner
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Johannes Weirather
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Katarina Špiranec
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Katharina Röck
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Jens W Fischer
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Ulrike Kämmerer
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - David Stegner
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Hideo A Baba
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Ulrich Hofmann
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Stefan Frantz
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.)
| | - Michaela Kuhn
- From the Institute of Physiology (W.C., A.S., F.W., K.Š., M.K.), Comprehensive Heart Failure Center (D.M., J.W., U.H., S.F., M.K.), and Department of Experimental Biomedicine and Rudolf Virchow Center for Experimental Biomedicine (D.S.), University of Würzburg, Würzburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); Institut für Pharmakologie und Klinische Pharmakologie und CARID, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (K.R., J.W.F.); Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany (U.K.); Institute of Pathology, University Duisburg-Essen, Essen, Germany (H.A.B.); and Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Halle (Saale), Germany (U.H., S.F.).
| |
Collapse
|
27
|
Morrow KA, Frank DW, Balczon R, Stevens T. The Pseudomonas aeruginosa Exoenzyme Y: A Promiscuous Nucleotidyl Cyclase Edema Factor and Virulence Determinant. Handb Exp Pharmacol 2016; 238:67-85. [PMID: 28181005 DOI: 10.1007/164_2016_5003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exoenzyme Y (ExoY) was identified as a component of the Pseudomonas aeruginosa type 3 secretion system secretome in 1998. It is a common contributor to the arsenal of type 3 secretion system effectors, as it is present in approximately 90% of Pseudomonas isolates. ExoY has adenylyl cyclase activity that is dependent upon its association with a host cell cofactor. However, recent evidence indicates that ExoY is not just an adenylyl cyclase; rather, it is a promiscuous cyclase capable of generating purine and pyrimidine cyclic nucleotide monophosphates. ExoY's enzymatic activity causes a characteristic rounding of mammalian cells, due to microtubule breakdown. In endothelium, this cell rounding disrupts cell-to-cell junctions, leading to loss of barrier integrity and an increase in tissue edema. Microtubule breakdown seems to depend upon tau phosphorylation, where the elevation of cyclic nucleotide monophosphates activates protein kinases A and G and causes phosphorylation of endothelial microtubule associated protein tau. Phosphorylation is a stimulus for tau release from microtubules, leading to microtubule instability. Phosphorylated tau accumulates inside endothelium as a high molecular weight, oligomeric form, and is then released from the cell. Extracellular high molecular weight tau causes a transmissible cytotoxicity that significantly hinders cellular repair following infection. Thus, ExoY may contribute to bacterial virulence in at least two ways; first, by microtubule breakdown leading to loss of endothelial cell barrier integrity, and second, by promoting release of a high molecular weight tau cytotoxin that impairs cellular recovery following infection.
Collapse
Affiliation(s)
- K Adam Morrow
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, 36688, USA
- The Center for Lung Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ron Balczon
- The Center for Lung Biology, University of South Alabama, Mobile, AL, 36688, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama, Mobile, AL, 36688, USA.
- Department of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
28
|
Morrow KA, Ochoa CD, Balczon R, Zhou C, Cauthen L, Alexeyev M, Schmalzer KM, Frank DW, Stevens T. Pseudomonas aeruginosa exoenzymes U and Y induce a transmissible endothelial proteinopathy. Am J Physiol Lung Cell Mol Physiol 2015; 310:L337-53. [PMID: 26637633 DOI: 10.1152/ajplung.00103.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that Pseudomonas aeruginosa type 3 secretion system effectors exoenzymes Y and U (ExoY and ExoU) induce release of a high-molecular-weight endothelial tau, causing transmissible cell injury characteristic of an infectious proteinopathy. Both the bacterial delivery of ExoY and ExoU and the conditional expression of an activity-attenuated ExoU induced time-dependent pulmonary microvascular endothelial cell gap formation that was paralleled by the loss of intracellular tau and the concomitant appearance of high-molecular-weight extracellular tau. Transfer of the high-molecular-weight tau in filtered supernatant to naïve endothelial cells resulted in intracellular accumulation of tau clusters, which was accompanied by cell injury, interendothelial gap formation, decreased endothelial network stability in Matrigel, and increased lung permeability. Tau oligomer monoclonal antibodies captured monomeric tau from filtered supernatant but did not retrieve higher-molecular-weight endothelial tau and did not rescue the injurious effects of tau. Enrichment and transfer of high-molecular-weight tau to naïve cells was sufficient to cause injury. Thus we provide the first evidence for a pathophysiological stimulus that induces release and transmissibility of high-molecular-weight endothelial tau characteristic of an endothelial proteinopathy.
Collapse
Affiliation(s)
- K Adam Morrow
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Cristhiaan D Ochoa
- Physician-Scientist Training Program, Department of Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas; Division of Pulmonary and Critical Care, University of Texas-Southwestern Medical Center, Dallas, Texas
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Laura Cauthen
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Katherine M Schmalzer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin; and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama;
| |
Collapse
|
29
|
Morrow KA, Seifert R, Kaever V, Britain AL, Sayner SL, Ochoa CD, Cioffi EA, Frank DW, Rich TC, Stevens T. Heterogeneity of pulmonary endothelial cyclic nucleotide response to Pseudomonas aeruginosa ExoY infection. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1199-207. [PMID: 26386118 PMCID: PMC4652153 DOI: 10.1152/ajplung.00165.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/11/2015] [Indexed: 01/16/2023] Open
Abstract
Here, we tested the hypothesis that a promiscuous bacterial cyclase synthesizes purine and pyrimidine cyclic nucleotides in the pulmonary endothelium. To test this hypothesis, pulmonary endothelial cells were infected with a strain of the Gram-negative bacterium Pseudomonas aeruginosa that introduces only exoenzyme Y (PA103 ΔexoUexoT::Tc pUCPexoY; ExoY(+)) via a type III secretion system. Purine and pyrimidine cyclic nucleotides were simultaneously detected using mass spectrometry. Pulmonary artery (PAECs) and pulmonary microvascular (PMVECs) endothelial cells both possess basal levels of four different cyclic nucleotides in the following rank order: cAMP > cUMP ≈ cGMP ≈ cCMP. Endothelial gap formation was induced in a time-dependent manner following ExoY(+) intoxication. In PAECs, intercellular gaps formed within 2 h and progressively increased in size up to 6 h, when the experiment was terminated. cGMP concentrations increased within 1 h postinfection, whereas cAMP and cUMP concentrations increased within 3 h, and cCMP concentrations increased within 4 h postinfection. In PMVECs, intercellular gaps did not form until 4 h postinfection. Only cGMP and cUMP concentrations increased at 3 and 6 h postinfection, respectively. PAECs generated higher cyclic nucleotide levels than PMVECs, and the cyclic nucleotide levels increased earlier in response to ExoY(+) intoxication. Heterogeneity of the cyclic nucleotide signature in response to P. aeruginosa infection exists between PAECs and PMVECs, suggesting the intracellular milieu in PAECs is more conducive to cNMP generation.
Collapse
Affiliation(s)
- K A Morrow
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - R Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - V Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - A L Britain
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - S L Sayner
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - C D Ochoa
- Physician-Scientist Training Program, Department of Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas; Physician-Scientist Training Program, Division of Pulmonary and Critical Care, University of Texas-Southwestern Medical Center, Dallas, Texas
| | - E A Cioffi
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - D W Frank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - T C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - T Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama;
| |
Collapse
|
30
|
Nickols J, Obiako B, Ramila KC, Putinta K, Schilling S, Sayner SL. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1430-7. [PMID: 26475732 DOI: 10.1152/ajplung.00067.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10.
Collapse
Affiliation(s)
- Jordan Nickols
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama
| | - Boniface Obiako
- Department of Pharmacology, University South Alabama, Mobile, Alabama; Center for Lung Biology, University South Alabama, Mobile, Alabama; and
| | - K C Ramila
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama
| | - Kevin Putinta
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama
| | - Sarah Schilling
- University of Applied Sciences Bingen, Bingen am Rhein, Germany
| | - Sarah L Sayner
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama; Center for Lung Biology, University South Alabama, Mobile, Alabama; and
| |
Collapse
|
31
|
Lin MT, Jian MY, Taylor MS, Cioffi DL, Yap FC, Liedtke W, Townsley MI. Functional coupling of TRPV4, IK, and SK channels contributes to Ca(2+)-dependent endothelial injury in rodent lung. Pulm Circ 2015; 5:279-90. [PMID: 26064452 DOI: 10.1086/680166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/15/2014] [Indexed: 02/05/2023] Open
Abstract
Our previous work has shown that the increased lung endothelial permeability response to 14,15-epoxyeicosatrienoic acid (14,15-EET) in rat lung requires Ca(2+) entry via vanilloid type-4 transient receptor potential (TRPV4) channels. Recent studies suggest that activation of TRPV4 channels in systemic vascular endothelium prolongs agonist-induced hyperpolarization and amplifies Ca(2+) entry by activating Ca(2+)-activated K(+) (KCa) channels, resulting in vessel relaxation. Activation of endothelial KCa channels thus has potential to increase the electrochemical driving force for Ca(2+) influx via TRPV4 channels and to amplify permeability responses to TRPV4 activation in lung. To examine this hypothesis, we used Western blot analysis, electrophysiological recordings, and isolated-lung permeability measurements to document expression of TRPV4 and KCa channels and the potential for functional coupling. The results show that rat pulmonary microvascular endothelial cells express TRPV4 and 3 KCa channels of different conductances: large (BK), intermediate (IK), and small (SK3). However, TRPV4 channel activity modulates the IK and SK3, but not the BK, channel current density. Furthermore, the TRPV4-mediated permeability response to 14,15-EET in mouse lung is significantly attenuated by pharmacologic blockade of IK and SK3, but not BK, channels. Collectively, this functional coupling suggests that endothelial TRPV4 channels in rodent lung likely form signaling microdomains with IK and SK3 channels and that the integrated response dictates the extent of lung endothelial injury caused by 14,15-EET.
Collapse
Affiliation(s)
- Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA ; These authors contributed equally to this work
| | - Ming-Yuan Jian
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA ; Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA ; Present address: Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA. ; These authors contributed equally to this work
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Donna L Cioffi
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA ; Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Fui C Yap
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Wolfgang Liedtke
- Departments of Medicine, Neurology and Neurobiology, Duke University, Durham, North Carolina, USA
| | - Mary I Townsley
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA ; Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA ; Department of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
32
|
Cyclic nucleotide phosphodiesterases (PDEs): coincidence detectors acting to spatially and temporally integrate cyclic nucleotide and non-cyclic nucleotide signals. Biochem Soc Trans 2015; 42:250-6. [PMID: 24646226 DOI: 10.1042/bst20130268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.
Collapse
|
33
|
Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers 2015; 3:e978720. [PMID: 25838983 DOI: 10.4161/21688370.2014.978720] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.
Collapse
Key Words
- AJ, Adherens junctions
- ANG-1, Angiopoietin 1
- AQP, Aquaporins
- BBB, blood brain barrier
- CNS, Central nervous system
- COPD, Chronic obstructive pulmonary disease
- EAE, Experimental autoimmune encephalomyelitis
- EPAC1, Exchange protein activated by cyclic AMP
- ERK1/2, Extracellular signal-regulated kinases 1 and 2
- Endothelial barrier
- FA, Focal adhesions
- FAK, focal adhesion tyrosine kinase
- FoxO1, Forkhead box O1
- GAG, Glycosaminoglycans
- GDNF, Glial cell-derived neurotrophic factor
- GJ, Gap junctions
- GPCR, G-protein coupled receptors
- GTPase, Guanosine 5'-triphosphatase
- HMGB-1, High mobility group box 1
- HRAS, Harvey rat sarcoma viral oncogene homolog
- ICAM-1, Intercellular adhesion molecule 1
- IL-1β, Interleukin 1 beta
- IP3, Inositol 1,4,5-triphosphate
- JAM, Junctional adhesion molecules
- MEK, Mitogen-activated protein kinase kinase
- MLC, Myosin light chain
- MLCK, Myosin light-chain kinase
- MMP, Matrix metalloproteinases
- NO, Nitric oxide
- OSM, Oncostatin M
- PAF, Platelet activating factor
- PDE, Phosphodiesterase
- PKA, Protein kinase A
- PNA, Platelet-neutrophil aggregates
- ROS, Reactive oxygen species
- Rac1, Ras-related C3 botulinum toxin substrate 1
- Rap1, Ras-related protein 1
- RhoA, Ras homolog gene family, member A
- S1P, Sphingosine-1-phosphate
- SCID, Severe combined immunodeficient
- SOCS-3, Suppressors of cytokine signaling 3
- Shp-2, Src homology 2 domain-containing phosphatase 2
- Src, Sarcoma family of protein kinases
- TEER, Transendothelial electrical resistance
- TGF-beta1, Transforming growth factor-beta1
- TJ, Tight junctions
- TNF-, Tumor necrosis factor alpha
- VCAM-1, Vascular cell adhesion molecule 1
- VE, Vascular endothelial
- VE-PTP, Vascular endothelial receptor protein tyrosine phosphatase
- VEGF, Vascular endothelial growth factor
- VVO, Vesiculo-vacuolar organelle
- ZO, Zonula occludens
- cAMP, 3'-5'-cyclic adenosine monophosphate
- erythrocytes
- leukocytes
- pSrc, Phosphorylated Src
- platelets
- vascular permeability
Collapse
Affiliation(s)
- Stephen F Rodrigues
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo ; Sao Paulo, Brazil
| | - D Neil Granger
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center ; Shreveport, LA USA
| |
Collapse
|
34
|
Birukova AA, Meng F, Tian Y, Meliton A, Sarich N, Quilliam LA, Birukov KG. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1. Biochim Biophys Acta Mol Basis Dis 2014; 1852:778-91. [PMID: 25545047 DOI: 10.1016/j.bbadis.2014.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022]
Abstract
Protective effects of prostacyclin (PC) or its stable analog beraprost against agonist-induced lung vascular inflammation have been associated with elevation of intracellular cAMP and Rac GTPase signaling which inhibited the RhoA GTPase-dependent pathway of endothelial barrier dysfunction. This study investigated a distinct mechanism of PC-stimulated lung vascular endothelial (EC) barrier recovery and resolution of LPS-induced inflammation mediated by small GTPase Rap1. Efficient barrier recovery was observed in LPS-challenged pulmonary EC after prostacyclin administration even after 15 h of initial inflammatory insult and was accompanied by the significant attenuation of p38 MAP kinase and NFκB signaling and decreased production of IL-8 and soluble ICAM1. These effects were reproduced in cells post-treated with 8CPT, a small molecule activator of Rap1-specific nucleotide exchange factor Epac. By contrast, pharmacologic Epac inhibitor, Rap1 knockdown, or knockdown of cell junction-associated Rap1 effector afadin attenuated EC recovery caused by PC or 8CPT post-treatment. The key role of Rap1 in lung barrier restoration was further confirmed in the murine model of LPS-induced acute lung injury. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation and live imaging of vascular leak over 6 days using a fluorescent tracer. The data showed significant acceleration of lung recovery by PC and 8CPT post-treatment, which was abrogated in Rap1a(-/-) mice. These results suggest that post-treatment with PC triggers the Epac/Rap1/afadin-dependent mechanism of endothelial barrier restoration and downregulation of p38MAPK and NFκB inflammatory cascades, altogether leading to accelerated lung recovery.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Fanyong Meng
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yufeng Tian
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Angelo Meliton
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nicolene Sarich
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | - Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
36
|
Seifert R. cCMP and cUMP: emerging second messengers. Trends Biochem Sci 2014; 40:8-15. [PMID: 25435399 DOI: 10.1016/j.tibs.2014.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
Abstract
The cyclic purine nucleotides cAMP and cGMP are established second messengers. By contrast, the existence of the cyclic pyrimidine nucleotides cytidine 3',5'-cyclic monophosphate (cCMP) and uridine 3',5'-cyclic monophosphate (cUMP) has been controversial for decades. The recent development of highly sensitive mass spectrometry (MS) methods allowed precise quantitation and unequivocal identification of cCMP and cUMP in cells. Importantly, cCMP and cUMP generators, effectors, cleaving enzymes, and transporters have now been identified. Here, I discuss evidence in support of cCMP and cUMP as bona fide second messengers, the emerging therapeutic implications of cCMP and cUMP signaling, and important unresolved questions for this field.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany.
| |
Collapse
|
37
|
Li Z, Liu XB, Liu YH, Xue YX, Wang P, Liu LB. Role of cAMP-dependent protein kinase A activity in low-dose endothelial monocyte-activating polypeptide-II-induced opening of blood-tumor barrier. J Mol Neurosci 2014; 56:60-9. [PMID: 25416651 DOI: 10.1007/s12031-014-0467-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/11/2014] [Indexed: 01/18/2023]
Abstract
Our previous studies demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) can selectively increase the permeability of blood-tumor barrier (BTB). In addition, low-dose EMAP-II significantly decreases the cyclic adenosine monophosphate (cAMP) concentration and the protein kinase A (PKA) expression level in tumor tissues in the rat C6 glioma model. In this study, an in vitro BTB model was used to investigate the potential role of cAMP/PKA signaling cascade in EMAP-II-induced BTB hyperpermeability. Our data revealed that low-dose EMAP-II (0.05 nM) induced a significant decrease in total intracellular cAMP concentration and PKA activity in rat brain microvascular endothelial cells (RBMECs). Pretreatment with forskolin to increase intracellular cAMP nearly completely blocked the EMAP-II-induced decrease in transendothelial electric resistance and increase in horseradish peroxidase flux across the BTB. Similar pretreatment completely prevented the EMAP-II-induced changes in RhoA/Rho kinase activity, expression and distribution of tight junction-associated protein ZO-1, and myosin light chain phosphorylation, as well as actin cytoskeleton arrangement in RBMECs. Pretreatment with 6Bnz-cAMP to activate PKA significantly attenuated these EMAP-II-induced alterations in RBMECs. In summary, our present study demonstrates that the cAMP/PKA signaling cascade works as a crucial signaling pathway in EMAP-II-induced BTB hyperpermeability.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, 110004, Liaoning Province, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
38
|
Radeva MY, Kugelmann D, Spindler V, Waschke J. PKA compartmentalization via AKAP220 and AKAP12 contributes to endothelial barrier regulation. PLoS One 2014; 9:e106733. [PMID: 25188285 PMCID: PMC4154725 DOI: 10.1371/journal.pone.0106733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 01/14/2023] Open
Abstract
cAMP-mediated PKA signaling is the main known pathway involved in maintenance of the endothelial barrier. Tight regulation of PKA function can be achieved by discrete compartmentalization of the enzyme via physical interaction with A-kinase anchoring proteins (AKAPs). Here, we investigated the role of AKAPs 220 and 12 in endothelial barrier regulation. Analysis of human and mouse microvascular endothelial cells as well as isolated rat mesenteric microvessels was performed using TAT-Ahx-AKAPis peptide, designed to competitively inhibit PKA-AKAP interaction. In vivo microvessel hydraulic conductivity and in vitro transendothelial electrical resistance measurements showed that this peptide destabilized endothelial barrier properties, and dampened the cAMP-mediated endothelial barrier stabilization induced by forskolin and rolipram. Immunofluorescence analysis revealed that TAT-Ahx-AKAPis led to both adherens junctions and actin cytoskeleton reorganization. Those effects were paralleled by redistribution of PKA and Rac1 from endothelial junctions and by Rac1 inactivation. Similarly, membrane localization of AKAP220 was also reduced. In addition, depletion of either AKAP12 or AKAP220 significantly impaired endothelial barrier function and AKAP12 was also shown to interfere with cAMP-mediated barrier enhancement. Furthermore, immunoprecipitation analysis demonstrated that AKAP220 interacts not only with PKA but also with VE-cadherin and ß-catenin. Taken together, these results indicate that AKAP-mediated PKA subcellular compartmentalization is involved in endothelial barrier regulation. More specifically, AKAP220 and AKAP12 contribute to endothelial barrier function and AKAP12 is required for cAMP-mediated barrier stabilization.
Collapse
Affiliation(s)
- Mariya Y. Radeva
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
39
|
Conti M, Mika D, Richter W. Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. ACTA ACUST UNITED AC 2014; 143:29-38. [PMID: 24378905 PMCID: PMC3874571 DOI: 10.1085/jgp.201311083] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
40
|
Saucerman JJ, Greenwald EC, Polanowska-Grabowska R. Mechanisms of cyclic AMP compartmentation revealed by computational models. ACTA ACUST UNITED AC 2014; 143:39-48. [PMID: 24378906 PMCID: PMC3874575 DOI: 10.1085/jgp.201311044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | | | | |
Collapse
|
41
|
ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation. Biochem Biophys Res Commun 2014; 450:870-4. [PMID: 24971548 DOI: 10.1016/j.bbrc.2014.06.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/21/2022]
Abstract
In addition to the well known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. Soluble guanylyl cyclase and soluble adenylyl cyclase produce all four cNMPs. Several bacterial toxins exploit mammalian cyclic nucleotide signaling. The type III secretion protein ExoY from Pseudomonas aeruginosa induces severe lung damage and effectively produces cGMP. Here, we show that transfection of mammalian cells with ExoY or infection with ExoY-expressing P. aeruginosa not only massively increases cGMP but also cUMP levels. In contrast, the structurally related CyaA from Bordetella pertussis and edema factor from Bacillus anthracis exhibit a striking preference for cAMP increases. Thus, ExoY is a nucleotidyl cyclase with preference for cGMP and cUMP production. The differential effects of bacterial toxins on cNMP levels suggest that cUMP plays a distinct second messenger role.
Collapse
|
42
|
Chang JC, Oude-Elferink RPJ. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Front Physiol 2014; 5:42. [PMID: 24575049 PMCID: PMC3918592 DOI: 10.3389/fphys.2014.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/22/2014] [Indexed: 12/18/2022] Open
Abstract
The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO(-) 3/CO(-) 2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H(+)-ATPase (VHA) in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment.
Collapse
Affiliation(s)
- Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Ronald P J Oude-Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
43
|
High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp Eye Res 2013; 120:50-4. [PMID: 24345371 DOI: 10.1016/j.exer.2013.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 11/23/2022]
Abstract
Human retinal pigment epithelium cells were used to investigate the mechanisms underlying blood-retinal barrier disruption under conditions of chronic hyperglycemia. The treatment with 25 mM glucose caused a rapid drop in the transepithelial electrical resistance (TEER), which was reversed by the addition of either a methanolic extract from Goji (Lycium barbarum L.) berries or its main component, taurine. Intracellular cAMP levels increased concurrently with the high glucose-induced TEER decrease, and were correlated to an increased activity of the cytosolic isoform of the enzyme adenylyl cyclase. The treatment with plant extract or taurine restored control levels. Data are discussed in view of a possible prevention approach for diabetic retinopathy.
Collapse
|
44
|
Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res 2013; 355:587-96. [PMID: 24322391 DOI: 10.1007/s00441-013-1755-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General-, Visceral, Vascular and Pediatric surgery, University Hospital Wuerzburg, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany
| | | |
Collapse
|
45
|
Balczon R, Prasain N, Ochoa C, Prater J, Zhu B, Alexeyev M, Sayner S, Frank DW, Stevens T. Pseudomonas aeruginosa exotoxin Y-mediated tau hyperphosphorylation impairs microtubule assembly in pulmonary microvascular endothelial cells. PLoS One 2013; 8:e74343. [PMID: 24023939 PMCID: PMC3762819 DOI: 10.1371/journal.pone.0074343] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa uses a type III secretion system to introduce the adenylyl and guanylyl cyclase exotoxin Y (ExoY) into the cytoplasm of endothelial cells. ExoY induces Tau hyperphosphorylation and insolubility, microtubule breakdown, barrier disruption and edema, although the mechanism(s) responsible for microtubule breakdown remain poorly understood. Here we investigated both microtubule behavior and centrosome activity to test the hypothesis that ExoY disrupts microtubule dynamics. Fluorescence microscopy determined that infected pulmonary microvascular endothelial cells contained fewer microtubules than control cells, and further studies demonstrated that the microtubule-associated protein Tau was hyperphosphorylated following infection and dissociated from microtubules. Disassembly/reassembly studies determined that microtubule assembly was disrupted in infected cells, with no detectable effects on either microtubule disassembly or microtubule nucleation by centrosomes. This effect of ExoY on microtubules was abolished when the cAMP-dependent kinase phosphorylation site (Ser-214) on Tau was mutated to a non-phosphorylatable form. These studies identify Tau in microvascular endothelial cells as the target of ExoY in control of microtubule architecture following pulmonary infection by Pseudomonas aeruginosa and demonstrate that phosphorylation of tau following infection decreases microtubule assembly.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| | - Nutan Prasain
- Department of Pediatrics, University of Indiana School of Medicine, Indianapolis, Indiana, United States of America
| | - Cristhiaan Ochoa
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Jason Prater
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Bing Zhu
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Mikhail Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Sarah Sayner
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
46
|
Obiako B, Calchary W, Xu N, Kunstadt R, Richardson B, Nix J, Sayner SL. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10. Am J Physiol Lung Cell Mol Physiol 2013; 305:L185-92. [PMID: 23686854 PMCID: PMC3726949 DOI: 10.1152/ajplung.00392.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/14/2013] [Indexed: 01/23/2023] Open
Abstract
It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients.
Collapse
Affiliation(s)
- Boniface Obiako
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Curry FRE, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol (Oxf) 2013; 207:628-49. [PMID: 23374222 PMCID: PMC4054936 DOI: 10.1111/apha.12076] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
Our major theme is that the layered structure of the endothelial barrier requires continuous activation of signalling pathways regulated by sphingosine-1-phosphate (S1P) and intracellular cAMP. These pathways modulate the adherens junction, continuity of tight junction strands, and the balance of synthesis and degradation of glycocalyx components. We evaluate recent evidence that baseline permeability is maintained by constant activity of mechanisms involving the small GTPases Rap1 and Rac1. In the basal state, the barrier is compromised when activities of the small GTPases are reduced by low S1P supply or delivery. With inflammatory stimulus, increased permeability can be understood in part as the action of signalling to reduce Rap1 and Rac1 activation. With the hypothesis that microvessel permeability and selectivity under both normal and inflammatory conditions are regulated by mechanisms that are continuously active, it follows that when S1P or intracellular cAMP are elevated at the time of inflammatory stimulus, they can buffer changes induced by inflammatory agents and maintain normal barrier stability. When endothelium is exposed to inflammatory conditions and subsequently exposed to elevated S1P or intracellular cAMP, the same processes restore the functional barrier by first re-establishing the adherens junction, then modulating tight junctions and glycocalyx. In more extreme inflammatory conditions, loss of the inhibitory actions of Rac1-dependent mechanisms may promote expression of more inflammatory endothelial phenotypes by contributing to the up-regulation of RhoA-dependent contractile mechanisms and the sustained loss of surface glycocalyx allowing access of inflammatory cells to the endothelium.
Collapse
Affiliation(s)
- F-R E Curry
- Department of Physiology & Membrane Biology, School of Medicine, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
48
|
Buck J, Levin LR. Physiological sensing of carbon dioxide/bicarbonate/pH via cyclic nucleotide signaling. SENSORS 2012; 11:2112-28. [PMID: 21544217 PMCID: PMC3085406 DOI: 10.3390/s110202112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carbon dioxide (CO2) is produced by living organisms as a byproduct of metabolism. In physiological systems, CO2 is unequivocally linked with bicarbonate (HCO3−) and pH via a ubiquitous family of carbonic anhydrases, and numerous biological processes are dependent upon a mechanism for sensing the level of CO2, HCO3, and/or pH. The discovery that soluble adenylyl cyclase (sAC) is directly regulated by bicarbonate provided a link between CO2/HCO3/pH chemosensing and signaling via the widely used second messenger cyclic AMP. This review summarizes the evidence that bicarbonate-regulated sAC, and additional, subsequently identified bicarbonate-regulate nucleotidyl cyclases, function as evolutionarily conserved CO2/HCO3/pH chemosensors in a wide variety of physiological systems.
Collapse
Affiliation(s)
- Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
49
|
Ochoa CD, Alexeyev M, Pastukh V, Balczon R, Stevens T. Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J Biol Chem 2012; 287:25407-18. [PMID: 22637478 DOI: 10.1074/jbc.m111.301440] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exotoxin Y (ExoY) is a type III secretion system effector found in ~ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
50
|
Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC. Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2011; 302:C839-52. [PMID: 22116306 DOI: 10.1152/ajpcell.00361.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
Collapse
Affiliation(s)
- Wei P Feinstein
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|