1
|
Liu J, Cui S, Ye Z, Chen J, Tang M, Chen C, Xu Y, Wang Z, Yang W, Zhang Z, Wang X. Transcriptomic analysis reveals the hepatopancreas metabolic mechanisms of mud crab Scylla paramamosain fed diets with terrestrial animal fat sources replacing fish oil. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101435. [PMID: 39922112 DOI: 10.1016/j.cbd.2025.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The transcriptome analysis following an 8-week feeding trial was employed to investigate the impacts of dietary terrestrial animal fats (TAFs includes lard oil (LO), beef tallow (BT) and poultry oil (PO)) replacing fish oil (FO) on the metabolic mechanism in hepatopancreas of mud crabs (Scylla paramamosain). The fatty acid (FA) transport, biosynthesis and lipid absorption and digestion were reduced through the regulation of PPAR pathway and the mRNA expressions of monoglyceride lipases (mgls), phosphatidate phosphatase-1 (pap1), acyl-sn-glycerol-3-phosphate acyltransferase delta (plcd), cAMP-dependent protein kinase catalytic (pkac), FA-binding protein 1 (fabp-1), FA transport protein 4 (fatp-4), short/branched chain specific acyl-CoA dehydrogenase (acdsb) and enoyl-CoA delta isomerase 2 (eci2), etc., after replacing FO with BT or LO. At the same time, dietary BT and LO regulated glycolysis, gluconeogenesis and insulin signals through increasing the genes of pyruvate dehydrogenase E1 (pdh), phosphoenolpyruvate carboxykinase (pepck) and phosphatidylinositol 3-kinase (pi3k) and regulated immunity status by down regulating the mRNA expressions of heat shock proteins 27 (hsp 27), cytochrome P450 (cyp 450), etc. Replacing FO with PO enhanced phospholipid storage, fat deposition, and inhibited glucose transport by up regulating pap1, mgls, lipin 1, lipinβ and down regulating glycosyl transferase (gt) and glucose transporter type 4 (glut4) expressions. The present study showed the signaling pathways and genes that were significantly regulated by TAFs replacing dietary FO, and revealed molecular mechanisms of TAFs in S. paramamosain. This would be conducive to the application of TAFs in aquatic feed.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihui Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihao Ye
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Tang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaojia Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifang Xu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Yang
- Fujian Key Laboratory of Functional Aquafeed and Culture Environment Control, China
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Functional Aquafeed and Culture Environment Control, China.
| |
Collapse
|
2
|
Li Q, Huang J, Zhao Q, Li F. FXR as a pivotal role linking JNK and G0s2 mitigates triptolide-induced hepatotoxicity through the regulation of metabolic disorder of liver. Pharmacol Res 2025; 216:107738. [PMID: 40288593 DOI: 10.1016/j.phrs.2025.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Triptolide (TP), as a principal bioactive compound derived from Tripterygium wilfordii Hook. f., exhibits significant anti-tumor, anti-inflammatory, and immunomodulatory properties. However, the serious adverse reactions and hepatotoxicity of TP limit its clinical application. Therefore, in this study, an intraperitoneal injection was employed to establish a TP-induced hepatotoxicity model, characterized by elevated levels of transaminases (AST and ALT) and metabolic disorders. The administration of the JNK inhibitor SP600125 effectively mitigated the elevated transaminases and inflammation induced by TP. The resistance of SP600125 to metabolic disturbances induced by TP was contingent upon Fxr, as demonstrated through the use of Fxr knockout mice. Supplementation of GW4064 restored the concentrations of bile acids, long-chain fatty acids, and carnitine disrupted by TP. Transcriptomic data suggested that G0s2 was one of the genes most severely disrupted by TP, and the ameliorative effects of SP600125 and GW4064 were accompanied by the upregulation of G0s2. The expression of G0s2 was disrupted by siRNA in vitro, thereby intensifying the cytotoxicity of TP. A comparative analysis of the impact of TP on the G0s2 gene in two mouse models revealed that a smaller reduction in wild-type mice compared to Fxr-/- mice, indicating that Fxr mitigates the inhibitory effect of TP on G0s2. The aberrant JNK/Fxr/G0s2 signaling plays a key role in TP-induced hepatotoxicity. Targeting Fxr might be a potential strategy for alleviating the liver toxicity of TP.
Collapse
Affiliation(s)
- Qinmei Li
- Department of Pharmacy and Laboratory of Hepato-Intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Shanwei Institute for Food and Drug Control, Shanwei, Guangdong Province 516622, China
| | - Qi Zhao
- Department of Pharmacy and Laboratory of Hepato-Intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Li
- Department of Pharmacy and Laboratory of Hepato-Intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhou Y, Fu K, Li F, Zhang Y, Ren X, Li B, Wu S, Han J, Yang L, Zhou B. UV-aging process of titanium dioxide nanoparticles aggravates enterohepatic toxicity of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178074. [PMID: 39674164 DOI: 10.1016/j.scitotenv.2024.178074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The physicochemical characteristics of titanium dioxide nanoparticles (n-TiO2) may change during the aging process once discharged into aquatic environment. However, how the aging process affects their interactions with co-existing pollutants, as well as the joint toxicity has not been explored. This study investigated how UV-aging impacts n-TiO2 in aquatic environments and their interactions with bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), focusing on their joint toxicity in adult female zebrafish. UV-aging process significantly increased the specific area and hydrophobicity of n-TiO2, promoting the adsorption of TBPH. In vivo experiments revealed that aged n-TiO2 enhanced the bioaccumulation of TBPH in the liver and intestine, worsening hepatic steatosis and intestinal barrier damage. A combined analysis of hepatic lipidomic profiling and intestinal microbiota 16S rRNA sequencing revealed that co-exposure of aged n-TiO2 and TBPH altered gut microbial composition and abundances, facilitating the circulation of lipopolysaccharides (LPS) through the gut-liver axis. Subsequentially, the elevated LPS level in the liver activated the sphingolipid metabolic pathway, resulting in severer lipid metabolism disorders and hepatotoxicity. This study found that UV-aging increases the hydrophobicity and surface area of n-TiO2, enhancing their interaction with the TBPH, which leads to greater bioaccumulation and hepatoxicity through mechanisms involving changes in gut microbiomes and sphingolipid metabolism.
Collapse
Affiliation(s)
- Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingjie Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Dassoff ES, Hamad S, Campagna E, Thilakarathna SH, Michalski MC, Wright AJ. Influence of Emulsion Lipid Droplet Crystallinity on Postprandial Endotoxin Transporters and Atherogenic And Inflammatory Profiles in Healthy Men - A Randomized Double-Blind Crossover Acute Meal Study. Mol Nutr Food Res 2024; 68:e2400365. [PMID: 39388527 DOI: 10.1002/mnfr.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Consumption of high-fat meals is associated with increased endotoxemia, inflammation, and atherogenic profiles, with repeated postprandial responses suggested as contributors to chronically elevated risk factors. However, effects of lipid solid versus liquid state specifically have not been investigated. METHODS AND RESULTS This exploratory randomized crossover study tests the impact of lipid crystallinity on plasma levels of endotoxin transporters (lipopolysaccharide [LPS] binding protein [LBP] and soluble cluster of differentiation 14 [sCD14]) and select proinflammatory and atherogenic markers (tumor necrosis factor-alpha [TNF-α], C-reactive protein [CRP], interleukin-1-beta [IL-1β], interferon-gamma [IFN-γ], interleukin-6 [IL-6], soluble intercellular adhesion molecule [sICAM], soluble vascular cell adhesion molecule [sVCAM], monocyte chemoattractant protein-1 [MCP-1/CCL2], plasminogen activator inhibitor-1 [PAI-1], and fibrinogen). Fasted healthy men (n = 14, 28 ± 5.5 years, 24.1 ± 2.6 kg m-2) consumed two 50 g palm stearin oil-in-water emulsions tempered to contain either liquid or crystalline lipid droplets at 37 °C on separate occasions with blood sampling at 0, 2-, 4-, and 6-h post-meal. Timepoint data, area under the curve, and peak concentration values are compared. Overall, no treatment effects are seen (p > 0.05). There are significant effects of time, with values decreasing from baseline, for TNF-α, MCP-1/CCL2, PAI-1, and fibrinogen (p < 0.05). CONCLUSION Responder analysis pointed to differential treatment effects associated with some participant baseline characteristics but, overall, palm-stearin emulsion droplet crystallinity does not acutely affect plasma endotoxin transporters nor select inflammatory and atherogenic markers.
Collapse
Affiliation(s)
- Erik S Dassoff
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samar Hamad
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elaina Campagna
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Surangi H Thilakarathna
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Marie-Caroline Michalski
- INRAE, CarMeN Laboratory, Inserm, Univ-Lyon, Université Claude Bernard Lyon, Centre de Recherche en Nutrition Humain Rhône-Alpes, Pierre Bénite, France
| | - Amanda J Wright
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Rico JE, Barrientos-Blanco MA. Invited review: Ketone biology-The shifting paradigm of ketones and ketosis in the dairy cow. J Dairy Sci 2024; 107:3367-3388. [PMID: 38246539 DOI: 10.3168/jds.2023-23904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Ketosis is currently regarded as a major metabolic disorder of dairy cows, reflective of the animal's efforts to adapt to energy deficit while transitioning into lactation. Currently viewed as a pathology by some, ketosis is associatively implicated in milk production losses and peripartal health complications that increase the risk of early removal of cows from the herd, thus carrying economic losses for dairy farmers and jeopardizing the sustainability of the dairy industry. Despite decades of intense research in the mitigation of ketosis and its sequelae, our ability to lessen its purported effects remains limited. Moreover, the association of ketosis to reduced milk production and peripartal disease is often erratic and likely mired by concurrent potential confounders. In this review, we discuss the potential reasons for these apparent paradoxes in the light of currently available evidence, with a focus on the limitations of observational research and the necessary steps to unambiguously identify the effects of ketosis on cow health and performance via controlled randomized experimentation. A nuanced perspective is proposed that considers the dissociation of ketosis-as a disease-from healthy hyperketonemia. Furthermore, in consideration of a growing body of evidence that highlights positive roles of ketones in the mitigation of metabolic dysfunction and chronic diseases, we consider the hypothetical functions of ketones as health-promoting metabolites and ponder on their potential usefulness to enhance dairy cow health and productivity.
Collapse
Affiliation(s)
- J Eduardo Rico
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 24740.
| | | |
Collapse
|
6
|
Reese L, Niepmann ST, Düsing P, Hänschke L, Beiert T, Zimmer S, Nickenig G, Bauer R, Jansen F, Zietzer A. Loss of ceramide synthase 5 inhibits the development of experimentally induced aortic valve stenosis. Acta Physiol (Oxf) 2024; 240:e14140. [PMID: 38546351 DOI: 10.1111/apha.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/24/2024]
Abstract
AIM Inflammation and calcification are hallmarks in the development of aortic valve stenosis (AVS). Ceramides mediate inflammation and calcification in the vascular tissue. The highly abundant d18:1,16:0 ceramide (C16) has been linked to increased cardiovascular mortality and obesity. In this study, we investigate the role of ceramide synthase 5 (CerS5), a critical enzyme for C16 ceramide synthesis, in the development of AVS, particularly in conjunction with a high-fat/high-cholesterol diet (Western diet, WD). METHODS We used wild-type (WT) and CerS5-/- mice on WD or normal chow in a wire injury model. We measured the peak velocity to determine AVS development and performed histological analysis of the aortic valve area, immune cell infiltration (CD68 staining), and calcification (von Kossa). In vitro experiments involved measuring the calcification of human aortic valvular interstitial cells (VICs) and evaluating cytokine release from THP-1 cells, a human leukemia monocytic-like cell line, following CerS5 knockdown. RESULTS CerS5-/- mice showed a reduced peak velocity compared to WT only in the experiment with WD. Likewise, we observed reduced immune cell infiltration and calcification in the aortic valve of CerS5-/- mice, but only on WD. In vitro, calcification was reduced after knockdown of CerS5 in VICs, while THP-1 cells exhibited a decreased inflammatory response following CerS5 knockdown. CONCLUSION We conclude that CerS5 is an important mediator for the development of AVS in mice on WD and regulates critical pathophysiological hallmarks of AVS formation. CerS5 is therefore an interesting target for pharmacological therapy and merits further investigation.
Collapse
Affiliation(s)
- Laurine Reese
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven Thomas Niepmann
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Lea Hänschke
- Life & Medical Sciences Institute (LIMES), Genetics & Molecular Physiology, University of Bonn, Bonn, Germany
| | - Thomas Beiert
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Reinhard Bauer
- Life & Medical Sciences Institute (LIMES), Genetics & Molecular Physiology, University of Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Basheer M, Boulos M, Basheer A, Loai A, Nimer A. Olive Oil's Attenuating Effects on Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:869-882. [PMID: 39287875 DOI: 10.1007/978-3-031-63657-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Dietary fatty acids play a role in the pathogenesis of obesity-associated nonalcoholic fatty liver disease. Lipotoxicity in obesity mediates insulin resistance, endothelial dysfunction, atherosclerosis, and gut microbiota dysbiosis. Cardiovascular complications are the main cause of morbidity and mortality in obese, insulin-resistant, and type 2 diabetes mellitus patients.Interventions targeting lipotoxicity are the main issue in preventing its multiple insults. Lifestyle modifications including healthy eating and regular exercise are the primary recommendations. Treatments also include drugs targeting energy intake, energy disposal, lipotoxic liver injury, and the resulting inflammation, fibrogenesis, and cirrhosis.Diet and nutrition have been linked to insulin resistance, an increased risk of developing type 2 diabetes, and impaired postprandial lipid metabolism. Low-fat diets are associated with higher survival. The Mediterranean diet includes an abundance of olive oil. Extra-virgin olive oil is the main source of monounsaturated fatty acids in Mediterranean diets. An olive oil-rich diet decreases triglyceride accumulation in the liver, improves postprandial triglyceride levels, improves glucose and insulin secretions, and upregulates GLUT-2 expression in the liver. The exact molecular mechanisms of olive oil's effects are unknown, but decreasing NF-kB activation, decreasing LDL oxidation, and improving insulin resistance by reducing the production of inflammatory cytokines (TNF-α and IL-6) and upregulating kinases and JNK-mediated phosphorylation of IRS-1 are possible principal mechanisms. Olive oil phenolic compounds also modulate gut microbiota diversity, which also affects lipotoxicity.In this review, we document lipotoxicity in obesity manifestations and the beneficial health effects of the Mediterranean diet derived from monounsaturated fatty acids, mainly from olive oil.
Collapse
Affiliation(s)
- Maamoun Basheer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Mariana Boulos
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Areej Basheer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
- Nutrition and Diet Services, Hillel Yaffe, Hadera, Israel
| | - Arraf Loai
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Assy Nimer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel.
- Faculty of Medicine at Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
8
|
Al-Harbi NO, Imam F, Al-Harbi MM, Qamar W, Aljerian K, Khalid Anwer M, Alharbi M, Almudimeegh S, Alhamed AS, Alshamrani AA. Effect of Apremilast on LPS-induced immunomodulation and inflammation via activation of Nrf2/HO-1 pathways in rat lungs. Saudi Pharm J 2023; 31:1327-1338. [PMID: 37323920 PMCID: PMC10267521 DOI: 10.1016/j.jsps.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Lipopolysaccharides (LPS), the lipid component of gram-negative bacterial cell wall, is recognized as the key factor in acute lung inflammation and is found to exhibit severe immunologic reactions. Phosphodiesterase-4 (PDE-4) inhibitor: "apremilast (AP)" is an immune suppressant and anti-inflammatory drug which introduced to treat psoriatic arthritis. The contemporary experiment designed to study the protective influences of AP against LPS induced lung injury in rodents. Twenty-four (24) male experimental Wistar rats selected, acclimatized, and administered with normal saline, LPS, or AP + LPS respectively from 1 to 4 groups. The lung tissues were evaluated for biochemical parameters (MPO), Enzyme Linked Immunosorbent Assay (ELISA), flowcytometry assay, gene expressions, proteins expression and histopathological examination. AP ameliorates the lung injuries by attenuating immunomodulation and inflammation. LPS exposure upregulated IL-6, TNF-α, and MPO while downregulating IL-4 which were restored in AP pretreated rats. The changes in immunomodulation markers by LPS were reduced by AP treatment. Furthermore, results from the qPCR analysis represented an upregulation in IL-1β, MPO, TNF-α, and p38 whereas downregulated in IL-10 and p53 gene expressions in disease control animals while AP pretreated rats exhibited significant reversal in these expressions. Western blot analysis suggested an upregulation of MCP-1, and NOS-2, whereas HO-1, and Nrf-2 expression were suppressed in LPS exposed animals, while pretreatment with AP showed down regulation in the expression MCP-1, NOS-2, and upregulation of HO-1, and Nrf-2 expression of the mentioned intracellular proteins. Histological studies further affirmed the toxic influences of LPS on the pulmonary tissues. It is concluded that, LPS exposure causes pulmonary toxicities via up regulation of oxidative stress, inflammatory cytokines and stimulation of IL-1β, MPO, TNF-α, p38, MCP-1, and NOS-2 while downregulation of IL-4, IL-10, p53, HO-1, and Nrf-2 at different expression level. Pretreatment with AP controlled the toxic influences of LPS by modulating these signaling pathways.
Collapse
Affiliation(s)
- Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Matar Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Tong L, Tian M, Ma X, Bai L, Zhou J, Ding W. Metabolome Profiling and Pathway Analysis in Metabolically Healthy and Unhealthy Obesity among Chinese Adolescents Aged 11-18 Years. Metabolites 2023; 13:metabo13050641. [PMID: 37233682 DOI: 10.3390/metabo13050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The underlying mechanisms of the development of unhealthy metabolic phenotypes in obese children and adolescents remain unclear. We aimed to screen the metabolomes of individuals with the unhealthy obesity phenotype and identify the potential metabolic pathways that could regulate various metabolic profiles of obesity in Chinese adolescents. A total of 127 adolescents aged 11-18 years old from China were investigated using a cross-sectional study. The participants were classified as having metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the presence/absence of metabolic abnormalities defined by metabolic syndrome (MetS) and body mass index (BMI). Serum-based metabolomic profiling using gas chromatography-mass spectrometry (GC-MS) was undertaken on 67 MHO and 60 MUO individuals. ROC analyses showed that palmitic acid, stearic acid, and phosphate could predict MUO, and that glycolic acid, alanine, 3-hydroxypropionic acid, and 2-hydroxypentanoic acid could predict MHO (all p < 0.05) from selected samples. Five metabolites predicted MUO, 12 metabolites predicted MHO in boys, and only two metabolites predicted MUO in girls. Moreover, several metabolic pathways may be relevant in distinguishing the MHO and MUO groups, including the fatty acid biosynthesis, fatty acid elongation in mitochondria, propanoate metabolism, glyoxylate and dicarboxylate metabolism, and fatty acid metabolism pathways. Similar results were observed for boys except for phenylalanine, tyrosine and tryptophan biosynthesis, which had a high impact [0.098]. The identified metabolites and pathways could be efficacious for investigating the underlying mechanisms of the development of different metabolic phenotypes in obese Chinese adolescents.
Collapse
Affiliation(s)
- Lingling Tong
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Mei Tian
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoyan Ma
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Bai
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyu Zhou
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Wenqing Ding
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
10
|
Seufert AL, Napier BA. A new frontier for fat: dietary palmitic acid induces innate immune memory. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00021. [PMID: 37197687 PMCID: PMC10184819 DOI: 10.1097/in9.0000000000000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 05/19/2023]
Abstract
Dietary saturated fats have recently been appreciated for their ability to modify innate immune cell function, including monocytes, macrophages, and neutrophils. Many dietary saturated fatty acids (SFAs) embark on a unique pathway through the lymphatics following digestion, and this makes them intriguing candidates for inflammatory regulation during homeostasis and disease. Specifically, palmitic acid (PA) and diets enriched in PA have recently been implicated in driving innate immune memory in mice. PA has been shown to induce long-lasting hyper-inflammatory capacity against secondary microbial stimuli in vitro and in vivo, and PA-enriched diets alter the developmental trajectory of stem cell progenitors in the bone marrow. Perhaps the most relevant finding is the ability of exogenous PA to enhance clearance of fungal and bacterial burdens in mice; however, the same PA treatment enhances endotoxemia severity and mortality. Westernized countries are becoming increasingly dependent on SFA-enriched diets, and a deeper understanding of SFA regulation of innate immune memory is imperative in this pandemic era.
Collapse
Affiliation(s)
- Amy L. Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Brooke A. Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
- *Correspondence: Brooke A. Napier, E-mail:
| |
Collapse
|
11
|
MacDonald CJ, Madkia AL, Mounier-Vehier C, Severi G, Boutron-Ruault MC. Associations between saturated fat intake and other dietary macronutrients and incident hypertension in a prospective study of French women. Eur J Nutr 2023; 62:1207-1215. [PMID: 36482209 DOI: 10.1007/s00394-022-03053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Saturated fat has long been associated with cardiovascular disease in multiple prospective studies, and randomized controlled trials. Few studies have assessed the relative associations between saturated fat and other macronutrients with hypertension, a major risk factor for cardiovascular disease. The aim of this study was to assess the relative associations between saturated fat, other macronutrients such as monounsaturated and polyunsaturated fat, proteins, and carbohydrates, and incident hypertension in a large prospective cohort of French women. METHODS This study used data from the E3N cohort study, including participants free of hypertension at baseline. A food frequency questionnaire was used to determine dietary intakes of saturated fat (SFA), monounsaturated fat (MUFA), polyunsaturated fat (PUFA), animal protein (AP), vegetable protein (VP), carbohydrates (CH) and various foods. Cases of hypertension were based on self-report, validated by drug reimbursement data. Covariates were based on self-report. Cox proportional hazard models were used to estimate the relative associations between different macronutrients and hypertension risk, using the 'substitution' framework. Bootstrapping was used to generate 95% confidence intervals. RESULTS This study included 45,854 women free of hypertension at baseline. During 708,887 person-years of follow-up, 12,338 incident cases of hypertension were identified. Compared to saturated fat, higher consumption of all other macronutrients was associated with a lower risk of hypertension (HRMUFA = 0.74 [0.67: 0.81], HRPUFA = 0.84 [0.77: 0.92], HRCH = 0.83 [0.77: 0.88], HRAP = 0.91 [0.85: 0.97], HRVP = 0.93 [0.83: 1.03]). CONCLUSION This study finds that relative to other macronutrients such as monounsaturated or polyunsaturated fat, higher intake of saturated fat is associated with a higher risk of hypertension among women.
Collapse
Affiliation(s)
- Conor James MacDonald
- University Paris-Saclay, UVSQ, Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), "Exposome and Heredity" Team, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Laure Madkia
- University Paris-Saclay, UVSQ, Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), "Exposome and Heredity" Team, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
- Université de Lille, CHU Lille, EA 2694-Santé Publique: Epidémiologie et Qualité des Soins, 59000, Lille, France
| | - Claire Mounier-Vehier
- Université de Lille, CHU Lille, EA 2694-Santé Publique: Epidémiologie et Qualité des Soins, 59000, Lille, France
- CHU Lille, Institut Cœur-Poumon, Médecine Vasculaire et HTA, Lille, France
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), "Exposome and Heredity" Team, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Firenze, Italy
| | - Marie-Christine Boutron-Ruault
- University Paris-Saclay, UVSQ, Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), "Exposome and Heredity" Team, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
12
|
Burzynska-Pedziwiatr I, Dudzik D, Sansone A, Malachowska B, Zieleniak A, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Cypryk K, Wozniak LA, Markuszewski MJ, Bukowiecka-Matusiak M. Targeted and untargeted metabolomic approach for GDM diagnosis. Front Mol Biosci 2023; 9:997436. [PMID: 36685282 PMCID: PMC9849575 DOI: 10.3389/fmolb.2022.997436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a disorder which manifests itself for the first time during pregnancy and is mainly connected with glucose metabolism. It is also known that fatty acid profile changes in erythrocyte membranes and plasma could be associated with obesity and insulin resistance. These factors can lead to the development of diabetes. In the reported study, we applied the untargeted analysis of plasma in GDM against standard glucose-tolerant (NGT) women to identify the differences in metabolomic profiles between those groups. We found higher levels of 2-hydroxybutyric and 3-hydroxybutyric acids. Both secondary metabolites are associated with impaired glucose metabolism. However, they are products of different metabolic pathways. Additionally, we applied lipidomic profiling using gas chromatography to examine the fatty acid composition of cholesteryl esters in the plasma of GDM patients. Among the 14 measured fatty acids characterizing the representative plasma lipidomic cluster, myristic, oleic, arachidonic, and α-linoleic acids revealed statistically significant changes. Concentrations of both myristic acid, one of the saturated fatty acids (SFAs), and oleic acid, which belong to monounsaturated fatty acids (MUFAs), tend to decrease in GDM patients. In the case of polyunsaturated fatty acids (PUFAs), some of them tend to increase (e.g., arachidonic), and some of them tend to decrease (e.g., α-linolenic). Based on our results, we postulate the importance of hydroxybutyric acid derivatives, cholesteryl ester composition, and the oleic acid diminution in the pathophysiology of GDM. There are some evidence suggests that the oleic acid can have the protective role in diabetes onset. However, metabolic alterations that lead to the onset of GDM are complex; therefore, further studies are needed to confirm our observations.
Collapse
Affiliation(s)
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland,Department of Nursing and Obstetrics, Medical University of Lodz, Lodz, Poland,Department of Clinic Nursing, Medical University of Lodz, Lodz, Poland,Department of Diabetology and Metabolic Diseases Lodz, Medical University of Lodz, Lodz, Poland
| | - Andrzej Zieleniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Katarzyna Cypryk
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Lucyna A. Wozniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Michal J. Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Bukowiecka-Matusiak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland,*Correspondence: Malgorzata Bukowiecka-Matusiak,
| |
Collapse
|
13
|
Martín-Reyes F, Ho-Plagaro A, Rodríguez-Díaz C, Lopez-Gómez C, Garcia-Serrano S, de Los Reyes DR, Gonzalo M, Fernández-Garcia JC, Montiel-Casado C, Fernández-Aguilar JL, Fernández JR, García-Fuentes E, Rodríguez-Pacheco F. Oleic acid regulates the circadian rhythm of adipose tissue in obesity. Pharmacol Res 2023; 187:106579. [PMID: 36435269 DOI: 10.1016/j.phrs.2022.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The effect of oleic acid (OA) on the regulation of the circadian rhythm present in human visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with morbid obesity has not been analyzed yet. VAT and SAT explants from patients with morbid obesity were incubated with OA to analyze the circadian regulation of clock and other genes related to lipid metabolism (SREBP-1c, FAS, LPL and CPT1), and their association with baseline variables and the improvement of these patients after bariatric surgery. There were significant differences in amplitude and acrophase in VAT with respect to SAT. In VAT, body weight negatively correlated with BMAL1 and CRY1 amplitude, and REVERBα acrophase; body mass index (BMI) negatively correlated with REVERBα acrophase; and waist circumference negatively correlated with PER3 acrophase. In SAT, BMI negatively correlated with CLOCK amplitude, and CLOCK, REVERBα and CRY2 MESOR; and waist circumference negatively correlated with PER3 amplitude and acrophase. A greater short-term improvement of body weight, BMI and waist circumference in patients with morbid obesity after bariatric surgery was associated with a lower CRY1 and CRY2 amplitude and an earlier PER1 and PER3 acrophase in SAT. OA produced a more relevant circadian rhythm and increased the amplitude of most clock genes and lipid metabolism-related genes. OA regulated the acrophase of most clock genes in VAT and SAT, placing CLOCK/BMAL1 in antiphase with regard to the other genes. OA increased the circadian rhythmicity, although with slight differences between adipose tissues. These differences could determine its different behavior in obesity.
Collapse
Affiliation(s)
- Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carlos Lopez-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sara Garcia-Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Dámaris Rodriguez de Los Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Montserrat Gonzalo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain
| | - Jose C Fernández-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain
| | - Custodia Montiel-Casado
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - Jose L Fernández-Aguilar
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - José R Fernández
- Bioengeneering & Chronobiology Labs, atlanTTic Research Center, University of Vigo, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain; CIBER de Enfermedades Hepáticas y Digestivas-CIBEREHD, Málaga, Spain.
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| |
Collapse
|
14
|
Borges MC, Haycock P, Zheng J, Hemani G, Howe LJ, Schmidt AF, Staley JR, Lumbers RT, Henry A, Lemaitre RN, Gaunt TR, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA. The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians: a Mendelian randomization study. Hum Mol Genet 2022; 31:4034-4054. [PMID: 35796550 PMCID: PMC9703943 DOI: 10.1093/hmg/ddac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk.
Collapse
Affiliation(s)
- Maria-Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Phillip Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Laurence J Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - A Floriaan Schmidt
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Department of Cardiology, Division Heart and Lungs, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - James R Staley
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Albert Henry
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA WA 98101, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Aroon D Hingorani
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
- NIHR Bristol Biomedical Research Centre, Bristol BS8 2BN, UK
| |
Collapse
|
15
|
Seufert AL, Hickman JW, Traxler SK, Peterson RM, Waugh TA, Lashley SJ, Shulzhenko N, Napier RJ, Napier BA. Enriched dietary saturated fatty acids induce trained immunity via ceramide production that enhances severity of endotoxemia and clearance of infection. eLife 2022; 11:e76744. [PMID: 36264059 PMCID: PMC9642993 DOI: 10.7554/elife.76744] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Trained immunity is an innate immune memory response that is induced by a primary inflammatory stimulus that sensitizes monocytes and macrophages to a secondary pathogenic challenge, reprogramming the host response to infection and inflammatory disease. Dietary fatty acids can act as inflammatory stimuli, but it is unknown if they can act as the primary stimuli to induce trained immunity. Here we find mice fed a diet enriched exclusively in saturated fatty acids (ketogenic diet; KD) confer a hyper-inflammatory response to systemic lipopolysaccharide (LPS) and increased mortality, independent of diet-induced microbiome and hyperglycemia. We find KD alters the composition of the hematopoietic stem cell compartment and enhances the response of bone marrow macrophages, monocytes, and splenocytes to secondary LPS challenge. Lipidomics identified enhanced free palmitic acid (PA) and PA-associated lipids in KD-fed mice serum. We found pre-treatment with physiologically relevant concentrations of PA induces a hyper-inflammatory response to LPS in macrophages, and this was dependent on the synthesis of ceramide. In vivo, we found systemic PA confers enhanced inflammation and mortality in response to systemic LPS, and this phenotype was not reversible for up to 7 days post-PA-exposure. Conversely, we find PA exposure enhanced clearance of Candida albicans in Rag1-/- mice. Lastly, we show that oleic acid, which depletes intracellular ceramide, reverses PA-induced hyper-inflammation in macrophages and enhanced mortality in response to LPS. These implicate enriched dietary SFAs, and specifically PA, in the induction of long-lived innate immune memory and highlight the plasticity of this innate immune reprogramming by dietary constituents.
Collapse
Affiliation(s)
- Amy L Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - James W Hickman
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Ste K Traxler
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Rachael M Peterson
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Trent A Waugh
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | | | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State UniversityCorvallisUnited States
| | - Ruth J Napier
- VA Portland Health Care SystemPortlandUnited States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Brooke A Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| |
Collapse
|
16
|
Kochumon S, Jacob T, Koshy M, Al-Rashed F, Sindhu S, Al-Ozairi E, Al-Mulla F, Rosen ED, Ahmad R. Palmitate Potentiates Lipopolysaccharide-Induced IL-6 Production via Coordinated Acetylation of H3K9/H3K18, p300, and RNA Polymerase II. THE JOURNAL OF IMMUNOLOGY 2022; 209:731-741. [DOI: 10.4049/jimmunol.2100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/08/2022] [Indexed: 01/04/2023]
Abstract
Abstract
IL-6 is elevated in obese individuals and participates in the metabolic dysfunction associated with that condition. However, the mechanisms that promote IL-6 expression in obesity are incompletely understood. Because elevated levels of palmitate and LPS have been reported in obesity, we investigated whether these agents interact to potentiate IL-6 production. In this study, we report that LPS induces higher levels of IL-6 in human monocytes in the presence of palmitate. Notably, the priming effect of palmitate is associated with enhanced p300 binding and transcription factor recruitment to Il6 promoter regions. Gene silencing of p300 blocks this action of palmitate. RNA polymerase II recruitment was also enhanced at the Il6 promoter in palmitate/LPS-exposed cells. Acetylation levels of H3K9 and H3K18 were increased in monocytes treated with palmitate. Moreover, LPS stimulation of palmitate-treated cells led to increased levels of the transcriptionally permissive acetylation marks H3K9/H3K18 in the Il6 promoter compared with LPS alone. The effect of palmitate on LPS-induced IL-6 production was suppressed by the inhibition of histone acetyltransferases. Conversely, histone deacetylase inhibitors trichostatin A or sodium butyrate can substitute for palmitate in IL-6 production. Esterification of palmitate with CoA was involved, whereas β-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and H3K9/H3K18 acetylation. Monocytes of obese individuals showed significantly higher H3K9/H3K18 acetylation and Il6 expression. Overall, our findings support a model in which increased levels of palmitate in obesity create a setting for LPS to potentiate IL-6 production via chromatin remodeling, enabling palmitate to contribute to metabolic inflammation.
Collapse
Affiliation(s)
- Shihab Kochumon
- *Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Texy Jacob
- *Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Merin Koshy
- *Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fatema Al-Rashed
- *Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sardar Sindhu
- *Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- †Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- ‡Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Evan D. Rosen
- §Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA; and
- ¶Harvard Medical School, Boston, MA
| | - Rasheed Ahmad
- *Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
17
|
Yu XD, Wang JW. Ceramide de novo synthesis in non-alcoholic fatty liver disease: Pathogenic mechanisms and therapeutic perspectives. Biochem Pharmacol 2022; 202:115157. [PMID: 35777449 DOI: 10.1016/j.bcp.2022.115157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its advanced form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma. Ceramides have been shown to exacerbate NAFLD development through enhancing insulin resistance, reactive oxygen species production, liver steatosis, lipotoxicity and hepatocyte apoptosis, and eventually causing hepatic inflammation and fibrosis. Emerging evidence indicates that ceramide production in NAFLD is predominantly attributed to activation of the de novo synthesis pathway of ceramides in hepatocytes. More importantly, pharmacological modulation of ceramide de novo synthesis in preclinical studies seems efficacious for the treatment of NAFLD. In this review, we provide an overview of the pathogenic mechanisms of ceramides in NAFLD, discuss recent advances and challenges in pharmacological interventions targeting ceramide de novo synthesis, and propose some research directions in the field.
Collapse
Affiliation(s)
- Xiao-Dong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Domínguez-López I, Arancibia-Riveros C, Casas R, Tresserra-Rimbau A, Razquin C, Martínez-González MÁ, Hu FB, Ros E, Fitó M, Estruch R, López-Sabater MC, Lamuela-Raventós RM. Changes in plasma total saturated fatty acids and palmitic acid are related to pro-inflammatory molecule IL-6 concentrations after nutritional intervention for one year. Biomed Pharmacother 2022; 150:113028. [PMID: 35483198 DOI: 10.1016/j.biopha.2022.113028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic inflammation is associated with an increased risk of non-communicable diseases, such as cardiovascular diseases and diabetes. Circulating fatty acids (FA) are known to be related to these conditions, possibly through their role in inflammation, although different types of FAs can have opposite effects on inflammatory mediators. The aim of the present study was to analyze the association of plasma FAs with inflammatory biomarkers in a PREDIMED trial subsample after one year of intervention. In a one-year longitudinal study of 91 participants of the PREDIMED trial (Barcelona-Clinic center), plasma FAs and inflammatory biomarkers were analyzed using gas chromatography and ELISA, respectively. In baseline plasma, a multivariable-adjusted ordinary least squares regression model showed that n-3 polyunsaturated FAs concentrations were inversely associated with concentrations of soluble intercellular adhesion molecule-1 (sICAM-1) and E-selectin, whereas the level of the most abundant saturated FA, palmitic acid, was directly associated with concentrations of interleukin-6 (IL-6) (β = 0.48 pg/mL, 95% CI: 0.03, 0.93 per 1-SD increase, p-value = 0.037). After one year of nutritional intervention, changes of plasma diet-derived total saturated FAs and palmitic acid were directly associated with changes in IL-6 (β = 0.59 pg/mL [95% CI: 0.28, 0.89] per 1-SD, p-value = 0.001; β = 0.64 pg/mL, 95% CI: 0.31, 0.98, p-value = 0.001), respectively, after correction for multiple testing. Our findings suggest that saturated FAs of dietary origin, especially palmitic acid, are directly involved in the increase of IL-6 in plasma.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Camila Arancibia-Riveros
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain.
| | - Rosa Casas
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Cristina Razquin
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain.
| | - Miguel Á Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain.
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology, Hospital Clinic, IDIBAPS, Barcelona, Spain.
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain.
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - M Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
19
|
Wei R, Deng D, Teng Y, Lu C, Luo Z, Abdulai M, Liu H, Xu H, Li L, Hu S, Hu J, Wei S, Zeng X, Han C. Study on the effect of different types of sugar on lipid deposition in goose fatty liver. Poult Sci 2022; 101:101729. [PMID: 35172237 PMCID: PMC8850742 DOI: 10.1016/j.psj.2022.101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
|
20
|
Hua Y, Zhang J, Liu Q, Su J, Zhao Y, Zheng G, Yang Z, Zhuo D, Ma C, Fan G. The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis. Front Cardiovasc Med 2022; 9:831847. [PMID: 35402552 PMCID: PMC8983858 DOI: 10.3389/fcvm.2022.831847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing attention is now being paid to the important role played by autophagic flux in maintaining normal blood vessel walls. Endothelial cell dysfunction initiates the development of atherosclerosis. In the endothelium, a variety of critical triggers ranging from shear stress to circulating blood lipids promote autophagy. Furthermore, emerging evidence links autophagy to a range of important physiological functions such as redox homeostasis, lipid metabolism, and the secretion of vasomodulatory substances that determine the life and death of endothelial cells. Thus, the promotion of autophagy in endothelial cells may have the potential for treating atherosclerosis. This paper reviews the role of endothelial cells in the pathogenesis of atherosclerosis and explores the molecular mechanisms involved in atherosclerosis development.
Collapse
Affiliation(s)
- Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Liu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Su
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guobin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Effect of TBC of raw milk and thermal treatment intensity on endotoxin contents of milk products. Food Res Int 2022; 152:110816. [DOI: 10.1016/j.foodres.2021.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
|
22
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
23
|
Singleton JR, Foster-Palmer S, Marcus RL. Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials. Curr Diabetes Rev 2022; 18:e230921196752. [PMID: 34561989 DOI: 10.2174/1573399817666210923125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications of diabetes, but a phenotypically identical distal sensory predominant, painful axonopathy afflicts patients with prediabetic metabolic syndrome, exemplifying a spectrum of risk and continuity of pathogenesis. No pharmacological treatment convincingly improves neuropathy in the setting of metabolic syndrome, but evolving data suggest that exercise may be a promising alternative. OBJECTIVE The aim of the study was to review in depth the current literature regarding exercise treatment of metabolic syndrome neuropathy in humans and animal models, highlight the diverse mechanisms by which exercise exerts beneficial effects, and examine adherence limitations, safety aspects, modes and dose of exercise. RESULTS Rodent models that recapitulate the organismal milieu of prediabetic metabolic syndrome and the phenotype of its neuropathy provide a strong platform to dissect exercise effects on neuropathy pathogenesis. In these models, exercise reverses hyperglycemia and consequent oxidative and nitrosative stress, improves microvascular vasoreactivity, enhances axonal transport, ameliorates the lipotoxicity and inflammatory effects of hyperlipidemia and obesity, supports neuronal survival and regeneration following injury, and enhances mitochondrial bioenergetics at the distal axon. Prospective human studies are limited in scale but suggest exercise to improve cutaneous nerve regenerative capacity, neuropathic pain, and task-specific functional performance measures of gait and balance. Like other heath behavioral interventions, the benefits of exercise are limited by patient adherence. CONCLUSION Exercise is an integrative therapy that potently reduces cellular inflammatory state and improves distal axonal oxidative metabolism to ameliorate features of neuropathy in metabolic syndrome. The intensity of exercise need not improve cardinal features of metabolic syndrome, including weight, glucose control, to exert beneficial effects.
Collapse
Affiliation(s)
| | | | - Robin L Marcus
- Department Physical Therapy and Athletic Training, University of Utah, UT, United States
| |
Collapse
|
24
|
Schooneveldt YL, Giles C, Keating MF, Mellett NA, Jurrjens AW, Paul S, Calkin AC, Meikle PJ. The Impact of Simvastatin on Lipidomic Markers of Cardiovascular Risk in Human Liver Cells Is Secondary to the Modulation of Intracellular Cholesterol. Metabolites 2021; 11:metabo11060340. [PMID: 34070445 PMCID: PMC8228384 DOI: 10.3390/metabo11060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Statins are the first-line lipid-lowering therapy for reducing cardiovascular disease (CVD) risk. A plasma lipid ratio of two phospholipids, PI(36:2) and PC(18:0_20:4), was previously identified to explain 58% of the relative CVD risk reduction associated with pravastatin, independent of a change in low-density lipoprotein-cholesterol. This ratio may be a potential biomarker for the treatment effect of statins; however, the underlying mechanisms linking this ratio to CVD risk remain unclear. In this study, we investigated the effect of altered cholesterol conditions on the lipidome of cultured human liver cells (Hep3B). Hep3B cells were treated with simvastatin (5 μM), cyclodextrin (20 mg/mL) or cholesterol-loaded cyclodextrin (20 mg/mL) for 48 h and their lipidomes were examined. Induction of a low-cholesterol environment via simvastatin or cyclodextrin was associated with elevated levels of lipids containing arachidonic acid and decreases in phosphatidylinositol species and the PI(36:2)/PC(18:0_20:4) ratio. Conversely, increasing cholesterol levels via cholesterol-loaded cyclodextrin resulted in reciprocal regulation of these lipid parameters. Expression of genes involved in cholesterol and fatty acid synthesis supported the lipidomics data. These findings demonstrate that the PI(36:2)/PC(18:0_20:4) ratio responds to changes in intracellular cholesterol abundance per se, likely through a flux of the n-6 fatty acid pathway and altered phosphatidylinositol synthesis. These findings support this ratio as a potential marker for CVD risk reduction and may be useful in monitoring treatment response.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael F. Keating
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Natalie A. Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
| | - Aaron W. Jurrjens
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anna C. Calkin
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (A.C.C.); (P.J.M.)
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (A.C.C.); (P.J.M.)
| |
Collapse
|
25
|
Ponzo V, Pellegrini M, D’Eusebio C, Bioletto F, Goitre I, Buscemi S, Frea S, Ghigo E, Bo S. Mediterranean Diet and SARS-COV-2 Infection: Is There Any Association? A Proof-of-Concept Study. Nutrients 2021; 13:nu13051721. [PMID: 34069656 PMCID: PMC8160854 DOI: 10.3390/nu13051721] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this observational study was investigating the possible correlation between adherence to the Mediterranean diet (MeD) and SARS-COV-2 infection rates and severity among healthcare professionals (HCPs). An online self-administrated questionnaire (evaluating both MeD adherence and dietary habits) was filled out by HCPs working in Piedmont (Northern Italy) from 15 January to 28 February 2021. Out of the 1206 questionnaires collected, 900 were considered reliable and analyzed. Individuals who reported the SARS-COV-2 infection (n = 148) showed a significantly lower MeD score, with a lower adherence in fruit, vegetables, cereals, and olive oil consumption. In a logistic regression model, the risk of infection was inversely associated with the MeD score (OR = 0.88; 95% CI 0.81–0.97) and the consumption of cereals (OR = 0.64; 0.45–0.90). Asymptomatic individuals with SARS-COV-2 infection reported a lower intake of saturated fats than symptomatic; individuals requiring hospitalization were significantly older and reported worse dietary habits than both asymptomatic and symptomatic individuals. After combining all symptomatic individuals together, age (OR = 1.05; 1.01–1.09) and saturated fats intake (OR = 1.09; 1.01–1.17) were associated with the infection severity. HCPs who reported a SARS-COV-2 infection showed a significantly lower MeD score and cereal consumption. The infection severity was directly associated with higher age and saturated fat intake.
Collapse
Affiliation(s)
- Valentina Ponzo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Chiara D’Eusebio
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Fabio Bioletto
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Ilaria Goitre
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Silvio Buscemi
- Unit of Clinical Nutrition, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy;
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Simone Frea
- Cardiology Unit, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy;
| | - Ezio Ghigo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Simona Bo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
- Correspondence: ; Tel.: +39-011-633-6036
| |
Collapse
|
26
|
FATP4 inactivation in cultured macrophages attenuates M1- and ER stress-induced cytokine release via a metabolic shift towards triacylglycerides. Biochem J 2021; 478:1861-1877. [PMID: 33900381 DOI: 10.1042/bcj20210155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
Fatty acid transport protein 4 (FATP4) belongs to a family of acyl-CoA synthetases which activate long-chain fatty acids into acyl-CoAs subsequently used in specific metabolic pathways. Patients with FATP4 mutations and Fatp4-null mice show thick desquamating skin and other complications, however, FATP4 role on macrophage functions has not been studied. We here determined whether the levels of macrophage glycerophospholipids, sphingolipids including ceramides, triacylglycerides, and cytokine release could be altered by FATP4 inactivation. Two in vitro experimental systems were studied: FATP4 knockdown in THP-1-derived macrophages undergoing M1 (LPS + IFNγ) or M2 (IL-4) activation and bone marrow-derived macrophages (BMDMs) from macrophage-specific Fatp4-knockout (Fatp4M-/-) mice undergoing tunicamycin (TM)-induced endoplasmic reticulum stress. FATP4-deficient macrophages showed a metabolic shift towards triacylglycerides and were protected from M1- or TM-induced release of pro-inflammatory cytokines and cellular injury. Fatp4M-/- BMDMs showed specificity in attenuating TM-induced activation of inositol-requiring enzyme1α, but not other unfolded protein response pathways. Under basal conditions, FATP4/Fatp4 deficiency decreased the levels of ceramides and induced an up-regulation of mannose receptor CD206 expression. The deficiency led to an attenuation of IL-8 release in THP-1 cells as well as TNF-α and IL-12 release in BMDMs. Thus, FATP4 functions as an acyl-CoA synthetase in macrophages and its inactivation suppresses the release of pro-inflammatory cytokines by shifting fatty acids towards the synthesis of specific lipids.
Collapse
|
27
|
Studies of molecular pathways associated with blood neutrophil corticosteroid insensitivity in equine asthma. Vet Immunol Immunopathol 2021; 237:110265. [PMID: 33989854 DOI: 10.1016/j.vetimm.2021.110265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Severe equine asthma is characterized by airway hyperresponsiveness, neutrophilic inflammation and structural alterations of the lower airways. In asthmatic horses with neutrophilic inflammation, there is insensitivity to corticosteroids characterized by the persistence of neutrophils within the airways with therapy. We hypothesized that hypoxia or oxidative stress in the microenvironment of the lung contributes to this insensitivity of neutrophils to corticosteroids in asthmatic horses. Blood neutrophils isolated from horses with severe asthma (N = 8) and from healthy controls (N = 8) were incubated under different cell culture conditions simulating hypoxia and oxidative stress and, in the presence, or absence of dexamethasone. The pro-inflammatory gene and protein expression of neutrophils were studied. In both groups, pyocyanin-induced oxidative stress increased the mRNA expression of IL-8, IL-1β, and TNF-α. While IL-1β and TNF-α were downregulated by dexamethasone under these conditions, IL-8 was not. Simulated hypoxic conditions did not enhance pro-inflammatory gene expression in neutrophils from either group of horses. In conclusion, oxidative stress but not hypoxia may contribute to corticosteroid insensitivity via a selective gene regulation pathway. Equine neutrophil responses were similar in both heathy and asthmatic horses, indicating that it is not specific to asthmatic inflammation.
Collapse
|
28
|
Lu Z, Li Y, Syn WK, Li AJ, Ritter WS, Wank SA, Lopes-Virella MF, Huang Y. GPR40 deficiency is associated with hepatic FAT/CD36 upregulation, steatosis, inflammation, and cell injury in C57BL/6 mice. Am J Physiol Endocrinol Metab 2021; 320:E30-E42. [PMID: 33103454 PMCID: PMC8436599 DOI: 10.1152/ajpendo.00257.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptor 40 (GPR40) is highly expressed in pancreatic islets, and its activation increases glucose-stimulated insulin secretion from pancreas. Therefore, GPR40 is considered as a target for type 2 diabetes mellitus (T2DM). Since nonalcoholic fatty liver disease (NAFLD) is associated with T2DM and GPR40 is also expressed by hepatocytes and macrophages, it is important to understand the role of GPR40 in NAFLD. However, the role of GPR40 in NAFLD in animal models has not been well defined. In this study, we fed wild-type or GPR40 knockout C57BL/6 mice a high-fat diet (HFD) for 20 wk and then assessed the effect of GPR40 deficiency on HFD-induced NAFLD. Assays on metabolic parameters showed that an HFD increased body weight, glucose, insulin, insulin resistance, cholesterol, and alanine aminotransferase (ALT), and GPR40 deficiency did not mitigate the HFD-induced metabolic abnormalities. In contrast, we found that GPR40 deficiency was associated with increased body weight, insulin, insulin resistance, cholesterol, and ALT in control mice fed a low-fat diet (LFD). Surprisingly, histology and Oil Red O staining showed that GPR40 deficiency in LFD-fed mice was associated with steatosis. Immunohistochemical analysis showed that GPR40 deficiency also increased F4/80, a macrophage biomarker, in LFD-fed mice. Furthermore, results showed that GPR40 deficiency led to a robust upregulation of hepatic fatty acid translocase (FAT)/CD36 expression. Finally, our in vitro studies showed that GPR40 knockdown by siRNA or a GPR40 antagonist increased palmitic acid-induced FAT/CD36 mRNA in hepatocytes. Taken together, this study indicates that GPR40 plays an important role in homeostasis of hepatic metabolism and inflammation and inhibits nonalcoholic steatohepatitis by possible modulation of FAT/CD36 expression.
Collapse
Affiliation(s)
- Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Yanchun Li
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina
| | - Wing-Kin Syn
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Ai-Jun Li
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - W Sue Ritter
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Stephen A Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
29
|
Wei R, Han C, Deng D, Ye F, Gan X, Liu H, Li L, Xu H, Wei S. Research progress into the physiological changes in metabolic pathways in waterfowl with hepatic steatosis. Br Poult Sci 2020; 62:118-124. [DOI: 10.1080/00071668.2020.1812527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- R. Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - C. Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - D. Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - F. Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - X. Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H. Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - L. Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H. Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - S. Wei
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, P.R. China
| |
Collapse
|
30
|
You Q, Peng Q, Yu Z, Jin H, Zhang J, Sun W, Huang Y. Plasma lipidomic analysis of sphingolipids in patients with large artery atherosclerosis cerebrovascular disease and cerebral small vessel disease. Biosci Rep 2020; 40:BSR20201519. [PMID: 32830858 PMCID: PMC7502657 DOI: 10.1042/bsr20201519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sphingolipids mainly consist of ceramides (Cer), sphingomyelins (SM) and glycosphingolipids. Sphingolipids are related with coronary heart disease and metabolic disease, but there're few studies about cerebrovascular disease. The purpose was to detect sphingolipids in plasma of patients with large artery atherosclerosis (LAA) cerebrovascular disease and cerebral small vessel disease (CSVD) to explore the similarities and differences of pathogenesis of the two subtypes. METHODS 20 patients with LAA cerebrovascular disease, 20 patients with age-related CSVD, 10 patients with Fabry disease and 14 controls were enrolled from October 2017 to January 2019. Ultra-high performance liquid chromatography-quadruple-time-of-flight mass spectrometry/mass spectrometry was used to determine sphingolipids. Univariate combined with multivariate analysis was used for comparison. Receiver operating characteristic curves were used to determine sensitivities and specificities. RESULTS 276 sphingolipids were detected, including 39 Cer, 3 ceramide phosphates, 72 glycosphingolipids and 162 SM. (1) Cer (d36:3), Cer (d34:2), Cer (d38:6), Cer (d36:4) and Cer (d16:0/18:1) were increased in LAA; SM (d34:1), Cer (d34:2), Cer (d36:4), Cer (d16:0/18:1), Cer (d38:6), Cer (d36:3) and Cer (d32:0) were increased in age-related CSVD. (2) Cer (d36:4) and SM (d34:1) were increased in age-related CSVD compared with LAA. (3) Total trihexosyl ceramides were increased in Fabry group compared with control (P<0.05); SM (d34:1) was increased in Fabry group. CONCLUSIONS Ceramides are increased in both LAA and age-related CSVD, which may be related to similar risk factors and pathophysiological process of arteriosclerosis; SM is increased in both age-related CSVD and Fabry disease, suggesting that increased SM may be associated with CSVD. Glycosphingolipids, trihexosylceramides in particular, are increased in Fabry disease.
Collapse
Affiliation(s)
- Qian You
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Qing Peng
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Jing Zhang
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| |
Collapse
|
31
|
Youk H, Kim M, Lee CJ, Oh J, Park S, Kang SM, Kim JH, Ann SJ, Lee SH. Nlrp3, Csf3, and Edn1 in Macrophage Response to Saturated Fatty Acids and Modified Low-Density Lipoprotein. Korean Circ J 2020; 51:68-80. [PMID: 32975056 PMCID: PMC7779813 DOI: 10.4070/kcj.2020.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives The relationship between metabolic stress, inflammation, and cardiovascular disease is being studied steadily. The aim of this study was to evaluate the effect of palmitate (PA) and minimally modified low-density lipoprotein (mmLDL) on macrophages and to identify the associated pathways. Methods J774 macrophages were incubated with PA or mmLDL and lipopolysaccharide (LPS). Secretion of inflammatory chemokines and the expression of corresponding genes were determined. The phosphorylation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase was also assessed. RNA sequencing of macrophages was performed to identify the genes regulated by PA or mmLDL. Some of the genes regulated by the 2 agents were validated by knocking down the cells using small interfering RNA. Results PA or mmLDL promoted the secretion of interleukin (IL)-6 and IL-1β in LPS-stimulated macrophages, and this was accompanied by higher phosphorylation of ERK. RNA sequencing revealed dozens of genes that were regulated in this process, such as Csf3 and Edn1, which were affected by PA and mmLDL, respectively. These agents also increased Nlrp3 expression. The effect of Csf3 or Edn1 silencing on inflammation was modest, whereas toll-like receptor (TLR) 4 inhibition reduced a large proportion of macrophage activation. Conclusions We demonstrated that the proinflammatory milieu with high levels of PA or mmLDL promoted macrophage activation and the expression of associated genes such as Nlrp3, Csf3, and Edn1. Although the TLR4 pathway appeared to be most relevant, additional role of other genes in this process provided insights regarding the potential targets for intervention.
Collapse
Affiliation(s)
- Harin Youk
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Miso Kim
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaewon Oh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Ann
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea.
| | - Sang Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
A Novel Peptide Oligomer of Bacitracin Induces M1 Macrophage Polarization by Facilitating Ca 2+ Influx. Nutrients 2020; 12:nu12061603. [PMID: 32486100 PMCID: PMC7352993 DOI: 10.3390/nu12061603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are components of the innate immune system and form the first defense against pathogens for various organisms. In the present study, we assessed whether CSP32, a novel AMP oligomer of bacitracin isolated from a strain of Bacillus spp., regulates the polarization of murine macrophage-like RAW 264.7 cells. CSP32 stimulated phagocytosis while inducing the appearance of the typical M1 polarized macrophage phenotype; these M1 macrophages play a role in host defense against pathogens. Furthermore, our results showed that CSP32 enhanced the expression and production of pro-inflammatory mediators, such as cytokines and chemokines. In addition, the CSP32-stimulated inflammatory mediators were induced mainly by the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) signaling pathway during M1 macrophage polarization. In particular, CSP32 markedly increased the numbers of Ca2+-positive macrophages while upregulating phospholipase C and activating protein kinase Cε. Furthermore, the inhibition of intracellular Ca2+ by BAPTA-AM, a Ca2+ chelator, significantly suppressed the CSP32-mediated phagocytosis, inflammatory mediator production, and NF-κB activation. In conclusion, our data suggested that CSP32-stimulated M1 macrophage polarization is dependent on the calcium signaling pathway and may result in enhanced immune capacities.
Collapse
|
33
|
Huang JF, Zhao Q, Dai MY, Xiao XR, Zhang T, Zhu WF, Li F. Gut microbiota protects from triptolide-induced hepatotoxicity: Key role of propionate and its downstream signalling events. Pharmacol Res 2020; 155:104752. [DOI: 10.1016/j.phrs.2020.104752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
34
|
Borges MC, Schmidt AF, Jefferis B, Wannamethee SG, Lawlor DA, Kivimaki M, Kumari M, Gaunt TR, Ben-Shlomo Y, Tillin T, Menon U, Providencia R, Dale C, Gentry-Maharaj A, Hughes A, Chaturvedi N, Casas JP, Hingorani AD. Circulating Fatty Acids and Risk of Coronary Heart Disease and Stroke: Individual Participant Data Meta-Analysis in Up to 16 126 Participants. J Am Heart Assoc 2020; 9:e013131. [PMID: 32114887 PMCID: PMC7335585 DOI: 10.1161/jaha.119.013131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background We aimed at investigating the association of circulating fatty acids with coronary heart disease (CHD) and stroke risk. Methods and Results We conducted an individual-participant data meta-analysis of 5 UK-based cohorts and 1 matched case-control study. Fatty acids (ie, omega-3 docosahexaenoic acid, omega-6 linoleic acid, monounsaturated and saturated fatty acids) were measured at baseline using an automated high-throughput serum nuclear magnetic resonance metabolomics platform. Data from 3022 incident CHD cases (13 104 controls) and 1606 incident stroke cases (13 369 controls) were included. Logistic regression was used to model the relation between fatty acids and odds of CHD and stroke, adjusting for demographic and lifestyle variables only (ie, minimally adjusted model) or with further adjustment for other fatty acids (ie, fully adjusted model). Although circulating docosahexaenoic acid, but not linoleic acid, was related to lower CHD risk in the fully adjusted model (odds ratio, 0.85; 95% CI, 0.76-0.95 per standard unit of docosahexaenoic acid), there was evidence of high between-study heterogeneity and effect modification by study design. Stroke risk was consistently lower with increasing circulating linoleic acid (odds ratio for fully adjusted model, 0.82; 95% CI, 0.75-0.90). Circulating monounsaturated fatty acids were associated with higher CHD risk across all models and with stroke risk in the fully adjusted model (odds ratio, 1.22; 95% CI, 1.03-1.44). Saturated fatty acids were not related to increased CHD risk in the fully adjusted model (odds ratio, 0.94; 95% CI, 0.82-1.09), or stroke risk. Conclusions We found consistent evidence that linoleic acid was associated with decreased risk of stroke and that monounsaturated fatty acids were associated with increased risk of CHD. The different pattern between CHD and stroke in terms of fatty acids risk profile suggests future studies should be cautious about using composite events. Different study designs are needed to assess which, if any, of the associations observed is causal.
Collapse
Affiliation(s)
- Maria Carolina Borges
- MRC Integrative Epidemiology Unit at the University of Bristol United Kingdom.,Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science University College London London United Kingdom.,Groningen Research Institute of Pharmacy University of Groningen the Netherlands.,Division Heart and Lungs Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
| | - Barbara Jefferis
- UCL Department of Primary Care & Population Health UCL Medical School London United Kingdom
| | - S Goya Wannamethee
- UCL Department of Primary Care & Population Health UCL Medical School London United Kingdom
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol United Kingdom.,Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Mika Kivimaki
- Department of Epidemiology and Public Health University College London London United Kingdom
| | - Meena Kumari
- Department of Epidemiology and Public Health University College London London United Kingdom.,Institute for Social and Economic Research University of Essex United Kingdom
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol United Kingdom.,Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Yoav Ben-Shlomo
- Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Therese Tillin
- Cardiometabolic Phenotyping Group Institute of Cardiovascular Science University College London London United Kingdom
| | - Usha Menon
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & MethodologyUniversity College London London United Kingdom
| | - Rui Providencia
- Farr Institute of Health Informatics University College London London United Kingdom.,Barts Heart Centre St Bartholomew's Hospital Barts Health NHS Trust London United Kingdom
| | - Caroline Dale
- Farr Institute of Health Informatics University College London London United Kingdom
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & MethodologyUniversity College London London United Kingdom
| | - Alun Hughes
- Institute of Cardiovascular Science University College London London United Kingdom
| | - Nish Chaturvedi
- Institute of Cardiovascular Science University College London London United Kingdom
| | - Juan Pablo Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) VA Boston Healthcare System Boston MA USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science University College London London United Kingdom.,Farr Institute of Health Informatics University College London London United Kingdom
| | | |
Collapse
|
35
|
Lu Z, Li Y, Syn WK, Wang Z, Lopes-Virella MF, Lyons TJ, Huang Y. Amitriptyline inhibits nonalcoholic steatohepatitis and atherosclerosis induced by high-fat diet and LPS through modulation of sphingolipid metabolism. Am J Physiol Endocrinol Metab 2020; 318:E131-E144. [PMID: 31821039 PMCID: PMC7052581 DOI: 10.1152/ajpendo.00181.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We reported previously that increased acid sphingomyelinase (ASMase)-catalyzed hydrolysis of sphingomyelin, which leads to increases in ceramide and sphingosine 1 phosphate (S1P), played a key role in the synergistic upregulation of proinflammatory cytokines by palmitic acid (PA), a major saturated fatty acid, and lipopolysaccharide (LPS) in macrophages. Since macrophages are vital players in nonalcoholic steatohepatitis (NASH) and atherosclerosis, we assessed the effect of ASMase inhibition on NASH and atherosclerosis cooperatively induced by high-PA-containing high-fat diet (HP-HFD) and LPS in LDL receptor-deficient (LDLR-/-) mice. LDLR-/- mice were fed HP-HFD, injected with low dose of LPS and treated with or without the ASMase inhibitor amitriptyline. The neutral sphingomyelinase inhibitor GW4869 was used as control. Metabolic study showed that both amitriptyline and GW4869 reduced glucose, lipids, and insulin resistance. Histological analysis and Oil Red O staining showed that amitriptyline robustly reduced hepatic steatosis while GW4869 had modest effects. Interestingly, immunohistochemical study showed that amitriptyline, but not GW4869, strongly reduced hepatic inflammation. Furthermore, results showed that both amitriptyline and GW4869 attenuated atherosclerosis. To elucidate the underlying mechanisms whereby amitriptyline inhibited both NASH and atherosclerosis, but GW4869 only inhibited atherosclerosis, we found that amitriptyline, but not GW4869, downregulated proinflammatory cytokines in macrophages. Finally, we found that inhibition of sphingosine 1 phosphate production is a potential mechanism whereby amitriptyline inhibited proinflammatory cytokines. Collectively, this study showed that amitriptyline inhibited NASH and atherosclerosis through modulation of sphingolipid metabolism in LDLR-/- mice, indicating that sphingolipid metabolism in macrophages plays a crucial role in the linkage of NASH and atherosclerosis.
Collapse
Affiliation(s)
- Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Wing-Kin Syn
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Zhewu Wang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
36
|
Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, Yarmush ML, Alaniz RC, Jayaraman A, Lee K. Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages. Cell Rep 2019; 23:1099-1111. [PMID: 29694888 PMCID: PMC6392449 DOI: 10.1016/j.celrep.2018.03.109] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/11/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays a significant role in the progression of fatty liver disease; however, the mediators and their mechanisms remain to be elucidated. Comparing metabolite profile differences between germ-free and conventionally raised mice against differences between mice fed a low- and high-fat diet (HFD), we identified tryptamine and indole-3-acetate (I3A) as metabolites that depend on the microbiota and are depleted under a HFD. Both metabolites reduced fatty-acid- and LPS-stimulated production of pro-inflammatory cytokines in macrophages and inhibited the migration of cells toward a chemokine, with I3A exhibiting greater potency. In hepatocytes, I3A attenuated inflammatory responses under lipid loading and reduced the expression of fatty acid synthase and sterol regulatory element-binding protein-1c. These effects were abrogated in the presence of an aryl-hydrocarbon receptor (AhR) antagonist, indicating that the effects are AhR dependent. Our results suggest that gut microbiota could influence inflammatory responses in the liver through metabolites engaging host receptors.
Collapse
Affiliation(s)
- Smitha Krishnan
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Yufang Ding
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nima Saedi
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maria Choi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Gautham V Sridharan
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M University, College Station, TX, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
37
|
Glutathione Induced Immune-Stimulatory Activity by Promoting M1-Like Macrophages Polarization via Potential ROS Scavenging Capacity. Antioxidants (Basel) 2019; 8:antiox8090413. [PMID: 31540482 PMCID: PMC6770173 DOI: 10.3390/antiox8090413] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the immunomodulatory activity of reduced glutathione (GSH) by assessment of the macrophage polarization (MP)-mediated immune response in RAW 264.7 cells. Furthermore, we identified the signal pathway associated with immune regulation by GSH. The expressions of MP-associated cytokines and chemokines were assessed using cytokine array, nCounter Sprit platform, ELISA and immunoblotting. Phagocytosis activity and intracellular reactive oxygen species (ROS) generation were measured using fluorescence-activated cell sorter. As results of the cytokine array and nCounter gene array, GSH not only up-regulated pro-inflammatory cytokines, including interleukins and tumor necrosis factor-α, but also overexpressed neutrophil-attracting chemokines. Furthermore, GSH significantly stimulated the production of immune mediators, including nitric oxide and PGE2, as well as phagocytosis activity through nuclear factor kappa B activation. In addition, GSH significantly decreased LPS-induced ROS generation, which was associated with an activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/ heme oxygenease-1 (HO-1) signaling pathway. Our results suggest that GSH has potential ROS scavenging capacity via the induction of Nrf2-mediated HO-1, and immune-enhancing activity by regulation of M1-like macrophage polarization, indicating that GSH may be a useful strategy to increase the human defense system.
Collapse
|
38
|
Meng H, Matthan NR, Wu D, Li L, Rodríguez-Morató J, Cohen R, Galluccio JM, Dolnikowski GG, Lichtenstein AH. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. Am J Clin Nutr 2019; 110:305-315. [PMID: 31179489 DOI: 10.1093/ajcn/nqz095] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Direct comparisons between SFAs varying in chain length, specifically palmitic acid (16:0) and stearic acid (18:0), relative to the latter's metabolic product, oleic acid (18:1), on cardiometabolic risk factors are limited. OBJECTIVE The aim of this study was to determine the relative comparability of diets enriched in palmitic acid, stearic acid, and oleic acid on inflammation and coagulation markers, T lymphocyte proliferation/ex-vivo cytokine secretion, plasma cardiometabolic risk factors, and fecal bile acid concentrations. METHODS Hypercholesterolemic postmenopausal women (n = 20, mean ± SD age 64 ± 7 y, BMI 26.4 ± 3.4 kg/m2, LDL cholesterol ≥ 2.8 mmol/L) were provided with each of 3 diets [55% energy (%E) carbohydrate, 15%E protein, 30%E fat, with ∼50% fat contributed by palmitic acid, stearic acid, or oleic acid in each diet; 5 wk/diet phase] using a randomized crossover design with 2-wk washouts between phases. Outcome measures were assessed at the end of each phase. RESULTS Fasting LDL-cholesterol and non-HDL-cholesterol concentrations were lower after the stearic acid and oleic acid diets than the palmitic acid diet (all P < 0.01). Fasting HDL-cholesterol concentrations were lower after the stearic acid diet than the palmitic acid and oleic acid diets (P < 0.01). The stearic acid diet resulted in lower lithocholic acid (P = 0.01) and total secondary bile acid (SBA) concentrations (P = 0.04) than the oleic acid diet. All other outcome measures were similar between diets. Lithocholic acid concentrations were positively correlated with fasting LDL-cholesterol concentrations (r = 0.33; P = 0.011). Total SBA, lithocholic acid, and deoxycholic acid concentrations were negatively correlated with fasting HDL cholesterol (r = -0.51 to -0.44; P < 0.01) concentrations and positively correlated with LDL cholesterol:HDL cholesterol (r = 0.37-0.54; P < 0.01) ratios. CONCLUSIONS Dietary stearic acid and oleic acid had similar effects on fasting LDL-cholesterol and non-HDL-cholesterol concentrations and more favorable ones than palmitic acid. Unlike oleic acid, the hypocholesterolemic effect of stearic acid may be mediated by inhibition of intestinal hydrophobic SBA synthesis. These findings add to the data suggesting there should be a reassessment of current SFA dietary guidance and Nutrient Facts panel labeling.This trial was registered at clinicaltrials.gov as NCT02145936.
Collapse
Affiliation(s)
- Huicui Meng
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lijun Li
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jose Rodríguez-Morató
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Rebecca Cohen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jean M Galluccio
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Gregory G Dolnikowski
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
39
|
Kunz M, Simon JC, Saalbach A. Psoriasis: Obesity and Fatty Acids. Front Immunol 2019; 10:1807. [PMID: 31417571 PMCID: PMC6684944 DOI: 10.3389/fimmu.2019.01807] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Psoriasis is chronic inflammatory skin disease affecting skin, joints, cardiovascular system, brain, and metabolism. The pathogenesis of psoriasis is mediated by a complex interplay between the immune system, inflammatory mediators of different pathways, e.g., TNF-alpha and the IL-23/IL-17 pathways, psoriasis-associated susceptibility loci, autoantigens, and multiple environmental factors. Psoriasis is triggered by the combination of genetic and environmental factors. A novel environmental risk factor with rising importance is obesity. Several studies proved that obesity is an independent risk factor for the onset and severity of psoriasis. Due to the dramatic increase of obesity worldwide this minireview focuses on obesity as a major environmental risk factor for psoriasis and the mechanisms of obesity-mediated exacerbation of psoriasis.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
40
|
Öörni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-Rich Lipoproteins as a Source of Proinflammatory Lipids in the Arterial Wall. Curr Med Chem 2019; 26:1701-1710. [DOI: 10.2174/0929867325666180530094819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins
(chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and
cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below
70-80 nm may enter the arterial wall, where they accumulate and induce the formation of
atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids
in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles.
However, recent observational and genetic studies have discovered that the triglyceriderich
lipoproteins and their remnants are linked with cardiovascular disease risk. In this review,
we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can
contribute to the development of atherosclerotic lesions, and highlight the differences in the
atherogenicity between low-density lipoproteins and the remnant lipoproteins.
Collapse
Affiliation(s)
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
| | | | | |
Collapse
|
41
|
Activator protein-1 and caspase 8 mediate p38α MAPK-dependent cardiomyocyte apoptosis induced by palmitic acid. Apoptosis 2019; 24:395-403. [DOI: 10.1007/s10495-018-01510-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Li Y, Lu Z, Ru JH, Lopes-Virella MF, Lyons TJ, Huang Y. Saturated fatty acid combined with lipopolysaccharide stimulates a strong inflammatory response in hepatocytes in vivo and in vitro. Am J Physiol Endocrinol Metab 2018; 315:E745-E757. [PMID: 29989851 PMCID: PMC6293169 DOI: 10.1152/ajpendo.00015.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and consumption of high-fat diet (HFD) is a risk factor for NAFLD. The HFD not only increases intake of saturated fatty acid (SFA) but also induces metabolic endotoxemia, an HFD-associated increase in circulating lipopolysaccharide (LPS). Although it is known that SFA or LPS promote hepatic inflammation, a hallmark of NAFLD, it remains unclear how SFA in combination with LPS stimulates host inflammatory response in hepatocytes. In this study, we performed both in vivo and in vitro experiments to investigate the effect of SFA in combination with LPS on proinflammatory gene expression in hepatocytes. Our animal study showed that feeding low-density lipoprotein-deficient mice HFD enriched with SFA and injection of low-dose LPS cooperatively stimulated IL-6 expression in livers. To understand how SFA and LPS interact to promote IL-6 expression, our in vitro studies showed that palmitic acid (PA), a major SFA, and LPS exerted synergistic effect on the expression of IL-6 in hepatocytes. Furthermore, coculture of hepatocytes with macrophages resulted in a greater IL-6 expression than culture of hepatocytes without macrophages in response to the combination of PA and LPS. Finally, we observed that LPS and PA increased ceramide production by cooperatively stimulating ceramide de novo synthesis, which played an essential role in the synergistic stimulation of proinflammatory gene expression by LPS and PA. Taken together, this study showed that SFA in combination with LPS stimulated a strong inflammatory response in hepatocytes in vivo and in vitro.
Collapse
Affiliation(s)
- Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine Medical University of South Carolina, South Carolina
| | - Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center , Charleston, South Carolina
| | - Ji Hyun Ru
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine Medical University of South Carolina, South Carolina
| | - Maria F Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine Medical University of South Carolina, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center , Charleston, South Carolina
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine Medical University of South Carolina, South Carolina
| | - Yan Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine Medical University of South Carolina, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
43
|
Herbert D, Franz S, Popkova Y, Anderegg U, Schiller J, Schwede K, Lorz A, Simon JC, Saalbach A. High-Fat Diet Exacerbates Early Psoriatic Skin Inflammation Independent of Obesity: Saturated Fatty Acids as Key Players. J Invest Dermatol 2018; 138:1999-2009. [DOI: 10.1016/j.jid.2018.03.1522] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
|
44
|
Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2018; 159:9-22. [PMID: 30071259 DOI: 10.1016/j.biochi.2018.07.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) involves a panel of pathologies starting with hepatic steatosis and continuing to irreversible and serious conditions like steatohepatitis (NASH) and hepatocarcinoma. NAFLD is multifactorial in origin and corresponds to abnormal fat deposition in liver. Even if triglycerides are mostly associated with these pathologies, other lipid moieties seem to be involved in the development and severity of NAFLD. That is the case with sphingolipids and more particularly ceramides. In this review, we explore the relationship between NAFLD and sphingolipid metabolism. After providing an analysis of complex sphingolipid metabolism, we focus on the potential involvement of sphingolipids in the different pathologies associated with NAFLD. An unbalanced ratio between ceramides and terminal metabolic products in the liver and plasma promotes weight gain, inflammation, and insulin resistance. In the etiology of NAFLD, some sphingolipid species such as ceramides may be potential biomarkers for NAFLD. We review the clinical relevance of sphingolipids in liver diseases.
Collapse
Affiliation(s)
- Marion Régnier
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
45
|
Sergi D, Morris AC, Kahn DE, McLean FH, Hay EA, Kubitz P, MacKenzie A, Martinoli MG, Drew JE, Williams LM. Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci 2018; 23:321-334. [PMID: 30032721 DOI: 10.1080/1028415x.2018.1501533] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.
Collapse
Affiliation(s)
- Domenico Sergi
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amanda C Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Darcy E Kahn
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fiona H McLean
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Elizabeth A Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Phil Kubitz
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria G Martinoli
- Cellular Neurobiology Group, Université du Québec, Trois-Rivières, Québec, G9A 5H7 Canada
| | - Janice E Drew
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
46
|
Jaisinghani N, Dawa S, Singh K, Nandy A, Menon D, Bhandari PD, Khare G, Tyagi A, Gandotra S. Necrosis Driven Triglyceride Synthesis Primes Macrophages for Inflammation During Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:1490. [PMID: 30018616 PMCID: PMC6037689 DOI: 10.3389/fimmu.2018.01490] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary tuberculosis (TB) exhibits granulomatous inflammation, a site of controlling bacterial dissemination at the cost of host tissue damage. Intrigued by the granuloma type-dependent expression of inflammatory markers in TB, we sought to investigate underlying metabolic changes that drive amplification of inflammation in TB. Here, we show an association of higher inflammation in necrotic granulomas with the presence of triglyceride (TG)-rich foamy macrophages. The conspicuous absence of these macrophages in solid granulomas identified a link between the ensuing pathology and the metabolic programming of foamy macrophages. Consistent with in vivo findings, in vitro infection of macrophages with Mycobacterium tuberculosis (Mtb) led to increase in TG synthesis only under conditions of ~60% necrosis. Genetic and pharmacologic intervention that reduced necrosis prevented this bystander response. We further demonstrate that necrosis independent of Mtb also elicits the same bystander response in human macrophages. We identified a role for the human enzyme involved in TG synthesis, diacylglycerol O-acyltransferase (DGAT1), in this phenomenon. The increased TG levels in necrosis-associated foamy macrophages promoted the pro-inflammatory state of macrophages to infection while silencing expression of diacylglycerol O-acyltransferase (DGAT1) suppressed expression of pro-inflammatory genes. Our data thus invoke a role for storage lipids in the heightened host inflammatory response during infection-associated necrosis. Our data provide a functional role to macrophage lipid droplets in host defense and open new avenues for developing host-directed therapies against TB.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Stanzin Dawa
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kaurab Singh
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ananya Nandy
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dilip Menon
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Purva Deepak Bhandari
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sheetal Gandotra
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
47
|
Accelerated inflammation and oxidative stress induced by LPS in acute lung injury: Ιnhibition by ST1926. Int J Mol Med 2018; 41:3405-3421. [PMID: 29568857 PMCID: PMC5881729 DOI: 10.3892/ijmm.2018.3574] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/20/2018] [Indexed: 01/01/2023] Open
Abstract
Bioavailable and less toxic synthetic retinoids, such as the atypical adamantyl retinoid ST1926, have been well developed and investigated in clinical trials for many diseases. The aim of our study was to explore the role of ST1926 in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and to reveal the possible molecular mechanism. Mice were treated with LPS to induce acute lung injury followed by ST1926 administration. After LPS induction, mice administered with ST1926 showed lower inflammation infiltration in bronchoalveolar lavage (BAL) fluid, and pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-18, IL-6 and tumor necrosis factor-α (TNF-α) in serum and lung tissue samples obtained from mice. In addition, western blot assays suggested that ST1926 suppressed nuclear factor-κB (NF-κB), inhibitor-κB kinase-α (IκBα) and IκB kinase (IKKα), as well as Toll-like receptor 4 (TLR4) induced by LPS. In addition, reactive oxygen species (ROS) stimulated by LPS was also suppressed for ST1926 through inhibiting p38 and extracellular receptor kinase (ERK) signaling pathway. Taken together, the data here indicated that ST1926 may be of potential value in treating acute lung injury through inflammation and ROS suppression via inactivating TLR4/NF-κB and p38/ERK1/2 signaling pathways.
Collapse
|
48
|
Ann SJ, Kim KK, Cheon EJ, Noh HM, Hwang I, Yu JW, Park S, Kang SM, Manabe I, Miller YI, Kim S, Lee SH. Palmitate and minimally-modified low-density lipoprotein cooperatively promote inflammatory responses in macrophages. PLoS One 2018. [PMID: 29518116 PMCID: PMC5843266 DOI: 10.1371/journal.pone.0193649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased consumption of Western-type diets and environmental insults lead to wide-spread increases in the plasma levels of saturated fatty acids and lipoprotein oxidation. The aim of this study is to examine whether palmitate and minimally modified low-density lipoprotein (mmLDL) exert an additive effect on macrophage activation. We found that CXCL2 and TNF-α secretion as well as ERK and p38 phosphorylation were additively increased by co-treatment of J774 macrophages with palmitate and mmLDL in the presence of lipopolysaccharide (LPS). Furthermore, the analysis of differentially expressed genes using the KEGG database revealed that several pathways, including cytokine-cytokine receptor interaction, and genes were significantly altered. These results were validated with real-time PCR, showing upregulation of Il-6, Csf3, Il-1β, and Clec4d. The present study demonstrated that palmitate and mmLDL additively potentiate the LPS-induced activation of macrophages. These results suggest the existence of synergistic mechanisms by which saturated fatty acids and oxidized lipoproteins activate immune cells.
Collapse
Affiliation(s)
- Soo-jin Ann
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ka-Kyung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jeong Cheon
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Min Noh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (SH Lee); (S Kim)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (SH Lee); (S Kim)
| |
Collapse
|
49
|
Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLoS One 2018; 13:e0193343. [PMID: 29474492 PMCID: PMC5825094 DOI: 10.1371/journal.pone.0193343] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
It is well known that saturated fatty acids (SFAs) and unsaturated fatty acid, in particular omega-3 polyunsaturated fatty acids (n-3 PUFAs), have different effects on inflammatory signaling: SFAs are pro-inflammatory but n-3 PUFAs have strong anti-inflammatory properties. We have reported that palmitic acid (PA), a saturated fatty acid, robustly amplifies lipopolysaccharide (LPS) signaling to upregulate proinflammatory gene expression in macrophages. We also reported that the increased production of ceramide (CER) via sphingomyelin (SM) hydrolysis and CER de novo synthesis plays a key role in the synergistic effect of LPS and PA on proinflammatory gene expression. However, it remains unclear if n-3 PUFAs are capable of antagonizing the synergistic effect of LPS and PA on gene expression and CER production. In this study, we employed the above macrophage culture system and lipidomical analysis to assess the effect of n-3 PUFAs on proinflammatory gene expression and CER production stimulated by LPS and PA. Results showed that DHA strongly inhibited the synergistic effect of LPS and PA on proinflammatory gene expression by targeting nuclear factor kappa B (NFκB)-dependent gene transcription. Results also showed that DHA inhibited the cooperative effect of LPS and PA on CER production by targeting CER de novo synthesis, but not SM hydrolysis. Furthermore, results showed that myriocin, a specific inhibitor of serine palmitoyltransferase, strongly inhibited both LPS-PA-stimulated CER synthesis and proinflammatory gene expression, indicating that CER synthesis is associated with proinflammatory gene expression and that inhibition of CER synthesis contributes to DHA-inhibited proinflammatory gene expression. Taken together, this study demonstrates that DHA antagonizes the boosting effect of PA on LPS signaling on proinflammatory gene expression by targeting both NFκB-dependent transcription and CER de novo synthesis in macrophages.
Collapse
|
50
|
d'Arqom A, Luangwedchakarn V, Umrod P, Wongprompitak P, Tantibhedyangkul W. Effects of 1α,25 Dihydroxyvitamin D 3 on Pro-inflammatory Cytokines of Palmitic Acid Treated Thp-1 Cells. J Food Sci 2017; 82:3013-3020. [PMID: 29193074 DOI: 10.1111/1750-3841.13966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/01/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022]
Abstract
The level of saturated fatty acids, such as palmitic acid (PA), correlates with chronic inflammation in obese and metabolic syndrome patients. However, low level of vitamin D3 is observed in those conditions. The aim of this study is to investigate effects of 1α,25(OH)2 D3 on PA-treated THP-1 cells. Using quantitative real-time polymerase chain reaction, we measure mRNA expression of pro-inflammatory cytokines: TNF-α, Interleukin (IL)-1β, IL-6, and chemokine IL-8 under PA and 1α,25(OH)2 D3 influence. PA, at all concentrations (25-100 μM), enhanced LPS stimulatory effect on those mRNA expression compared to LPS-treated and -untreated cells. Combination with 1α,25(OH)2 D3 increased cytokine expression at high (10-6 M) and high-normal (10-8 M) concentrations compared to PA + LPS and LPS alone, both for 2 and 24 h. However, low-normal (10-10 M) and low (10-12 M) levels of 1α,25(OH)2 D3 could not enhance PA effect, but mRNA expression of pro-inflammatory cytokine was higher than LPS-treated cells. Upstream pathway of 1α,25(OH)2 D3 , which is cholecalciferol, also gave the similar result. Further, inhibition of calcium pathway does not play a role in this mechanism. Thus, these findings support pro-inflammatory effect of PA and vitamin D3 on innate immune response, especially on fat-induced inflammation. PRACTICAL APPLICATION The effect of vitamin D3 on chronic inflammation in obesity is uncertain. This study shows an in vitro possibility that vitamin D3 could exaggerate inflammation when combined with high SFAs. The idea of using vitamin D3 supplement to modulate inflammation in fat-related inflammation needs further refined experiments before its clinical application.
Collapse
Affiliation(s)
- Annette d'Arqom
- Dept. of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol Univ., Bangkok, Thailand.,Dept. of Pharmacology, Faculty of Medicine, Airlangga Univ., Surabaya, Indonesia
| | | | - Pinklow Umrod
- Dept. of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol Univ., Bangkok, Thailand
| | | | - Wiwit Tantibhedyangkul
- Dept. of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol Univ., Bangkok, Thailand
| |
Collapse
|