1
|
Ousmaal MEF, Andriantsitohaina R, Zouaghi N, Giaimis J, Martínez MC, Baz A. Hyperlipidemia and endothelial dysfunction: effects of eNOS phosphorylation and vascular ultrastructure in normoglycemic Psammomys obesus. Ultrastruct Pathol 2025:1-17. [PMID: 40411441 DOI: 10.1080/01913123.2025.2510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/03/2025] [Accepted: 05/20/2025] [Indexed: 05/26/2025]
Abstract
Atherosclerosis represents the most prevalent form of cardiovascular disease, with the potential to ultimately result in clinically significant complications such as myocardial infarction and stroke. The objective of our study was to gain a deeper understanding of the independent role of hyperlipidemia in the development of endothelial dysfunction and ultrastructural damage to the arteries, which is a key factor in the pathogenesis of atherosclerosis. Following a 12-week dietary intervention comprising either a high-energy diet (HED) or a normal diet (ND), fasting plasma glucose and lipid parameters were assessed. The aortas were subjected to histological analysis and Western blotting, while the carotid arteries underwent ultrastructural analysis using transmission electron microscopy. HED resulted in a statistically significant elevation in lipid parameters, even in normoglycemic P. obesus. eNOS, phospho-eNOS (Thr 495), and NF-κB p65 protein expression were increased in the aorta of HED-fed P. obesus. Histological examination and ultrastructural analysis of HED-fed P. obesus demonstrated notable vascular remodeling, manifested by segmental arterial wall thickening and the presence of large vacuoles and lipid droplets in endothelial cells. This study provides evidence that hyperlipidemia is a significant contributing factor to endothelial dysfunction and ultrastructural alterations in blood vessels, even in the absence of severe hyperglycemia.
Collapse
Affiliation(s)
- Mohamed El Fadel Ousmaal
- Laboratory of Valorization and Bioengineering of Natural Resources (LVBRN), Faculty of Sciences, University of Algiers, Algiers, Algeria
- Department of Natural and Life Sciences, Faculty of Sciences, University of Algiers, Algiers, Algeria
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| | | | - Nafila Zouaghi
- Laboratory for the Study and Development of Water Treatment Technology and Treatment and Environmental Management, Higher Normal School, Kouba, Algeria
| | - Jean Giaimis
- Qualisud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Reunion, Montpellier, France
| | - M Carmen Martínez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Ahsene Baz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| |
Collapse
|
2
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025; 32:535-549. [PMID: 39828369 PMCID: PMC12055512 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
3
|
Cheng Y, Jung J, Guo L, Shuboni-Mulligan DD, Chen JF, Hu W, Guo ML. HIV-TAT dysregulates microglial lipid metabolism through SREBP2/miR-124 axis: Implication of lipid droplet accumulation microglia in NeuroHIV. Brain Behav Immun 2025; 123:108-122. [PMID: 39260763 PMCID: PMC11624073 DOI: 10.1016/j.bbi.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic HIV infection can dysregulate lipid/cholesterol metabolism in the peripheral system, contributing to the higher incidences of diabetes and atherosclerosis in HIV (+) individuals. Recently, accumulating evidence indicate that HIV proteins can also dysregulate lipid/cholesterol metabolism in the brain and such dysregulation could be linked with the pathogenesis of HIV-associated neurological disorders (HAND)/NeuroHIV. To further characterize the association between lipid/cholesterol metabolism and HAND, we employed HIV-inducible transactivator of transcription (iTAT) and control mice to compare their brain lipid profiles. Our results reveal that HIV-iTAT mice possess dysregulated lipid profiles and have increased numbers of lipid droplets (LDs) accumulation microglia (LDAM) in the brains. HIV protein TAT can upregulate LDs formation through enhancing the lipid/cholesterol synthesis in vitro. Mechanistically, HIV-TAT increases the expression of sterol regulatory element-binding protein 2 (SREBP2) through microRNA-124 downregulation. Cholesterol synthesis inhibition can block HIV-TAT-mediated NLRP3 inflammasome activation and microglial activation in vitro as well as mitigate aging-related behavioral impairment and memory deficiency in HIV-iTAT mice. Taken together, our results indicate an inherent role of lipid metabolism and LDAM in the pathogenesis of NeuroHIV (immunometabolism). These findings suggest that LDAM reversal through modulating lipid/cholesterol metabolism could be a novel therapeutic target for ameliorating NeuroHIV symptoms in chronic HIV (+) individuals.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Jaekeun Jung
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Liyang Guo
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Dorela D Shuboni-Mulligan
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ming-Lei Guo
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Macro & Joan Brock Virginia Health Science, Old Dominion University, Norfolk, VA 23507, USA.
| |
Collapse
|
4
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
5
|
Tye H, Conos SA, Djajawi TM, Gottschalk TA, Abdoulkader N, Kong IY, Kammoun HL, Narayana VK, Kratina T, Speir M, Emery J, Simpson DS, Hall C, Vince AJ, Russo S, Crawley R, Rashidi M, Hildebrand JM, Murphy JM, Whitehead L, De Souza DP, Masters SL, Samson AL, Lalaoui N, Hawkins ED, Murphy AJ, Vince JE, Lawlor KE. Divergent roles of RIPK3 and MLKL in high-fat diet-induced obesity and MAFLD in mice. Life Sci Alliance 2025; 8:e202302446. [PMID: 39532538 PMCID: PMC11557689 DOI: 10.26508/lsa.202302446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death frequently occurs in the pathogenesis of obesity and metabolic dysfunction-associated fatty liver disease (MAFLD). However, the exact contribution of core cell death machinery to disease manifestations remains ill-defined. Here, we show via the direct comparison of mice genetically deficient in the essential necroptotic regulators, receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL), as well as mice lacking apoptotic caspase-8 in myeloid cells combined with RIPK3 loss, that RIPK3/caspase-8 signaling regulates macrophage inflammatory responses and drives adipose tissue inflammation and MAFLD upon high-fat diet feeding. In contrast, MLKL, divergent to RIPK3, contributes to both obesity and MAFLD in a manner largely independent of inflammation. We also uncover that MLKL regulates the expression of molecules involved in lipid uptake, transport, and metabolism, and congruent with this, we discover a shift in the hepatic lipidome upon MLKL deletion. Collectively, these findings highlight MLKL as an attractive therapeutic target to combat the growing obesity pandemic and metabolic disease.
Collapse
Affiliation(s)
- Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Stephanie A Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Tirta M Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Timothy A Gottschalk
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Nasteho Abdoulkader
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | | | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Jack Emery
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Angelina J Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Sophia Russo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Rhiannan Crawley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Anand PK. From fat to fire: The lipid-inflammasome connection. Immunol Rev 2025; 329:e13403. [PMID: 39327931 PMCID: PMC11744241 DOI: 10.1111/imr.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Inflammasomes are multiprotein complexes that play a crucial role in regulating immune responses by governing the activation of Caspase-1, the secretion of pro-inflammatory cytokines, and the induction of inflammatory cell death, pyroptosis. The inflammasomes are pivotal in effective host defense against a range of pathogens. Yet, overt activation of inflammasome signaling can be detrimental. The most well-studied NLRP3 inflammasome has the ability to detect a variety of stimuli including pathogen-associated molecular patterns, environmental irritants, and endogenous stimuli released from dying cells. Additionally, NLRP3 acts as a key sensor of cellular homeostasis and can be activated by disturbances in diverse metabolic pathways. Consequently, NLRP3 is considered a key player linking metabolic dysregulation to numerous inflammatory disorders such as gout, diabetes, and atherosclerosis. Recently, compelling studies have highlighted a connection between lipids and the regulation of NLRP3 inflammasome. Lipids are integral to cellular processes that serve not only in maintaining the structural integrity and subcellular compartmentalization, but also in contributing to physiological equilibrium. Certain lipid species are known to define NLRP3 subcellular localization, therefore directly influencing the site of inflammasome assembly and activation. For instance, phosphatidylinositol 4-phosphate plays a crucial role in NLRP3 localization to the trans Golgi network. Moreover, new evidence has demonstrated the roles of lipid biosynthesis and trafficking in activation of the NLRP3 inflammasome. This review summarizes and discusses these emerging and varied roles of lipid metabolism in inflammasome activation. A deeper understanding of lipid-inflammasome interactions may open new avenues for therapeutic interventions to prevent or treat chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Paras K. Anand
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
7
|
Akif A, My Nguyen TT, Liu L, Xu X, Kulkarni A, Jiang J, Zhang Y, Hao J. Targeting NLRP3 signaling with a novel sulfonylurea compound for the treatment of vascular cognitive impairment and dementia. RESEARCH SQUARE 2024:rs.3.rs-5611378. [PMID: 39764140 PMCID: PMC11702818 DOI: 10.21203/rs.3.rs-5611378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Background As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD. Methods In this study, we investigated the therapeutic effects of a synthetic sulfonylurea NLRP3 inhibitor, AMS-17, in a VaD mouse model using bilateral common carotid artery stenosis (BCAS) and elucidated the underlying mechanisms. All mice were randomly divided into three groups: Sham, VaD + Vehicle, and VaD + AMS-17. Cognitive function was assessed using the Y-maze and Morris water maze (MWM) on the 50th day after BCAS. Brain sections and blood serum samples were collected for biomarker analysis and immunohistochemistry. Neurodegeneration, expressions of the molecules involved in the NLRP3 signaling pathways, tight junction proteins, and myelination were assessed using western blotting and immunofluorescence (IF). The levels of Interleukin-1 beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-4 (IL-4) in the blood were measured using ELISA. Results AMS-17 treatment improved cognitive function, enhanced blood-brain barrier (BBB) integrity, and promoted remyelination in VaD mice. Additionally, AMS-17 reduced neurodegeneration and decreased the expression of NLRP3 and its associated proteins, Apoptosis-associated speck-like protein (ASC), and cleaved caspase-1 in the brain. It also lowered pro-inflammatory TNF-α and IL-1β levels, while increasing the anti-inflammatory IL-4 level in the blood. Conclusions The findings of this study provide the first promising evidence for the use of AMS-17 in VaD treatment in mice. This study introduces AMS-17 as a novel chemical scaffold with NLRP3 inhibitory activity, which can be further developed for the treatment of VaD in humans.
Collapse
Affiliation(s)
| | | | - Langni Liu
- The University of Texas Health Science Center at Houston
| | - Xiaotian Xu
- The Affiliated Hospital of Yangzhou University
| | | | | | | | | |
Collapse
|
8
|
Sullivan JP, Jones MK. The Multifaceted Impact of Bioactive Lipids on Gut Health and Disease. Int J Mol Sci 2024; 25:13638. [PMID: 39769399 PMCID: PMC11728145 DOI: 10.3390/ijms252413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Bioactive lipids have a multifaceted role in health and disease and are recognized to play an important part in gut immunity and disease conditions such as inflammatory bowel disease and colon cancer. Advancements in lipidomics, enabled by mass spectrometry and chromatographic techniques, have enhanced our understanding of lipid diversity and functionality. Bioactive lipids, including short-chain fatty acids, saturated fatty acids, omega-3 fatty acids, and sphingolipids, exhibit diverse effects on inflammation and immune regulation. Short-chain fatty acids like butyrate demonstrate anti-inflammatory properties, enhancing regulatory T cell function, gut barrier integrity, and epigenetic regulation, making them promising therapeutic targets for inflammatory bowel disease and colon cancer. Conversely, saturated fatty acids promote inflammation by disrupting gut homeostasis, triggering oxidative stress, and impairing immune regulation. Omega-3 lipids counteract these effects, reducing inflammation and supporting immune balance. Sphingolipids exhibit complex roles, modulating immune cell trafficking and inflammation. They can exert protective effects or exacerbate colitis depending on their source and context. Additionally, eicosanoids can also prevent pathology through prostaglandin defense against damage to epithelial barriers. This review underscores the importance of dietary lipids in shaping gut health and immunity and also highlights the potential use of lipids as therapeutic strategies for managing inflammatory conditions and cancer.
Collapse
Affiliation(s)
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
9
|
Hao T, Zhang X, Liu Q, Zhan R, Tang Y, Bu X, Li W, Du J, Li Y, Mai K, Ai Q. Phosphatidylethanolamine exerts anti-inflammatory action by regulating mitochondrial function in macrophages of large yellow croaker (Larimichthys crocea). FASEB J 2024; 38:e70180. [PMID: 39570029 DOI: 10.1096/fj.202401279rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Phosphatidylethanolamine (PE) is a ubiquitous bioactive lipid in cells, which participates in regulating many metabolic processes. Exogenous PE has been reported to play a positive regulatory role in macrophage inflammatory responses. However, the molecular mechanisms of PE in regulating macrophage inflammation are not completely understood. In the present study, transcriptomic analysis of PE-stimulated macrophages of large yellow croaker revealed that differentially expressed genes were mainly active in cellular components of the mitochondrial respiratory chain, which corresponded to the significant enrichment of the oxidative phosphorylation pathway. Consistent with this result, PE significantly increased ATP content and protein expression of NDUFB3 (mitochondrial respiratory chain complex I subunit) in macrophages. Meanwhile, transcriptomic data showed that PE treatment downregulated the transcript levels of nlrp3 and upregulated the transcript levels of suppressor of cytokine signaling 3 (socs3), suggesting that PE may alleviate macrophage inflammation by interfering with the activation of NLRP3 inflammasome. Further analysis showed that PE significantly attenuated dietary PA-mediated macrophage inflammation via NLRP3-Caspase-1 in vitro and in vivo. Given that PE abundance is strongly correlated with mitochondrial function, the present study hypothesized that PE-mediated inflammatory modulation may be attributed to the positive effects on mitochondrial function. As expected, PE significantly ameliorated PA-induced mitochondrial dysfunction and reduced intracellular reactive oxygen species production and malondialdehyde content in macrophages, indicating that the improvement of mitochondrial function is an important mechanism involved in the positive effect of PE on PA-induced inflammation. In conclusion, this study elucidates the critical role of mitochondrial function in PE-mediated regulation of inflammation in macrophages, which expands the understanding of the regulatory mechanisms of phospholipid metabolism on dietary fatty acid-induced inflammation. This study may provide new intervention targets and nutritional regulation strategies for improving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Xinwen Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Rui Zhan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Weijia Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
10
|
Zhang Z, Li M, Li X, Feng Z, Luo G, Wang Y, Gao X. Glutamine metabolism modulates microglial NLRP3 inflammasome activity through mitophagy in Alzheimer's disease. J Neuroinflammation 2024; 21:261. [PMID: 39407211 PMCID: PMC11481753 DOI: 10.1186/s12974-024-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome in microglia is intimately linked to the pathogenesis of Alzheimer's disease (AD). Although NLRP3 inflammasome activity is regulated by cellular metabolism, the underlying mechanism remains elusive. Here, we found that under the pathological conditions of AD, the activation of NLRP3 inflammasome in microglia is accompanied by increased glutamine metabolism. Suppression of glutaminase, the rate limiting enzyme in glutamine metabolism, attenuated the NLRP3 inflammasome activation both in the microglia of AD mice and cultured inflammatory microglia. Mechanistically, inhibiting glutaminase blocked the anaplerotic flux of glutamine to the tricarboxylic acid cycle and amino acid synthesis, down-regulated mTORC1 signaling by phosphorylating AMPK, which stimulated mitophagy and limited the accumulation of intracellular reactive oxygen species, ultimately prevented the activation of NLRP3 inflammasomes in activated microglia during AD. Taken together, our findings suggest that glutamine metabolism regulates the activation of NLRP3 inflammasome through mitophagy in microglia, thus providing a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Miao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhiyang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
11
|
Meneguelli TS, Wendling AL, Kravchychyn ACP, Rocha DMUP, Dionísio AP, Bressan J, Martino HSD, Tako E, Hermsdorff HHM. Effects of Cashew Nuts ( Anacardium occidentale L.) and Cashew Nut Oil on Intestinal Permeability and Inflammatory Markers during an Energy-Restricted 8-Week Intervention: A Randomized Controlled Trial (Brazilian Nuts Study). Foods 2024; 13:2917. [PMID: 39335845 PMCID: PMC11431763 DOI: 10.3390/foods13182917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cashew nuts can contribute to improving intestinal permeability and inflammation as they contain essential nutrients and bioactive compounds, but no clinical trials have evaluated these potential effects. This randomized trial aimed to assess the effects of cashew nuts and their oil on intestinal permeability and inflammatory markers. Sixty-four adults with overweight or obesity were allocated into three groups receiving energy restriction (-500 kcal/day): control (CT, free nuts), cashew nuts (CN, 30 g/day), or cashew nut oil (OL, 30 mL/day). Urine lactulose and mannitol, plasma zonulin and the lipopolysaccharide-binding protein (LBP), plasma interleukins (IL-6, TNF-α, IL-10, IL-1β, IL-8, and IL-12p70), and C-reactive proteins were analyzed. Energy restriction reduced body fat and other indicators of adiposity without differences between the groups. Only the control group increased LBPs after an 8-week intervention. There were no statistically significant differences found between the groups in terms of intestinal permeability and inflammatory markers. In conclusion, incorporating cashew nuts or cashew nut oil into an energy-restricted 8-week dietary intervention did not change intestinal permeability and inflammatory markers. As studies evaluating cashew nuts on these markers remain scarce, further research is needed, perhaps with a longer study period and a higher concentration of cashew nuts and oil.
Collapse
Affiliation(s)
- Talitha Silva Meneguelli
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Aline Lage Wendling
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Daniela Mayumi Usuda Prado Rocha
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Ana Paula Dionísio
- Brazilian Agricultural Research Corporation (Embrapa) Agroindústria Tropical—CNPAT, Fortaleza 60511-110, CE, Brazil;
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Hércia Stampini Duarte Martino
- Laboratory of Experimental Nutrition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil;
| | - Elad Tako
- Trace Minerals and Nutrition Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14850, USA;
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| |
Collapse
|
12
|
Zhou Y, Zhou Z. Unraveling the causal link: fatty acids and inflammatory bowel disease. Front Immunol 2024; 15:1405790. [PMID: 39119343 PMCID: PMC11306040 DOI: 10.3389/fimmu.2024.1405790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background Previous observational studies have revealed the strong relationship between fatty acids (FA) and inflammatory bowel disease (IBD). Nonetheless, due to the inherent limitations of retrospective research, the causality between the two has not been clearly established. Methods Genetic variants associated with the 17 FA indicators were derived from genome-wide association studies. Summary statistics for the discovery cohort and testing cohort for IBD, including ulcerative colitis (UC) and Crohn's disease (CD), were available from IIBDGC and FinnGen, respectively. Bidirectional MR analysis and sensitivity analysis with multiple measures were applied to comprehensively investigate the causal link between FA and IBD. Results Combining the results of various MR methods, the validation of testing cohort, and the merging of meta-analysis, we demonstrated that genetically predicted Omega-3 FA levels, Ratio of Omega-3 FA to total FA, Docosahexaenoic acid (DHA) levels, and Ratio of DHA to total FA reduced the risk of IBD, UC, and CD. Meanwhile, multivariate MR suggested that the risk effects of Omega-3 FA and DHA for UC and CD were mainly affected by Saturated FA and Monounsaturated fatty acid (MUFA). Furthermore, although there was the causal association between Ratio of MUFA to total FA as well as Ratio of Polyunsaturated fatty acid (PUFA) to MUFA and CD, sensitivity analysis prompted that the findings were not robust. None of the above results had a reverse causal effect. Conclusion This MR investigation provided evidence of causality between diverse FA and IBD. These findings offered new insights into the treatment and prevention of IBD.
Collapse
Affiliation(s)
| | - Zhenhua Zhou
- Department of General Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
13
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
14
|
Ehirchiou D, Bernabei I, Pandian VD, Nasi S, Chobaz V, Castelblanco M, So A, Martinon F, Li X, Acha-Orbea H, Hugle T, Zhang L, Busso N. The integrin CD11b inhibits MSU-induced NLRP3 inflammasome activation in macrophages and protects mice against MSU-induced joint inflammation. Arthritis Res Ther 2024; 26:119. [PMID: 38863059 PMCID: PMC11165854 DOI: 10.1186/s13075-024-03350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE In gout, monosodium urate crystals are taken up by macrophages, triggering the activation of the NLRP3 inflammasome and the maturation of IL-1β. This study aimed to investigate the role of integrin CD11b in inflammasome activation in macrophages stimulated by MSU. METHODS BMDM from WT and CD11b KO mice were stimulated in vitro with MSU crystals. Cellular supernatants were collected to assess the expression of the inflammatory cytokines by enzyme-linked immunosorbent assay and western blot methods. The role of integrin CD11b in MSU-induced gouty arthritis in vivo was investigated by intra-articular injection of MSU crystals. Real-time extracellular acidification rate and oxygen consumption rate of BMDMs were measured by Seahorse Extracellular Flux Analyzer. RESULTS We demonstrate that CD11b-deficient mice developed exacerbated gouty arthritis with increased recruitment of leukocytes in the joint and higher IL-1β levels in the sera. In macrophages, genetic deletion of CD11b induced a shift of macrophage metabolism from oxidative phosphorylation to glycolysis, thus decreasing the overall generation of intracellular ATP. Upon MSU stimulation, CD11b-deficient macrophages showed an exacerbated secretion of IL-1β. Treating wild-type macrophages with a CD11b agonist, LA1, inhibited MSU-induced release of IL-1β in vitro and attenuated the severity of experimental gouty arthritis. Importantly, LA1, was also effective in human cells as it inhibited MSU-induced release of IL-1β by peripheral blood mononuclear cells from healthy donors. CONCLUSION Our data identified the CD11b integrin as a principal cell membrane receptor that modulates NLRP3 inflammasome activation by MSU crystal in macrophages, which could be a potential therapeutic target to treat gouty arthritis in human patients.
Collapse
Grants
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
Collapse
Affiliation(s)
- Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vishnuprabu Durairaj Pandian
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Veronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Fabio Martinon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Xiaoyun Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Thomas Hugle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Sun Y, Yin Y, Yang S, Ai D, Qin H, Xia X, Xu X, Song J. Lipotoxicity: The missing link between diabetes and periodontitis? J Periodontal Res 2024; 59:431-445. [PMID: 38419425 DOI: 10.1111/jre.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/02/2024]
Abstract
Lipotoxicity refers to the accumulation of lipids in tissues other than adipose tissue (body fat). It is one of the major pathophysiological mechanisms responsible for the progression of diabetes complications such as non-alcoholic fatty liver disease and diabetic nephropathy. Accumulating evidence indicates that lipotoxicity also contributes significantly to the toxic effects of diabetes on periodontitis. Therefore, we reviewed the current in vivo, in vitro, and clinical evidence of the detrimental effects of lipotoxicity on periodontitis, focusing on its molecular mechanisms, especially oxidative and endoplasmic reticulum stress, inflammation, ceramides, adipokines, and programmed cell death pathways. By elucidating potential therapeutic strategies targeting lipotoxicity and describing their associated mechanisms and clinical outcomes, including metformin, statins, liraglutide, adiponectin, and omega-3 PUFA, this review seeks to provide a more comprehensive and effective treatment framework against diabetes-associated periodontitis. Furthermore, the challenges and future research directions are proposed, aiming to contribute to a more profound understanding of the impact of lipotoxicity on periodontitis.
Collapse
Affiliation(s)
- Yu Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
16
|
Doedens JR, Smolak P, Nguyen M, Wescott H, Diamond C, Schooley K, Billinton A, Harrison D, Koller BH, Watt AP, Gabel CA. Pharmacological Analysis of NLRP3 Inflammasome Inhibitor Sodium [(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1 H-pyrazol-4-yl)({[(2 S)-oxolan-2-yl]methyl})sulfamoyl]azanide in Cellular and Mouse Models of Inflammation Provides a Translational Framework. ACS Pharmacol Transl Sci 2024; 7:1438-1456. [PMID: 38751618 PMCID: PMC11091978 DOI: 10.1021/acsptsci.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Interleukin (IL)-1β is an apex proinflammatory cytokine produced in response to tissue injury and infection. The output of IL-1β from monocytes and macrophages is regulated not only by transcription and translation but also post-translationally. Release of the active cytokine requires activation of inflammasomes, which couple IL-1β post-translational proteolysis with pyroptosis. Among inflammasome platforms, NOD-like receptor pyrin domain-containing protein 3 (NLRP3) is implicated in the pathogenesis of numerous human disorders in which disease-specific danger-associated molecular patterns (DAMPS) are positioned to drive its activation. As a promising therapeutic target, numerous candidate NLRP3-targeting therapeutics have been described and demonstrated to provide benefits in the context of animal disease models. While showing benefits, published preclinical studies have not explored dose-response relationships within the context of the models. Here, the preclinical pharmacology of a new chemical entity, [(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1H-pyrazol-4-yl)({[(2S)-oxolan-2-yl]methyl})sulfamoyl]azanide (NT-0249), is detailed, establishing its potency and selectivity as an NLRP3 inhibitor. NT-0249 also is evaluated in two acute in vivo mouse challenge models where pharmacodynamic/pharmacokinetic relationships align well with in vitro blood potency assessments. The therapeutic utility of NT-0249 is established in a mouse model of cryopyrin-associated periodic syndrome (CAPS). In this model, mice express a human gain-of-function NLRP3 allele and develop chronic and progressive IL-1β-dependent autoinflammatory disease. NT-0249 dose-dependently reduced multiple inflammatory biomarkers in this model. Significantly, NT-0249 decreased mature IL-1β levels in tissue homogenates, confirming in vivo target engagement. Our findings highlight not only the pharmacological attributes of NT-0249 but also provide insight into the extent of target suppression that will be required to achieve clinical benefit.
Collapse
Affiliation(s)
| | - Pamela Smolak
- NodThera,
Inc., Seattle, Washington 98103, United States
| | - MyTrang Nguyen
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | | | | | - Ken Schooley
- NodThera,
Inc., Seattle, Washington 98103, United States
| | - Andy Billinton
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | - David Harrison
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | - Beverly H. Koller
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Alan P. Watt
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | | |
Collapse
|
17
|
Shidoji Y. Induction of Hepatoma Cell Pyroptosis by Endogenous Lipid Geranylgeranoic Acid-A Comparison with Palmitic Acid and Retinoic Acid. Cells 2024; 13:809. [PMID: 38786033 PMCID: PMC11119665 DOI: 10.3390/cells13100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan
| |
Collapse
|
18
|
Pi S, Xiong S, Yuan Y, Deng H. The Role of Inflammasome in Abdominal Aortic Aneurysm and Its Potential Drugs. Int J Mol Sci 2024; 25:5001. [PMID: 38732221 PMCID: PMC11084561 DOI: 10.3390/ijms25095001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) has been recognized as a serious chronic inflammatory degenerative aortic disease in recent years. At present, there is no other effective intervention except surgical treatment for AAA. With the aging of the human population, its incidence is increasing year by year, posing a serious threat to human health. Modern studies suggest that vascular chronic inflammatory response is the core process in AAA occurrence and development. Inflammasome, a multiprotein complex located in the cytoplasm, mediates the expression of various inflammatory cytokines like interleukin (IL)-1β and IL-18, and thus plays a pivotal role in inflammation regulation. Therefore, inflammasome may exert a crucial influence on the progression of AAA. This article reviews some mechanism studies to investigate the role of inflammasome in AAA and then summarizes several potential drugs targeting inflammasome for the treatment of AAA, aiming to provide new ideas for the clinical prevention and treatment of AAA beyond surgical methods.
Collapse
Affiliation(s)
- Suyu Pi
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| |
Collapse
|
19
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
20
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
21
|
Lin Z, Long F, Kang R, Klionsky DJ, Yang M, Tang D. The lipid basis of cell death and autophagy. Autophagy 2024; 20:469-488. [PMID: 37768124 PMCID: PMC10936693 DOI: 10.1080/15548627.2023.2259732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
ABBREVIATIONS ACSL: acyl-CoA synthetase long chain family; DISC: death-inducing signaling complex; DAMPs: danger/damage-associated molecular patterns; Dtgn: dispersed trans-Golgi network; FAR1: fatty acyl-CoA reductase 1; GPX4: glutathione peroxidase 4; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPS: lipopolysaccharide; MUFAs: monounsaturated fatty acids; MOMP: mitochondrial outer membrane permeabilization; MLKL, mixed lineage kinase domain like pseudokinase; oxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; OxPCs: oxidized phosphatidylcholines; PUFAs: polyunsaturated fatty acids; POR: cytochrome p450 oxidoreductase; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; RIPK1: receptor interacting serine/threonine kinase 1; SPHK1: sphingosine kinase 1; SOAT1: sterol O-acyltransferase 1; SCP2: sterol carrier protein 2; SFAs: saturated fatty acids; SLC47A1: solute carrier family 47 member 1; SCD: stearoyl-CoA desaturase; VLCFA: very long chain fatty acids.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Li X, Mai K, Ai Q. Palmitic acid activates NLRP3 inflammasome through NF-κB and AMPK-mitophagy-ROS pathways to induce IL-1β production in large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159428. [PMID: 38029958 DOI: 10.1016/j.bbalip.2023.159428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Studies on marine fish showed that vegetable oils substituted for excessive fish oil increased interleukin-1β (IL-1β) production. However, whether the nucleotide-binding oligomerization domain, leucine-rich repeat-containing family, pyrin domain-containing-3 (NLRP3) inflammasome has a substantial role in fatty acid-induced IL-1β production in fish remains unclear. The associated specific mechanism is also unknown. In this study, nlrp3, caspase-1 and apoptosis-associated speck-like protein containing a CARD (asc) were successfully cloned, and NLRP3 inflammasome consisted of NLRP3, caspase-1 and ASC in large yellow croaker. Primary hepatocytes of fish incubated with palmitic acid (PA) exhibited the highest expression of pro-inflammatory genes (il-1β and tnfα) and NLRP3 inflammasome related genes (nlrp3, caspase-1 and asc), caspase-1 activity and IL-1β production among different treatments. Furthermore, PA-induced NLRP3 inflammasome activation was confirmed to require two signals: the first signal was that PA promoted the NF-κB (P65) protein into the nucleus, and NF-κB increased NLRP3 promoter activity and nlrp3 transcription. The second signal was that PA inhibited AMPK phosphorylation and decreased mitophagy by inhibiting the expression of PINK and parkin proteins, thereby damaging the mitochondria that could not be effectively cleared. Mitochondrial damage generated excessive amounts of reactive oxygen species, which activated the NLRP3 inflammasome and then induced caspase-1 activity and IL-1β production. Therefore, excessive dietary PA activated NLRP3 inflammasome through NF-κB and AMPK-mitophagy-ROS pathways to induce IL-1β production, thereby leading to inflammation in fish.
Collapse
Affiliation(s)
- Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China.
| |
Collapse
|
23
|
Otunla AA, Shanmugarajah K, Davies AH, Shalhoub J. Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Front Pharmacol 2024; 15:1355674. [PMID: 38464721 PMCID: PMC10924325 DOI: 10.3389/fphar.2024.1355674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Dysregulated lipid metabolism is implicated in the pathophysiology of a range of kidney diseases. The specific mechanisms through which lipotoxicity contributes to acute kidney injury (AKI) remain poorly understood. Herein we review the cardinal features of lipotoxic injury in ischemic kidney injury; lipid accumulation and mitochondrial lipotoxicity. We then explore a new mechanism of lipotoxicity, what we define as "immunometabolic" lipotoxicity, and discuss the potential therapeutic implications of targeting this lipotoxicity using lipid lowering medications.
Collapse
Affiliation(s)
- Afolarin A. Otunla
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | | | - Alun H. Davies
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
24
|
Thornton P, Reader V, Digby Z, Smolak P, Lindsay N, Harrison D, Clarke N, Watt AP. Reversal of High Fat Diet-Induced Obesity, Systemic Inflammation, and Astrogliosis by the NLRP3 Inflammasome Inhibitors NT-0249 and NT-0796. J Pharmacol Exp Ther 2024; 388:813-826. [PMID: 38336379 DOI: 10.1124/jpet.123.002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic and cerebral inflammatory responses are implicated in the pathogenesis of obesity and associated metabolic impairment. While the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to obesity-associated inflammation, whether it contributes to the development or maintenance of obesity is unknown. We provide support for a direct role of saturated fatty acids, such as palmitic acid, as NLRP3 activating stimuli in obese states. To investigate whether NLRP3 activation contributes to the pathogenesis of diet-induced obesity (DIO) in mice, we tested two different clinical-stage NLRP3 inflammasome inhibitors. We demonstrate a contributory role of this key inflammasome to established obesity and associated systemic and cerebral inflammation. By comparing their effects to calorie restriction, we aimed to identify specific NLRP3-sensitive mechanisms contributing to obesity-induced inflammation (as opposed to be those regulated by weight loss per se). In addition, a direct comparison of an NLRP3 inhibitor to a glucagon like peptide-1 receptor agonist, semaglutide (Wegovy), in the DIO model allowed an appreciation of the relative efficacy of these two therapeutic strategies on obesity, its associated systemic inflammatory response, and cerebral gliosis. We show that two structurally distinct, NLRP3 inhibitors, NT-0249 and NT-0796, reverse obesity in the DIO mouse model and that brain exposure appears necessary for efficacy. In support of this, we show that DIO-driven hypothalamic glial fibrillary acidic protein expression is blocked by dosing with NT-0249/NT-0796. While matching weight loss driven by semaglutide or calorie restriction, remarkably, NLRP3 inhibition provided enhanced improvements in disease-relevant biomarkers of acute phase response, cardiovascular inflammation, and lipid metabolism. SIGNIFICANCE STATEMENT: Obesity is a global health concern that predisposes individuals to chronic disease such as diabetes and cardiovascular disease at least in part by promoting systemic inflammation. We report that in mice fed a high-fat, obesogenic diet, obesity is reversed by either of two inhibitors of the intracellular inflammatory mediator NLRP3. Furthermore, NLRP3 inhibition reduces both hypothalamic gliosis and circulating biomarkers of cardiovascular disease risk beyond what can be achieved by either the glucagon like peptide-1 agonist semaglutide or calorie restriction alone.
Collapse
Affiliation(s)
- Peter Thornton
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - Valérie Reader
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - Zsofia Digby
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - Pamela Smolak
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - Nicola Lindsay
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - David Harrison
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - Nick Clarke
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| | - Alan P Watt
- NodThera, Cambridge, United Kingdom (P.T., V.R., Z.D., N.L., D.H., N.C., A.P.W.) and Seattle, Washington (P.S.)
| |
Collapse
|
25
|
Wouters F, van der Hilst J, Bogie J. Lipids in inflammasome activation and autoinflammatory disorders. J Allergy Clin Immunol 2024; 153:1-11. [PMID: 37871669 DOI: 10.1016/j.jaci.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Autoinflammatory diseases (AIDs) are a group of rare monogenetic disorders characterized by recurrent episodes of fever and systemic inflammation. A major pathologic hallmark of AIDs is excessive inflammasome assembly and activation, often the result of gain-of-function mutations in genes encoding core inflammasome components, including pyrin and cryopyrin. Recent advances in lipidomics have revealed that dysregulated metabolism of lipids such as cholesterol and fatty acids, especially in innate immune cells, exerts complex effects on inflammasome activation and the pathogenesis of AIDs. In this review, we summarize and discuss the impact of lipids and their metabolism on inflammasome activation and the disease pathogenesis of the most common AIDs, including familial Mediterranean fever, cryopyrin-associated periodic syndromes, and mevalonate kinase deficiency. We postulate that lipids hold diagnostic value in AIDs and that dietary and pharmacologic intervention studies could represent a promising approach to attenuate inflammasome activation and AID progression.
Collapse
Affiliation(s)
- Flore Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen van der Hilst
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; Department of Infectious Diseases and Immune Pathology, Jessa General Hospital and Limburg Clinical Research Center, Hasselt, Belgium
| | - Jeroen Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
26
|
Zheng S, Que X, Wang S, Zhou Q, Xing X, Chen L, Hou C, Ma J, An P, Peng Y, Yao Y, Song Q, Li J, Zhang P, Pei H. ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3-NEK7 interaction and inflammasome activation. Mol Cell 2023; 83:4570-4585.e7. [PMID: 38092000 DOI: 10.1016/j.molcel.2023.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/04/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1β/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.
Collapse
Affiliation(s)
- Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunyan Hou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ping An
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
27
|
Karasawa T, Komada T, Baatarjav C, Aizawa E, Mizushina Y, Fujimura K, Gunji Y, Komori S, Aizawa H, Jing Tao CB, Matsumura T, Takahashi M. Caspase-11 deficiency attenuates neutrophil recruitment into the atherosclerotic lesion in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2023; 686:149158. [PMID: 37922574 DOI: 10.1016/j.bbrc.2023.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Caspase-11 is an inflammatory caspase that triggers an inflammatory response by regulating non-canonical NLRP3 inflammasome activation. Although the deficiency of both caspase-11 and caspase-1, another inflammatory caspase that functions as an executor of the inflammasome, prevents the development of atherosclerosis, the effect of caspase-11 deficiency alone on the development of atherosclerosis has not been fully evaluated. In the present study, we found that caspase-11 deficiency prevented the formation of the necrotic core, whereas it did not affect the development of atherosclerosis in Apoe-deficient mice. Notably, the infiltration of neutrophils into atherosclerotic lesions was attenuated by caspase-11 deficiency. RNA-seq analysis of stage-dependent expression of atherosclerotic lesions revealed that both upregulations of caspase-11 and neutrophil migration are common features of advanced atherosclerotic lesions. Furthermore, similar expression profiles were observed in unstable human plaque. These data suggest that caspase-11 regulates neutrophil recruitment and plaque destabilization in advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Chintogtokh Baatarjav
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Emi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiko Mizushina
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kenta Fujimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshitaka Gunji
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Satoko Komori
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hidetoshi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Cantona Billton Jing Tao
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
28
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
29
|
Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnology 2023; 21:246. [PMID: 37528408 PMCID: PMC10394801 DOI: 10.1186/s12951-023-02015-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Santanu Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, 700129, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, India
| | - Krishnendu Acharyya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
30
|
Tanwar VS, Reddy MA, Das S, Samara VA, Abdollahi M, Dey S, Malek V, Ganguly R, Stapleton K, Lanting L, Pirrotte P, Natarajan R. Palmitic Acid-Induced Long Noncoding RNA PARAIL Regulates Inflammation via Interaction With RNA-Binding Protein ELAVL1 in Monocytes and Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:1157-1175. [PMID: 37128912 PMCID: PMC10287039 DOI: 10.1161/atvbaha.122.318536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear. METHODS We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14+ monocytes from healthy volunteers. We investigated the regulation and function of an uncharacterized PA-induced lncRNA PARAIL (PA-regulated anti-inflammatory lncRNA). We examined its role in inflammation resolution by employing knockdown and overexpression strategies in human and mouse macrophages. We also used RNA pulldown coupled with mass spectrometry to identify PARAIL interacting nuclear proteins and their mechanistic involvement in PARAIL functions in human macrophages. RESULTS Treatment of human CD14+ monocytes with PA-induced several lncRNAs and genes associated with inflammatory phenotype. PA strongly induced lncRNA PARAIL expressed near RIPK2. PARAIL was also induced by cytokines and infectious agents in human monocytes/macrophages and was regulated by NF-κB (nuclear factor-kappa B). Time course studies showed PARAIL was induced during inflammation resolution phase in PA-treated macrophages. PARAIL knockdown with antisense oligonucleotides upregulated key inflammatory genes and vice versa with PARAIL overexpression. We found that PARAIL interacts with ELAVL1 (ELAV-like RNA-binding protein 1) protein via adenylate/uridylate-rich elements (AU-rich elements; AREs). ELAVL1 knockdown inhibited the anti-inflammatory functions of PARAIL. Moreover, PARAIL knockdown increased cytosolic localization of ELAVL1 and increased the stability of ARE-containing inflammatory genes. Mouse orthologous Parail was downregulated in macrophages from mice with diabetes and atherosclerosis. Parail overexpression attenuated proinflammatory genes in mouse macrophages. CONCLUSIONS Upregulation of PARAIL under acute inflammatory conditions contributes to proresolution mechanisms via PARAIL-ELAVL1 interactions. Conversely, PARAIL downregulation in cardiometabolic diseases enhances ELAVL1 function and impairs inflammation resolution to further augment inflammation. Thus, inflammation-resolving lncRNAs like PARAIL represent novel targets to combat inflammatory cardiometabolic diseases.
Collapse
Affiliation(s)
- Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marpadga A. Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Sadhan Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Vishnu Amaram Samara
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Current affiliation: Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Suchismita Dey
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Kenneth Stapleton
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
31
|
Liu X, Li C, Hou C, Jiang Y, Chen F, Zhu Y, Zou L. Dissecting the effects of paraquat-induced pulmonary injury in rats using UPLC-Q-TOF-MS/MS-based metabonomics. Toxicol Res (Camb) 2023; 12:527-538. [PMID: 37397915 PMCID: PMC10311158 DOI: 10.1093/toxres/tfad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/22/2023] [Accepted: 05/14/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Paraquat (PQ) is a toxic compound that selectively accumulates in the lungs, inducing severe pulmonary inflammation and fibrosis. However, data on the metabolomic changes induced by the PQ remain scant. This study aimed to determine the metabolic changes in Sprague-Dawley rats subjected to PQ using UPLC-Q-TOF-MS/MS. Methods We established groups of PQ-induced pulmonary injury rats for 14 or 28 days. Results Our data showed that PQ decreased the survival of the rats and induced pulmonary inflammation at day 14 or pulmonary fibrosis at day 28. There was upregulation of IL-1β expression in the inflammation group as well as upregulation of fibronectin, collagen and α-SMA in the pulmonary fibrosis group. OPLS-DA revealed differential expression of 26 metabotites between the normal and the inflammation groups; 31 plasma metabotites were also differently expressed between the normal and the fibrosis groups. There was high expression of lysoPc160-, hydroxybutyrylcarnitine, stearic acid, and imidazolelactic acid in the pulmonary injury group compared to the normal group. Conclusion Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. This study gives insights into the mechanisms of PQ-induced lung injury and highlights the potential therapeutic targets. Nonstructured abstract The effect of PQ on lung injury in rats was detected by metabonomics, and the possible metabolic mechanism was investigated by KEGG analysis. OPLS-DA revealed the differential expression of 26 metabotites and 31 plasma metabotites between the normal and the pulmonary injury groups. Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. Oleoylethanolamine, stearic acid, and imidazolelactic acid are potential molecular markers in PQ-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiehong Liu
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Chi Li
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Changmiao Hou
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- School of Clinical Medicine, Hunan University of Chinese Medicine, 113 Shaoshan Middle Road, Changsha, Hunan, PC 410000, China
| | - Yu Jiang
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Fang Chen
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Yimin Zhu
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Lianhong Zou
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| |
Collapse
|
32
|
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. BIOLOGY 2023; 12:776. [PMID: 37372061 DOI: 10.3390/biology12060776] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
33
|
Abstract
The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1β (interleukin 1β) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1β in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis. Studies in hyperlipidemic mouse models suggest that prominent activation of the NLRP3 inflammasome requires a second hit such as defective cholesterol efflux, defective DNA repair, clonal hematopoiesis or diabetes. Similarly in humans some mutations promoting clonal hematopoiesis increase coronary artery disease risk in part by promoting inflammasome activation. Recent studies in mice and humans point to a wider role of the AIM2 (absent in melanoma 2) inflammasome in promoting cardiovascular disease including in some forms of clonal hematopoiesis and diabetes. These developments suggest a precision medicine approach in which treatments targeting inflammasomes or IL-1β might be best employed in clinical settings involving increased inflammasome activation.
Collapse
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York (A.R.T.)
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle (K.E.B.)
| |
Collapse
|
34
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
35
|
Seufert AL, Napier BA. A new frontier for fat: dietary palmitic acid induces innate immune memory. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00021. [PMID: 37197687 PMCID: PMC10184819 DOI: 10.1097/in9.0000000000000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 05/19/2023]
Abstract
Dietary saturated fats have recently been appreciated for their ability to modify innate immune cell function, including monocytes, macrophages, and neutrophils. Many dietary saturated fatty acids (SFAs) embark on a unique pathway through the lymphatics following digestion, and this makes them intriguing candidates for inflammatory regulation during homeostasis and disease. Specifically, palmitic acid (PA) and diets enriched in PA have recently been implicated in driving innate immune memory in mice. PA has been shown to induce long-lasting hyper-inflammatory capacity against secondary microbial stimuli in vitro and in vivo, and PA-enriched diets alter the developmental trajectory of stem cell progenitors in the bone marrow. Perhaps the most relevant finding is the ability of exogenous PA to enhance clearance of fungal and bacterial burdens in mice; however, the same PA treatment enhances endotoxemia severity and mortality. Westernized countries are becoming increasingly dependent on SFA-enriched diets, and a deeper understanding of SFA regulation of innate immune memory is imperative in this pandemic era.
Collapse
Affiliation(s)
- Amy L. Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Brooke A. Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
- *Correspondence: Brooke A. Napier, E-mail:
| |
Collapse
|
36
|
Oh SJ, Hwang Y, Hur KY, Lee MS. Lysosomal Ca 2+ as a mediator of palmitate-induced lipotoxicity. Cell Death Discov 2023; 9:100. [PMID: 36944629 PMCID: PMC10030853 DOI: 10.1038/s41420-023-01379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
While the mechanism of lipotoxicity by palmitic acid (PA), an effector of metabolic stress in vitro and in vivo, has been extensively investigated, molecular details of lipotoxicity are still not fully characterized. Since recent studies reported that PA can exert lysosomal stress in addition to well-known ER and mitochondrial stress, we studied the role of lysosomal events in lipotoxicity by PA, focusing on lysosomal Ca2+. We found that PA induced accumulation of mitochondrial ROS and that mitochondrial ROS induced release of lysosomal Ca2+ due to lysosomal Ca2+ exit channel activation. Lysosomal Ca2+ release led to increased cytosolic Ca2+ which induced mitochondrial permeability transition (mPT). Chelation of cytoplasmic Ca2+ or blockade of mPT with olesoxime or decylubiquinone (DUB) suppressed lipotoxicity. Lysosomal Ca2+ release led to reduced lysosomal Ca2+ content which was replenished by ER Ca2+, the largest intracellular Ca2+ reservoir (ER → lysosome Ca2+ refilling), which in turn activated store-operated Ca2+ entry (SOCE). Inhibition of ER → lysosome Ca2+ refilling by blockade of ER Ca2+ exit channel using dantrolene or inhibition of SOCE using BTP2 inhibited lipotoxicity in vitro. Dantrolene or DUB also inhibited lipotoxic death of hepatocytes in vivo induced by administration of ethyl palmitate together with LPS. These results suggest a novel pathway of lipotoxicity characterized by mPT due to lysosomal Ca2+ release which was supplemented by ER → lysosome Ca2+ refilling and subsequent SOCE, and also suggest the potential role of modulation of ER → lysosome Ca2+ refilling by dantrolene or other blockers of ER Ca2+ exit channels in disease conditions characterized by lipotoxicity such as metabolic syndrome, diabetes, cardiomyopathy or nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeseong Hwang
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea.
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
37
|
Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, Palomares F, Sobrino F, Alba G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023; 15:nu15010224. [PMID: 36615882 PMCID: PMC9824542 DOI: 10.3390/nu15010224] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
In 2010, the Mediterranean diet was recognized by UNESCO as an Intangible Cultural Heritage of Humanity. Olive oil is the most characteristic food of this diet due to its high nutraceutical value. The positive effects of olive oil have often been attributed to its minor components; however, its oleic acid (OA) content (70-80%) is responsible for its many health properties. OA is an effective biomolecule, although the mechanism by which OA mediates beneficial physiological effects is not fully understood. OA influences cell membrane fluidity, receptors, intracellular signaling pathways, and gene expression. OA may directly regulate both the synthesis and activities of antioxidant enzymes. The anti-inflammatory effect may be related to the inhibition of proinflammatory cytokines and the activation of anti-inflammatory ones. The best-characterized mechanism highlights OA as a natural activator of sirtuin 1 (SIRT1). Oleoylethanolamide (OEA), derived from OA, is an endogenous ligand of the peroxisome proliferator-activated receptor alpha (PPARα) nuclear receptor. OEA regulates dietary fat intake and energy homeostasis and has therefore been suggested to be a potential therapeutic agent for the treatment of obesity. OEA has anti-inflammatory and antioxidant effects. The beneficial effects of olive oil may be related to the actions of OEA. New evidence suggests that oleic acid may influence epigenetic mechanisms, opening a new avenue in the exploration of therapies based on these mechanisms. OA can exert beneficial anti-inflammatory effects by regulating microRNA expression. In this review, we examine the cellular reactions and intracellular processes triggered by OA in T cells, macrophages, and neutrophils in order to better understand the immune modulation exerted by OA.
Collapse
Affiliation(s)
- Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Seville, 41012 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Soledad López-Enríquez
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Sergio Montserrat-de la Paz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Manuela Moreno
- Departamento de Farmacia y Nutrición, Hospital Costa del Sol, 29603 Málaga, Spain
| | - Francisca Palomares
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Gonzalo Alba
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| |
Collapse
|
38
|
Olona A, Leishman S, Anand PK. The NLRP3 inflammasome: regulation by metabolic signals. Trends Immunol 2022; 43:978-989. [PMID: 36371361 DOI: 10.1016/j.it.2022.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.
Collapse
Affiliation(s)
- Antoni Olona
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK; Program in Cardiovascular and Metabolic Disorders, and Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Stuart Leishman
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK
| | - Paras K Anand
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
39
|
Cao TBT, Moon JY, Yoo HJ, Ban GY, Kim SH, Park HS. Down-regulated surfactant protein B in obese asthmatics. Clin Exp Allergy 2022; 52:1321-1329. [PMID: 35294785 DOI: 10.1111/cea.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity is a common comorbid condition in adult asthmatics and known as a feature of asthma severity. However, the molecular mechanism under obesity-induced inflammation has not yet been fully understood. OBJECTIVE Considering the essential role of hydrophobic surfactant protein B (SP-B) in lung function, SP-B was targeted to examine its involvement in the development of obesity-induced airway inflammation in asthmatics. METHODS The aim was to examine an alteration in circulating SP-B according to obesity in adult asthmatics, 129 asthmatics were enrolled and classified into 3 groups (obese, overweight and normal-weight groups) according to body mass index (BMI). Circulating SP-B levels were determined by enzyme-linked immunosorbent assay. Four single nucleotide polymorphisms of SFTPB gene were genotyped. Serum ceramide levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS Significantly lower serum SP-B levels were noted in the obese group than in the overweight or normal-weight group (p = .002). The serum SP-B level was significantly correlated with serum levels of C18:0 ceramide and transforming growth factor beta 1 as well as BMI (r = -0.200; r = -0.215; r = -0.332, p < .050 for all). An inverse correlation was noted between serum SP-B and fractional exhaled nitric oxide levels in female asthmatics (r = -0.287, p = .009). Genetic predisposition of the SFTPB gene at 9306 A>G to the obese and overweight groups was noted. CONCLUSION Obesity altered ceramide metabolism leading to pulmonary surfactant dysfunction and impaired resolution of airway inflammation, finally contributing to the phenotypes of obese asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun-Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
40
|
Controne I, Scoditti E, Buja A, Pacifico A, Kridin K, Fabbro MD, Garbarino S, Damiani G. Do Sleep Disorders and Western Diet Influence Psoriasis? A Scoping Review. Nutrients 2022; 14:4324. [PMID: 36297008 PMCID: PMC9608488 DOI: 10.3390/nu14204324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Western diet may trigger sleep disorders and vice versa, but their single and mutual effects on systemic inflammatory diseases (i.e., psoriasis) are far from being fully elucidated. At the same time, psoriatic patients display a great burden of sleep disorders and dysmetabolisms related to an unhealthy lifestyle (i.e., diet). These patients are also affected by a chronic disorder deeply modulated by environmental factors (i.e., sleep and diet) capable to influence drug-response and disease progression. Thus, we aimed to summarize the evidence in the literature that may highlight a potential link among psoriasis-diet-sleep in order to further promote a multidisciplinary approach to psoriatic patients in the scientific community.
Collapse
Affiliation(s)
- Ilaria Controne
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council (CNR), 73100 Lecce, Italy
| | - Alessandra Buja
- Department of Cardiologic, Vascular and Thoracic Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Alessia Pacifico
- Clinical Dermatology Department, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Massimo Del Fabbro
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
- IRCCS Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal/Child Sciences (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
41
|
Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 2022; 18:762-778. [PMID: 36064794 DOI: 10.1038/s41581-022-00621-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Mortality among patients with chronic kidney disease (CKD) is largely a consequence of cardiovascular disease (CVD) and is a particular concern given the increasing prevalence of CKD. Sterile inflammation triggered by activation of the innate immune system is an important driver of both CKD and associated CVD. Several endogenous mediators, including lipoproteins, crystals such as silica, urate and cholesterol crystals, or compounds released from dying cells interact with pattern recognition receptors expressed on a variety of different cell types, leading to the release of pro-inflammatory cytokines. Disturbed regulation of the haematopoietic system by damage-associated molecular patterns, or as a consequence of clonal haematopoiesis or trained innate immunity, also contributes to the development of inflammation. In observational and genetic association studies, inflammation is linked to the progression of CKD and cardiovascular events. In 2017, the CANTOS trial of canakinumab provided evidence that inhibiting inflammation driven by NLRP3-IL-1-IL-6-mediated signalling significantly reduced cardiovascular event rates in individuals with and without CKD. Other approaches to target innate immune pathways are now under investigation for their ability to reduce cardiovascular events and slow disease progression among patients with atherosclerosis and stage 3 and 4 CKD. This Review summarizes current understanding of the role of inflammation in the pathogenesis of CKD and its associated CVD, and how this knowledge may translate into novel therapeutics.
Collapse
|
42
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
43
|
Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022; 87:101182. [PMID: 35901922 DOI: 10.1016/j.plipres.2022.101182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Biology, University of Murcia, Spain.
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
44
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
45
|
Targeting NLRP3 signaling by a novel-designed sulfonylurea compound for inhibition of microglial inflammation. Bioorg Med Chem 2022; 58:116645. [PMID: 35151118 PMCID: PMC8895276 DOI: 10.1016/j.bmc.2022.116645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays an important role in microglia-mediated inflammation. Dysregulation of NLRP3 signaling results in microglial activation and triggers inflammatory responses contributing to the development of neurological disorders including ischemic stroke, schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Inhibition of the NLRP3-linked inflammatory pathways reduces microglia-induced inflammation and is considered as a promising therapeutic approach for neuro-inflammatory diseases. In the present study, we report the development of AMS-17, a rationally-designed tertiary sulfonylurea compound for inhibition of inflammation in microglia. AMS-17 inhibited expression of the NLRP3, and its downstream components and cytokines such as caspase-1, tumor necrosis factor-α (TNF-α), IL-1β and inducible nitric oxide synthase (iNOS). It also suppressed lipopolysaccharide (LPS)-induced N9 microglial cell phagocytosis in vitro and activation of the microglia in mouse brain in vivo. Together, these results provide promising evidences for the inhibitory effects of AMS-17 in inflammation. This proof-of-concept study provides a new chemical scaffold, designed with the aid of pharmacophore modeling, with NLRP3 inhibitory activity which can be further developed for the treatment of inflammation-associated neurological disorders.
Collapse
|
46
|
Chou WC, Rampanelli E, Li X, Ting JPY. Impact of intracellular innate immune receptors on immunometabolism. Cell Mol Immunol 2022; 19:337-351. [PMID: 34697412 PMCID: PMC8891342 DOI: 10.1038/s41423-021-00780-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Immunometabolism, which is the metabolic reprogramming of anaerobic glycolysis, oxidative phosphorylation, and metabolite synthesis upon immune cell activation, has gained importance as a regulator of the homeostasis, activation, proliferation, and differentiation of innate and adaptive immune cell subsets that function as key factors in immunity. Metabolic changes in epithelial and other stromal cells in response to different stimulatory signals are also crucial in infection, inflammation, cancer, autoimmune diseases, and metabolic disorders. The crosstalk between the PI3K-AKT-mTOR and LKB1-AMPK signaling pathways is critical for modulating both immune and nonimmune cell metabolism. The bidirectional interaction between immune cells and metabolism is a topic of intense study. Toll-like receptors (TLRs), cytokine receptors, and T and B cell receptors have been shown to activate multiple downstream metabolic pathways. However, how intracellular innate immune sensors/receptors intersect with metabolic pathways is less well understood. The goal of this review is to examine the link between immunometabolism and the functions of several intracellular innate immune sensors or receptors, such as nucleotide-binding and leucine-rich repeat-containing receptors (NLRs, or NOD-like receptors), absent in melanoma 2 (AIM2)-like receptors (ALRs), and the cyclic dinucleotide receptor stimulator of interferon genes (STING). We will focus on recent advances and describe the impact of these intracellular innate immune receptors on multiple metabolic pathways. Whenever appropriate, this review will provide a brief contextual connection to pathogenic infections, autoimmune diseases, cancers, metabolic disorders, and/or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Elena Rampanelli
- Amsterdam UMC (University Medical Center, location AMC), Department of Experimental Vascular Medicine, AGEM (Amsterdam Gastroenterology Endocrinology Metabolism) Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xin Li
- Comparative Immunology Research Center, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
47
|
Cao A, Kagan JC. Gasdermin Pore Forming Activities that Promote Inflammation from Living and Dead Cells. J Mol Biol 2022; 434:167427. [PMID: 34973239 PMCID: PMC8844208 DOI: 10.1016/j.jmb.2021.167427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/28/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Gasdermins are proteins that can self-assemble into membrane channels (also known as pores). These pores can serve as conduits for the secretion of cytosolic molecules, with the most commonly studied being members of the interleukin-1 family of cytokines. However, gasdermin pore forming activities must be tightly regulated, as the channels that they form can lead to a lytic form of cell death known as pyroptosis. Recent studies have revealed multiple mechanisms that control gasdermin activities within cells and identified gasdermin proteins in organisms as diverse as bacteria, humans and yeast. In this Review, we discuss the molecular and cellular mechanisms that regulate gasdermin pore formation. These mechanisms of gasdermin regulation likely explain the flexibility of these proteins to display cell type specific (and potentially organism specific) functions.
Collapse
Affiliation(s)
- Anh Cao
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital Boston, Massachusetts, USA, 02115
| | - Jonathan C. Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital Boston, Massachusetts, USA, 02115,Correspondence:
| |
Collapse
|
48
|
Frasca D, Romero M, Garcia D, Diaz A, Blomberg BB. Obesity Accelerates Age-Associated Defects in Human B Cells Through a Metabolic Reprogramming Induced by the Fatty Acid Palmitate. FRONTIERS IN AGING 2022; 2:828697. [PMID: 35822047 PMCID: PMC9261304 DOI: 10.3389/fragi.2021.828697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 01/22/2023]
Abstract
We have measured the secretion of autoimmune antibodies in plasma samples and in culture supernatants of blood-derived B cells from four groups of individuals: young lean (YL), elderly lean (EL), young obese (YO) and elderly obese (EO). We found secretion comparable in YO and EL individuals, suggesting that obesity accelerates age-associated defects in circulating B cells. To define at least one possible molecular pathway involved, we used an in vitro model in which B cells from YL and EL individuals have been stimulated with the Fatty Acid (FA) palmitate, the most common saturated FA in the human body. The rationale to use palmitate is that there is a chronic increase in circulating levels of palmitate, due to increased spontaneous lipolysis occurring during aging and obesity, and this may induce autoimmune B cells. Results herein show that in vitro incubation of B cells from YL and EL individuals with the FA palmitate induces mRNA expression of T-bet, the transcription factor for autoimmune antibodies, as well as secretion of autoimmune IgG antibodies, with B cells from YL individuals looking similar to B cells from EL individuals, confirming our initial hypothesis. The generation of autoimmune B cells in the presence of the FA palmitate was found to be associated with a metabolic reprogramming of B cells from both YL and EL individuals. These results altogether show the critical role of the FA palmitate in inducing human B cell immunosenescence and show for the first time the importance of metabolic pathways in this process.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Daniela Frasca,
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
49
|
Ji N, Wu L, Shi H, Li Q, Yu A, Yang Z. VSIG4 Attenuates NLRP3 and Ameliorates Neuroinflammation via JAK2-STAT3-A20 Pathway after Intracerebral Hemorrhage in Mice. Neurotox Res 2022; 40:78-88. [PMID: 35013905 DOI: 10.1007/s12640-021-00456-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease. Neuroinflammation plays an important pathological role in brain injury after ICH. NLRP3 contributes to the pathogenesis of ICH, but the underlying mechanisms regulating of NLRP3 remain elusive. V-set and immunoglobulin domain containing 4 (VSIG4), specifically expressed in resting tissue-resident macrophages, can deliver anti-inflammatory signals into various inflammatory diseases. However, the interaction between VSIG4 and NLRP3, as well as the underlying mechanisms after ICH have not been reported. C57BL/6 mice were subjected to the autologous blood injection ICH model. VSIG4 and NLRP3 levels of macrophages were detected following ICH. Ad-VSIG4 or controls were administered via intracerebroventricular (i.c.v) injection before ICH induction. STAT3 inhibitor (S31-201), JAK2 inhibitor (TG101348), or Ad-A20 RNAi was administered to investigate the role of JAK2-STAT3-A20 pathway in VSIG4-mediated neuroinflammation after ICH. Pro-inflammatory cytokine production, BBB disruption, brain water content, and neurological test were examined in ICH mice. VSIG4 levels were significantly decreased, and NLRP3 levels were significantly increased in the perihematomal brain tissues after ICH. Ad-VSIG4 attenuated NLRP3 levels and inhibited inflammation, as well as improved neurological function and reduced BBB disruption and brain water content. Furthermore, Ad-VSIG4 increased the protein levels of phosphorylated JAK2 and STAT3, and A20 levels at 24 h after ICH. STAT3 inhibitor, JAK2 inhibitor, and A20 RNAi abolished the beneficial effects of Ad-VSIG4 after ICH. In summary, these data suggested that VSIG4 attenuated NLRP3 and ameliorated neuroinflammation via JAK2-STAT3-A20 pathway after intracerebral hemorrhage in mice. VSIG4 might be an ideal therapeutic target for ICH patients.
Collapse
Affiliation(s)
- Na Ji
- Department of Anesthesia, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lirong Wu
- Department of Neurology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Hui Shi
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Qianlu Li
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Anyong Yu
- Emergency Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China.
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
50
|
Liu J, Zhang CY, Liu Y, Wu XL, Zhang TD, Zhao FZ, Chen LL, Jin XQ, He JL, Yin DC. The dual function of impurity in protein crystallization. CrystEngComm 2022. [DOI: 10.1039/d1ce01535d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein crystallization could be promoted with a low concentration of impurities and inhibited with a high concentration of impurities, and this inhibition can be weakened by an audible sound.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Yue Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiang-Long Wu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Tuo-Di Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Feng-Zhu Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Liang-Liang Chen
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Qian Jin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Jin-Liang He
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|