1
|
Zeng W, Huang Z, Huang Y, Xiong K, Sheng Y, Lin X, Zhong X, Ye J, Guo Y, Arkin G, Xu J, Fei H, Liu Y. Dual-targeted microbubbles for atherosclerosis therapy: Inducing M1 macrophage apoptosis by inhibiting telomerase activity. Mater Today Bio 2025; 32:101675. [PMID: 40225135 PMCID: PMC11986608 DOI: 10.1016/j.mtbio.2025.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 04/15/2025] Open
Abstract
The progression of atherosclerosis (AS) is closely associated with M1 macrophages. Although the activation of macrophage telomerase during plaque formation has been documented, targeted modulation strategies remain challenging. In this study, we developed a dual-target microbubble-delivery system (Ab-MMB1532) encapsulating BIBR1532, a telomerase inhibitor, for the targeted therapy of AS. This system exhibited remarkable targeting capabilities towards M1 macrophages, with its targeting advantage notably accentuated under high shear forces. Mechanistically, Ab-MMB1532 inhibited telomerase activity by downregulating telomerase reverse transcriptase (TERT) expression, subsequently inducing caspase-3-mediated apoptosis. Integrated multi-omics profiling revealed that the inhibition of the NF-κB pathway served as the central regulatory hub. In vivo studies further confirmed that Ab-MMB1532 effectively targets and accumulates within AS lesions, promoting M1 macrophage apoptosis through the inhibition of the TERT/NF-κB signaling axis, and significantly reducing plaque burden (25.4 % reduction vs. controls, p < 0.001). In summary, our findings suggest a novel approach for telomerase-targeted therapy in AS.
Collapse
Affiliation(s)
- Wei Zeng
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Zhengan Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041, China
| | - Yalan Huang
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
| | - Kaifen Xiong
- Department of Dermatology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yuanyuan Sheng
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Xiaoxuan Lin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Xiaofang Zhong
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Jiayu Ye
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Yanbin Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hongwen Fei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041, China
| | - Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| |
Collapse
|
2
|
Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, Kazemi T, Atiakshin D, Pyatilova P, Maurer M. Immunomodulatory Significance of Mast Cell Exosomes (MC-EXOs) in Immune Response Coordination. Clin Rev Allergy Immunol 2025; 68:20. [PMID: 39976807 PMCID: PMC11842441 DOI: 10.1007/s12016-025-09033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Mast cells (MCs) communicate with other cells by direct cell-to-cell interaction, secreting mediators, and releasing exosomes (EXOs). MC-exosomes (MC-EXOs) contain proteins, lipids, mRNAs, and noncoding RNAs (ncRNAs), exhibit typical EXO markers such as heat shock proteins, tetraspanins, tumor susceptibility gene 101 protein (TSG101), and ALG-2-interacting protein X (ALIX), and are released constitutively or following MC degranulation. MC-EXOs also have signature MC markers like FcεRI and KIT (CD117), which allows for their identification and comparison with other EXO populations. Following their release, MC-EXOs may interact with the recipient cell(s) directly or be internalized and then release their protein and nucleic acid content. This may contribute to the regulation of immune responses and other biological processes and reprogramming of recipient cells. MC-EXO proteins may integrate and become a functional part of the recipient cell membrane. The mRNA transferred by MC-EXOs is functional and the transfer of exosomal RNA to other MCs results in the expression of donor MC proteins in the recipient MCs. Moreover, MCs may function as the recipients of EXOs that are released by other non-immune and immune cells, altering the secretome of MCs. In this review, we focus on how MC-EXOs modulate the biology of other cells and vice versa; and we highlight the role of MC-EXOs in the pathogenesis of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamila D Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-Structural Analysis Innovative Technologies, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, 117198, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036, Voronezh, Russia
| | - Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
3
|
Wang Y, Li D, Yan Z, Shi D. Immunoglobulin E, the potential accelerator of comorbid psoriasis and atherosclerosis. Biomed Pharmacother 2025; 183:117860. [PMID: 39848109 DOI: 10.1016/j.biopha.2025.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Immunoglobulin (Ig) E is a key mediator in the induction and maintenance of allergic inflammation, characterized by a Th2-dominated immune response. Recently epidemiological studies have showed that elevated serum total IgE levels or an increased abundance of mast cells (MCs) at the lesion site are observed in psoriatic patients with cardiovascular diseases (CVD), such as atherosclerosis. Although the underlying mechanisms by which IgE synergizing with MCs in promoting these chronic immune-inflammatory diseases remain unclear, the interleukin (IL)-23/IL-17 axis appears to play a crucial role in comorbidity of psoriasis and atherosclerosis. High IgE production may result from IL-17A response, further exacerbating inflammatory pathways involved in both psoriasis and atherosclerosis. This review explores the possible mechanisms of IgE in these comorbid conditions, reinforcing the rationale for IL-17A targeted biologics in the treatment of psoriasis and atherosclerosis comorbidity. Additionally, IgE is proposed as a potential therapeutic target for alleviating patients suffering from these comorbidity conditions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, United States
| | - Zhongrui Yan
- Department of Neurology, Jining No.1 People's Hospital affiliated to Shandong First Medical University, Jining, Shandong, China.
| | - Dongmei Shi
- Laboratory of Medical Mycology & Department of Dermatology, Jining No.1 People's Hospital affiliated to Shandong First Medical University, Jining, Shandong, China.
| |
Collapse
|
4
|
Saki N, Haybar H, Maniati M, Davari N, Javan M, Moghimian-Boroujeni B. Modification macrophage to foam cells in atherosclerosis disease: some factors stimulate or inhibit this process. J Diabetes Metab Disord 2024; 23:1687-1697. [PMID: 39610485 PMCID: PMC11599683 DOI: 10.1007/s40200-024-01482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 11/30/2024]
Abstract
Background Atherosclerosis is an arterial blood vessel disease that begins and progresses by turning macrophages into foam cells. Uptake of oxidized low-density lipoprotein (ox-LDL), cholesterol esterification and cholesterol efflux are the most important factors in the formation of foam cells and play an important role in atherosclerosis. Methods The present study is based on the data obtained from the PubMed database (1961-2024) using the MeSH search terms "Atherosclerosis", "Macrophages" and "Foam cells". Reviews for writing the main text and non-English-language articles were excluded. Result The interaction between ox-LDL and macrophages plays an important role in plaque initiation and promotion processes. Macrophages abnormally digest ox-LDL, resulting in the accumulation of lipids and formation of foam cells. This is an important step in the development of atherosclerosis. Also, several other factors such as inflammatory factors, growth factors, hormones, etc. can play an important role in the development of atherosclerotic lesions or counteract it by affecting the formation of foam cells. Conclusion Several factors can affect the progression of atherosclerosis by affecting macrophage activity or its conversion to foam cells. Also, some of these factors play a protective role against the development and atherosclerosis progression. In this paper, we reviewed some of these factors and their effect on atherosclerosis.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Cardiology Department, Medical College, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zimbru EL, Zimbru RI, Ordodi VL, Bojin FM, Crîsnic D, Andor M, Mirica SN, Huțu I, Tănasie G, Haidar L, Nistor D, Velcean L, Păunescu V, Panaitescu C. Rosuvastatin Attenuates Vascular Dysfunction Induced by High-Fructose Diets and Allergic Asthma in Rats. Nutrients 2024; 16:4104. [PMID: 39683498 DOI: 10.3390/nu16234104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND A growing body of evidence links a high-fructose diet (HFrD) to metabolic disturbances, including inflammation, dyslipidemia, insulin resistance and also endothelial dysfunction, yet its role in allergic asthma remains underexplored. Considering that obesity and hypercholesterolemia exacerbate asthma by promoting systemic inflammation, investigating interventions with dual metabolic and anti-inflammatory effects is essential. This study aimed to evaluate the potential modulatory effects of rosuvastatin in ameliorating the effects of HFrD-induced metabolic and vascular dysfunction in the context of allergic asthma. METHODS Forty-eight Sprague-Dawley rats were assigned to eight groups, receiving either a standard or HFrD for 12 weeks. Allergic asthma was induced using an ovalbumin sensitization and challenge protocol, while controls were administered saline. Selected groups were treated with rosuvastatin throughout the entire duration of the experiment. Body weight, abdominal circumference and serum biomarkers were assessed at baseline, 6 and 12 weeks. Endothelial function was assessed by evaluating vascular reactivity in an isolated organ bath. Additionally, histopathological analyses of aortic and pulmonary tissues were conducted to investigate inflammatory responses and morphological changes. RESULTS Rats on HFrDs exhibited significant increases in body weight, abdominal circumference, lipid profiles and blood glucose, which were further aggravated by allergic asthma. Rosuvastatin treatment notably reduced lipid levels, C-reactive protein and immunoglobulin E, while also enhancing vascular reactivity and attenuating aortic and bronchial wall thickening. CONCLUSIONS Our findings suggest that rosuvastatin may serve as an effective therapeutic agent for addressing vascular and inflammatory complications associated with a high fructose intake and allergic asthma.
Collapse
Affiliation(s)
- Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin-Laurențiu Ordodi
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Daniela Crîsnic
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Minodora Andor
- Discipline of Medical Semiotics II, Department V-Internal Medicine-1, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Multidisciplinary Heart Research Center, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Silvia-Nicoleta Mirica
- Faculty of Sport and Physical Education, West University of Timisoara, 4 Vasile Parvan Bd., 300223 Timisoara, Romania
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences "King Michael I of Romania", 300645 Timisoara, Romania
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daciana Nistor
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Luminița Velcean
- Cardiology Clinic of the Timisoara Municipal Clinical Emergency Hospital, 12 Revolution of 1989 Bd., 300040 Timisoara, Romania
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
6
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
7
|
Wang X, Zhang P, Tang Y, Chen Y, Zhou E, Gao K. Mast cells: a double-edged sword in inflammation and fibrosis. Front Cell Dev Biol 2024; 12:1466491. [PMID: 39355120 PMCID: PMC11442368 DOI: 10.3389/fcell.2024.1466491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
As one of the key components of the immune system, mast cells are well known for their role in allergic reactions. However, they are also involved in inflammatory and fibrotic processes. Mast cells participate in all the stages of acute inflammatory responses, playing an immunomodulatory role in both innate and adaptive immunity. Mast cell-derived histamine, TNF-α, and IL-6 contribute to the inflammatory processes, while IL-10 mediates the suppression of inflammation. Crosstalk between mast cells and other immune cells is also involved in the development of inflammation. The cell-cell adhesion of mast cells and fibroblasts is crucial for fibrosis. Mast cell mediators, including cytokines and proteases, play contradictory roles in the fibrotic process. Here, we review the double-edged role of mast cells in inflammation and fibrosis.
Collapse
Affiliation(s)
- Xufang Wang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuxin Tang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanlin Chen
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Wen H, Xia H, Tao F, Jin T, Liu Z, Dai H, Yu Y. Prognostic value of serum total IgE and FeNO levels in children with atopic constitution bronchiolitis. Sci Rep 2024; 14:21160. [PMID: 39256587 PMCID: PMC11387398 DOI: 10.1038/s41598-024-72236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
Bronchiolitis is a significant factor contributing to bronchial asthma in infants and young children. After treatment, recurrent wheezing symptoms often occur, especially in children with atopic constitution, who tend to have more severe conditions and poorer prognosis. Therefore, exploring the prognostic value of total serum immunoglobulin E (tIgE) and fractional exhaled nitric oxide (FeNO) levels in children with atopic constitution who suffer from bronchiolitis is of great significance. A total of 260 children with bronchiolitis admitted to our hospital from October 2020 to June 2022 were regarded as the research subjects with prospective study, according to whether the children had atopic constitution, they were grouped into non atopic constitution group (n = 156) and atopic constitution group (n = 104); after 6 months of treatment, children with atopic constitution were grouped into a good prognosis group (n = 58) and a poor prognosis group (n = 46) based on their prognosis; in addition, 260 healthy children who underwent physical examination and had clinical data consistent with those of children with bronchiolitis were regarded as the reference group. The serum tIgE and FeNO levels of each group were compared; multivariate Logistic regression was applied to analyze the prognostic factors of children with atopic constitution bronchiolitis; ROC curve was applied to analyze the predictive value of tIgE and FeNO levels after treatment for the prognosis of children with atopic constitution bronchiolitis. The tIgE levels in the control group, non-atopic group, and atopic group [(123.54 ± 29.62) IU/mL, (245.71 ± 30.59) IU/mL, (316.46 ± 31.78) IU/mL, respectively] increased sequentially, with statistically significant differences (F = 1766.954, P = 0.000). The FeNO levels in the control group, non-atopic group, and atopic group [(8.36 ± 3.57) ppb, (15.28 ± 3.69) ppb, (19.84 ± 3.58) ppb, respectively] also increased sequentially, with statistically significant differences (F = 765.622, P = 0.000). The tIgE, FeNO, proportion of patients with asthma family history, and proportion of patients with allergic family history in the poor prognosis group were obviously higher than those in the good prognosis group (P < 0.05). Multivariate Logistic regression analysis showed that family history of asthma, family history of allergies, tIgE, and FeNO were influencing factors for the prognosis of children with atopic bronchiolitis (P < 0.05). The AUC of the combination of tIgE and FeNO in predicting the prognosis of children with atopic constitutional bronchiolitis was 0.910, with a sensitivity of 78.26% and a specificity of 93.10%, which was superior to the independent prediction of tIgE and FeNO (Zcombined detection-tIgE = 2.442, Zcombined detection-FeNO = 3.080, P = 0.015, 0.002). The levels of tIgE and FeNO in children with atopic constitution bronchiolitis are obviously increased, and the combination of the two has high predictive value for the prognosis of atopic constitution bronchiolitis.
Collapse
Affiliation(s)
- Hangwei Wen
- Department of General Pediatrics, The Affiliated First Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, 422001, Hunan Province, China
| | - Huan Xia
- Health Management Centre, The Affiliated First Hospital of Shaoyang University, Shaoyang City, 422001, Hunan Province, China
| | - Fengjiao Tao
- Department of General Pediatrics, The Affiliated First Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, 422001, Hunan Province, China
| | - Ting Jin
- Department of General Pediatrics, The Affiliated First Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, 422001, Hunan Province, China
| | - Zuojiao Liu
- Department of General Pediatrics, The Affiliated First Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, 422001, Hunan Province, China
| | - Haiqing Dai
- Department of General Pediatrics, The Affiliated First Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, 422001, Hunan Province, China
| | - Yin Yu
- Department of General Pediatrics, The Affiliated First Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, 422001, Hunan Province, China.
| |
Collapse
|
9
|
Li P, Meng Z, Lin L, Chen Z, Lv H. Genetically predicted allergic rhinitis causally increases the risk of erectile dysfunction. Front Genet 2024; 15:1423357. [PMID: 39113680 PMCID: PMC11303240 DOI: 10.3389/fgene.2024.1423357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Evidence shows that allergic rhinitis (AR) may increase the risk of erectile dysfunction (ED). This study aims to investigate whether there is a causal relationship between AAR and ED by Mendelian randomization (MR) analysis. Methods We performed a two-sample MR analysis using genome-wide association studies (GWAS) summary data. Single nucleotide polymorphisms (SNPs) associated with AR and ED were obtained from the GWAS database. The MR analysis primarily employed the inverse variance weighted (IVW), MR Egger, and weighted median (WM) methods. We assessed pleiotropy using the MR-PRESSO global test and MR-Egger regression. Cochran's Q test was used to evaluate heterogeneity, and a leave-one-out analysis was performed to verify the robustness and reliability of the results. Results The IVW analysis demonstrated a positive association between genetic susceptibility to AR and an elevated relative risk of ED (IVW OR = 1.40, p = 0.01, 95% CI 1.08-1.80). The results obtained from MR-Egger regression and WM methods exhibited a consistent trend with the results of the IVW method. Sensitivity analyses showed no evidence of heterogeneity nor horizontal pleiotropy. The leave-one-out analysis showed that the findings remained robust and were unaffected by any instrumental variables. Conclusion This study presents genetic evidence that indicates a causal association between AR and ED.
Collapse
Affiliation(s)
- Peng Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zhaotun Meng
- Department of Otorhinolaryngology, Linyi People’s Hospital, Linyi, China
| | - Liqiang Lin
- Department of Otorhinolaryngology, Linyi People’s Hospital, Linyi, China
| | - Zhipeng Chen
- Department of Otorhinolaryngology, Linyi People’s Hospital, Linyi, China
| | - Huaiqing Lv
- Department of Otorhinolaryngology, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
10
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
O’Brien JW, Case A, Kemper C, Zhao TX, Mallat Z. Therapeutic Avenues to Modulate B-Cell Function in Patients With Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:1512-1522. [PMID: 38813699 PMCID: PMC11208059 DOI: 10.1161/atvbaha.124.319844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The adaptive immune system plays an important role in the development and progression of atherosclerotic cardiovascular disease. B cells can have both proatherogenic and atheroprotective roles, making treatments aimed at modulating B cells important therapeutic targets. The innate-like B-cell response is generally considered atheroprotective, while the adaptive response is associated with mixed consequences for atherosclerosis. Additionally, interactions of B cells with components of the adaptive and innate immune system, including T cells and complement, also represent key points for therapeutic regulation. In this review, we discuss therapeutic approaches based on B-cell depletion, modulation of B-cell survival, manipulation of both the antibody-dependent and antibody-independent B-cell response, and emerging immunization techniques.
Collapse
Affiliation(s)
- James W. O’Brien
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Ayden Case
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.K.)
| | - Tian X. Zhao
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Department of Cardiology, Royal Papworth Hospital, Cambridge, United Kingdom (T.X.Z.)
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, France (Z.M.)
| |
Collapse
|
12
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
13
|
Zhu S, Liu Y, Xia G, Wang X, Du A, Wu J, Wang Y, Wang Y, Shen C, Wei P, Xu C. Modulation of cardiac resident macrophages immunometabolism upon high-fat-diet feeding in mice. Front Immunol 2024; 15:1371477. [PMID: 39007149 PMCID: PMC11239335 DOI: 10.3389/fimmu.2024.1371477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Background A high-fat diet (HFD) contributes to various metabolic disorders and obesity, which are major contributors to cardiovascular disease. As an essential regulator for heart homeostasis, cardiac resident macrophages may go awry and contribute to cardiac pathophysiology upon HFD. Thus, to better understand how HFD induced cardiac dysfunction, this study intends to explore the transcriptional and functional changes in cardiac resident macrophages of HFD mice. Methods C57BL/6J female mice that were 6 weeks old were fed with HFD or normal chow diet (NCD) for 16 weeks. After an evaluation of cardiac functions by echocardiography, mouse hearts were harvested and cardiac resident CCR2- macrophages were sorted, followed by Smart sequencing. Bioinformatics analysis including GO, KEGG, and GSEA analyses were employed to elucidate transcriptional and functional changes. Results Hyperlipidemia and obesity were observed easily upon HFD. The mouse hearts also displayed more severe fibrosis and diastolic dysfunction in HFD mice. Smart sequencing and functional analysis revealed metabolic dysfunctions, especially lipid-related genes and pathways. Besides this, antigen-presentation-related gene such as Ctsf and inflammation, particularly for NF-κB signaling and complement cascades, underwent drastic changes in cardiac resident macrophages. GO cellular compartment analysis was also performed and showed specific organelle enrichment trends of the involved genes. Conclusion Dysregulated metabolism intertwines with inflammation in cardiac resident macrophages upon HFD feeding in mice, and further research on crosstalk among organelles could shed more light on potential mechanisms.
Collapse
Affiliation(s)
- Simeng Zhu
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujia Liu
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ailian Du
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Wu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanpeng Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanlong Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Wei
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Liu Y, Wang X, Liu Y. Association of serum total IgE and allergen-specific IgE with insulin resistance in adolescents: an analysis of the NHANES database. BMC Pediatr 2024; 24:332. [PMID: 38745118 PMCID: PMC11092217 DOI: 10.1186/s12887-024-04685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Recent studies have found that total immunoglobulin E (IgE) and allergen-specific IgE were associated with some metabolic diseases. However, the role of IgE in metabolism among adolescents is still unclear. Herein, this study aims to investigate the associations of serum total IgE and allergen-specific IgE with insulin resistance (IR) in adolescents, in order to provide some reference for the prevention and treatment of metabolic diseases in a young age. METHODS Data of 870 adolescents were extracted from the National Health and Nutrition Examination Survey (NHANES) database in 2005-2006 in this cross-sectional study. Weighted univariate and multivariate logistic regression analyses were utilized to screen covariates and explore the relationships of serum total IgE and allergen-specific IgE with IR. The evaluation indexes were odds ratios (ORs) and 95% confidence intervals (CIs). In addition, these relationships were also assessed in subgroups of allergy history, asthma history, and number of allergens. RESULTS Among eligible adolescents, 168 had IR. No significant association between serum total IgE level and IR was found. However, adolescents with higher level of allergen-specific IgE to rye grass [OR = 0.47, 95%CI: (0.25-0.91)], white oak [OR = 0.57, 95%CI: (0.37-0.88)], or peanut [OR = 0.38, 95%CI: (0.15-0.97)] seemed to have lower odds of IR, whereas those had higher level of shrimp-specific IgE [OR = 2.65, 95%CI: (1.21-5.84)] have increased odds of IR. In addition, these associations between allergen-specific IgE and IR were also discovered in adolescents who had allergy history or asthma history, or had different numbers of allergens. CONCLUSION Paying attention to different allergens in adolescents may be important in the early identification of IR among this high-risk population. The study results relatively provided some reference for further exploration on IR prevention.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Child Health Care Clinic, Dalian Women and Children's Medical Group, Dalian, Liaoning, 116031, P.R. China
| | - Xiaoxia Wang
- Department of Child Health Care Clinic, Dalian Women and Children's Medical Group, Dalian, Liaoning, 116031, P.R. China
| | - Yong Liu
- Department of Hematologic Laboratory of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510120, P.R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, No.107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Chen Y, Hua R, Shao G, Zhu X, Hou W, Li S, Yang A, Yang G. Effects of annexin B18 from Echinococcus granulosus sensu lato on mouse macrophages. Exp Parasitol 2024; 260:108723. [PMID: 38432406 DOI: 10.1016/j.exppara.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1β,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 μg/mL while no significant impact on metabolic activity was observed at 80 μg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1β, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1β, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Wei Hou
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China.
| |
Collapse
|
16
|
Pang WW, Cai YS, Cao C, Zhang FR, Zeng Q, Liu DY, Wang N, Qu XC, Chen XD, Deng HW, Tan LJ. Mendelian randomization and transcriptome analysis identified immune-related biomarkers for osteoarthritis. Front Immunol 2024; 15:1334479. [PMID: 38680491 PMCID: PMC11045931 DOI: 10.3389/fimmu.2024.1334479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Background The immune microenvironment assumes a significant role in the pathogenesis of osteoarthritis (OA). However, the current biomarkers for the diagnosis and treatment of OA are not satisfactory. Our study aims to identify new OA immune-related biomarkers to direct the prevention and treatment of OA using multi-omics data. Methods The discovery dataset integrated the GSE89408 and GSE143514 datasets to identify biomarkers that were significantly associated with the OA immune microenvironment through multiple machine learning methods and weighted gene co-expression network analysis (WGCNA). The identified signature genes were confirmed using two independent validation datasets. We also performed a two-sample mendelian randomization (MR) study to generate causal relationships between biomarkers and OA using OA genome-wide association study (GWAS) summary data (cases n = 24,955, controls n = 378,169). Inverse-variance weighting (IVW) method was used as the main method of causal estimates. Sensitivity analyses were performed to assess the robustness and reliability of the IVW results. Results Three signature genes (FCER1G, HLA-DMB, and HHLA-DPA1) associated with the OA immune microenvironment were identified as having good diagnostic performances, which can be used as biomarkers. MR results showed increased levels of FCER1G (OR = 1.118, 95% CI 1.031-1.212, P = 0.041), HLA-DMB (OR = 1.057, 95% CI 1.045 -1.069, P = 1.11E-21) and HLA-DPA1 (OR = 1.030, 95% CI 1.005-1.056, P = 0.017) were causally and positively associated with the risk of developing OA. Conclusion The present study identified the 3 potential immune-related biomarkers for OA, providing new perspectives for the prevention and treatment of OA. The MR study provides genetic support for the causal effects of the 3 biomarkers with OA and may provide new insights into the molecular mechanisms leading to the development of OA.
Collapse
Affiliation(s)
- Wei-Wei Pang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yi-Sheng Cai
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Fu-Rong Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qin Zeng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan-Yang Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ning Wang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiao-Chao Qu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
17
|
Yang H, Chen J, Liu S, Xue Y, Li Z, Wang T, Jiao L, An Q, Liu B, Wang J, Zhao H. Exosomes From IgE-Stimulated Mast Cells Aggravate Asthma-Mediated Atherosclerosis Through circRNA CDR1as-Mediated Endothelial Cell Dysfunction in Mice. Arterioscler Thromb Vasc Biol 2024; 44:e99-e115. [PMID: 38235556 DOI: 10.1161/atvbaha.123.319756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND IgE has been known for mediating endothelial cell dysfunction and mast cell (MC) activation to fuel asthma-aggravated high-fat diet-induced atherosclerosis. However, it remains unclear for the mechanism of asthma-mediated atherosclerosis, especially the potential involvement of IgE in the exacerbation of asthma-mediated atherosclerosis with a standard laboratory diet, and the cross talk between endothelial cells and MCs. METHODS Asthma-mediated atherosclerosis mice models under a standard laboratory diet and FcεR1 knock-out mice were used to determine the role of IgE-FcεR1 signaling in asthma-mediated atherosclerosis, which was assessed by Oil Red O staining and immunohistochemistry. Various in vitro assays including nanoparticle tracking analysis and transmission electron microscopy were used to evaluate exosome characteristics. Immunofluorescence and fluorescent in situ hybridization approaches were used to evaluate the effect and mechanism of MC-secreted exosomes encapsulated circular RNA CDR1as (cerebellar degeneration-related 1 antisense) on endothelial cells in vivo and in vitro. Finally, cohort studies examined the plasma CDR1as levels in patients with atherosclerosis with or without allergies. RESULTS Asthma mice with a standard laboratory diet showed increased atherosclerotic lesions and inflammatory infiltration depending on IgE-FcεR1 signal. FcεR1 knockout mice and blockage of IgE-FcεR1 signaling with IgE monoclonal antibody, omalizumab, all significantly alleviated asthma-mediated atherosclerosis and vascular inflammatory remodeling. Anti-inflammation with dexamethasone and stabilization of MC with cromolyn partially alleviated atherosclerotic lesions and mitigated the inflammatory infiltration in arteries. Mechanistically, IgE stimulation upregulates MC CDR1as expression in exosomes and upregulates the endothelial cell adhesive factors VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) via the CDR1as-FUS (fused in sarcoma)-phos-p65 axis. Knockdown of CDR1as in vivo significantly decreased the endothelial adhesion function and mitigated asthma-mediated atherosclerosis. Furthermore, a cohort study indicated higher plasma CDR1as levels in patients with atherosclerosis with allergies than in patients with atherosclerosis and healthy controls. CONCLUSIONS Exosomes from IgE-stimulated MCs aggravated atherosclerosis through circular RNA CDR1as-mediated endothelial dysfunction, providing a novel insight into asthma-mediated atherosclerosis and potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Hongqin Yang
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
| | - Junye Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.C., B.L.)
| | - Siyang Liu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
| | - Yunfei Xue
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
| | - Zhiwei Li
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
| | - Tao Wang
- Department of Neurosurgery and Interventional Neuroradiology, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, National Center for Neurological Disorders, Beijing (T.W., L.J.)
| | - Liqun Jiao
- Department of Neurosurgery and Interventional Neuroradiology, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, National Center for Neurological Disorders, Beijing (T.W., L.J.)
| | - Qi An
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology (Q.A.)
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China (Q.A.)
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.C., B.L.)
| | - Jing Wang
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China (J.W.)
| | - Hongmei Zhao
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (H.Y., J.C., S.L., Y.X., Z.L., J.W., H.Z.)
- State Key Laboratory of Complex, Severe, and Rare Diseases, Beijing, China (H.Z.)
| |
Collapse
|
18
|
Koenig JFE, Knudsen NPH, Phelps A, Bruton K, Hoof I, Lund G, Libera DD, Lund A, Christensen LH, Glass DR, Walker TD, Fang A, Waserman S, Jordana M, Andersen PS. Type 2-polarized memory B cells hold allergen-specific IgE memory. Sci Transl Med 2024; 16:eadi0944. [PMID: 38324637 DOI: 10.1126/scitranslmed.adi0944] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Allergen-specific immunoglobulin E (IgE) antibodies mediate pathology in diseases such as allergic rhinitis and food allergy. Memory B cells (MBCs) contribute to circulating IgE by regenerating IgE-producing plasma cells upon allergen encounter. Here, we report a population of type 2-polarized MBCs defined as CD23hi, IL-4Rαhi, and CD32low at both the transcriptional and surface protein levels. These MBC2s are enriched in IgG1- and IgG4-expressing cells while constitutively expressing germline transcripts for IgE. Allergen-specific B cells from patients with allergic rhinitis and food allergy were enriched in MBC2s. Furthermore, MBC2s generated allergen-specific IgE during sublingual immunotherapy, thereby identifying these cells as a major reservoir for IgE. The identification of MBC2s provides insights into the maintenance of IgE memory, which is detrimental in allergic diseases but could be beneficial in protection against venoms and helminths.
Collapse
Affiliation(s)
- Joshua F E Koenig
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | - Allyssa Phelps
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kelly Bruton
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ilka Hoof
- ALK-Abelló A/S, 2970 Hørsholm, Denmark
| | | | - Danielle Della Libera
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | | | - David R Glass
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tina D Walker
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Allison Fang
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Susan Waserman
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Manel Jordana
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | |
Collapse
|
19
|
Du SB, Zhou HH, Xue ZP, Gao S, Li J, Meng Y, Zhao YJ, Wang PF, Li N, Bai JX, Bai JQ, Wang XP. Metagenomic sequencing revealed the regulative effect of Danshen and Honghua herb pair on the gut microbiota in rats with myocardial ischemia injury. FEMS Microbiol Lett 2024; 371:fnad133. [PMID: 38100390 DOI: 10.1093/femsle/fnad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
In recent years, more and more evidence has shown that the disorder of gut microbiota (GM) is closely correlated with myocardial ischemia (MI). Even though the Danshen and Honghua herb pair (DHHP) is widely used in treating cardiovascular disease in China and exhibits obvious clinical efficacy on MI, the anti-MI mechanism of DHHP remains and needs to be explored in depth. Thus, in this study, we investigated whether the amelioration effect and molecular mechanism of DHHP on MI were related to regulating GM through pharmacodynamics evaluation and metagenomic sequencing. Histopathological testing results showed that DHHP treatment could alleviate the pathological changes of myocardial tissue in the acute MI (AMI) rats induced by isoproterenol (ISO), especially structural disorder, irregular distribution, and enlargement of the myocardial space. These pathological changes were all alleviated to some extent by DHHP treatment. Biochemical analysis results suggested that compared with the control group, the serum levels of AST, CTn-I, CK-MB, and TNF-α in model group rats were notably decreased, and the CAT and SOD levels in serum were markedly increased. These abnormal trends were significantly reversed by DHHP treatment. Furthermore, metagenomic sequencing analysis results indicated that DHHP could improve disorders in the composition and function of GM in AMI rats, mainly reflected in increasing diversity and richness, and obviously enhancing the abundance of Bacteroides fluxus, B. uniformis, B. stercoris, Roseburia hominis, Schaedlerella arabinosiphila, and R. intestinalis, and reducing the abundance of Enterococcus avium and E. canintestini, which were associated with purine metabolism, tyrosine metabolism, cyanoamino acid metabolism, and glutathione metabolism. In conclusion, DHHP may attenuate ISO-induced MI by regulating the structure, composition, and function of GM, thus contributing to further our understanding of the anti-MI mechanisms of DHHP and providing new therapeutic ideas and diagnostic targets for the clinical studies of MI.
Collapse
Affiliation(s)
- Shao-Bing Du
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hui-Hui Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zhi-Peng Xue
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Su Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jing Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yi Meng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yi-Jun Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Peng-Fei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Na Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jia-Xin Bai
- Second Clinical College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150041, China
| | - Ji-Qing Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiao-Ping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
20
|
Huang YM, Wu YS, Dang YY, Xu YM, Ma KY, Dai XY. Par3L, a polarity protein, promotes M1 macrophage polarization and aggravates atherosclerosis in mice via p65 and ERK activation. Acta Pharmacol Sin 2024; 45:112-124. [PMID: 37731037 PMCID: PMC10770347 DOI: 10.1038/s41401-023-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Proinflammatory M1 macrophages are critical for the progression of atherosclerosis. The Par3-like protein (Par3L) is a homolog of the Par3 family involved in cell polarity establishment. Par3L has been shown to maintain the stemness of mammary stem cells and promote the survival of colorectal cancer cells. In this study, we investigated the roles of the polar protein Par3L in M1 macrophage polarization and atherosclerosis. To induce atherosclerosis, Apoe-/- mice were fed with an atherosclerotic Western diet for 8 or 16 weeks. We showed that Par3L expression was significantly increased in human and mouse atherosclerotic plaques. In primary mouse macrophages, oxidized low-density lipoprotein (oxLDL, 50 μg/mL) time-dependently increased Par3L expression. In Apoe-/- mice, adenovirus-mediated Par3L overexpression aggravated atherosclerotic plaque formation accompanied by increased M1 macrophages in atherosclerotic plaques and bone marrow. In mouse bone marrow-derived macrophages (BMDMs) or peritoneal macrophages (PMs), we revealed that Par3L overexpression promoted LPS and IFNγ-induced M1 macrophage polarization by activating p65 and extracellular signal-regulated kinase (ERK) rather than p38 and JNK signaling. Our results uncover a previously unidentified role for the polarity protein Par3L in aggravating atherosclerosis and favoring M1 macrophage polarization, suggesting that Par3L may serve as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yi-Min Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Sen Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ye Dang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kong-Yang Ma
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao-Yan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
21
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
22
|
Xu W, Li X, Song Y, Kong L, Zhang N, Liu J, Li G, Fan Z, Lyu Y, Zhang D, Wang H, Li N. Ménière's disease and allergy: Epidemiology, pathogenesis, and therapy. Clin Exp Med 2023; 23:3361-3371. [PMID: 37743423 DOI: 10.1007/s10238-023-01192-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
The etiology of Ménière's disease (MD) remains controversial. Allergies are potential extrinsic factors that, in conjunction with underlying intrinsic factors, may cause MD. The link between allergies and MD was first described in 1923. For nearly a century, studies have demonstrated a possible link between allergies and MD, even though a causal relationship has not been definitively determined. Previous reviews have mainly focused on clinical epidemiology studies of patients. In this review, we shed light on the association between allergies and MD not only in terms of its epidemiology, but also from an immunology, pathophysiology, and immunotherapy perspective in both patients and animal models. Patients with MD tend to have a high risk of comorbid allergies or an allergy history, showing positive allergy immunology characteristics. Other MD-related diseases, such as migraine, may also interact with allergies. Allergy mediators such as IgE may worsen the symptoms of MD. Deposits of IgE in the vestibular end organs indicate the ability of the inner ear to participate in immune reactions. Allergic challenges can induce vertigo in animals and humans. Anti-allergy therapy plays a positive role in patients with MD and animal models of endolymphatic hydrops.
Collapse
Affiliation(s)
- Wandi Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Yongdong Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Ligang Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Na Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Jiahui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Guorong Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Yafeng Lyu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China.
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
23
|
Zhang L, Zhu Y, Meng X, Zhang Y, Ren Q, Huang D, Chen Z. Smoking, immunity, and cardiovascular prognosis: a study of plasma IgE concentration in patients with acute myocardial infarction. Front Cardiovasc Med 2023; 10:1174081. [PMID: 37731521 PMCID: PMC10508960 DOI: 10.3389/fcvm.2023.1174081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Immunoglobulin E (IgE) is implicated in the pathogenesis of acute myocardial infarction (AMI), and smokers often exhibit elevated plasma IgE levels. However, it remains uncertain whether the role of smoking in the development and prognosis of AMI is influenced by IgE levels. This study aimed to investigate the potential contribution of IgE in mediating the association between smoking and AMI. Methods We conducted a prospective study involving 348 consecutive patients with chest discomfort who underwent coronary angiography. Plasma cotinine, an alkaloid present in tobacco, and IgE levels were measured. The patients were followed up for mean 39-months to assess their long-term prognosis based on major adverse cardiac and cerebrovascular events (MACCE). Results Our findings indicate that patients with AMI had higher plasma levels of cotinine and IgE. Univariate analyses demonstrated a positive association between plasma cotinine (OR = 1.7, 95% CI: 1.27-2.26, P < 0.001) and IgE (OR = 2.8, 95% CI: 1.75-4.39, P < 0.001) with AMI. Receiver operating characteristics analyses showed that the combined use of cotinine and IgE (AUC: 0.677) had a larger predictive performance compared to cotinine alone (AUC: 0.639) or IgE alone (AUC: 0.657), although the improvement did not reach statistical significance. Multivariable logistic regression revealed a positive association between plasma cotinine and AMI (OR = 1.70, 95% CI: 1.04-2.78, P = 0.036). Furthermore, the inclusion of plasma IgE in the regression model led to a decrease in the OR and 95% CI of plasma cotinine (OR = 1.66, 95% CI: 1.01-2.73, P = 0.048). Process mediation analyses showed a significant indirect effect of plasma cotinine on AMI mediated through increased plasma IgE. Kaplan-Meier analysis during a mean 39-months follow-up revealed that higher plasma levels of IgE were associated with an increased risk of MACCE following AMI (P = 0.047). However, in the context of the COX regression analysis, no significant correlation was observed between IgE, cotinine and AMI. Conclusion Cotinine exhibits a positive association with AMI, wherein IgE plays a mediating role. Elevated plasma levels of IgE was positively associated with AMI and poor prognosis, which further confirms the adverse role of smoking on the incidence of AMI and prognosis. (Clinical trial registration: ChiCTR2100053000).
Collapse
Affiliation(s)
- Lili Zhang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanrong Zhu
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Meng
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Ren
- Department of Clinical Nutrition, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Huang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Chen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Shanghai Sixth People’s Hospital Fujian, Fujian, China
| |
Collapse
|
24
|
Yamawaki-Ogata A, Mutsuga M, Narita Y. A review of current status of cell-based therapies for aortic aneurysms. Inflamm Regen 2023; 43:40. [PMID: 37544997 PMCID: PMC10405412 DOI: 10.1186/s41232-023-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/18/2023] [Indexed: 08/08/2023] Open
Abstract
An aortic aneurysm (AA) is defined as focal aortic dilation that occurs mainly with older age and with chronic inflammation associated with atherosclerosis. The aneurysmal wall is a complex inflammatory environment characterized by endothelial dysfunction, macrophage activation, vascular smooth muscle cell (VSMC) apoptosis, and the production of proinflammatory molecules and matrix metalloproteases (MMPs) secreted by infiltrated inflammatory cells such as macrophages, T and B cells, dendritic cells, neutrophils, mast cells, and natural killer cells. To date, a considerable number of studies have been conducted on stem cell research, and growing evidence indicates that inflammation and tissue repair can be controlled through the functions of stem/progenitor cells. This review summarizes current cell-based therapies for AA, involving mesenchymal stem cells, VSMCs, multilineage-differentiating stress-enduring cells, and anti-inflammatory M2 macrophages. These cells produce beneficial outcomes in AA treatment by modulating the inflammatory environment, including decreasing the activity of proinflammatory molecules and MMPs, increasing anti-inflammatory molecules, modulating VSMC phenotypes, and preserving elastin. This article also describes detailed studies on pathophysiological mechanisms and the current progress of clinical trials.
Collapse
Affiliation(s)
- Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
25
|
Wang B, Liang B, Huang Y, Li Z, Zhang B, Du J, Ye R, Xian H, Deng Y, Xiu J, Yang X, Ichihara S, Ichihara G, Zhong Y, Huang Z. Long-Chain Acyl Carnitines Aggravate Polystyrene Nanoplastics-Induced Atherosclerosis by Upregulating MARCO. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205876. [PMID: 37144527 PMCID: PMC10323628 DOI: 10.1002/advs.202205876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Exposure to micro- and nanoplastics (MNPs) is common because of their omnipresence in environment. Recent studies have revealed that MNPs may cause atherosclerosis, but the underlying mechanism remains unclear. To address this bottleneck, ApoE-/- mice are exposed to 2.5-250 mg kg-1 polystyrene nanoplastics (PS-NPs, 50 nm) by oral gavage with a high-fat diet for 19 weeks. It is found that PS-NPs in blood and aorta of mouse exacerbate the artery stiffness and promote atherosclerotic plaque formation. PS-NPs activate phagocytosis of M1-macrophage in the aorta, manifesting as upregulation of macrophage receptor with collagenous structure (MARCO). Moreover, PS-NPs disrupt lipid metabolism and increase long-chain acyl carnitines (LCACs). LCAC accumulation is attributed to the PS-NP-inhibited hepatic carnitine palmitoyltransferase 2. PS-NPs, as well as LCACs alone, aggravate lipid accumulation via upregulating MARCO in the oxidized low-density lipoprotein-activated foam cells. Finally, synergistic effects of PS-NPs and LCACs on increasing total cholesterol in foam cells are found. Overall, this study indicates that LCACs aggravate PS-NP-induced atherosclerosis by upregulating MARCO. This study offers new insight into the mechanisms underlying MNP-induced cardiovascular toxicity, and highlights the combined effects of MNPs with endogenous metabolites on the cardiovascular system, which warrant further study.
Collapse
Affiliation(s)
- Bo Wang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Boxuan Liang
- Affiliated Dongguan People's HospitalSouthern Medical UniversityDongguan523059China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Jiancheng Xiu
- State Key Laboratory of Organ Failure ResearchDepartment of CardiologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Sahoko Ichihara
- Department of Environmental and Preventive MedicineSchool of MedicineJichi Medical UniversityTochigi329‐0498Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental HealthFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda278‐8510Japan
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
26
|
Isorhynchophylline inhibits inflammatory responses in endothelial cells and macrophages through the NF-κB/NLRP3 signaling pathway. BMC Complement Med Ther 2023; 23:80. [PMID: 36906555 PMCID: PMC10007741 DOI: 10.1186/s12906-023-03902-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of arterial wall, which is closely related to inflammatory reaction. In this study, the anti-inflammatory effect of isorhynchophylline was studied by NF- κB / NLRP3 pathway. METHODS (1) ApoE-/- mice were fed with high-fat diet to establish atherosclerotic model, while C57 with the same genetic background was fed with common diet as control group. Body weight was recorded and blood lipids were detected. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and plaque formation was detected by HE and oil red O staining. (2) Lipopolysaccharide interfered with Human Umbilical Vein Endothelial Cells (HUVECs) and RAW264.7 to form inflammatory model, and was treated with isorhynchophylline. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and the ability of cell migration was detected by Transwell and scratch test. RESULTS (1) the expression of NLRP3, NF- κB, IL-18 and Caspase-1 in aorta of model group was higher than that of control group, and plaque formation was obvious. (2) the expressions of NLRP3, NF- κB, IL-18 and Caspase-1 in HUVECs and RAW264.7 model groups were higher than those in control group, while isorhynchophylline decreased their expression and enhanced cell migration ability. CONCLUSION Isorhynchophylline can reduce the inflammatory reaction induced by lipopolysaccharide and promote the ability of cell migration.
Collapse
|
27
|
Wu J, He S, Song Z, Chen S, Lin X, Sun H, Zhou P, Peng Q, Du S, Zheng S, Liu X. Macrophage polarization states in atherosclerosis. Front Immunol 2023; 14:1185587. [PMID: 37207214 PMCID: PMC10189114 DOI: 10.3389/fimmu.2023.1185587] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng,
| |
Collapse
|
28
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
29
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Kawai K, Vozenilek AE, Kawakami R, Sato Y, Ghosh SKB, Virmani R, Finn AV. Understanding the role of alternative macrophage phenotypes in human atherosclerosis. Expert Rev Cardiovasc Ther 2022; 20:689-705. [PMID: 35942866 DOI: 10.1080/14779072.2022.2111301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Atherosclerosis-based ischemic heart disease is still the primary cause of death throughout the world. Over the past decades there has been no significant changes in the therapeutic approaches to atherosclerosis, which are mainly based on lipid lowering therapies and management of comorbid conditions such as diabetes and hypertension. The involvement of macrophages in atherosclerosis has been recognized for decades. More recently, a more detailed and sophisticated understanding of their various phenotypes and roles in the atherosclerotic process has been recognized. This new data is revealing how specific subtypes of macrophage-induced inflammation may have distinct effects on atherosclerosis progression and may provide new approaches for treatment, based upon targeting of specific macrophage subtypes. AREAS COVERED We will comprehensively review the spectrum of macrophage phenotypes and how they contribute to atherosclerotic plaque development and progression. EXPERT OPINION Various signals derived from atherosclerotic lesions drive macrophages into complex subsets with different gene expression profiles, phenotypes, and functions, not all of which are understood. Macrophage phenotypes include those that enhance, heal, and regress the atherosclerotic lesions though various mechanisms. Targeting of specific macrophage phenotypes may provide a promising and novel approach to prevent atherosclerosis progression.
Collapse
Affiliation(s)
- Kenji Kawai
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aimee E Vozenilek
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Yu Sato
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aloke V Finn
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA.,University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Gong F, Wang Z, Mo R, Wang Y, Su J, Li X, Omonova CTQ, Khamis AM, Zhang Q, Dong M, Su Z. Nano-sponge-like liposomes remove cholesterol crystals for antiatherosclerosis. J Control Release 2022; 349:940-953. [PMID: 35870569 DOI: 10.1016/j.jconrel.2022.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Atherosclerotic cardiovascular diseases remain the leading causes of morbidity and mortality worldwide. Cholesterol crystals in atherosclerotic plaques play an essential role in atherosclerosis progression. However, no clinical drugs have been used for removing cholesterol crystals from plaque to counter atherosclerosis. Previous studies identified the hydrophobic domain of lipid bilayer in liposomes acted as sinks for solubilizing hydrophobic cholesterol. Moreover, adjusting the composition of the lipid bilayer in liposomes can enhance its hydrophobic molecule loading capacity. Therefore, in this study, ginsenosides Rb1 (Rb1), one of main active components of ginseng which has a similar structure to cholesterol, is anchored into soy phospholipids bilayer with its hydrophobic region to prepare nano-sponge-like liposomes (Rb1-LPs), aiming to amplify the solubilization of cholesterol in lipid bilayer. For targeting delivery to atherosclerotic plaques, Annexin V (AnxV), a protein that can specifically recognize phosphatidylserine upregulated in atherosclerotic plaques, is applied to decorate the surface of Rb1-LPs by click reaction to obtain the final preparation of AnxV-Rb1-LPs. The in vitro studies showed that incorporating Rb1 into lipid bilayer remarkably increased the affinity of the lipid bilayer to free cholesterol and the solubilization of cholesterol crystals. Additionally, nano-sponge-like liposomes could efficiently reduce the accumulation of cholesterol crystals and improve cholesterol efflux, finally inhibiting inflammation and apoptosis in cholesterol-laden cells. Furthermore, AnxV-Rb1-LPs could efficiently accumulate in atherosclerotic plaques after intravenous injection, exert nano-sponge-like functions to remove intra- and extracellular cholesterol crystals, ultimately alleviating inflammation and apoptosis in atherosclerotic plaques for antiatherosclerosis. Therefore, AnxV-Rb1-LPs provide a potential strategy for removing cholesterol crystals in atherosclerotic plaques and can be further utilized in other diseases with excessive cholesterol accumulation.
Collapse
Affiliation(s)
- Fanglin Gong
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zibin Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rui Mo
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yutong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xianglong Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Charos Tuychi Qizi Omonova
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, PR China.
| | - Mei Dong
- Jiangsu Provincial Enginerring Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Burger F, Baptista D, Roth A, Brandt KJ, Miteva K. The E3 Ubiquitin Ligase Peli1 Deficiency Promotes Atherosclerosis Progression. Cells 2022; 11:cells11132014. [PMID: 35805095 PMCID: PMC9265341 DOI: 10.3390/cells11132014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory vascular disease and the main cause of death and morbidity. Emerging evidence suggests that ubiquitination plays an important role in the pathogenesis of atherosclerosis including control of vascular inflammation, vascular smooth muscle cell (VSMC) function and atherosclerotic plaque stability. Peli1 a type of E3 ubiquitin ligase has emerged as a critical regulator of innate and adaptive immunity, however, its role in atherosclerosis remains to be elucidated. Methods: Apoe−/− mice and Peli1-deficient Apoe−/− Peli1−/− mice were subject to high cholesterol diet. Post sacrifice, serum was collected, and atherosclerotic plaque size and parameters of atherosclerotic plaque stability were evaluated. Immunoprofiling and foam cell quantification were performed. Results: Peli1 deficiency does not affect atherosclerosis lesion burden and cholesterol levels, but promotes VSMCs foam cells formation, necrotic core expansion, collagen, and fibrous cap reduction. Apoe−/− Peli1−/− mice exhibit a storm of inflammatory cytokines, expansion of Th1, Th1, Th17, and Tfh cells, a decrease in regulatory T and B cells and induction of pro-atherogenic serum level of IgG2a and IgE. Conclusions: In the present study, we uncover a crucial role for Peli1 in atherosclerosis as an important regulator of inflammation and VSMCs phenotypic modulation and subsequently atherosclerotic plaque destabilization.
Collapse
|
33
|
Seals MR, Moran MM, Leavenworth JD, Leavenworth JW. Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis. Front Immunol 2022; 13:900117. [PMID: 35784370 PMCID: PMC9243362 DOI: 10.3389/fimmu.2022.900117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), a debilitating autoimmune inflammatory disease that affects the brain and spinal cord, causes demyelination of neurons, axonal damage, and neurodegeneration. MS and the murine experimental autoimmune encephalomyelitis (EAE) model have been viewed mainly as T-cell-mediated diseases. Emerging data have suggested the contribution of B-cells and autoantibodies to the disease progression. However, the underlying mechanisms by which dysregulated B-cells and antibody response promote MS and EAE remain largely unclear. Here, we provide an updated review of this specific subject by including B-cell biology and the role of B-cells in triggering autoimmune neuroinflammation with a focus on the regulation of antibody-producing B-cells. We will then discuss the role of a specific type of antibody, IgE, as it relates to the potential regulation of microglia and macrophage activation, autoimmunity and MS/EAE development. This knowledge can be utilized to develop new and effective therapeutic approaches to MS, which fits the scope of the Research Topic "Immune Mechanism in White Matter Lesions: Clinical and Pathophysiological Implications".
Collapse
Affiliation(s)
- Malik R. Seals
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Multidisciplinary Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica M. Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D. Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Mallat Z, Binder CJ. The why and how of adaptive immune responses in ischemic cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:431-444. [PMID: 36382200 PMCID: PMC7613798 DOI: 10.1038/s44161-022-00049-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of disability and death worldwide. Most therapeutic approaches target traditional risk factors but ignore the fundamental role of the immune system. This is a huge unmet need. Recent evidence indicates that reducing inflammation may limit cardiovascular events. However, the concomitant increase in the risk of lifethreatening infections is a major drawback. In this context, targeting adaptive immunity could constitute a highly effective and safer approach. In this Review, we address the why and how of the immuno-cardiovascular unit, in health and in atherosclerotic disease. We review and discuss fundamental mechanisms that ensure immune tolerance to cardiovascular tissue, and examine how their disruption promotes disease progression. We identify promising strategies to manipulate the adaptive immune system for patient benefit, including novel biologics and RNA-based vaccination strategies. Finally, we advocate for establishing a molecular classification of atherosclerosis as an important milestone in our quest to radically change the understanding and treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
- Unversité de Paris, and INSERM U970, Paris Cardiovascular Research Centre, Paris, France
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Smeets D, Gisterå A, Malin SG, Tsiantoulas D. The Spectrum of B Cell Functions in Atherosclerotic Cardiovascular Disease. Front Cardiovasc Med 2022; 9:864602. [PMID: 35497984 PMCID: PMC9051234 DOI: 10.3389/fcvm.2022.864602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
B cells are a core element of the pathophysiology of atherosclerotic cardiovascular disease (ASCVD). Multiple experimental and epidemiological studies have revealed both protective and deleterious functions of B cells in atherosclerotic plaque formation. The spearhead property of B cells that influences the development of atherosclerosis is their unique ability to produce and secrete high amounts of antigen-specific antibodies that can act at distant sites. Exposure to an atherogenic milieu impacts B cell homeostasis, cell differentiation and antibody production. However, it is not clear whether B cell responses in atherosclerosis are instructed by atherosclerosis-specific antigens (ASA). Dissecting the full spectrum of the B cell properties in atherosclerosis will pave the way for designing innovative therapies against the devastating consequences of ASCVD.
Collapse
Affiliation(s)
- Diede Smeets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anton Gisterå
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephen G. Malin
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
36
|
MK2206 attenuates atherosclerosis by inhibiting lipid accumulation, cell migration, proliferation, and inflammation. Acta Pharmacol Sin 2022; 43:897-907. [PMID: 34316032 PMCID: PMC8976090 DOI: 10.1038/s41401-021-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a common comorbidity in patients with cancer, and the main leading cause of noncancer-related deaths in cancer survivors. Considering that current antitumor drugs usually induce cardiovascular injury, the quest for developing new antitumor drugs, especially those with cardiovascular protection, is crucial for improving cancer prognosis. MK2206 is a phase II clinical anticancer drug and the role of this drug in cardiovascular disease is still unclear. Here, we revealed that MK2206 significantly reduced vascular inflammation, atherosclerotic lesions, and inhibited proliferation of vascular smooth muscle cell in ApoE-/- mice in vivo. We demonstrated that MK2206 reduced lipid accumulation by promoting cholesterol efflux but did not affect lipid uptake and decreased inflammatory response by modulating inflammation-related mRNA stability in macrophages. In addition, we revealed that MK2206 suppressed migration, proliferation, and inflammation in vascular smooth muscle cells. Moreover, MK2206 inhibited proliferation and inflammation of endothelial cells. The present results suggest that MK2206, as a promising drug in clinical antitumor therapy, exhibits anti-inflammatory and antiatherosclerotic potential. This report provides a novel strategy for the prevention of cardiovascular comorbidities in cancer survivors.
Collapse
|
37
|
Li XY, Wang YJ, Chen S, Pan LH, Li QM, Luo JP, Zha XQ. Laminaria japonica Polysaccharide Suppresses Atherosclerosis via Regulating Autophagy-Mediated Macrophage Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3633-3643. [PMID: 35167294 DOI: 10.1021/acs.jafc.1c07483] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present work aimed to explore the effect and underlying mechanism of a homogeneous Laminaria japonica polysaccharide (LJP61A) on macrophage polarization in high-fat-diet-fed LDLr-/- mice and Ox-LDL-induced macrophages. Results showed that LJP61A remarkably reduced the lesion burden in atherosclerotic mice, alleviated lipid deposition in Ox-LDL-stimulated macrophages, decreased the expression of M1 macrophage markers, and increased the expression of M2 macrophage markers, thus reducing the M1/M2 macrophage phenotype ratio. Meanwhile, the autophagic flux of macrophages was enhanced by LJP61A treatment in vitro and in vivo. 3-Methyladenine is an autophagic inhibitor. As expected, this inhibitor blocked the effects of LJP61A on macrophage polarization. SIRT1 and FoxO1 are two key upstream genes that control the autophagy behavior. We also found that LJP61A significantly up-regulated the expression of SIRT1 and FoxO1. However, these effects of LJP61A were abolished by the SIRT1 siRNA and FoxO1 inhibitor AS1842856. These results suggested that LJP61A reduced atherosclerosis in HFD-induced LDLr-/- mice via regulating autophagy-mediated macrophage polarization.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yu-Jing Wang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Shun Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
- Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
38
|
Chen J, Zhang X, Millican R, Lynd T, Gangasani M, Malhotra S, Sherwood J, Hwang PT, Cho Y, Brott BC, Qin G, Jo H, Yoon YS, Jun HW. Recent Progress in in vitro Models for Atherosclerosis Studies. Front Cardiovasc Med 2022; 8:790529. [PMID: 35155603 PMCID: PMC8829969 DOI: 10.3389/fcvm.2021.790529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Tyler Lynd
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Manas Gangasani
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubh Malhotra
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Younghye Cho
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Family Medicine Clinic, Obesity, Metabolism, and Nutrition Center and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Brigitta C. Brott
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
| |
Collapse
|
39
|
Bartoli-Leonard F, Zimmer J, Aikawa E. Innate and adaptive immunity: the understudied driving force of heart valve disease. Cardiovasc Res 2021; 117:2506-2524. [PMID: 34432007 PMCID: PMC8783388 DOI: 10.1093/cvr/cvab273] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD), and its clinical manifestation that is calcific aortic valve stenosis, is the leading cause for valve disease within the developed world, with no current pharmacological treatment available to delay or halt its progression. Characterized by progressive fibrotic remodelling and subsequent pathogenic mineralization of the valve leaflets, valve disease affects 2.5% of the western population, thus highlighting the need for urgent intervention. Whilst the pathobiology of valve disease is complex, involving genetic factors, lipid infiltration, and oxidative damage, the immune system is now being accepted to play a crucial role in pathogenesis and disease continuation. No longer considered a passive degenerative disease, CAVD is understood to be an active inflammatory process, involving a multitude of pro-inflammatory mechanisms, with both the adaptive and the innate immune system underpinning these complex mechanisms. Within the valve, 15% of cells evolve from haemopoietic origin, and this number greatly expands following inflammation, as macrophages, T lymphocytes, B lymphocytes, and innate immune cells infiltrate the valve, promoting further inflammation. Whether chronic immune infiltration or pathogenic clonal expansion of immune cells within the valve or a combination of the two is responsible for disease progression, it is clear that greater understanding of the immune systems role in valve disease is required to inform future treatment strategies for control of CAVD development.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Zimmer
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
40
|
Dixon ML, Luo L, Ghosh S, Grimes JM, Leavenworth JD, Leavenworth JW. Remodeling of the tumor microenvironment via disrupting Blimp1 + effector Treg activity augments response to anti-PD-1 blockade. Mol Cancer 2021; 20:150. [PMID: 34798898 PMCID: PMC8605582 DOI: 10.1186/s12943-021-01450-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Accumulation of Foxp3+ regulatory T (Treg) cells in the tumor often represents an important mechanism for cancer immune evasion and a critical barrier to anti-tumor immunity and immunotherapy. Many tumor-infiltrating Treg cells display an activated phenotype and express the transcription factor Blimp1. However, the specific impact of these Blimp1+ Treg cells and their follicular regulatory T (TFR) cell subset on tumor and the underlying mechanisms of action are not yet well-explored. METHODS Various transplantable tumor models were established in immunocompetent wild-type mice and mice with a Foxp3-specific ablation of Blimp1. Tumor specimens from patients with metastatic melanoma and TCGA datasets were analyzed to support the potential role of Treg and TFR cells in tumor immunity. In vitro culture assays and in vivo adoptive transfer assays were used to understand how Treg, TFR cells and antibody responses influence tumor control. RNA sequencing and NanoString analysis were performed to reveal the transcriptome of tumor-infiltrating Treg cells and tumor cells, respectively. Finally, the therapeutic effects of anti-PD-1 treatment combined with the disruption of Blimp1+ Treg activity were evaluated. RESULTS Blimp1+ Treg and TFR cells were enriched in the tumors, and higher tumoral TFR signatures indicated increased risk of melanoma metastasis. Deletion of Blimp1 in Treg cells resulted in impaired suppressive activity and a reprogramming into effector T-cells, which were largely restricted to the tumor-infiltrating Treg population. This destabilization combined with increased anti-tumor effector cellular responses, follicular helper T-cell expansion, enhanced tumoral IgE deposition and activation of macrophages secondary to dysregulated TFR cells, remodeled the tumor microenvironment and delayed tumor growth. The increased tumor immunogenicity with MHC upregulation improved response to anti-PD-1 blockade. Mechanistically, Blimp1 enforced intratumoral Treg cells with a unique transcriptional program dependent on Eomesodermin (Eomes) expression; deletion of Eomes in Blimp1-deficient Treg cells restored tumor growth and attenuated anti-tumor immunity. CONCLUSIONS These findings revealed Blimp1 as a new critical regulator of tumor-infiltrating Treg cells and a potential target for modulating Treg activity to treat cancer. Our study has also revealed two FCERIA-containing immune signatures as promising diagnostic or prognostic markers for melanoma patients.
Collapse
Affiliation(s)
- Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lin Luo
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Sadashib Ghosh
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeffrey M Grimes
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA. .,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
41
|
Cao H, Xiao C, He Z, Huang H, Tang H. IgE and TGF-β Signaling: From Immune to Cardiac Remodeling. J Inflamm Res 2021; 14:5523-5526. [PMID: 34737601 PMCID: PMC8560010 DOI: 10.2147/jir.s332591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, and dysfunction, eventually leading to heart failure (HF). However, the molecular mechanisms involved in cardiac remodeling are complicated, especially the association with immune. Immunoglobulin E (IgE) is a class of immunoglobulins involved in immune response to specific allergens. Recently, Zhao et al characterized a novel specific role of IgE and its high affinity receptor (FcεR1) in directly promoting pathological myocardial remodeling and cardiac dysfunction. Additionally, upon blocking IgE-FcεR1 signaling using FcεR1 genetic depletion or by administrating the anti-IgE monoclonal antibody omalizumab (Oma) in mice, they observed that cardiac hypertrophy and cardiac interstitial fibrosis induced by angiotensin II (Ang II) or transverse aortic constriction (TAC) were significantly suppressed. In contrast, IgE administration alone can aggravate pathological cardiac remodeling and dysfunction. RNA-seq and downstream analysis indicated that TGF-β was the common pathway and the most pivotal mediator in IgE-FcεR1-induced cardiac remodeling and dysfunction. Furthermore, the administration of a TGF-β inhibitor could ameliorate cardiac remodeling and improve cardiac function. Therefore, these findings suggest that IgE-FcεR1 maybe promising therapeutic targets for cardiac remodeling and provide an experimental basis for the use of omalizumab for HF patients combined with high serum IgE levels or allergic diseases.
Collapse
Affiliation(s)
- Hua Cao
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chungang Xiao
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhangxiu He
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Hong Huang
- The First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Huifang Tang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
42
|
Shu T, Xing Y, Wang J. Autoimmunity in Pulmonary Arterial Hypertension: Evidence for Local Immunoglobulin Production. Front Cardiovasc Med 2021; 8:680109. [PMID: 34621794 PMCID: PMC8490641 DOI: 10.3389/fcvm.2021.680109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive life-threatening disease. The notion that autoimmunity is associated with PAH is widely recognized by the observations that patients with connective tissue diseases or virus infections are more susceptible to PAH. However, growing evidence supports that the patients with idiopathic PAH (IPAH) with no autoimmune diseases also have auto-antibodies. Anti-inflammatory therapy shows less help in decreasing auto-antibodies, therefore, elucidating the process of immunoglobulin production is in great need. Maladaptive immune response in lung tissues is considered implicating in the local auto-antibodies production in patients with IPAH. In this review, we will discuss the specific cell types involved in the lung in situ immune response, the potential auto-antigens, and the contribution of local immunoglobulin production in PAH development, providing a theoretical basis for drug development and precise treatment in patients with PAH.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc Res 2021; 117:2544-2562. [PMID: 34450620 DOI: 10.1093/cvr/cvab285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune mechanisms are critically involved in the pathogenesis of atherosclerosis and its clinical manifestations. Associations of specific antibody levels and defined B cell subsets with cardiovascular disease activity in humans as well as mounting evidence from preclinical models demonstrate a role of B cells and humoral immunity in atherosclerotic cardiovascular disease. These include all aspects of B cell immunity, the generation of antigen-specific antibodies, antigen presentation and co-stimulation of T cells, as well as production of cytokines. Through their impact on adaptive and innate immune responses and the regulation of many other immune cells, B cells mediate both protective and detrimental effects in cardiovascular disease. Several antigens derived from (oxidised) lipoproteins, the vascular wall and classical autoantigens have been identified. The unique antibody responses they trigger and their relationship with atherosclerotic cardiovascular disease are reviewed. In particular, we focus on the different effector functions of specific IgM, IgG, and IgE antibodies and the cellular responses they trigger and highlight potential strategies to target B cell functions for therapy.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Unversité Paris Descartes, Sorbonne Paris Cité, Paris France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Oh KK, Adnan M, Cho DH. A network pharmacology analysis on drug-like compounds from Ganoderma lucidum for alleviation of atherosclerosis. J Food Biochem 2021; 45:e13906. [PMID: 34409623 DOI: 10.1111/jfbc.13906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Ganoderma lucidum (GL) is known as a potent alleviator against chronic inflammatory disease like atherosclerosis (AS), but its mechanisms against AS have not been unveiled. This research aimed to identify the key compounds(s) and mechanism(s) of GL against AS through network pharmacology. The compounds from GL were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME screened their physicochemical properties. Then, the target(s) associated with the screened compound(s) or AS related targets were identified by public databases, and we selected the overlapping targets using a Venn diagram. The networks between overlapping targets and compounds were visualized, constructed, and analyzed by RStudio. Finally, we performed a molecular docking test (MDT) to explore key target(s), compound(s), on AutoDockVina. A total of 35 compounds in GL were detected via GC-MS, and 34 compounds (accepted by Lipinski's rule) were selected as drug-like compounds (DLCs). A total of 34 compounds were connected to the number of 785 targets, and DisGeNET and Online Mendelian Inheritance in Man (OMIM) identified 2,606 AS-related targets. The final 98 overlapping targets were extracted between the compounds-targets and AS-related targets. On Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, the number of 27 signaling pathways were sorted out, and a hub signaling pathway (MAPK signaling pathway), a core gene (PRKCA), and a key compound (Benzamide, 4-acetyl-N-[2,6-dimethylphenyl]) were selected among the 27 signaling pathways via MDT. Overall, we found that the identified 3 DLCs from GL have potent anti-inflammatory efficacy, improving AS by inactivating the MAPK signaling pathway. PRACTICAL APPLICATIONS: Ganoderma lucidum (GL) has been used as a medicinal or edible mushroom for chronic inflammatory patients: diabetes mellitus and dyslipidemia, especially atherosclerosis (AS). Until now, the majority of mushroom research has been implemented regarding β-glucan derivatives with very hydrophilic physicochemical properties. It implies that β-glucan or its derivatives have poor bioavailability. Hence, we have involved GC-MS in identifying lipophilic compounds from GL, which filtered them in silico to sort drug-like compounds (DLCs). Then, we retrieved targets associated with the DLCs, and identified a key signaling pathway, key targets, and key compounds against AS. In this paper, we utilized bioinformatics and network pharmacology theory to understand the uncovered pharmacological mechanism of GL on AS. To sum things up, our analysis elucidates the relationships between signaling pathways, targets, and compounds in GL. Ultimately, this work provides biochemical evidence to identify the therapeutic effect of GL on AS, and a scientific basis for deciphering the key mechanism on DLCs of GL against AS.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Md Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
45
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Zhao H, Yang H, Geng C, Chen Y, Tang Y, Li Z, Pang J, Shu T, Nie Y, Liu Y, Jia K, Wang J. Elevated IgE promotes cardiac fibrosis by suppressing miR-486a-5p. Theranostics 2021; 11:7600-7615. [PMID: 34158869 PMCID: PMC8210611 DOI: 10.7150/thno.47845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Cardiac fibrosis is an important feature of cardiac remodeling and is a hallmark of heart failure. Recent studies indicate that elevated IgE plays a causal role in pathological cardiac remodeling. However, the underlying mechanism of how IgE promotes cardiac fibrosis has not been fully elucidated. Methods and Results: To explore the function of IgE in cardiac fibrosis, we stimulated mouse primary cardiac fibroblasts (CFs) with IgE and found that both IgE receptor (FcεR1) and fibrosis related proteins were increased after IgE stimulation. Specific deletion of FcεR1 in CFs alleviated angiotensin II (Ang II)-induced cardiac fibrosis in mice. To investigate the mechanisms underlying the IgE-mediated cardiac fibrosis, deep miRNA-seq was performed. Bioinformatics and signaling pathway analysis revealed that IgE upregulated Col1a1 and Col3a1 expression in CFs by repressing miR-486a-5p, with Smad1 participating downstream of miR-486a-5p in this process. Lentivirus-mediated overexpression of miR-486a-5p was found to alleviate Ang II-induced myocardial interstitial fibrosis in mice. Moreover, miR-486-5p serum levels were lower in patients with heart failure than in healthy controls, and were negatively correlated with NT-proBNP levels. Conclusions: Our study demonstrates that elevated IgE promotes pathological cardiac fibrosis by modulating miR-486a-5p and downstream factors, such as Smad1. These findings suggest new targets for pathological cardiac fibrosis intervention.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yang Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102308, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Kegang Jia
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Tianjin 300457, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
47
|
Kowara M, Cudnoch-Jedrzejewska A. Pathophysiology of Atherosclerotic Plaque Development-Contemporary Experience and New Directions in Research. Int J Mol Sci 2021; 22:ijms22073513. [PMID: 33805303 PMCID: PMC8037897 DOI: 10.3390/ijms22073513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 01/12/2023] Open
Abstract
Atherosclerotic plaque is the pathophysiological basis of important and life-threatening diseases such as myocardial infarction. Although key aspects of the process of atherosclerotic plaque development and progression such as local inflammation, LDL oxidation, macrophage activation, and necrotic core formation have already been discovered, many molecular mechanisms affecting this process are still to be revealed. This minireview aims to describe the current directions in research on atherogenesis and to summarize selected studies published in recent years-in particular, studies on novel cellular pathways, epigenetic regulations, the influence of hemodynamic parameters, as well as tissue and microorganism (microbiome) influence on atherosclerotic plaque development. Finally, some new and interesting ideas are proposed (immune cellular heterogeneity, non-coding RNAs, and immunometabolism) which will hopefully bring new discoveries in this area of investigation.
Collapse
|
48
|
Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front Immunol 2021; 11:609161. [PMID: 33613530 PMCID: PMC7886696 DOI: 10.3389/fimmu.2020.609161] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are local dilations of infrarenal segment of aortas. Molecular mechanisms underlying the pathogenesis of AAA remain not fully clear. However, inflammation has been considered as a central player in the development of AAA. In the past few decades, studies demonstrated a host of inflammatory cells, including T cells, macrophages, dendritic cells, neutrophils, B cells, and mast cells, etc. infiltrating into aortic walls, which implicated their crucial roles. In addition to direct cell contacts and cytokine or protease secretions, special structures like inflammasomes and neutrophil extracellular traps have been investigated to explore their functions in aneurysm formation. The above-mentioned inflammatory cells and associated structures may initiate and promote AAA expansion. Understanding their impacts and interaction networks formation is meaningful to develop new strategies of screening and pharmacological interventions for AAA. In this review, we aim to discuss the roles and mechanisms of these inflammatory cells in AAA pathogenesis.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Wei
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jin Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
49
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
50
|
Carballo I, Alonso-Sampedro M, Gonzalez-Conde E, Sanchez-Castro J, Vidal C, Gude F, Gonzalez-Quintela A. Factors Influencing Total Serum IgE in Adults: The Role of Obesity and Related Metabolic Disorders. Int Arch Allergy Immunol 2020; 182:220-228. [PMID: 33176332 DOI: 10.1159/000510789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIM Few reports have investigated the association between metabolic abnormalities (obesity and related metabolic syndrome) and total serum IgE concentrations. METHODS This cross-sectional study included a random sample of 1,516 adult individuals (44.7% men, aged 18-91 years, median 52 years) from a single municipality in Spain. Serum IgE was measured in the ADVIA Centaur system. Atopy was defined by the presence of positive skin prick tests to a panel of common aeroallergens in the area. Body mass index and data related to the definition of metabolic syndrome were obtained from all participants. Alcohol consumption, smoking, and regular physical exercise were assessed by a questionnaire. RESULTS Atopy (present in 21.9% of 1,514 evaluable individuals) was the strongest factor determining serum IgE concentrations. Male sex and heavy alcohol drinking were independently associated with higher IgE concentrations, particularly in the non-atopic individuals. Body mass index was positively associated with IgE concentrations, independent of potential confounders, although the effect was only evident among non-atopic individuals. In that group, median IgE concentrations in normal-weight and obese individuals were 15 and 24 kU/L, respectively (p < 0.001); likewise, obesity was associated with high (>100 kU/L) IgE concentrations after adjusting for potential confounders (odds ratio: 1.79, 95% confidence interval: 1.26-2.56, p = 0.001). The presence of metabolic syndrome and its components, particularly abdominal obesity and hyperglycaemia, was also positively and independently associated with higher IgE concentrations in non-atopic individuals. CONCLUSIONS Obesity and metabolic syndrome components are associated with high total serum IgE concentrations, particularly in non-atopic individuals.
Collapse
Affiliation(s)
- Iago Carballo
- Department of Internal Medicine, Complejo Hospitalario Universitario, Instituto de Investigaciones Sanitarias of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuela Alonso-Sampedro
- Department of Clinical Epidemiology, Complejo Hospitalario Universitario, Instituto de Investigaciones Sanitarias of Santiago de Compostela, Santiago de Compostela, Spain
| | - Elena Gonzalez-Conde
- Department of Internal Medicine, Complejo Hospitalario Universitario, Instituto de Investigaciones Sanitarias of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Carmen Vidal
- Department of Allergy, Complejo Hospitalario Universitario, Instituto de Investigaciones Sanitarias of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Gude
- Department of Clinical Epidemiology, Complejo Hospitalario Universitario, Instituto de Investigaciones Sanitarias of Santiago de Compostela, Santiago de Compostela, Spain
| | - Arturo Gonzalez-Quintela
- Department of Internal Medicine, Complejo Hospitalario Universitario, Instituto de Investigaciones Sanitarias of Santiago de Compostela, Santiago de Compostela, Spain,
| |
Collapse
|