1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Lim AA, Pouyabahar D, Ashraf M, Huang K, Lohbihler M, Murareanu BM, Chang ML, Kwan M, Alibhai FJ, Tran T, Mazine A, Laflamme MA, Bader GD, Laksman Z, Protze S. Single-cell transcriptome analysis reveals CD34 as a marker of human sinoatrial node pacemaker cardiomyocytes. Nat Commun 2024; 15:10206. [PMID: 39604360 PMCID: PMC11603134 DOI: 10.1038/s41467-024-54337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The sinoatrial node regulates the heart rate throughout life. Failure of this primary pacemaker results in life-threatening, slow heart rhythm. Despite its critical function, the cellular and molecular composition of the human sinoatrial node is not resolved. Particularly, no cell surface marker to identify and isolate sinoatrial node pacemaker cells has been reported. Here we use single-nuclei/cell RNA sequencing of fetal and human pluripotent stem cell-derived sinoatrial node cells to reveal that they consist of three subtypes of pacemaker cells: Core Pacemaker, Sinus Venosus, and Transitional Cells. Our study identifies a host of sinoatrial node pacemaker markers including MYH11, BMP4, and the cell surface antigen CD34. We demonstrate that sorting for CD34+ cells from stem cell differentiation cultures enriches for sinoatrial node cells exhibiting a functional pacemaker phenotype. This sinoatrial node pacemaker cell surface marker is highly valuable for stem cell-based disease modeling, drug discovery, cell replacement therapies, and the targeted delivery of therapeutics to sinoatrial node cells in vivo using antibody-drug conjugates.
Collapse
Affiliation(s)
- Amos A Lim
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mishal Ashraf
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kate Huang
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Lohbihler
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon M Murareanu
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Matthew L Chang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie Kwan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Zachary Laksman
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Andreas E, Penn A, Okada T, St. John JC. Supplementation of Oocytes by Microinjection with Extra Copies of mtDNA Alters Metabolite Profiles and Interactions with Expressed Genes in a Tissue-Specific Manner. Biomolecules 2024; 14:1477. [PMID: 39595653 PMCID: PMC11591607 DOI: 10.3390/biom14111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Mitochondrial DNA (mtDNA) supplementation can rescue poor oocyte quality and overcome embryonic arrest. Here, we investigated a series of sexually mature pigs generated through autologous and heterologous mtDNA supplementation. Brain, liver and heart tissues underwent metabolite profiling using gas chromatography-mass spectrometry and gene expression analysis through RNA-seq. They were then assessed for mRNA-metabolite interactions. The comparison between overall mtDNA supplemented and control pigs revealed that mtDNA supplementation reduced the lipids stearic acid and elaidic acid in heart tissue. However, heterologous mtDNA supplemented-derived pigs exhibited lower levels of abundance of metabolites when compared with autologous-derived pigs. In the brain, these included mannose, mannose 6-phosphate and fructose 6-phosphate. In the liver, maltose and cellobiose, and in the heart, glycine and glutamate were affected. mRNA-metabolite pathway analysis revealed a correlation between malate and CS, ACLY, IDH2 and PKLR in the liver and glutamate and PSAT1, PHGDH, CDO1 and ANPEP in the heart. Our outcomes demonstrate that mtDNA supplementation, especially heterologous supplementation, alters the metabolite and transcriptome profiles of brain, liver, and heart tissues. This is likely due to the extensive resetting of the balance between the nuclear and mitochondrial genomes in the preimplantation embryo, which induces a series of downstream effects.
Collapse
Affiliation(s)
| | | | | | - Justin C. St. John
- Experimental Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia; (E.A.); (A.P.); (T.O.)
| |
Collapse
|
4
|
Chen W, Aminu AJ, Yin Z, Karaesmen I, Atkinson AJ, Kuniewicz M, Holda M, Walocha J, Perde F, Molenaar P, Dobrzynski H. Profiling Reduced Expression of Contractile and Mitochondrial mRNAs in the Human Sinoatrial Node vs. Right Atrium and Predicting Their Suppressed Expression by Transcription Factors and/or microRNAs. Int J Mol Sci 2024; 25:10402. [PMID: 39408732 PMCID: PMC11477614 DOI: 10.3390/ijms251910402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Background: The sinus node (SN) is the main pacemaker of the heart. It is characterized by pacemaker cells that lack mitochondria and contractile elements. We investigated the possibility that transcription factors (TFs) and microRNAs (miRs) present in the SN can regulate gene expression that affects SN morphology and function. (2) Methods: From human next-generation sequencing data, a list of mRNAs that are expressed at lower levels in the SN compared with the right atrium (RA) was compiled. The mRNAs were then classified into contractile, mitochondrial or glycogen mRNAs using bioinformatic software, RStudio and Ingenuity Pathway Analysis. The mRNAs were combined with TFs and miRs to predict their interactions. (3) Results: From a compilation of the 1357 mRNAs, 280 contractile mRNAs and 198 mitochondrial mRNAs were identified to be expressed at lower levels in the SN compared with RA. TFs and miRs were shown to interact with contractile and mitochondrial function-related mRNAs. (4) Conclusions: In human SN, TFs (MYCN, SOX2, NUPR1 and PRDM16) mainly regulate mitochondrial mRNAs (COX5A, SLC25A11 and NDUFA8), while miRs (miR-153-3p, miR-654-5p, miR-10a-5p and miR-215-5p) mainly regulate contractile mRNAs (RYR2, CAMK2A and PRKAR1A). TF and miR-mRNA interactions provide a further understanding of the complex molecular makeup of the SN and potential therapeutic targets for cardiovascular treatments.
Collapse
Affiliation(s)
- Weixuan Chen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Abimbola J. Aminu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Irem Karaesmen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Andrew J. Atkinson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Marcin Kuniewicz
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Mateusz Holda
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- HEART-Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Filip Perde
- National Institute of Legal Medicine, 042122 Bucharest, Romania;
| | - Peter Molenaar
- Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4072, Australia
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
5
|
Boulgakoff L, D'Amato G, Miquerol L. Molecular Regulation of Cardiac Conduction System Development. Curr Cardiol Rep 2024; 26:943-952. [PMID: 38990492 DOI: 10.1007/s11886-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Collapse
Affiliation(s)
| | - Gaetano D'Amato
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
| |
Collapse
|
6
|
Zubrzycki M, Schramm R, Costard-Jäckle A, Grohmann J, Gummert JF, Zubrzycka M. Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I. Int J Mol Sci 2024; 25:7117. [PMID: 39000221 PMCID: PMC11241401 DOI: 10.3390/ijms25137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Surgery for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Jochen Grohmann
- Department of Congenital Heart Disease/Pediatric Cardiology, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Jan F. Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Li H, Tang Q, Yang T, Wang Z, Li D, Wang L, Li L, Chen Y, Huang H, Zhang Y, Chen Y. Segregation of morphogenetic regulatory function of Shox2 from its cell fate guardian role in sinoatrial node development. Commun Biol 2024; 7:385. [PMID: 38553636 PMCID: PMC10980793 DOI: 10.1038/s42003-024-06039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Shox2 plays a vital role in the morphogenesis and physiological function of the sinoatrial node (SAN), the primary cardiac pacemaker, manifested by the formation of a hypoplastic SAN and failed differentiation of pacemaker cells in Shox2 mutants. Shox2 and Nkx2-5 are co-expressed in the developing SAN and regulate the fate of the pacemaker cells through a Shox2-Nkx2-5 antagonistic mechanism. Here we show that simultaneous inactivation of Nkx2-5 in the SAN of Shox2 mutants (dKO) rescued the pacemaking cell fate but not the hypoplastic defects, indicating uncoupling of SAN cell fate determination and morphogenesis. Single-cell RNA-seq revealed that the presumptive SAN cells of Shox2-/- mutants failed to activate pacemaking program but remained in a progenitor state preceding working myocardium, while both wildtype and dKO SAN cells displayed normal pacemaking cell fate with similar cellular state. Shox2 thus acts as a safeguard but not a determinant to ensure the pacemaking cell fate through the Shox2-Nkx2-5 antagonistic mechanism, which is segregated from its morphogenetic regulatory function in SAN development.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China.
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, 14214, USA
| | - Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Zhengsen Wang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, 610021, PR China
| | - Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Yaoyi Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
8
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
9
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
10
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
11
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
12
|
Kugler S, Tőkés A, Nagy N, Fintha A, Danics K, Sághi M, Törő K, Rácz G, Nemeskéri Á. Strong desmin immunoreactivity in the myocardial sleeves around pulmonary veins, superior caval vein and coronary sinus supports the presumed arrhythmogenicity of these regions. J Anat 2024; 244:120-132. [PMID: 37626442 PMCID: PMC10734648 DOI: 10.1111/joa.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Myocardial sleeve around human pulmonary veins plays a critical role in the pathomechanism of atrial fibrillation. Besides the well-known arrhythmogenicity of these veins, there is evidence that myocardial extensions into caval veins and coronary sinus may exhibit similar features. However, studies investigating histologic properties of these structures are limited. We aimed to investigate the immunoreactivity of myocardial sleeves for intermediate filament desmin, which was reported to be more abundant in Purkinje fibers than in ventricular working cardiomyocytes. Sections of 16 human (15 adult and 1 fetal) hearts were investigated. Specimens of atrial and ventricular myocardium, sinoatrial and atrioventricular nodes, pulmonary veins, superior caval vein and coronary sinus were stained with anti-desmin monoclonal antibody. Intensity of desmin immunoreactivity in different areas was quantified by the ImageJ program. Strong desmin labeling was detected at the pacemaker and conduction system as well as in the myocardial sleeves around pulmonary veins, superior caval vein, and coronary sinus of adult hearts irrespective of sex, age, and medical history. In the fetal heart, prominent desmin labeling was observed at the sinoatrial nodal region and in the myocardial extensions around the superior caval vein. Contrarily, atrial and ventricular working myocardium exhibited low desmin immunoreactivity in both adults and fetuses. These differences were confirmed by immunohistochemical quantitative analysis. In conclusion, this study indicates that desmin is abundant in the conduction system and venous myocardial sleeves of human hearts.
Collapse
Affiliation(s)
- Szilvia Kugler
- Heart and Vascular CentreSemmelweis UniversityBudapestHungary
| | - Anna‐Mária Tőkés
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Nándor Nagy
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| | - Attila Fintha
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Krisztina Danics
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Márton Sághi
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Klára Törő
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Ágnes Nemeskéri
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| |
Collapse
|
13
|
Zhang W, Wang F, Yin L, Tang Y, Wang X, Huang C. Cadherin-5 facilitated the differentiation of human induced pluripotent stem cells into sinoatrial node-like pacemaker cells by regulating β-catenin. J Cell Physiol 2024; 239:212-226. [PMID: 38149479 DOI: 10.1002/jcp.31161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of β-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of β-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
14
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
16
|
Wang F, Yin L, Zhang W, Tang Y, Wang X, Huang C. The method of sinus node-like pacemaker cells from human induced pluripotent stem cells by BMP and Wnt signaling. Cell Biol Toxicol 2023; 39:2725-2741. [PMID: 36856942 DOI: 10.1007/s10565-023-09797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The embryonic development of sinus nodes (SAN) is co-regulated by multiple signaling pathways. Among these, the bone morphogenetic protein (BMP) and Wnt signaling pathways are involved in the development of SAN. In this study, the effects of BMP and Wnt signaling on the differentiation of SAN-like pacemaker cells (SANLPCs) were investigated. Human induced pluripotent stem cells (hiPSCs) were divided into four groups: control, BMP4, CHIR-3, and BMP4 + CHIR (CHIR: a Wnt signaling activator). The samples were tested at day (D) 15 of differentiation. The final protocol for the activation of BMP signaling at D0-D3 and reactivation of Wnt signaling at D5-D7 in the differentiation of hiPSCs were determined. The results showed that the mRNA levels of pacemaker markers (TBX18, SHOX2, TBX3, HCN4, and HCN1) were higher in the BMP4 + CHIR group than in the control group, and working myocardial genes were downregulated. The immunofluorescence assay revealed that the expression of SHOX2 and HCN4 increased in the BMP4 + CHIR group compared to that in the other groups. In addition, the results of patch clamps revealed that a funny current of higher density and typical SAN action potentials were recorded, except in the control group, in which the L-type calcium current was higher in the BMP4 + CHIR group than in the other groups. Finally, the proportion of SANLPCs (cTnT+ NKX2.5-) was further enhanced by the combination of BMP4 and CHIR treatment. In summary, the combination of BMP and Wnt signaling promotes the differentiation of SANLPCs from hiPSCs.
Collapse
Affiliation(s)
- Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
17
|
Mesirca P. Nfix: a transcription factor with an important functional role in cardiac automaticity. Acta Physiol (Oxf) 2023; 239:e14034. [PMID: 37596765 DOI: 10.1111/apha.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France
- LabEx, Ion ChannelsScience and Therapeutics, Montpellier, France
| |
Collapse
|
18
|
Dai Y, Nasehi F, Winchester CD, Foley AC. Tbx5 overexpression in embryoid bodies increases TAK1 expression but does not enhance the differentiation of sinoatrial node cardiomyocytes. Biol Open 2023; 12:bio059881. [PMID: 37272627 PMCID: PMC10261723 DOI: 10.1242/bio.059881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.
Collapse
Affiliation(s)
- Yunkai Dai
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Fatemeh Nasehi
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Charles D. Winchester
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Ann C. Foley
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| |
Collapse
|
19
|
Martin KE, Ravisankar P, Beerens M, MacRae CA, Waxman JS. Nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes of zebrafish. eLife 2023; 12:e77408. [PMID: 37184369 PMCID: PMC10185342 DOI: 10.7554/elife.77408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.
Collapse
Affiliation(s)
- Kendall E Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of MedicineCincinnatiUnited States
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Manu Beerens
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Calum A MacRae
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
20
|
Zawada D, Kornherr J, Meier AB, Santamaria G, Dorn T, Nowak-Imialek M, Ortmann D, Zhang F, Lachmann M, Dreßen M, Ortiz M, Mascetti VL, Harmer SC, Nobles M, Tinker A, De Angelis MT, Pedersen RA, Grote P, Laugwitz KL, Moretti A, Goedel A. Retinoic acid signaling modulation guides in vitro specification of human heart field-specific progenitor pools. Nat Commun 2023; 14:1722. [PMID: 37012244 PMCID: PMC10070453 DOI: 10.1038/s41467-023-36764-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/15/2023] [Indexed: 04/05/2023] Open
Abstract
Cardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials. In addition to the classical first and second heart fields, we observed the appearance of juxta-cardiac field progenitors giving rise to both myocardial and epicardial cells. Applying these findings to stem-cell based disease modelling we identified specific transcriptional dysregulation in first and second heart field progenitors derived from stem cells of patients with hypoplastic left heart syndrome. This highlights the suitability of our in vitro differentiation platform for studying human cardiac development and disease.
Collapse
Affiliation(s)
- Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Mark Lachmann
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Martina Dreßen
- German Heart Center Munich, Department of Cardiovascular Surgery, Institute Insure - Technical University of Munich, School of Medicine and Health, Munich, Germany
| | | | - Victoria L Mascetti
- Bristol Heart Institute, Bristol Medical School, Translational Health Sciences, Bristol, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Muriel Nobles
- Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew Tinker
- Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Teresa De Angelis
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy
| | - Roger A Pedersen
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford University, Stanford, USA
| | - Phillip Grote
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- Department of Surgery, Yale University School of Medicine, New Haven, USA.
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
21
|
Landstrom AP, Yang Q, Sun B, Perelli RM, Bidzimou MT, Zhang Z, Aguilar-Sanchez Y, Alsina KM, Cao S, Reynolds JO, Word TA, van der Sangen NM, Wells Q, Kannankeril PJ, Ludwig A, Kim JJ, Wehrens XH. Reduction in Junctophilin 2 Expression in Cardiac Nodal Tissue Results in Intracellular Calcium-Driven Increase in Nodal Cell Automaticity. Circ Arrhythm Electrophysiol 2023; 16:e010858. [PMID: 36706317 PMCID: PMC9974897 DOI: 10.1161/circep.122.010858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/06/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Spontaneously depolarizing nodal cells comprise the pacemaker of the heart. Intracellular calcium (Ca2+) plays a critical role in mediating nodal cell automaticity and understanding this so-called Ca2+ clock is critical to understanding nodal arrhythmias. We previously demonstrated a role for Jph2 (junctophilin 2) in regulating Ca2+-signaling through inhibition of RyR2 (ryanodine receptor 2) Ca2+ leak in cardiac myocytes; however, its role in pacemaker function and nodal arrhythmias remains unknown. We sought to determine whether nodal Jph2 expression silencing causes increased sinoatrial and atrioventricular nodal cell automaticity due to aberrant RyR2 Ca2+ leak. METHODS A tamoxifen-inducible, nodal tissue-specific, knockdown mouse of Jph2 was achieved using a Cre-recombinase-triggered short RNA hairpin directed against Jph2 (Hcn4:shJph2). In vivo cardiac rhythm was monitored by surface ECG, implantable cardiac telemetry, and intracardiac electrophysiology studies. Intracellular Ca2+ imaging was performed using confocal-based line scans of isolated nodal cells loaded with fluorescent Ca2+ reporter Cal-520. Whole cell patch clamp was conducted on isolated nodal cells to determine action potential kinetics and sodium-calcium exchanger function. RESULTS Hcn4:shJph2 mice demonstrated a 40% reduction in nodal Jph2 expression, resting sinus tachycardia, and impaired heart rate response to pharmacologic stress. In vivo intracardiac electrophysiology studies and ex vivo optical mapping demonstrated accelerated junctional rhythm originating from the atrioventricular node. Hcn4:shJph2 nodal cells demonstrated increased and irregular Ca2+ transient generation with increased Ca2+ spark frequency and Ca2+ leak from the sarcoplasmic reticulum. This was associated with increased nodal cell AP firing rate, faster diastolic repolarization rate, and reduced sodium-calcium exchanger activity during repolarized states compared to control. Phenome-wide association studies of the JPH2 locus identified an association with sinoatrial nodal disease and atrioventricular nodal block. CONCLUSIONS Nodal-specific Jph2 knockdown causes increased nodal automaticity through increased Ca2+ leak from intracellular stores. Dysregulated intracellular Ca2+ underlies nodal arrhythmogenesis in this mouse model.
Collapse
Affiliation(s)
- Andrew P. Landstrom
- Dept of Pediatrics, Division of Cardiology, Duke Univ School of Medicine, Durham, NC
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| | - Qixin Yang
- Dept of Pediatrics, Division of Cardiology, Duke Univ School of Medicine, Durham, NC
- Dept of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang Univ, Hangzhou, China
| | - Bo Sun
- Dept of Pediatrics, Division of Cardiology, Duke Univ School of Medicine, Durham, NC
| | | | | | - Zhushan Zhang
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| | - Yuriana Aguilar-Sanchez
- Integrative Molecular & Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | - Katherina M. Alsina
- Integrative Molecular & Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | - Shuyi Cao
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | - Julia O. Reynolds
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | - Tarah A. Word
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | | | - Quinn Wells
- Depts of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt Univ School of Medicine, Nashville, TN
| | - Prince J. Kannankeril
- Center for Pediatric Precision Medicine, Dept of Pediatrics, Vanderbilt Univ School of Medicine, Nashville, TN
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeffrey J. Kim
- Dept of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Xander H.T. Wehrens
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
- Dept of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX
- Depts of Neuroscience & Center for Space Medicine and the Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| |
Collapse
|
22
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
23
|
Barbuti A, Baruscotti M, Bucchi A. The “Funny” Pacemaker Current. HEART RATE AND RHYTHM 2023:63-87. [DOI: 10.1007/978-3-031-33588-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
SHOX2 refines the identification of human sinoatrial nodal cell population in the in vitro cardiac differentiation. Regen Ther 2022; 21:239-249. [PMID: 36092505 PMCID: PMC9420958 DOI: 10.1016/j.reth.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Dysfunction of the sinoatrial node (SAN) cells causes arrhythmias, and many patients require artificial cardiac pacemaker implantation. However, the mechanism of impaired SAN automaticity remains unknown, and the generation of human SAN cells in vitro may provide a platform for understanding the pathogenesis of SAN dysfunction. The short stature homeobox 2 (SHOX2) and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) genes are specifically expressed in SAN cells and are important for SAN development and automaticity. In this study, we aimed to purify and characterize human SAN-like cells in vitro, using HCN4 and SHOX2 as SAN markers. Methods We developed an HCN4-EGFP/SHOX2-mCherry dual reporter cell line derived from human induced pluripotent stem cells (hiPSCs), and HCN4 and SHOX2 gene expressions were visualized using the fluorescent proteins EGFP and mCherry, respectively. The dual reporter cell line was established using an HCN4-EGFP bacterial artificial chromosome-based semi-knock-in system and a CRISPR-Cas9-dependent knock-in system with a SHOX2-mCherry targeting vector. Flow cytometry, RT-PCR, and whole-cell patch-clamp analyses were performed to identify SAN-like cells. Results Flow cytometry analysis and cell sorting isolated HCN4-EGFP single-positive (HCN4+/SHOX2-) and HCN4-EGFP/SHOX2-mCherry double-positive (HCN4+/SHOX2+) cells. RT-PCR analyses showed that SAN-related genes were enriched within the HCN4+/SHOX2+ cells. Further, electrophysiological analyses showed that approximately 70% of the HCN4+/SHOX2+ cells exhibited SAN-like electrophysiological characteristics, as defined by the action potential parameters of the maximum upstroke velocity and action potential duration. Conclusions The HCN4-EGFP/SHOX2-mCherry dual reporter hiPSC system developed in this study enabled the enrichment of SAN-like cells within a mixed HCN4+/SHOX2+ population of differentiating cardiac cells. This novel cell line is useful for the further enrichment of human SAN-like cells. It may contribute to regenerative medicine, for example, biological pacemakers, as well as testing for cardiotoxic and chronotropic actions of novel drug candidates.
Collapse
|
25
|
Zheng M, Li RG, Song J, Zhao X, Tang L, Erhardt S, Chen W, Nguyen BH, Li X, Li M, Wang J, Evans SM, Christoffels VM, Li N, Wang J. Hippo-Yap Signaling Maintains Sinoatrial Node Homeostasis. Circulation 2022; 146:1694-1711. [PMID: 36317529 PMCID: PMC9897204 DOI: 10.1161/circulationaha.121.058777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) functions as the pacemaker of the heart, initiating rhythmic heartbeats. Despite its importance, the SAN is one of the most poorly understood cardiac entities because of its small size and complex composition and function. The Hippo signaling pathway is a molecular signaling pathway fundamental to heart development and regeneration. Although abnormalities of the Hippo pathway are associated with cardiac arrhythmias in human patients, the role of this pathway in the SAN is unknown. METHODS We investigated key regulators of the Hippo pathway in SAN pacemaker cells by conditionally inactivating the Hippo signaling kinases Lats1 and Lats2 using the tamoxifen-inducible, cardiac conduction system-specific Cre driver Hcn4CreERT2 with Lats1 and Lats2 conditional knockout alleles. In addition, the Hippo-signaling effectors Yap and Taz were conditionally inactivated in the SAN. To determine the function of Hippo signaling in the SAN and other cardiac conduction system components, we conducted a series of physiological and molecular experiments, including telemetry ECG recording, echocardiography, Masson Trichrome staining, calcium imaging, immunostaining, RNAscope, cleavage under targets and tagmentation sequencing using antibodies against Yap1 or H3K4me3, quantitative real-time polymerase chain reaction, and Western blotting. We also performed comprehensive bioinformatics analyses of various datasets. RESULTS We found that Lats1/2 inactivation caused severe sinus node dysfunction. Compared with the controls, Lats1/2 conditional knockout mutants exhibited dysregulated calcium handling and increased fibrosis in the SAN, indicating that Lats1/2 function through both cell-autonomous and non-cell-autonomous mechanisms. It is notable that the Lats1/2 conditional knockout phenotype was rescued by genetic deletion of Yap and Taz in the cardiac conduction system. These rescued mice had normal sinus rhythm and reduced fibrosis of the SAN, indicating that Lats1/2 function through Yap and Taz. Cleavage Under Targets and Tagmentation sequencing data showed that Yap potentially regulates genes critical for calcium homeostasis such as Ryr2 and genes encoding paracrine factors important in intercellular communication and fibrosis induction such as Tgfb1 and Tgfb3. Consistent with this, Lats1/2 conditional knockout mutants had decreased Ryr2 expression and increased Tgfb1 and Tgfb3 expression compared with control mice. CONCLUSIONS We reveal, for the first time to our knowledge, that the canonical Hippo-Yap pathway plays a pivotal role in maintaining SAN homeostasis.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
| | - Rich G Li
- Texas Heart Institute, Houston (R.G.L., X.L.)
| | - Jia Song
- Department of Medicine (Section of Cardiovascular Research), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (J.S., N.L.)
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
| | - Li Tang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., M.L., Jianxin Wang)
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston (S.E., Jun Wang)
| | - Wen Chen
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
| | - Bao H Nguyen
- Department of Molecular Physiology and Biophysics (B.H.N.)
| | - Xiao Li
- Texas Heart Institute, Houston (R.G.L., X.L.)
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., M.L., Jianxin Wang)
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., M.L., Jianxin Wang)
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Medicine, University of California at San Diego, La Jolla (S.M.E.)
| | - Vincent M Christoffels
- Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, The Netherlands (V.M.C.)
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (J.S., N.L.)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston (S.E., Jun Wang)
| |
Collapse
|
26
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
27
|
Li G, LeFebre R, Starman A, Chappell P, Mugler A, Sun B. Temporal signals drive the emergence of multicellular information networks. Proc Natl Acad Sci U S A 2022; 119:e2202204119. [PMID: 36067282 PMCID: PMC9477235 DOI: 10.1073/pnas.2202204119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood. Here we investigate the calcium dynamics of neuronal cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic devices. Using Granger inference to reconstruct the underlying causal relations between the cells, we find that the cells self-organize into spatially decentralized and temporally stationary networks to support information transfer via gap junction channels. The connectivity of the causal networks depends on the temporal profile of the external stimuli, where short periods, or long periods with small duty fractions, lead to reduced connectivity and fractured network topology. We build a theoretical model based on communicating excitable units that reproduces our observations. The model further predicts that connectivity of the causal network is maximal at an optimal communication strength, which is confirmed by the experiments. Together, our results show that information transfer between neuronal cells is externally regulated by the temporal profile of the stimuli and internally regulated by cell-cell communication.
Collapse
Affiliation(s)
- Guanyu Li
- Department of Physics, Oregon State University, Corvallis, OR 97331
| | - Ryan LeFebre
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
| | - Alia Starman
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Patrick Chappell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Andrew Mugler
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
28
|
Galdos FX, Xu S, Goodyer WR, Duan L, Huang YV, Lee S, Zhu H, Lee C, Wei N, Lee D, Wu SM. devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data. Nat Commun 2022; 13:5271. [PMID: 36071107 PMCID: PMC9452519 DOI: 10.1038/s41467-022-33045-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction of cell types across complex annotation hierarchies. To demonstrate the power of devCellPy, we construct a murine cardiac developmental atlas from published datasets encompassing 104,199 cells from E6.5-E16.5 and train devCellPy to generate a cardiac prediction algorithm. Using this algorithm, we observe a high prediction accuracy (>90%) across multiple layers of annotation and across de novo murine developmental data. Furthermore, we conduct a cross-species prediction of cardiomyocyte subtypes from in vitro-derived human induced pluripotent stem cells and unexpectedly uncover a predominance of left ventricular (LV) identity that we confirmed by an LV-specific TBX5 lineage tracing system. Together, our results show devCellPy to be a useful tool for automated cell prediction across complex cellular hierarchies, species, and experimental systems.
Collapse
Affiliation(s)
- Francisco X Galdos
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA
| | - Sidra Xu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Lauren Duan
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhsin V Huang
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Soah Lee
- Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Han Zhu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, USA
| | - Carissa Lee
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Wei
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Lee
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, USA.
| |
Collapse
|
29
|
Farraha M, Rao R, Igoor S, Le TYL, Barry MA, Davey C, Kok C, Chong JJ, Kizana E. Recombinant Adeno-Associated Viral Vector-Mediated Gene Transfer of hTBX18 Generates Pacemaker Cells from Ventricular Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23169230. [PMID: 36012498 PMCID: PMC9408910 DOI: 10.3390/ijms23169230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Sinoatrial node dysfunction can manifest as bradycardia, leading to symptoms of syncope and sudden cardiac death. Electronic pacemakers are the current standard of care but are limited due to a lack of biological chronotropic control, cost of revision surgeries, and risk of lead- and device-related complications. We therefore aimed to develop a biological alternative to electronic devices by using a clinically relevant gene therapy vector to demonstrate conversion of cardiomyocytes into sinoatrial node-like cells in an in vitro context. Neonatal rat ventricular myocytes were transduced with recombinant adeno-associated virus vector 6 encoding either hTBX18 or green fluorescent protein and maintained for 3 weeks. At the endpoint, qPCR, Western blot analysis and immunocytochemistry were used to assess for reprogramming into pacemaker cells. Cell morphology and Arclight action potentials were imaged via confocal microscopy. Compared to GFP, hTBX18-transduced cells showed that hTBX18, HCN4 and Cx45 were upregulated. Cx43 was significantly downregulated, while sarcomeric α-actinin remained unchanged. Cardiomyocytes transduced with hTBX18 acquired the tapering morphology of native pacemaker cells, as compared to the block-like, striated appearance of ventricular cardiomyocytes. Analysis of the action potentials showed phase 4 depolarization and a significant decrease in the APD50 of the hTBX18-transduced cells. We have demonstrated that rAAV-hTBX18 gene transfer to ventricular myocytes results in morphological, molecular, physiological, and functional changes, recapitulating the pacemaker phenotype in an in vitro setting. The generation of these induced pacemaker-like cells using a clinically relevant vector opens new prospects for biological pacemaker development.
Collapse
Affiliation(s)
- Melad Farraha
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Renuka Rao
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Sindhu Igoor
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Thi Y. L. Le
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Michael A. Barry
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
| | - Christopher Davey
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- School of Physics, the University of Sydney, Sydney 2006, Australia
| | - Cindy Kok
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - James J.H. Chong
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
| | - Eddy Kizana
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
- Correspondence:
| |
Collapse
|
30
|
Glutamate drives 'local Ca 2+ release' in cardiac pacemaker cells. Cell Res 2022; 32:843-854. [PMID: 35840807 PMCID: PMC9437105 DOI: 10.1038/s41422-022-00693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
The sinoatrial node (SAN) is the origin of the electrical signals for rhythmic heartbeats in mammals. The spontaneous firing of SAN pacemaker cells (SANPCs) triggers cardiac contraction. ‘Local Ca2+ release’ (LCR), a unique cellular activity, acts as the ‘engine’ of the spontaneous firing of SANPCs. However, the mechanism of LCR initiation remains unclear. Here, we report that endogenous glutamate drives LCRs in SANPCs. Using a glutamate sensor, we unraveled a tight correlation between glutamate accumulation and LCR occurrence, indicating a potential relationship between glutamate and LCRs. Intracellular application of glutamate significantly enhanced the LCRs in both intact and permeabilized SANPCs. Mechanistically, we revealed that mitochondrial excitatory amino acid transporter 1 (EAAT1)-dependent mitochondrial glutamate import promoted ROS generation, which in turn led to the oxidation of Ca2+-handling proteins, ultimately resulting in enhanced LCRs. Importantly, EAAT1 depletion reduced both the spontaneous firing rates of isolated SANPCs and the heart rate in vitro and in vivo, suggesting the central role of EAAT1 as a glutamate transporter in the regulation of cardiac autonomic rhythm. In conclusion, our results indicate that glutamate serves as an LCR igniter in SANPCs, adding a potentially important element to the coupled-clock theory that explains the origin of spontaneous firing. These findings shed new light on the future prevention and treatment of cardiac pacemaker cell-related arrhythmias.
Collapse
|
31
|
Ahmed A, Pothineni NVK, Charate R, Garg J, Elbey M, de Asmundis C, LaMeir M, Romeya A, Shivamurthy P, Olshansky B, Russo A, Gopinathannair R, Lakkireddy D. Inappropriate Sinus Tachycardia: Etiology, Pathophysiology, and Management: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:2450-2462. [PMID: 35710196 DOI: 10.1016/j.jacc.2022.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
Inappropriate sinus tachycardia (IST) is a clinical syndrome that generally affects young patients and is associated with distressing symptoms. Although the most common symptom is palpitations, it can be accompanied by a myriad of symptoms, including anxiety, dizziness, presyncope, and syncope. The pathogenesis of IST is not well understood and considered multifactorial, with autonomic dysfunction being the central abnormality. IST is a diagnosis of exclusion. Management presents a clinical challenge. The overall efficacy of lifestyle modifications and medical therapy may be limited. Recent advances in catheter and surgical sinus node sparing ablation techniques have led to improvement in outcomes. In addition, increased focus has led to development of multimodality team-based interventions to improve outcomes in this group of patients. In this review, we discuss the mechanistic basis of IST, review current approaches to diagnosis, and outline contemporary therapeutic approaches.
Collapse
Affiliation(s)
- Adnan Ahmed
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | | | - Rishi Charate
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | - Jalaj Garg
- Loma Linda University Hospital, Heart Arrythmia and Electrophysiology, Loma Linda, California, USA
| | - Mehmet Elbey
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Mark LaMeir
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ahmed Romeya
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | | | | | - Andrea Russo
- Copper University Health Care, Camden, New Jersey, USA
| | | | | |
Collapse
|
32
|
Almonaem ERA, Soliman DR, El Sayed MAM, Ahmed IA, Abdelrahman EG. Association between SNP rs59382073 in TBX2 3′ UTR and susceptibility to congenital heart diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
34
|
Li X, Yue Y, Zhang Y, Liao Y, Wang Q, Bian Y, Na J, He A. Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation. FUNDAMENTAL RESEARCH 2022; 2:14-22. [PMID: 38933910 PMCID: PMC11197809 DOI: 10.1016/j.fmre.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
To form fully functional four-chambered structure, mammalian heart development undergoes a transient finger-shaped trabeculae, crucial for efficient contraction and exchange for gas and nutrient. Although its developmental origin and direct relevance to congenital heart disease has been studied extensively, the time-resolved cellular mechanism underlying hypotrabeculation remains elusive. Here, we employed in toto live imaging and reconstructed the holistic cell lineages and cellular behavior landscape of control and hypotrabeculed hearts of mouse embryos from E9.5 for up to 24 h. Compared to control, hypotrabeculation in ErbB2 mutants arose mainly through dual mechanisms: both reduced proliferation of trabecular cardiomyocytes from early cell fate segregation and markedly impaired oriented cell division and migration. Further examination of mosaic mutant hearts confirmed alterations in cellular behaviors in a cell autonomous manner. Thus, our work offers a framework for continuous live imaging and digital cell lineage analysis to better understand subtle pathological alterations in congenital heart disease.
Collapse
Affiliation(s)
- Xin Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Youdong Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Qianhao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Hu YF, Lee AS, Chang SL, Lin SF, Weng CH, Lo HY, Chou PC, Tsai YN, Sung YL, Chen CC, Yang RB, Lin YC, Kuo TBJ, Wu CH, Liu JD, Chung TW, Chen SA. Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats. Nat Biomed Eng 2021; 6:421-434. [PMID: 34811487 DOI: 10.1038/s41551-021-00812-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Pacemaker cells can be differentiated from stem cells or transdifferentiated from quiescent mature cardiac cells via genetic manipulation. Here we show that the exposure of rat quiescent ventricular cardiomyocytes to a silk-fibroin hydrogel activates the direct conversion of the quiescent cardiomyocytes to pacemaker cardiomyocytes by inducing the ectopic expression of the vascular endothelial cell-adhesion glycoprotein cadherin. The silk-fibroin-induced pacemaker cells exhibited functional and morphological features of genuine sinoatrial-node cardiomyocytes in vitro, and pacemaker cells generated via the injection of silk fibroin in the left ventricles of rats functioned as a surrogate in situ sinoatrial node. Biomaterials with suitable surface structure, mechanics and biochemistry could facilitate the scalable production of biological pacemakers for human use.
Collapse
Affiliation(s)
- Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Hui Weng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yu Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chun Chou
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Nan Tsai
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Han Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Dian Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Center for Advanced Pharmaceutical Research and Drug Delivery, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Aminu AJ, Petkova M, Atkinson AJ, Yanni J, Morris AD, Simms RT, Chen W, Yin Z, Kuniewicz M, Holda MK, Kuzmin VS, Perde F, Molenaar P, Dobrzynski H. Further insights into the molecular complexity of the human sinus node - The role of 'novel' transcription factors and microRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:86-104. [PMID: 34004232 DOI: 10.1016/j.pbiomolbio.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
RESEARCH PURPOSE The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca2+-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined. PRINCIPAL RESULTS 68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response. MAJOR CONCLUSIONS In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.
Collapse
Affiliation(s)
- Abimbola J Aminu
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Maria Petkova
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Andrew J Atkinson
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Joseph Yanni
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Alex D Morris
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Robert T Simms
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Weixuan Chen
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Zeyuan Yin
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Marcin Kuniewicz
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom; Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz K Holda
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom; Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Filip Perde
- National Institute of Legal Medicine, Bucharest, Romania
| | - Peter Molenaar
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Cardiovascular Molecular & Therapeutics Translational Research Group, University of Queensland, The Prince Charles Hospital, Brisbane, Australia
| | - Halina Dobrzynski
- The Division of Cardiovascular Sciences, University of Manchester, United Kingdom; Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
37
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
39
|
Gao R, Ren J. Zebrafish Models in Therapeutic Research of Cardiac Conduction Disease. Front Cell Dev Biol 2021; 9:731402. [PMID: 34422842 PMCID: PMC8371477 DOI: 10.3389/fcell.2021.731402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Malfunction in the cardiac conduction system (CCS) due to congenital anomalies or diseases can cause cardiac conduction disease (CCD), which results in disturbances in cardiac rhythm, leading to syncope and even sudden cardiac death. Insights into development of the CCS components, including pacemaker cardiomyocytes (CMs), atrioventricular node (AVN) and the ventricular conduction system (VCS), can shed light on the pathological and molecular mechanisms underlying CCD, provide approaches for generating human pluripotent stem cell (hPSC)-derived CCS cells, and thus improve therapeutic treatment for such a potentially life-threatening disorder of the heart. However, the cellular and molecular mechanisms controlling CCS development remain elusive. The zebrafish has become a valuable vertebrate model to investigate early development of CCS components because of its unique features such as external fertilization, embryonic optical transparency and the ability to survive even with severe cardiovascular defects during development. In this review, we highlight how the zebrafish has been utilized to dissect the cellular and molecular mechanisms of CCS development, and how the evolutionarily conserved developmental mechanisms discovered in zebrafish could be applied to directing the creation of hPSC-derived CCS cells, therefore providing potential therapeutic strategies that may contribute to better treatment for CCD patients.
Collapse
Affiliation(s)
- Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
41
|
Bai J, Lu Y, Zhu Y, Wang H, Yin D, Zhang H, Franco D, Zhao J. Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models. Int J Mol Sci 2021; 22:7681. [PMID: 34299303 PMCID: PMC8307824 DOI: 10.3390/ijms22147681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Collapse
Affiliation(s)
- Jieyun Bai
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaosheng Lu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Yijie Zhu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Dechun Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China;
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
42
|
Rivaud MR, Blok M, Jongbloed MRM, Boukens BJ. How Cardiac Embryology Translates into Clinical Arrhythmias. J Cardiovasc Dev Dis 2021; 8:jcdd8060070. [PMID: 34199178 PMCID: PMC8231901 DOI: 10.3390/jcdd8060070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The electrophysiological signatures of the myocardium in cardiac structures, such as the atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during development by the spatial and temporal expression of transcription factors that guide expression of specific ion channels. Genome-wide association studies have shown that small variations in genetic regions are key to the expression of these transcription factors and thereby modulate the electrical function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventricular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological structures in the heart and their involvement in cardiac arrhythmias.
Collapse
Affiliation(s)
- Mathilde R. Rivaud
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
| | - Michiel Blok
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
43
|
Hu W, Clark RB, Giles WR, Shibata E, Zhang H. Physiological Roles of the Rapidly Activated Delayed Rectifier K + Current in Adult Mouse Heart Primary Pacemaker Activity. Int J Mol Sci 2021; 22:4761. [PMID: 33946248 PMCID: PMC8124469 DOI: 10.3390/ijms22094761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Robert B. Clark
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Wayne R. Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Erwin Shibata
- Department of Physiology, Carver School of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
44
|
Lang D, Glukhov AV. Cellular and Molecular Mechanisms of Functional Hierarchy of Pacemaker Clusters in the Sinoatrial Node: New Insights into Sick Sinus Syndrome. J Cardiovasc Dev Dis 2021; 8:jcdd8040043. [PMID: 33924321 PMCID: PMC8069964 DOI: 10.3390/jcdd8040043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
The sinoatrial node (SAN), the primary pacemaker of the heart, consists of a heterogeneous population of specialized cardiac myocytes that can spontaneously produce action potentials, generating the rhythm of the heart and coordinating heart contractions. Spontaneous beating can be observed from very early embryonic stage and under a series of genetic programing, the complex heterogeneous SAN cells are formed with specific biomarker proteins and generate robust automaticity. The SAN is capable to adjust its pacemaking rate in response to environmental and autonomic changes to regulate the heart's performance and maintain physiological needs of the body. Importantly, the origin of the action potential in the SAN is not static, but rather dynamically changes according to the prevailing conditions. Changes in the heart rate are associated with a shift of the leading pacemaker location within the SAN and accompanied by alterations in P wave morphology and PQ interval on ECG. Pacemaker shift occurs in response to different interventions: neurohormonal modulation, cardiac glycosides, pharmacological agents, mechanical stretch, a change in temperature, and a change in extracellular electrolyte concentrations. It was linked with the presence of distinct anatomically and functionally defined intranodal pacemaker clusters that are responsible for the generation of the heart rhythm at different rates. Recent studies indicate that on the cellular level, different pacemaker clusters rely on a complex interplay between the calcium (referred to local subsarcolemmal Ca2+ releases generated by the sarcoplasmic reticulum via ryanodine receptors) and voltage (referred to sarcolemmal electrogenic proteins) components of so-called "coupled clock pacemaker system" that is used to describe a complex mechanism of SAN pacemaking. In this review, we examine the structural, functional, and molecular evidence for hierarchical pacemaker clustering within the SAN. We also demonstrate the unique molecular signatures of intranodal pacemaker clusters, highlighting their importance for physiological rhythm regulation as well as their role in the development of SAN dysfunction, also known as sick sinus syndrome.
Collapse
|
45
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
46
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
47
|
Duong TB, Holowiecki A, Waxman JS. Retinoic acid signaling restricts the size of the first heart field within the anterior lateral plate mesoderm. Dev Biol 2021; 473:119-129. [PMID: 33607112 DOI: 10.1016/j.ydbio.2021.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/27/2023]
Abstract
Retinoic acid (RA) signaling is required to restrict heart size through limiting the posterior boundary of the vertebrate cardiac progenitor field within the anterior lateral plate mesoderm (ALPM). However, we still do not fully understand how different cardiac progenitor populations that contribute to the developing heart, including earlier-differentiating first heart field (FHF), later-differentiating second heart field (SHF), and neural crest-derived progenitors, are each affected in RA-deficient embryos. Here, we quantified the number of cardiac progenitors and differentiating cardiomyocytes (CMs) in RA-deficient zebrafish embryos. While Nkx2.5+ cells were increased overall in the nascent hearts of RA-deficient embryos, unexpectedly, we found that the major effect within this population was a significant expansion in the number of differentiating FHF CMs. In contrast to the expansion of the FHF, there was a progressive decrease in SHF progenitors at the arterial pole as the heart tube elongated. Temporal differentiation assays and immunostaining in RA-deficient embryos showed that the outflow tracts (OFTs) of the hearts were significantly smaller, containing fewer differentiated SHF-derived ventricular CMs and a complete absence of SHF-derived smooth muscle at later stages. At the venous pole of the heart, pacemaker cells of the sinoatrial node also failed to differentiate in RA-deficient embryos. Interestingly, genetic lineage tracing showed that the number of neural-crest derived CMs was not altered within the enlarged hearts of RA-deficient zebrafish embryos. Altogether, our data show that the enlarged hearts in RA-deficient zebrafish embryos are comprised of an expansion in earlier differentiating FHF-derived CMs coupled with a progressive depletion of the SHF, suggesting RA signaling determines the relative ratios of earlier- and later-differentiation cardiac progenitors within an expanded cardiac progenitor pool.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Holowiecki
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
48
|
Martin KE, Waxman JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8020015. [PMID: 33572147 PMCID: PMC7914448 DOI: 10.3390/jcdd8020015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Collapse
Affiliation(s)
- Kendall E. Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
49
|
Wang Y, Lu P, Jiang L, Wu B, Zhou B. Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1. Cardiovasc Res 2021; 116:1473-1486. [PMID: 31591643 DOI: 10.1093/cvr/cvz249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS Sinus venous valve (SVV) and sinoatrial node (SAN) develop together at the sinoatrial junction during embryogenesis. SVV ensures unidirectional cardiac input and SAN generates sinus rhythmic contraction, respectively; both functions are essential for embryonic survival. We aim to reveal the potential role of endocardial NOTCH signalling in SVV and SAN formation. METHODS AND RESULTS We specifically deleted Notch1 in the endocardium using an Nfatc1Cre line. This deletion resulted in underdeveloped SVV and SAN, associated with reduced expression of T-box transcription factors, Tbx5 andTbx18, which are essential for the formation of SVV and SAN. The deletion also led to decreased expression of Wnt2 in myocardium of SVV and SAN. WNT2 treatment was able to rescue the growth defect of SVV and SAN resulted from the Notch1 deletion in whole embryo cultures. Furthermore, the Notch1 deletion reduced the expression of Nrg1 in the SVV myocardium and supplement of NRG1 restored the growth of SVV in cultured Notch1 knockout embryos. CONCLUSION Our findings support that endocardial NOTCH1 controls the development of SVV and SAN by coordinating myocardial WNT and NRG1 signalling functions.
Collapse
Affiliation(s)
- Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shanxi 710061, China.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liping Jiang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bin Zhou
- Department of Genetics, Paediatrics, and Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.,Department of Cardiology of First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
50
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|