1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ulecia-Morón C, Bris ÁG, MacDowell KS, Madrigal JLM, García-Bueno B, Leza JC, Caso JR. Chronic mild stress disrupts mitophagy and mitochondrial status in rat frontal cortex. J Transl Med 2025; 23:580. [PMID: 40410878 PMCID: PMC12102876 DOI: 10.1186/s12967-025-06604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Mitochondria are very dynamic organelles that maintain cellular homeostasis, crucial in the central nervous system. Mitochondrial abnormalities have been described in neuropsychiatric diseases, namely major depression disorder (MDD) and schizophrenia. Since stress is the predominant non-genetic cause of MDD, and has a direct impact on mitochondrial networks, understanding how psychological stress affects mitochondrial health is vital to improve the current pharmacological therapies. METHODS The effect of 21 days of unpredictable stress was evaluated in frontal cortex of Wistar male rats comparing protein and gene markers of mitophagy (PINK1, PARKIN, BNIP3, NIX, FUNDC1), mitochondrial biosynthesis (PGC1α, NRF1, TFAM) and dynamics (MFN1, MFN2, OPA1, DRP1), and mitochondrial presence within microglia with the MitoTracker Green FM™ probe. RESULTS Chronic mild stress (CMS) caused the upregulation of mitochondrial mass, mitochondria depolarization, dysregulation in mitochondrial dynamics towards fusion, the increase of mitophagy markers and the induction of genes that activate mitochondrial biogenesis in frontal cortex. CMS also promoted microglia recruitment and mitochondrial number boosting within them. CONCLUSIONS There is a dysregulation of mitochondrial dynamics towards fusion, an upregulation of mitophagy markers, and the induction of genes associated with mitochondrial biogenesis in response to CMS in the frontal cortex of adult rats. This study highlights the impact of psychological stress on brain mitochondrial networks.
Collapse
Affiliation(s)
- Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| |
Collapse
|
3
|
Moulin S, Blachot-Minassian B, Kneppers A, Thomas A, Paradis S, Bultot L, Arnaud C, Pépin JL, Bertrand L, Mounier R, Belaidi E. Metformin protects the heart against chronic intermittent hypoxia through AMPK-dependent phosphorylation of HIF-1α. FEBS J 2025. [PMID: 40364612 DOI: 10.1111/febs.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Chronic intermittent hypoxia (IH), a major feature of obstructive sleep apnea syndrome (OSA), is associated with greater severity of myocardial infarction. In this study, we performed RNA sequencing of cardiac samples from mice exposed to IH, which reveals a specific transcriptomic signature of the disease, relative to mitochondrial remodeling and cell death. Corresponding to its activation under chronic IH, we stabilized the Hypoxia Inducible Factor-1α (HIF-1α) in cardiac cells in vitro and observed its association with an increased autophagic flux. In accordance, IH induced autophagy and mitophagy, which are decreased in HIF-1α+/- mice compared to wild-type animals, suggesting that HIF-1 plays a significant role in IH-induced mitochondrial remodeling. Next, we showed that the AMPK metabolic sensor, typically activated by mitochondrial stress, is inhibited after 3 weeks of IH in hearts. Therefore, we assessed the effect of metformin, an anti-diabetic drug and potent activator of AMPK, on myocardial response to ischemia-reperfusion (I/R) injury. Daily administration of metformin significantly decreases infarct size without any systemic beneficial effect on insulin resistance under IH conditions. The cardioprotective effect of metformin was lost in AMPKα2 knock-out mice, demonstrating that AMPKα2 isoform promotes metformin-induced cardioprotection in mice exposed to IH. Mechanistically, we found that metformin inhibits IH-induced mitophagy in myocardium and decreases HIF-1α nuclear expression in mice subjected to IH. In vitro experiments demonstrated that metformin induced HIF-1α phosphorylation, decreased its nuclear localization, and HIF-1 transcriptional activity. Collectively, these results identify the AMPKα2 metabolic sensor as a novel modulator of HIF-1 activity. Our data suggest that metformin could be considered as a cardioprotective drug in OSA patients independently of their metabolic status.
Collapse
Affiliation(s)
- Sophie Moulin
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
| | | | - Anita Kneppers
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
| | - Amandine Thomas
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM UR7424, Université Lyon 1, France
| | | | - Laurent Bultot
- Pole of Cardiovascular Research, UCLouvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Claire Arnaud
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
| | - Jean-Louis Pépin
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
- Cardiovascular and Respiratory Function Laboratory, Grenoble Alpes University Hospital, France
| | - Luc Bertrand
- Pole of Cardiovascular Research, UCLouvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Rémi Mounier
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
| | - Elise Belaidi
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, Université Lyon 1, France
| |
Collapse
|
4
|
Cisa-Wieczorek S, Hernández-Alvarez MI, Parreño M, Muñoz JP, Bussaglia E, Carricondo M, Ubeda J, Dubreuil P, Zorzano A, Brenet F, Nomdedeu JF. D816V KIT mutation induces mitochondrial morphologic and functional changes through BNIP3 downregulation in human myeloid cell lines ROSA and TF-1. Exp Hematol 2025; 145:104748. [PMID: 39986568 DOI: 10.1016/j.exphem.2025.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
The KIT receptor is a transmembrane protein found on the surface of many different cell types. Mutant forms of KIT are drivers of myeloid neoplasms, including systemic mastocytosis. The KIT D816V mutation is the most common, leading to constitutive activation of the receptor and its downstream targets, and it is highly resistant to c-KIT inhibitors. Metabolic rewiring is a common trait in cancer. We analyzed the metabolic profile induced by the KIT D816 mutation, measuring mitochondrial parameters in two myeloid cell lines. We found that the KIT D816V mutation causes a significant increase in mitochondrial abundance and activity associated with superoxide production, which could promote DNA instability. Functional and morphologic changes in mitochondria were associated with reduced levels of BNIP3 protein expression. We also detected low BNIP3 levels in clinical acute myeloid leukemia samples harboring D816V mutations. In addition, we have found constitutive mTOR activation in mutated cells, a pathway that has been shown to regulate autophagy. Our data suggest that KIT D816V increases mitochondrial activity through downregulation of BNIP3 expression, which increases mitochondrial number through the autophagy pathway. Alterations in the cellular metabolism induced by the KIT D816V mutation could be therapeutically exploited.
Collapse
Affiliation(s)
- Sabina Cisa-Wieczorek
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Maria Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Matilde Parreño
- Translational Molecular Oncology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain
| | - Juan P Muñoz
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Bussaglia
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Maite Carricondo
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Jose Ubeda
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fabienne Brenet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Josep F Nomdedeu
- Laboratory of Hematology, Department of Hematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona/IIB Sant Pau, Spain.
| |
Collapse
|
5
|
Anbazhagan P, Anantharajan J, Fulwood J, Low CH, Baburajendran N, Foo K, Xu W. Structure-based discovery of novel non-covalent small molecule inhibitors of USP30. J Comput Aided Mol Des 2025; 39:19. [PMID: 40274689 DOI: 10.1007/s10822-025-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Ubiquitin-specific proteases (USPs) are crucial regulators of protein degradation pathways, influencing diverse cellular processes and disease mechanisms. Among them, USP30 plays a pivotal role in mitochondrial quality control and has been implicated in idiopathic pulmonary fibrosis (IPF), a chronic lung disease for which current therapies merely slow disease progression. The high flexibility of USP30's catalytic site, coupled with its dependence on covalent interaction with the catalytic cysteine presents significant challenges in discovering suitable small molecule inhibitors. In this study, we identified three non-covalent small molecule inhibitors for USP30 using molecular modeling, X-ray crystallography, and virtual screening. These findings offer valuable insights and novel chemical starting points for further medicinal chemistry optimization.
Collapse
Affiliation(s)
- Padmanabhan Anbazhagan
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Justina Fulwood
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Choon Heng Low
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Klement Foo
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Weijun Xu
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, Singapore, 138670, Singapore.
| |
Collapse
|
6
|
Wu J, Xu J, Zhang M, Zhong J, Gao W, Wu M. Chondrocyte Mitochondrial Quality Control: A Novel Insight into Osteoarthritis and Cartilage Regeneration. Adv Wound Care (New Rochelle) 2025. [PMID: 40248893 DOI: 10.1089/wound.2024.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Significance: Osteoarthritis (OA), one of the most prevalent joint diseases affecting more than 240 million people, strongly influences human health and reduces life quality. This review aims to fill the current research gap regarding the application and potential of mitochondrial quality control (MQC) based therapies in the treatment of OA, thereby providing guidance for future research and clinical practice. Recent Advances: Chondrocytes respond to the inflammatory microenvironment via an array of signaling pathways and thus are critical in cartilage degeneration and OA progression. Mitochondria, as an important metabolic center in chondrocytes, play a vital role in responding to inflammatory stimuli. Multiple MQC mechanisms, including mitochondrial antioxidant defense, mitochondrial protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, sustain mitochondrial homeostasis under pathological conditions. Critical Issues: Despite extensive OA research, effective therapies remain limited. Elucidating MQC mechanisms in disease progression and post-traumatic cartilage repair is crucial. While preclinical studies demonstrate potential, clinical translation requires addressing protocol standardization, patient stratification, and long-term efficacy, as well as safety validation. Future Directions: Future research should focus on developing personalized MQC-based OA therapies guided by biomarker profiling and signaling pathway modulation. However, translational challenges persist, particularly regarding pervasive off-target effects, inadequate OA-specific targeting capacity, interpatient heterogeneity, and reliable evaluation of long-term therapeutic efficacy. Strategic prioritization of OA-specific MQC targets coupled with delivery system optimization may significantly improve both clinical translatability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jinni Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiawen Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Menghan Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiahui Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Weijin Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Yang X, Zhang Y, Zhou Y, Liu M, Zhao H, Yang Y, Su J. CaMK2A/CREB pathway activation is associated with enhanced mitophagy and neuronal apoptosis in diabetic retinopathy. Sci Rep 2025; 15:12516. [PMID: 40216954 PMCID: PMC11992012 DOI: 10.1038/s41598-025-97371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus, characterized by progressive neurodegeneration and vision impairment. The Ca2+/calmodulin-dependent protein kinase II alpha (CaMK2A) and cAMP response element-binding protein (CREB) signaling pathway has been implicated in various neurological disorders. However, its role in DR pathogenesis remains elusive. We established a DR mouse model by streptozotocin administration and performed histological, biochemical, and molecular analyses to investigate the involvement of CaMK2A/CREB signaling and its interplay with mitophagy. Additionally, we employed in vitro high-glucose (HG) treatment in primary mouse retinal ganglion cells to dissect the underlying mechanisms. Pharmacological and genetic modulations were utilized to target CaMK2A/CREB pathway and mitophagy. In the DR model, we observed retinal degeneration, increased apoptosis, and reduced neurotransmitter production, accompanied by enhanced mitophagy and activation of the CaMK2A/CREB pathway. HG induction in retinal ganglion cells recapitulated these findings, and autophagy inhibition partially rescued cell death but failed to suppress CaMK2A/CREB activation, suggesting mitophagy as a downstream consequence. CaMK2A knockdown or CREB phosphorylation inhibition attenuated HG-induced mitophagy, apoptosis, and neurotransmitter depletion, while CREB activation exacerbated these effects. CaMK2A silencing mitigated DR progression, oxidative stress, inflammation, and neuronal loss, akin to dopamine/carbidopa administration in DR mouse model. Our findings reveal the involvement of CaMK2A/CREB signaling activation and enhanced mitophagy in DR, suggesting these pathways may be therapeutically relevant targets for DR management.
Collapse
Affiliation(s)
- Xiaochun Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Yuxin Zhang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yikun Zhou
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Mingzhi Liu
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Haiyan Zhao
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yang Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jianyun Su
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| |
Collapse
|
8
|
Zhao M, Wang J, Zhu S, Zhang S, Han C, Tan C, Huang Y, Sun Z, Wang L, Liu J. Human neural stem cell-derived exosomes activate PINK1/Parkin pathway to protect against oxidative stress-induced neuronal injury in ischemic stroke. J Transl Med 2025; 23:402. [PMID: 40188077 PMCID: PMC11971779 DOI: 10.1186/s12967-025-06283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Mitochondria play a critical role in oxidative stress (OS)-induced neuronal injury during ischemic stroke (IS), making them promising therapeutic targets. Mounting evidence underscores the extraordinary therapeutic promise of exosomes derived from human neural stem cells (hNSCs) in the management of central nervous system (CNS) diseases. Nonetheless, the precise mechanisms by which these exosomes target mitochondria to ameliorate the effects of IS remain only partially elucidated. This study investigates the protective effects of hNSC derived exosomes (hNSC-Exos) on neuronal damage. METHODS Using a rat model of middle cerebral artery occlusion (MCAO) in vivo and OS-induced HT22 cells in vitro. Firstly, our research group independently isolated human neural stem cells (hNSCs) and subsequently prepared hNSC-Exos. In vivo, MCAO rats were restored to blood flow perfusion to simulate ischemia-reperfusion injury, and hNSC-Exos were injected through stereotaxic injection into the brain. Subsequently, the protective effects of hNSC-Exos on MCAO rats were evaluated, including histological studies, behavioral assessments. In vivo, H2O2 was used in HT22 cells to simulate the OS environment in MCAO, and then its protective effects on HT22 were evaluated by co-culturing with hNSC-Exos, including immunofluorescence staining, western blotting (WB), quantitative real time PCR (qRT-PCR). In the process of exploring specific mechanisms, we utilized RNA sequencing (RNA-seq) to detect the potential induction of mitophagy in OS-induced HT22 cells. Afterwards, we employed a series of mitochondrial function assessments and autophagy related detection techniques, including measuring mitochondrial membrane potential, reactive oxygen species (ROS) levels, transmission electron microscopy (TEM) imaging, monodansylcadaverine (MDC) staining, and mCherry-GFP-LC3B staining. In addition, we further investigated the regulatory pathway of hNSC-Exos by using autophagy inhibitor mdivi-1 and knocking out PTEN induced kinase 1 (PINK1) in HT22 cells. RESULTS Administration of hNSC-Exos significantly ameliorated brain tissue damage and enhanced behavioral outcomes in MCAO rats. This treatment led to a reduction in brain tissue apoptosis and facilitated the normalization of impaired neurogenesis and neuroplasticity. Notably, the application of hNSC-Exos in vitro resulted in an upregulation of mitophagy in HT22 cells, thereby remedying mitochondrial dysfunction. We demonstrate that hNSC-Exos activate mitophagy via the PINK1/Parkin pathway, improving mitochondrial function and reducing neuronal apoptosis. CONCLUSIONS These findings suggest that hNSC-Exos alleviate OS-induced neuronal damage by regulating the PINK1/Parkin pathway. These reveals a novel role of stem cell-derived mitochondrial therapy in promoting neuroprotection and suggest their potential as a therapeutic approach for OS-associated CNS diseases, including IS.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Shensen Zhang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Chengcheng Tan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Yubing Huang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Zhaokai Sun
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China.
| |
Collapse
|
9
|
Lu C, Ren J, Huang S, Wang M, Zhou H, Guo J. S-9-PAHSA Attenuates Aβ Accumulation and Improves Cognitive Deficits by Promoting Mitochondrial Autophagy in 5xFAD Mice. Eur J Neurosci 2025; 61:e70118. [PMID: 40275795 DOI: 10.1111/ejn.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by significant cognitive impairment and predominantly affects the elderly. With no effective cure available, research continues to explore novel therapeutic and preventive strategies. Recently, palmitic acid-hydroxystearic acids (PAHSAs), especially their stereochemistry S-configuration, have shown potential as a dietary supplement with anti-inflammatory and anti-diabetic properties. We previously found that one of the PAHSAs, 9-PAHSA, could improve cognitive impairment in the high-fat-diet mice, however, whether it has an equal effect on AD-like mice remains unclear. Since mitochondrial dysfunction is recognized as a significant pathological feature of AD, with impaired mitophagy leading to the accumulation of dysfunctional mitochondria, thus exacerbating disease progression, in this study, we evaluated the effects of the chiral isomer of 9-PAHSA, S-9-PAHSA, on cognitive dysfunction and mitochondrial dysfunction in 5xFAD mice. Three-month-old mice were treated with S-9-PAHSA 30 mg/kg in their drinking water for 3 months. Behavioral studies were conducted using the Morris Water Maze (MWM) and Y-maze tests, followed by assessments of amyloid-beta (Aβ) plaque deposition, neuronal apoptosis, and mitochondrial function. We found that S-9-PAHSA significantly enhanced spatial learning and memory abilities, reduced amyloid plaque deposition, decreased neuronal apoptosis, and improved mitochondrial homeostasis and autophagy in 5xFAD mice. These findings suggest that S-9-PAHSA holds promise as a supplementary preventive and therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Chenyu Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaoqi Ren
- Department of Geriatrics, Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Shanshan Huang
- Department of Geriatrics, Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Meng Wang
- Department of Geriatrics, Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Houguang Zhou
- Department of Geriatrics, Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Cairns M, Andrews J, Odendaal C, O'Brien C, Marais E, Maarman G, Sishi B, Joseph D, Rautenbach F, Marnewick JL, Essop MF. An investigation into the sex dependence of post-reperfusion cardiac mitochondrial function and redox balance in chronically stressed rats. Physiol Rep 2025; 13:e70185. [PMID: 40000919 PMCID: PMC11859663 DOI: 10.14814/phy2.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 02/27/2025] Open
Abstract
Although mitochondrial alterations are implicated in cardiac pathologies, sex-specific changes following chronic stress and ischemia-reperfusion injury are poorly characterized. Male and female Wistar rats underwent chronic restraint stress (CRS) for 4 weeks versus controls, whereafter ex vivo hearts were subjected to regional ischemia and reperfusion. Post-reperfusion hearts were dissected into ischemia-reperfused and non-ischemic regions with high-resolution mitochondrial respirometry, and oxidative stress assays performed. CRS males displayed increased routine and fatty acid β-oxidation respiration in non-ischemic tissues but lowered ETF-linked LEAK contributions to overall electron transfer system capacity ratios in ischemia-reperfused regions versus controls. CRS males exhibited lowered superoxide dismutase activity and increased lipid peroxidation in well-perfused regions versus controls. Female CRS hearts showed attenuated ETF-linked LEAK respiration and increased lipid peroxidation versus controls in non-ischemic tissue but a lowered RE ratio (measure of mitochondrial coupling) with ischemia-reperfusion. Our findings highlight the heart's sexually dimorphic response to chronic stress and ischemic injury, with female hearts showing oxidative damage in non-ischemic tissues together with relatively intact mitochondrial function in ischemia-reperfused tissues.
Collapse
Affiliation(s)
- Megan Cairns
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jasmine Andrews
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Caitlin Odendaal
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Cassidy O'Brien
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Erna Marais
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Gerald Maarman
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Balindiwe Sishi
- Center for Cardio‐Metabolic Research in Africa (CARMA), Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Danzil Joseph
- Center for Cardio‐Metabolic Research in Africa (CARMA), Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Fanie Rautenbach
- Oxidative Stress Research Centre, Faculty of Health and Wellness SciencesInstitute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyCape TownSouth Africa
| | - Jeanine L. Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness SciencesInstitute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyCape TownSouth Africa
| | - M. Faadiel Essop
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
11
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025; 39:1319-1343. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
12
|
Rimle L, Pliatsika D, Arnold N, Kurth S, Kaiser M, Mäser P, Kemmler M, Adams M, Riedl R, von Ballmoos C. Dissecting Structural Requirements of Leucinostatin A Derivatives for Antiprotozoal Activity and Mammalian Toxicity. J Med Chem 2025; 68:4237-4258. [PMID: 39952643 PMCID: PMC11874012 DOI: 10.1021/acs.jmedchem.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Lefleuganan, a clinical stage drug candidate for the treatment of cutaneous leishmaniasis, is a synthetic nonapeptide inspired by the natural antimicrobial peptide leucinostatin A, exhibiting excellent antiprotozoal activity in the low nM range. Lefleuganan shows strongly reduced acute toxicity, making it amenable for clinical use. Here, using a broad set of in vivo and in vitro measurements using purified enzymes, we find that leucinostatin A, but not lefleuganan, specifically targets the mitochondrial ATP synthase, inhibiting ATP synthesis by the human, bovine, and yeast enzyme in the nanomolar range. In a structure-activity relationship study covering the chemical space between the two compounds, hydroxyleucine at position 7 in leucinostatin A is identified as the key responsible moiety for specific ATP synthase inhibition and systemic toxicity. Our data suggest that efficient antiprotozoal activity of these class of compounds is mediated by efficient energetic uncoupling of negatively charged membranes.
Collapse
Affiliation(s)
- Lukas Rimle
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Dimanthi Pliatsika
- Institute
of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Noëlle Arnold
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Sandra Kurth
- Institute
of Clinical Chemistry, Inselspital, University
Hospital Bern, 3010 Bern, Switzerland
| | - Marcel Kaiser
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, Petersplatz
1, 4002 Basel, Switzerland
| | - Pascal Mäser
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, Petersplatz
1, 4002 Basel, Switzerland
| | | | - Michael Adams
- Bacoba AG, Elisabethenstrasse 15, 4051 Basel, Switzerland
| | - Rainer Riedl
- Institute
of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Christoph von Ballmoos
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
13
|
Lu G, Wu J, Zheng Z, Deng Z, Xu X, Li X, Liang X, Qi W, Zhang S, Qiu Y, Li M, Guo J, Huang H. Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes. J Mol Neurosci 2025; 75:23. [PMID: 39961873 DOI: 10.1007/s12031-024-02302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/15/2024] [Indexed: 04/02/2025]
Abstract
Radiation brain injury (RBI) is a complication of cranial tumor radiotherapy that significantly impacts patients' quality of life. Astrocyte-secreted vascular endothelial growth factor (VEGF) disrupts the blood-brain barrier (BBB) in RBI. However, further studies are required to elucidate the complex molecular mechanisms involved. Reactive oxygen species (ROS) are closely linked to VEGF pathway regulation, with excessive ROS potentially disrupting this pathway. Mitochondria, the primary ROS-producing organelles, play a crucial role under irradiation. Our findings suggest that irradiation activates astrocytes with altered polarity, generating both cellular and mitochondrial ROS. Concurrently, mitochondrial morphology and function are disrupted, leading to defective mitophagy and an accumulation of damaged mitochondria, which further exacerbates ROS damage. Urolithin A (UA) is a natural activator of mitophagy. We found that UA promoted mitophagy in irradiated astrocytes, reduced cellular and mitochondrial ROS, restored mitochondrial morphology and function, reversed VEGF overexpression, and attenuated the disruption of endothelial tight junction proteins in endothelial cells cultured with irradiated astrocyte supernatants. In conclusion, our study identifies a connection between impaired mitophagy and VEGF overexpression in radiation-induced astrocytes. We also demonstrated UA may serve as a therapeutic strategy for protecting the tight junction protein in RBI by enhancing mitophagy, reducing ROS accumulation, and downregulating VEGF expression.
Collapse
Affiliation(s)
- Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xintian Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoqiu Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Junjie Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China.
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Cai Y, Shang L, Zhou F, Zhang M, Li J, Wang S, Lin Q, Huang J, Yang S. Macrophage pyroptosis and its crucial role in ALI/ARDS. Front Immunol 2025; 16:1530849. [PMID: 40028334 PMCID: PMC11867949 DOI: 10.3389/fimmu.2025.1530849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe clinical syndrome characterized by high morbidity and mortality, primarily due to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue. In recent years, the role of macrophage pyroptosis in lung injury has garnered extensive attention worldwide. This paper reviews the mechanism of macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several drugs and intervening measures that can regulate macrophage pyroptosis to influence the progression of ALI/ARDS. By doing so, we aim to enhance the understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and provide novel insights for its treatment.
Collapse
Affiliation(s)
- Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianghua Huang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Su C, Jing X, Liu X, Shao Y, Zheng Y, Liu X, Cui X. Ferristatin II protects nucleus pulposus against degeneration through inhibiting ferroptosis and activating HIF-1α pathway mediated mitophagy. Int Immunopharmacol 2025; 147:113895. [PMID: 39752759 DOI: 10.1016/j.intimp.2024.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis. Nevertheless, its function in the degeneration of NP remains uncertain. The transferrin receptor inhibitor Ferristatin II (Fer-II) has been demonstrated to possess neuroprotective properties, which are conferred by its ability to suppress ferroptosis. It is therefore crucial to investigate the mechanisms by which Fer-II exerts its protective effects against NP degradation. METHODS In order to investigate the protective effects of Fer-II, an IVDD rat model was developed by puncturing the rat tail in vivo. Human NP cells extracted with the aid of tert-butyl hydroperoxide (TBHP) and ferric ammonium citrate (FAC) interventions mimic the IVDD pathological environment in vitro. RESULTS The present study demonstrates that Fer-II can delay nucleus pulposus degeneration and IVDD by inhibiting ferroptosis. This conclusion was reached through epidemiological studies and in vitro and in vivo experiments. Furthermore, Fer-II was observed to alleviate oxidative stress-induced NP cell degeneration by activating the HIF-1α pathway, enhancing mitophagy, suppressing NP cell ferroptosis. CONCLUSIONS The findings of our study indicate that Fer-II has the potential to safeguard nucleus pulposus cells from degeneration by triggering HIF-1α-mediated mitophagy. The potential of Fer-II as a promising alternative therapeutic option for the management of IVDD is worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Su
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Zhoukou Orthopaedic Hospital, Zhoukou 466000, China
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China.
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China
| | - Yuandong Shao
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China; Department of Spine Surgery, Binzhou People's Hospital. Binzhou, Shandong 256600, China
| | - Yong Zheng
- Xinjiang Production and Construction Corps Fourth Division Hospital, Yining, Xinjiang, 835000, China
| | - Xiaodong Liu
- Department of Spine Surgery, Zhoukou Orthopaedic Hospital, Zhoukou 466000, China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China.
| |
Collapse
|
16
|
Liu Y, Li Y, Li J, Rao H, Sun J, Xiu J, Wu N. Gypenosides alleviate oxidative stress in the hippocampus, promote mitophagy, and mitigate depressive-like behaviors induced by CUMS via SIRT1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118823. [PMID: 39343109 DOI: 10.1016/j.jep.2024.118823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use and efficacy of Gynostemma [Gynostemma pentaphyllum (Thunb.) Makino], a versatile traditional Chinese herb, was first documented in the renowned pharmacopoeia, "Compendium of Materia Medica". Gypenosides (Gps), saponin components are the primary constituents responsible for its biological activities and clinical effects, which include antioxidant, immunoregulatory, antitumor, and neuroprotective properties. Pharmacological studies have shown that Gps has the potential to combat depression. However, the exact molecular mechanisms underlying its antidepressant effects remain unclear. AIM OF THE STUDY This study aims to elucidate the mechanisms underlying the antidepressant effects of Gps through antioxidative stress, utilizing an integrated approach that includes network pharmacology, molecular simulations, and experimental validation. MATERIALS AND METHODS Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) and were orally administered doses of Gps (50 and 100 mg/kg) and fluoxetine (10 mg/kg). The regulatory effects of Gps on depression-like behaviors in CUMS rats and their impact on oxidative stress levels in the hippocampus region were evaluated. Network pharmacology was used to investigate the mechanisms by which Gps affects oxidative stress in depression, and was accompanied by molecular docking and dynamics simulations. CUMS rats were treated orally with Gps (100 mg/kg) and injected with EX527 for rescue experiments to validate the role of SIRT1 in antioxidative stress and evaluate the impact of Gps on mitophagy. RESULTS Gps ameliorated depression-like behaviors induced by CUMS in rats. The improvements observed included an increased sucrose preference, reduced immobility time in the tail suspension and forced swim tests, and an increased movement distance in the open-field test. Additionally, Gps effectively reduced reactive oxygen species, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine levels in the hippocampus, while increasing the contents of ATP, catalase, superoxide dismutase, and glutathione, indicating an increased capacity for antioxidative stress in the hippocampus. Furthermore, Gps increased the number of neuronal cells in the hippocampal CA1 region and the level of mitochondrial autophagy, with SIRT1 as a potential key target. Inhibition of SIRT1 expression by exposure to EX527 reversed the beneficial effects of Gps, further validating the critical role of SIRT1 in the regulation of oxidative stress and improving depression-like behavior. CONCLUSION Gps improved the antioxidative stress capacity of the hippocampus and promoted mitophagy in CUMS rats through SIRT1, thus protecting hippocampal neurons and improving depression-like behavior.
Collapse
Affiliation(s)
- Yuhang Liu
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yingfeng Li
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jingqi Li
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hui Rao
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jianfei Sun
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Jiangfan Xiu
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Ning Wu
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
17
|
Gade PV, Rivera AVR, Hasanzadah L, Strompf S, Philipson TR, Gadziala M, Tyagi A, Bandam A, Gabbireddy R, Kashanchi F, Haymond A, Liotta LA, Howard MA. Secretory mitophagy: an extracellular vesicle-mediated adaptive mechanism for cancer cell survival under oxidative stress. Front Cell Dev Biol 2025; 12:1490902. [PMID: 39949610 PMCID: PMC11821619 DOI: 10.3389/fcell.2024.1490902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Mitophagy is a critically important survival mechanism in which toxic, aged, or defective mitochondria are segregated into mitophagosomes, which shuttle the damaged mitochondrial segments to the lysosome and proteasome for destruction. Cancer cells rely on mitophagy under conditions of high oxidative stress or increased energy demand. Oxidative stress can generate a large volume of damaged mitochondria, overwhelming lysosomal removal. Accumulated damaged mitochondria are toxic and their proper removal is crucial for maintaining mitochondrial health. We propose a new cancer cell mechanism for survival that is activated when the demand for segregating and eliminating damaged mitochondria exceeds the capacity of the lysosome or proteasome. Specifically, we show that tumor cells subjected to oxidative stress by carbonyl cyanide-3-chlorophenylhdrazone (CCCP) eliminate damaged mitochondria segments by bypassing the lysosome to export them outside the cell via extracellular vesicles (EVs), a process termed "secretory mitophagy". PINK1, the initiator of mitophagy, remains associated with the damaged mitochondria that exported in EVs. Using several types of cancer cells, we show that tumor cells treated with CCCP can be induced to switch over to secretory mitophagy by treatment with Bafilomycin A1, which blocks the fusion of mitophagosomes with lysosomes. Under these conditions, an increased number of PINK1 + EVs are exported. This is associated with greater cell survival by a given CCCP dose, enhanced mitochondrial ATP production, and reduced mitochondrial oxidative damage (membrane depolarization). Our data supports the hypothesis that secretory mitophagy is a previously unexplored process by which cancer cells adapt to survive therapeutic or hypoxic stress. Ultimately, our findings may inform new prevention strategies targeting pre-malignant lesions and therapeutic approaches designed to sensitize tumor cells to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Purva V. Gade
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | | | - Layla Hasanzadah
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Sofie Strompf
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Thomas Raymond Philipson
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Matthew Gadziala
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Atharva Tyagi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Arnav Bandam
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Rithvik Gabbireddy
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Marissa A. Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| |
Collapse
|
18
|
Wang X, Ma C, Mi K, Cao X, Tan Y, Yuan H, Ren J, Liang X. Urolithin A attenuates Doxorubicin-induced cardiotoxicity by enhancing PINK1-regulated mitophagy via Ambra1. Chem Biol Interact 2025; 406:111363. [PMID: 39725191 DOI: 10.1016/j.cbi.2024.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Doxorubicin (Dox) is a widely used antineoplastics although its clinical usage is greatly limited by its cardiotoxicity. Several studies have depicted an essential role for dampened mitophagy and mitochondrial injury in Dox cardiotoxicity. However, preventative measure to alleviate Dox-evoked cardiotoxicity via targeting mitophagy and mitochondrial integrity remains elusive. Urolithin A (UA) is a newly identified mitophagy inducer with antioxidant and anti-apoptotic properties although its effect on Dox-induced cardiotoxicity is unknown. This study was designed to explore the effect of UA on Dox cardiotoxicity and mechanisms involved. Our results indicated that UA alleviated Dox-induced cardiac dysfunction exhibited by echocardiographic parameters and histological analyses, and partially relieved Dox-induced apoptosis in vitro and in vivo, and mitochondrial dysfunction including ΔΨm dissipation and ROS production in vitro. The ability of UA to facilitate restoration of mitophagy in mice and H9C2s underscored its advantageous effects, manifested as upregulation of mitophagy-related proteins, including p62, LC3, PINK1 and Parkin, as well as the co-location between LC3 and mitochondria. Incubation with 3 -MA nearly reversed the UA-evoked rise of mitophagy-related proteins, and inhibition of apoptosis. Given that knockdown of Ambra1 almost abolished UA-induced protective effect, the enhanced expression of Ambra1 owing to UA increased PINK1 levels by inhibiting its degradation via LONP1. Collectively, our results suggest that the cardioprotective properties of UA depend on the stimulation of PINK1-dependent mitophagy through promoting Ambra1 expression to inhibit PINK1 degradation by LONP1. This highlights UA's potential as a valuable treatment option and its importance in cardioprotective strategies against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Xinyue Liang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
19
|
Peñata-Taborda A, Espitia-Pérez P, Espitia-Pérez L, Coneo-Pretelt A, Brango H, Ricardo-Caldera D, Arteaga-Arroyo G, Jiménez-Vidal L, Galeano-Páez C, Pastor-Sierra K, Humanez-Alvarez A, Bru-Cordero O, Jones-Cifuentes N, Rincón-Orozco B, Mendez-Sanchez S, Negrette-Guzmán M. Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. Int J Mol Sci 2025; 26:1013. [PMID: 39940782 PMCID: PMC11817897 DOI: 10.3390/ijms26031013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Considering the limitations of monotherapies due to chemoresistance and side effects, this research aimed to determine whether low doses of sulforaphane (SFN) combined with docetaxel (DCT) could enhance therapeutic efficacy. Prostate cancer cell lines LNCaP and PC-3 were treated with individual IC50 doses of SFN and DCT and half-reduced IC50 values for the SFN:DCT combination. Metabolic markers, including glucose consumption, lactate production, reactive oxygen species (ROS), mitochondrial mass, and caspase activity, were assessed. In LNCaP cells, the SFN:DCT combination reduced cell viability to 50%, comparable to DCT monotherapy (48%). Caspase 3 activation was also higher with SFN:DCT (2.4 ± 0.75 RFU) than DCT alone (2.1 ± 0.47 RFU), while caspase 8 activation remained comparable, indicating equivalent effectiveness at lower concentrations. In PC-3 cells, the combination induced caspase 3 activation (1.16 ± 0.0484 RFU) at levels slightly lower than DCT (1.51 ± 0.2062 RFU) but achieved greater reductions in mitochondrial mass, reflecting its ability to target metabolic vulnerabilities in aggressive phenotypes. Our findings suggest that the SFN:DCT combination is a promising strategy for early-stage prostate cancer. By achieving comparable efficacy to DCT monotherapy at low doses, the SFN:DCT combination maintains the therapeutic impact, mitigating the adverse effects of conventional DCT treatment.
Collapse
Affiliation(s)
- Ana Peñata-Taborda
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Hugo Brango
- Facultad de Educación y Ciencias, Departamento de Matemáticas, Universidad de Sucre, Sincelejo 700003, Colombia;
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia;
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Alicia Humanez-Alvarez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Osnamir Bru-Cordero
- Dirección Académica, Universidad Nacional de Colombia, Kilómetro 9, Vía Valledupar-La Paz, La Paz 202010, Colombia;
| | - Nathalia Jones-Cifuentes
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Bladimiro Rincón-Orozco
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Stelia Mendez-Sanchez
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Mario Negrette-Guzmán
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| |
Collapse
|
20
|
Zhou Y, Wang L, Sun L, Tan R, Wang Z, Pei R. Progress in Chinese medicine monomers and their nanoformulations on myocardial ischemia/reperfusion injury. J Mater Chem B 2025; 13:1159-1179. [PMID: 39670754 DOI: 10.1039/d4tb02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the entire process of myocardial injury resulting from ischemia and hypoxia following acute myocardial infarction, which involves complicated pathogenesis including energy metabolism disorders, calcium overload, oxidative stress and mitochondrial dysfunction. Traditional Chinese medicine (TCM) has attracted intensive attention in the treatment of MIRI owing to its multitarget therapeutic effects and low systemic toxicity. Increasing evidence indicates the promising application of TCM on the protection of cardiomyocytes, improvement of endothelial cell functions and regulation of energy metabolism and inflammatory response. Although the efficacy of TCM has been well-proven, the underlying mechanisms remain unclear. Additionally, the clinical application of much TCM had been hampered due to its low aqueous solubility, poor gastrointestinal absorption, and decreased bioavailability. In this review, we examined the pathological mechanism of MIRI and highlighted recent research studies on the therapeutic effects and molecular mechanisms of monomer compounds derived from TCM. We also summarized the latest studies in nanoformulation-based strategies for improving the targeting and stability of TCM monomers and exerting synergistic effects. The aim of this study was to provide a scientific basis for the treatment of MIRI with TCM monomers combined with nanomaterials, revealing their clinical significance and development prospects.
Collapse
Affiliation(s)
- Yanrong Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Li Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
21
|
Liu J, Zhang F, Yan Z, Guo Z, Lu Y, Yao B, Li Y, Lv W. Effects of prolonged NaHCO 3 exposure on the serum immune function, antioxidant capacity, intestinal tight junctions, microbiota, mitochondria, and autophagy in crucian carp (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117571. [PMID: 39708453 DOI: 10.1016/j.ecoenv.2024.117571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the effects of long-term NaHCO3 stress on serum immunity, antioxidant capacity, intestinal tight junction, intestinal microbiota, mitochondrial function and autophagy in crucian carp. A total of 240 fish (31.19 ± 1.03 g) were randomly allocated to two groups and treated with 0 mmol/L (CK) and 50 mmol/L NaHCO3 (CA) respectively, to simulate the carbonate alkaline water environment. All of the experimental fish were cultured for 8 weeks. The results showed that compared to the control group, NaHCO3 stress significantly decreased the levels of the serum immunity indices (AKP, ACP, C3, C4, IgM, LZM) and the antioxidant capacity indices (CAT, GSH-PX, SOD, T-AOC), while markedly increasing the content of MDA. Additionally, NaHCO3 influenced the mRNA expression of HSP90, Nrf2, Keap1, and HO-1. Compared to the control group, the levels of ZO-1, Claudin-2, Occludin-a, and Occludin-b mRNA significantly decreased in the NaHCO3 stress group. The levels of ATG5, ATG7, and Beclin1 mRNA and protein were significantly increased along with the levels of LC3b mRNA and the ratio of protein LC3 II /LC3 I. Compared to the control group, intestinal mitochondria in the NaHCO3 stress group were visibly swollen and largely broken, with reductions in ridges and a large proportion of the area dissolved in the matrix. The mitochondrial membrane potential and the activities of ATPase were significantly decreased, leading to mitochondria dysfunction. In addition, 3147 differentially expressed genes were identified from transcriptome sequencing, among which several genes related to mitochondria and autophagy were significantly enriched. Compared to the control group, the NaHCO3 stress decreased the ACE index and increased the abundance of Proteobacteria while decreased the abundance of Actinobacteria and Firmicutes. In conclusion, NaHCO3 induced oxidative damage, microbiota alterations, mitochondria dysfunction, and autophagy in the intestines of crucian carp. The results of this study have characterized the molecular mechanisms of intestinal injury in crucian carp caused by NaHCO3 stress, and thus provide empirical support for aquaculture in saline-alkali waters.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Faye Zhang
- Georgia Institute of Technology, Atlanta, USA
| | - Zihao Yan
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Zhengyao Guo
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Lu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Baolan Yao
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Wenfa Lv
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
22
|
Gad ES, Aldossary SA, El-Ansary MR, Abd El-Galil MM, Abd-El-Hamid AH, El-Ansary AR, Hassan NF. Cilostazol counteracts mitochondrial dysfunction in hepatic encephalopathy rat model: Insights into the role of cAMP/AMPK/SIRT1/ PINK-1/parkin hub and p-CREB /BDNF/ TrkB neuroprotective trajectory. Eur J Pharmacol 2025; 987:177194. [PMID: 39667427 DOI: 10.1016/j.ejphar.2024.177194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A devasting stage of chronic hepatic dysfunction is strictly correlated with neurological impairment, signifying hepatic encephalopathy (HE). HE is a multifactorial condition; therefore, hyperammonemia, oxidative stress, neuroinflammation, and mitochondrial dysfunction interplay in HE's progressive development. Cilostazol (Cilo) has shown promising neuroprotective and hepatoprotective effectiveness in different neuronal and hepatic disorders; however, its efficiency against HE hasn't yet been explored. This study aimed to investigate the protective role of Cilo against thioacetamide (TAA)-induced HE in rats targeting mitochondrial dysfunction via modulation of Adenosine monophosphate-activated protein kinase (AMPK)/Silent information regulator 1 (SIRT1) dependent pathways. Rats were allocated into three groups: the normal control group, the TAA group received (100 mg/kg, three times per week, for six weeks) to induce HE, and the Cilo group received (Cilo 100 mg/kg/day for six weeks, oral gavage) concurrently with TAA. Cilo counteracted HE indicated in the enhancement of cognitive impairment and the motor performance of rats (P < 0.0001), modulation AMPK/SIRT1signaling pathway causing reduction of NF-kB p65 (P < 0.0001) evoked inflammation along with histopathological alterations and glial fibrillary acidic protein (GFAP) immunoreactivity (P < 0.0001), restoration nuclear factor E2-related factor 2 (Nrf2) (P < 0.0001) antioxidant effects, reduction of Bax and elevation of Bcl2 immunoreactivity (P < 0.0001) in addition to boosting mitochondrial biogenesis by upregulation of PTEN-induced kinase-1 (PINK-1)/Parkin (P < 0.0001)and restoration of Brain-derived neurotrophic factor (BDNF) (P = 0.0002)/tropomyosin-related kinase B (TrkB) (P < 0.0001)/cAMP response element-binding (CREB) (P < 0.0001) neuroprotective axis. Collectively, Cilo activates the SIRT1 trajectory to abridge mitochondrial dysfunction invigorated in the HE rat model via restoration of mitochondrial hemostasis.
Collapse
Affiliation(s)
- Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
23
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
24
|
Li W, Zhang Y, Wei Y, Ling G, Zhang Y, Li Y, Guo S, Tan N, Ma L, Li W, Sun Q, Wang W, Wang Y. New insights into mitochondrial quality control in anthracycline-induced cardiotoxicity: molecular mechanisms, therapeutic targets, and natural products. Int J Biol Sci 2025; 21:507-523. [PMID: 39781459 PMCID: PMC11705644 DOI: 10.7150/ijbs.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
Anthracyclines (ANTs) are widely used in cancer therapy, particularly for lymphoma, sarcoma, breast cancer, and childhood leukemia, and have become the cornerstone of chemotherapy for various malignancies. However, it is associated with fatal and dose-dependent cardiovascular complications, especially cardiotoxicity. Mitochondrial quality control mechanisms, encompassing mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, maintain mitochondrial homeostasis in the cardiovascular system. Recent studies have highlighted that mitochondrial quality control mechanisms play considerable roles in ANTs-induced cardiotoxicity (AIC). In addition, natural products targeting mitochondrial quality control mechanisms have emerged as potential therapeutic strategies to alleviate AIC. This review summarizes the types, incidence, prevention, treatment, and pathomechanism of AIC, delves into the molecular mechanisms of mitochondrial quality control in the pathogenesis of AIC, and explores natural products that target these mechanisms, so as to provide potential targets and therapeutic drugs for address the clinical challenges in AIC prevention and treatment, where no effective medicines are available.
Collapse
Affiliation(s)
- Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yilin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shujuan Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- Anhui University of Traditional Chinese Medicine, Anhui 230012, China
| | - Lin Ma
- Anhui University of Traditional Chinese Medicine, Anhui 230012, China
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| |
Collapse
|
25
|
Luo X, Zhang S, Wang L, Li J. Pathological roles of mitochondrial dysfunction in endothelial cells during the cerebral no-reflow phenomenon: A review. Medicine (Baltimore) 2024; 103:e40951. [PMID: 39705421 PMCID: PMC11666140 DOI: 10.1097/md.0000000000040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance. As integral components of the cerebral microvascular structure, endothelial cells (ECs) attach importance to regulating microcirculatory blood flow. Unlike neurons and microglia, ECs harbor a relatively low abundance of mitochondria, acting as key sensors of environmental and cellular stress in regulating the viability, structural integrity, and function of ECs rather than generating energy. Mitochondria dysfunction including increased mitochondrial reactive oxygen species levels and disturbed mitochondrial dynamics causes endothelial injury, further causing microcirculation disturbance involved in the cerebral no-reflow phenomenon. Therefore, this review aims to discuss the role of mitochondrial changes in regulating the role of ECs and cerebral microcirculation blood flow during I/R injury. The outcomes of the review will provide promising potential therapeutic targets for future prevention and effective improvement of the cerebral no-reflow phenomenon.
Collapse
Affiliation(s)
- Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaotao Zhang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longbing Wang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
27
|
Zhou YT, Li S, Du SL, Zhao JH, Cai YQ, Zhang ZQ. The multifaceted role of macrophage mitophagy in SiO 2-induced pulmonary fibrosis: A brief review. J Appl Toxicol 2024; 44:1854-1867. [PMID: 38644760 DOI: 10.1002/jat.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Prolonged exposure to environments with high concentrations of crystalline silica (CS) can lead to silicosis. Macrophages play a crucial role in the pathogenesis of silicosis. In the process of silicosis, silica (SiO2) invades alveolar macrophages (AMs) and induces mitophagy which usually exists in three states: normal, excessive, and/or deficiency. Different mitophagy states lead to corresponding toxic responses, including successful macrophage repair, injury, necrosis, apoptosis, and even pulmonary fibrosis. This is a complex process accompanied by various cytokines. Unfortunately, the details have not been fully systematically summarized. Therefore, it is necessary to elucidate the role of macrophage mitophagy in SiO2-induced pulmonary fibrosis by systematic analysis on the literature reports. In this review, we first summarized the current data on the macrophage mitophagy in the development of SiO2-induced pulmonary fibrosis. Then, we introduce the molecular mechanism on how SiO2-induced mitophagy causes pulmonary fibrosis. Finally, we focus on introducing new therapies based on newly developed mitophagy-inducing strategies. We conclude that macrophage mitophagy plays a multifaceted role in the progression of SiO2-induced pulmonary fibrosis, and reprogramming the macrophage mitophagy state accordingly may be a potential means of preventing and treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Department of Public Health, Shandong First Medical University, Jinan, China
- Department of Public Health, Jining Medical University, Jining, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, China
| | - Shu-Ling Du
- Department of Public Health, Jining Medical University, Jining, China
| | - Jia-Hui Zhao
- Department of Public Health, Jining Medical University, Jining, China
| | | | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
28
|
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403907. [PMID: 39344577 DOI: 10.1002/smll.202403907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Abnormal osteogenic and remodeling microenvironment due to osteoblast apoptosis are the primary causes of delayed fracture healing in osteoporotic patients. Magnesium (Mg) alloys exhibit biodegradability and appropriate elastic moduli for bone defects in osteoporosis, but the effect on the local bone remodeling disorder is still insufficient. Inspired by the "honeycomb," layered double hydroxide (LDH) with regular traps with graphene oxide quantum dots (GOQDs) inlayed is constructed by pulsed electrodeposition to generate GOQD/LDH composite nanocoatings on the surfaces of Mg alloy substrates. The honeycomb bionic multi-layer stereoscopic structure shows good regulation of the degradation of Mg alloy for the support of healing time required for osteoporotic bone defect. Within its lattice, the local microenvironment conducive to osteogenesis is provided by both the rescue effect of GOQD and LDH. The osteoblast apoptosis is rescued due to the activation of mitophagy to clear dysfunctional mitochondria, where the upregulation of BNIP3 phosphorylation played a key role. The osteoporotic rat model of femoral defects confirmed the improvement of bone regeneration and osseointegration of GOQD/LDH coating. In summary, honeycomb bionic composite nanocoatings with controllable degradation and excellent pro-osteogenic performance demonstrated a promising design strategy on Mg alloy implants in the therapy of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jianrong Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
29
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
30
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Zhong Z, Yang K, Tang S, Ma T. Icariin alleviates cellular injury induced by cardiac ischemia-reperfusion injury by inhibiting IRE1/JNK-induced ferroptosis. Biochem Biophys Res Commun 2024; 733:150716. [PMID: 39321486 DOI: 10.1016/j.bbrc.2024.150716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Ischemia-induced cellular damage and stress responses significantly impact cellular viability and function. Icariin (ICA), known for its protective effects, has been studied to understand its role in mitigating oxygen-glucose deprivation/reperfusion (OGD/R)-induced endoplasmic reticulum (ER) stress and ferroptosis in H9C2 cardiomyoblast cells. METHODS We employed an in vitro OGD/R model using H9C2 cells. ICA's effects were analyzed across multiple concentrations. Key indicators of ER stress, autophagy, and ferroptosis-including markers like Bip, PERK, IRE1, ATF6, P62, FTH1, LC3II/LC3I, and NCOA4-were assessed using Western blotting, electron microscopy, and biochemical assays. Additionally, the role of the IRE1/JNK pathway in mitochondrial dynamics and its influence on mitochondrial dynamics protein was explored through specific inhibition and activation experiments. RESULTS ICA significantly reduced the activation of UPR pathways, decreased autophagic vacuole formation, and maintained cell viability in response to OGD/R and Erastin-induced ferroptosis. These protective effects were associated with modulated autophagic processes, reduced lipid peroxidation, and decreased ferrous ion accumulation. Inhibition of the IRE1/JNK pathway and subsequent Drp1 activity demonstrated reduced mitochondrial recruitment and mitophagy, correlating with decreased ferroptosis markers and improved cell survival. CONCLUSION Our findings highlight ICA's potential in modulating IRE1/JNK pathway, autophagy, providing a therapeutic avenue for mitigating ferroptosis in myocardial ischemia-reperfusion injury (MIRI).
Collapse
Affiliation(s)
- Zanrui Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kun Yang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Shilin Tang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Tianyi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.
| |
Collapse
|
32
|
Wu Y, Liu R, Wei C, Wang X, Wu X, Li Y, Xu M. Exogenous Nucleotides Mitigate Cardiac Aging in SAMP8 Mice by Modulating Energy Metabolism Through AMPK Pathway. Nutrients 2024; 16:3851. [PMID: 39599637 PMCID: PMC11597617 DOI: 10.3390/nu16223851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the predominant cause of mortality, with aging being a significant risk factor. Nucleotides (NTs), essential for numerous biological functions, are particularly vital under conditions like aging, starvation, and nutrient deficiency. Although the antiaging benefits of exogenous NTs have been recognized in various systems, their cardiac-specific effects are not well understood. This study, therefore, investigated the impact of exogenous NTs on cardiac aging and delved into the potential mechanisms. METHODS Senescence-accelerated mouse prone-8 (SAMP8) mice were utilized, randomly assigned to one of three groups: a control group (Control), a low-dose NTs group (NTs_L), and a high-dose NTs group (NTs_H). Meanwhile, senescence-accelerated mouse resistant 1 (SAMR1) mice were set up as the SAMR1 group. Following a 9-month intervention, cardiac tissues were subjected to analysis. RESULTS The results showed that NTs improved the morphological structure of the cardiac tissue, enhanced the antioxidant capacity, and mitigated inflammation. Metabolomics analysis revealed that the high-dose NT intervention improved cardiac tissue energy metabolism, potentially through activating the AMPK pathway, enhanced mitochondrial biogenesis, and increased TFAM protein expression. CONCLUSIONS Together, these results indicate that exogenous NTs exert beneficial effects on the cardiac tissues of SAMP8 mice, potentially mitigating the cardiac aging process.
Collapse
Affiliation(s)
- Yuxiao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Ding P, Pei S, Qu Z, Yang Y, Liu Q, Kong X, Wang Z, Wang J, Fang Y. Single-cell sequencing unveils mitophagy-related prognostic model for triple-negative breast cancer. Front Immunol 2024; 15:1489444. [PMID: 39559367 PMCID: PMC11570810 DOI: 10.3389/fimmu.2024.1489444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking hormone receptors and HER2 expression, leading to limited treatment options and poor prognosis. Mitophagy, a selective autophagy process targeting damaged mitochondria, plays a complex role in cancer progression, yet its prognostic significance in TNBC is not well understood. Methods This study utilized single-cell RNA sequencing data from the TCGA and GEO databases to identify mitophagy-related genes (MRGs) associated with TNBC. A prognostic model was developed using univariate Cox analysis and LASSO regression. The model was validated across multiple independent cohorts, and correlations between MRG expression, immune infiltration, and drug sensitivity were explored. Results Nine key MRGs were identified and used to stratify TNBC patients into high-risk and low-risk groups, with the high-risk group showing significantly worse survival outcomes. The model demonstrated strong predictive accuracy across various datasets. Additionally, the study revealed a correlation between higher MRG expression levels and increased immune cell infiltration, as well as potential responsiveness to specific chemotherapeutic agents. Conclusion The mitophagy-related prognostic model offers a novel method for predicting outcomes in TNBC patients and highlights the role of mitophagy in influencing the tumor microenvironment, with potential applications in personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Zou X, Wen S, Xu L, Gao L, Wang X, Hu X, Han J, Han S. Signal-Sustained Imaging of Mitophagy with an Enzyme-Activatable Metabolic Lipid Labeling Probe. Autophagy 2024; 20:2556-2570. [PMID: 38873937 PMCID: PMC11572071 DOI: 10.1080/15548627.2024.2367192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Imaging of mitophagy is of significance as aberrant mitophagy is engaged in multiple diseases. Mitophagy has been imaged with synthetic or biotic pH sensors by reporting pH acidification en route delivery into lysosomes. To circumvent uncertainty of acidity-dependent signals, we herein report an enzyme-activatable probe covalently attached on mitochondrial inner membrane (ECAM) for signal-persist mitophagy imaging. ECAM is operated via ΔΨm-driven accumulation of Mito-proGreen in mitochondria and covalent linking of the trapped probe with azidophospholipids metabolically incorporated into the mitochondrial inner membrane. Upon mitophagy, ECAM is delivered into lysosomes and hydrolyzed by LNPEP/leucyl aminopeptidase, yielding turn-on green fluorescence that is immune to lysosomal acidity changes and stably retained in fixed cells. With ECAM, phorbol-12-myristate-13-acetate (PMA) was identified as a highly potent inducer of mitophagy. Overcoming signal susceptibility of pH probes and liability of ΔΨm probes to dissipation from stressed mitochondria, ECAM offers an attractive tool to study mitophagy and mitophagy-inducing therapeutic agents.Abbreviations: Baf-A1, bafilomycin A1; CCCP, carbonyl cyanide m-chlorophenylhydrazone; DBCO, dibenzocyclooctyne; ECAM, enzyme-activated probe covalently attached on mitochondrial inner membrane; GFP, green fluorescent protein; LAMP2, lysosomal associated membrane protein 2; LNPEP/LAP, leucyl and cystinyl aminopeptidase; PMA, phorbol-12-myristate-13-acetate; ΔΨm, mitochondrial transmembrane potential; RFP, red fluorescent protein; TPP, triphenylphosphonium.
Collapse
Affiliation(s)
- Xiaoxue Zou
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Shixiong Wen
- State key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Lichun Xu
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Lei Gao
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Xunxiang Wang
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao Hu
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shoufa Han
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China
- Academician Workstation of Immune Cell Signal Transduction, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
36
|
Kong Z, Pan H, Wang Z, Abla A, Wei Y. Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals (Basel) 2024; 14:3016. [PMID: 39457946 PMCID: PMC11505235 DOI: 10.3390/ani14203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia in the mammary gland epithelial cells of milk buffalo (BMECs) can affect milk yield and composition, and it can even cause metabolic diseases. Nitidine chloride (NC) is a natural alkaloid with antioxidant properties that can scavenge excessive reactive oxygen species (ROS). However, the effect of NC on the hypoxic injury of BMECs and its molecular mechanisms are still unknown. Here, an immunofluorescence assay, transmission electron microscopy (TEM), and flow cytometry, combined with untargeted metabolomics, were used to investigate the protective effect of NC on hypoxic stress injury in BMECs. It was found that NC can significantly reduce cell activity (p < 0.05) and inhibit cellular oxidative stress (p < 0.05) and cell apoptosis (p < 0.05). A significant decrease in mitophagy mediated by the PINK1-Parkin pathway was observed after NC pretreatment (p < 0.05). In addition, a metabolic pathway enrichment analysis demonstrated that the mechanisms of NC against hypoxic stress may be related to the downregulation of pathways involving aminoacyl tRNA biosynthesis; arginine and proline metabolism; glycine, serine, and threonine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Thus, NC has a protective effect on hypoxic mitochondria, and it can regulate amino acid metabolism in response to hypoxic stress. The present study provides a reference for the application of nitidine chloride to regulate the mammary lactation function of milk buffalo.
Collapse
Affiliation(s)
- Zhiwei Kong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Haichang Pan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Zi Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Alida Abla
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Yingming Wei
- Institute for Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
37
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Xu L, Chen L, Liu H, Chen X, Zhang S. In vivo targeted-imaging of mitochondrial acidification in an aristolochic acid I-induced nephrotoxicity mouse model by a fluorescent/photoacoustic bimodal probe. Mater Today Bio 2024; 28:101240. [PMID: 39309164 PMCID: PMC11415585 DOI: 10.1016/j.mtbio.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.
Collapse
Affiliation(s)
- Li Xu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
- The School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xingwang Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
| |
Collapse
|
39
|
Poznyak AV, Orekhov NA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov AN. Mitochondrial Dysfunction in Systemic Lupus Erythematosus: Insights and Therapeutic Potential. Diseases 2024; 12:226. [PMID: 39329895 PMCID: PMC11430897 DOI: 10.3390/diseases12090226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by the presence of various serum autoantibodies and multi-system effects, predominantly affecting young female patients. The pathogenesis of SLE involves a combination of genetic factors, environmental triggers, and pathogen invasions that disrupt immune cell activation, leading to the release of autoantibodies and chronic inflammation. Mitochondria, as the primary cellular powerhouses, play a crucial role in SLE development through their control of energy generation, reactive oxygen species (ROS) production, and cellular apoptotic pathways. Dysregulation of mitochondrial structure and function can contribute to the immune dysregulation, oxidative stress, and inflammation seen in SLE. Recent research has highlighted the impact of mitochondrial dysfunction on various immune cells involved in SLE pathogenesis, such as T-lymphocytes, B-lymphocytes, neutrophils, and plasmacytoid dendritic cells. Mitochondrial dysfunction in these immune cells leads to increased ROS production, disrupted mitophagy, and alterations in energy metabolism, contributing to immune dysregulation and inflammation. Moreover, genetic variations in mitochondrial DNA (mtDNA) and abnormalities in mitochondrial dynamics have been linked to the pathogenesis of SLE, exacerbating oxidative stress and immune abnormalities. Targeting mitochondrial function has emerged as a promising therapeutic approach for SLE. Drugs such as sirolimus, N-acetylcysteine, coenzyme Q10, and metformin have shown potential in restoring mitochondrial homeostasis, reducing oxidative stress, and modulating immune responses in SLE. These agents have demonstrated efficacy in preclinical models and clinical studies by improving disease activity, reducing autoantibody titers, and ameliorating organ damage in SLE patients. In conclusion, this review underscores the critical role of mitochondria in the pathogenesis of SLE and the potential of targeting mitochondrial dysfunction as a novel therapeutic strategy for improving outcomes in SLE patients. Further investigation into the mechanisms underlying mitochondrial involvement in SLE and the development of targeted mitochondrial therapies hold promise for advancing SLE treatment and enhancing patient care.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Nikolay A Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexey V Churov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Russian Gerontology Clinical Research Centre, Institute on Aging Research, Pirogov Russian National Research Medical University, Russian Federation, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A Starodubtseva
- Department of Polyclinic Therapy, N.N. Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia
| | - Tatiana I Kovyanova
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Vasily N Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
40
|
Wang Y, Pan R, Hu J. Impact of acute heat stress on mitochondrial function, ultrastructure and cardiolipin distribution in Arabidopsis. ABIOTECH 2024; 5:362-367. [PMID: 39279852 PMCID: PMC11399366 DOI: 10.1007/s42994-024-00151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024]
Abstract
Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.
Collapse
Affiliation(s)
- Yukang Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
41
|
Kong Q, Zhu Q, Yang Y, Wang W, Qian J, Chen Y. Current status and trend of mitochondrial research in lung cancer: A bibliometric and visualization analysis. Heliyon 2024; 10:e34442. [PMID: 39144972 PMCID: PMC11320136 DOI: 10.1016/j.heliyon.2024.e34442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
This study summarizes and analyzes the relationship between mitochondria and the pathogenesis of lung cancer. The related articles in the Web of Science core literature database are searched and collected, and the data are processed by R software, Citespace, VOSviewer, and Excel. A total of 4476 related papers were retrieved, 4476 articles from 20162 co-authors of 3968 institutions in 84 countries and published in 951 journals. Through various bibliometric analysis tools, the relationship between mitochondria and the pathogenesis of lung cancer was analyzed, the previous research results were summarized, and the potential research direction was found.
Collapse
Affiliation(s)
- Qing Kong
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Qingyong Zhu
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Wei Wang
- Clinical Medical College, Weifang Medical University, Weifang, 261053, PR China
| | - Juan Qian
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Yong Chen
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
42
|
Cui X, Zhou Z, Tu H, Wu J, Zhou J, Yi Q, Liu O, Dai X. Mitophagy in fibrotic diseases: molecular mechanisms and therapeutic applications. Front Physiol 2024; 15:1430230. [PMID: 39183973 PMCID: PMC11341310 DOI: 10.3389/fphys.2024.1430230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Mitophagy is a highly precise process of selective autophagy, primarily aimed at eliminating excess or damaged mitochondria to maintain the stability of both mitochondrial and cellular homeostasis. In recent years, with in-depth research into the association between mitophagy and fibrotic diseases, it has been discovered that this process may interact with crucial cellular biological processes such as oxidative stress, inflammatory responses, cellular dynamics regulation, and energy metabolism, thereby influencing the occurrence and progression of fibrotic diseases. Consequently, modulating mitophagy holds promise as a therapeutic approach for fibrosis. Currently, various methods have been identified to regulate mitophagy to prevent fibrosis, categorized into three types: natural drug therapy, biological therapy, and physical therapy. This review comprehensively summarizes the current understanding of the mechanisms of mitophagy, delves into its biological roles in fibrotic diseases, and introduces mitophagy modulators effective in fibrosis, aiming to provide new targets and theoretical basis for the investigation of fibrosis-related mechanisms and disease prevention.
Collapse
Affiliation(s)
- Xinyan Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Zekun Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiao Yi
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Cavinato M, Martic I, Wedel S, Pittl A, Koziel R, Weinmmüllner R, Schosserer M, Jenewein B, Bobbili MR, Arcalis E, Haybaeck J, Pierer G, Ploner C, Hermann M, Romani N, Schmuth M, Grillari J, Jansen‐Dürr P. Elimination of damaged mitochondria during UVB-induced senescence is orchestrated by NIX-dependent mitophagy. Aging Cell 2024; 23:e14186. [PMID: 38761001 PMCID: PMC11320349 DOI: 10.1111/acel.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024] Open
Abstract
Skin aging is the result of two types of aging, "intrinsic aging" an inevitable consequence of physiologic and genetically determined changes and "extrinsic aging," which is dependent on external factors such as exposure to sunlight, smoking, and dietary habits. UVB causes skin injury through the generation of free radicals and other oxidative byproducts, also contributing to DNA damage. Appearance and accumulation of senescent cells in the skin are considered one of the hallmarks of aging in this tissue. Mitochondria play an important role for the development of cellular senescence, in particular stress-induced senescence of human cells. However, many aspects of mitochondrial physiology relevant to cellular senescence and extrinsic skin aging remain to be unraveled. Here, we demonstrate that mitochondria damaged by UVB irradiation of human dermal fibroblasts (HDF) are eliminated by NIX-dependent mitophagy and that this process is important for cell survival under these conditions. Additionally, UVB-irradiation of human dermal fibroblasts (HDF) induces the shedding of extracellular vesicles (EVs), and this process is significantly enhanced in UVB-irradiated NIX-depleted cells. Our findings establish NIX as the main mitophagy receptor in the process of UVB-induced senescence and suggest the release of EVs as an alternative mechanism of mitochondrial quality control in HDF.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Ines Martic
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Sophia Wedel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Annabella Pittl
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
- Present address:
Department of Internal Medicin V, Hematology & OncologyTirol Kliniken InnsbruckInnsbruckAustria
| | - Rafal Koziel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Present address:
Biosens Labs Ltd.WarsawPoland
| | - Regina Weinmmüllner
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Markus Schosserer
- Institute of Medical Genetics, Center for Pathobiochemistry and GeneticsMedical University ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Brigitte Jenewein
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Elsa Arcalis
- Institut für Pflanzenbiotechnologie und ZellbiologieUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
- Department of PathologySaint Vincent Hospital ZamsZamsAustria
- Department of Pathology, Labor TeamGoldachSwitzerland
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Johannes Grillari
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Pidder Jansen‐Dürr
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| |
Collapse
|
44
|
Lin R, Peng X, Li Y, Wang X, Liu X, Jia X, Zhang C, Liu N, Dong J. Empagliflozin attenuates doxorubicin-impaired cardiac contractility by suppressing reactive oxygen species in isolated myocytes. Mol Cell Biochem 2024; 479:2105-2118. [PMID: 37648958 DOI: 10.1007/s11010-023-04830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
In animal studies, sodium-glucose co-transporter-2 inhibitors-such as empagliflozin-have been shown to improve heart failure and impaired cardiac contractility induced by anthracyclines-including doxorubicin-although the therapeutic mechanism remains unclear. Moreover, abnormalities in Ca2+ handling within ventricular myocytes are the predominant feature of heart failure. Accordingly, this study aimed to investigate whether empagliflozin can alleviate Ca2+ handling disorders induced by acute doxorubicin exposure and elucidate the underlying mechanisms. To this end, ventricular myocytes were isolated from C57BL/6 mice. Contraction function, Ca2+ handling, and mitochondrial reactive oxygen species (ROS) generation were then evaluated using IonOptix or confocal microscopy. Ca2+ handling proteins were detected by western blotting. Results show that incubation with 1 μmol/L of doxorubicin for 120-min impaired cardiac contractility in isolated myocytes, which was significantly alleviated by pretreatment with 1 μmol/L of empagliflozin. Doxorubicin also markedly induced Ca2+ handling disorders, including decreased Ca2+ transients, prolonged Ca2+ transient decay time, enhanced frequency of Ca2+ sparks, and decreased Ca2+ content in the sarcoplasmic reticulum. These dysregulations were improved by pretreatment with empagliflozin. Moreover, empagliflozin effectively inhibited doxorubicin-induced mitochondrial ROS production in isolated myocytes and rescued doxorubicin-induced oxidation of Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) and CaMKII-dependent phosphorylation of RyR2. Similarly, preincubation with 10 μmol/L Mito-TEMPO mimicked the protective effects of empagliflozin. Collectively, Empagliflozin ameliorated the doxorubicin-induced contraction malfunction and Ca2+-handling disorders. These findings suggest that empagliflozin alleviates Ca2+-handling disorders by improving ROS production in the mitochondria and alleviating the enhanced oxidative CaMKII signaling pathway induced by doxorubicin.
Collapse
Affiliation(s)
- Rong Lin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China
- North China Medical & Health Group XingTai General Hospital, Xingtai, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xuesi Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xinmeng Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xingze Jia
- North China Medical & Health Group XingTai General Hospital, Xingtai, China
| | - Chengjun Zhang
- North China Medical & Health Group XingTai General Hospital, Xingtai, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China.
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No 2. Anzhen Road, Chaoyang, 100029, Beijing, China.
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
45
|
Yang S, Xu Y, Ahmad T, Deng Q, Gan Z, Yang Y, Yun H, Dong Z, Tu S. Mdivi-1 alleviates ferroptosis induced by hypoxia combined with propofol in HT22 cells by inhibiting excessive mitophagy. Mol Biol Rep 2024; 51:870. [PMID: 39080104 DOI: 10.1007/s11033-024-09812-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Pediatric postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery. Hypoxia and propofol are the primary risk factors contributing to pediatric POCD. Our previous in vivo animal research has demonstrated that cognitive dysfunction in immature Sprague-Dawley (SD) rats, induced by hypoxia combined with propofol (HCWP), is closely associated with hippocampal neuron ferroptosis. METHODS AND RESULTS In vivo transcriptome sequencing and KEGG functional analysis revealed significant enrichment of the mitophagy pathway. To further elucidate the relationship between mitophagy and ferroptosis, HT22 cells were selected to construct an in vitro HCWP model. Our findings indicate that HCWP activates excessive mitophagy in HT22 cells, leading to decreased mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) burst, mitochondrial fragmentation, and the induction of ferroptosis. To explore this causal relationship further, we employed Mdivi-1, a mitophagy inhibitor. Notably, low-dose Mdivi-1 (10 µM) effectively suppressed excessive mitophagy in HT22 cells, improved mitochondrial function and morphology, and mitigated markers associated with ferroptosis. The mechanism by which Mdivi-1 alleviates HCWP-induced ferroptosis in HT22 cells is likely due to its inhibition of excessive mitophagy, thereby promoting mitochondrial homeostasis. CONCLUSIONS Our study suggests that mitophagy may be an upstream event in HCWP-induced ferroptosis in HT22 cells. Consequently, targeted regulation of mitophagy by Mdivi-1 may represent a promising approach to prevent cognitive dysfunction following HCWP exposure.
Collapse
Affiliation(s)
- Shun Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Yao Xu
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Tauseef Ahmad
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Qianyu Deng
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Zhengwei Gan
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Ying Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Huanjie Yun
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Shengfen Tu
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China.
| |
Collapse
|
46
|
Li Y, Cui J, Liu L, Hambright WS, Gan Y, Zhang Y, Ren S, Yue X, Shao L, Cui Y, Huard J, Mu Y, Yao Q, Mu X. mtDNA release promotes cGAS-STING activation and accelerated aging of postmitotic muscle cells. Cell Death Dis 2024; 15:523. [PMID: 39039044 PMCID: PMC11263593 DOI: 10.1038/s41419-024-06863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The mechanism regulating cellular senescence of postmitotic muscle cells is still unknown. cGAS-STING innate immune signaling was found to mediate cellular senescence in various types of cells, including postmitotic neuron cells, which however has not been explored in postmitotic muscle cells. Here by studying the myofibers from Zmpste24-/- progeria aged mice [an established mice model for Hutchinson-Gilford progeria syndrome (HGPS)], we observed senescence-associated phenotypes in Zmpste24-/- myofibers, which is coupled with increased oxidative damage to mitochondrial DNA (mtDNA) and secretion of senescence-associated secretory phenotype (SASP) factors. Also, Zmpste24-/- myofibers feature increased release of mtDNA from damaged mitochondria, mitophagy dysfunction, and activation of cGAS-STING. Meanwhile, increased mtDNA release in Zmpste24-/- myofibers appeared to be related with increased VDAC1 oligomerization. Further, the inhibition of VDAC1 oligomerization in Zmpste24-/- myofibers with VBIT4 reduced mtDNA release, cGAS-STING activation, and the expression of SASP factors. Our results reveal a novel mechanism of innate immune activation-associated cellular senescence in postmitotic muscle cells in aged muscle, which may help identify novel sets of diagnostic markers and therapeutic targets for progeria aging and aging-associated muscle diseases.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Jie Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Lei Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - William S Hambright
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Yutai Gan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yajun Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Shifeng Ren
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Xianlin Yue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Liwei Shao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Yan Cui
- Department of Orthopaedic Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Yanling Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| | - Xiaodong Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| |
Collapse
|
47
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
48
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
D'Arcy MS. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis 2024:10.1007/s10495-024-01977-y. [PMID: 38758472 DOI: 10.1007/s10495-024-01977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Mitophagy, a specialised form of autophagy, selectively targeting damaged or dysfunctional mitochondria, and is crucial for maintaining cellular homeostasis and mitochondrial quality control. Dysregulation of mitophagy contributes to various pathological conditions, including cancer, neurodegenerative and cardiovascular diseases. This review presents a comprehensive analysis of the molecular mechanisms, regulatory pathways, and interplay with other cellular processes governing mitophagy, emphasizing its importance in physiological and pathological contexts. We explore the PINK1/Parkin-mediated and receptor-mediated mitophagy pathways, encompassing BNIP3/NIX, FUNDC1, and Bcl2-L-13. Additionally, we discuss post-translational modifications and cellular signalling pathways modulating mitophagy, as well as the connection between mitophagy and ageing, highlighting the decline in mitophagy efficiency and its impact on age-related pathologies. The review also investigates mitophagy's role in human diseases such as cancer, myocardial ischemia-reperfusion injury, Parkinson's, and Alzheimer's disease. We assess the potential of mitophagy-targeting therapeutic strategies, focusing on the development of dietary therapies, small molecules, drugs, and gene therapy approaches that modulate mitophagy levels and efficiency for treating these diseases and dysfunctions commonly observed in ageing individuals. In summary, this review offers an extensive overview of the molecular mechanisms and regulatory networks involved in mitophagy, its association with autophagy, and implications in human health and disease. By examining the potential of mitophagy-modulating therapies in disease and non-disease settings, we aim to inspire further research to develop innovative treatment strategies for various pathological conditions linked to mitochondrial dysfunction and to ageing.
Collapse
Affiliation(s)
- Mark S D'Arcy
- Hertfordshire International College, College Lane, Hatfield, AL10 9AB, UK.
| |
Collapse
|
50
|
Milne B, John M, Evans R, Robertson S, Ó Scanaill P, Murphy GJ, Landoni G, Marber M, Clayton T, Kunst G. Comparison between propofol and total inhalational anaesthesia on cardiovascular outcomes following on-pump cardiac surgery in higher-risk patients: a randomised controlled pilot and feasibility study. Open Heart 2024; 11:e002630. [PMID: 38724266 PMCID: PMC11086547 DOI: 10.1136/openhrt-2024-002630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Myocardial revascularisation and cardiopulmonary bypass (CPB) can cause ischaemia-reperfusion injury, leading to myocardial and other end-organ damage. Volatile anaesthetics protect the myocardium in experimental studies. However, there is uncertainty about whether this translates into clinical benefits because of the coadministration of propofol and its detrimental effects, restricting myocardial protective processes. METHODS In this single-blinded, parallel-group randomised controlled feasibility trial, higher-risk patients undergoing elective coronary artery bypass graft (CABG) surgery with an additive European System for Cardiac Operative Risk Evaluation ≥5 were randomised to receive either propofol or total inhalational anaesthesia as single agents for maintenance of anaesthesia. The primary outcome was the feasibility of recruiting and randomising 50 patients across two cardiac surgical centres, and secondary outcomes included the feasibility of collecting the planned perioperative data, clinically relevant outcomes and assessments of effective patient identification, screening and recruitment. RESULTS All 50 patients were recruited within 11 months in two centres, allowing for a 13-month hiatus in recruitment due to the COVID-19 pandemic. Overall, 50/108 (46%) of eligible patients were recruited. One patient withdrew before surgery and one patient did not undergo surgery. All but one completed in-hospital and 30-day follow-up. CONCLUSIONS It is feasible to recruit and randomise higher-risk patients undergoing CABG surgery to a study comparing total inhalational and propofol anaesthesia in a timely manner and with high acceptance and completion rates. TRIAL REGISTRATION NUMBER NCT04039854.
Collapse
Affiliation(s)
- Benjamin Milne
- Department of Anaesthetics and Pain Therapy, King's College Hospital NHS Foundation Trust, London, UK
| | - Martin John
- Department of Anaesthesia, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Richard Evans
- London School of Hygiene and Tropical Medicine, Medical Statistics, 1 Keppel Street, London WC1E 7HT, UK
| | - Steven Robertson
- London School of Hygiene and Tropical Medicine, Medical Statistics, 1 Keppel Street, London WC1E 7HT, UK
| | - Pádraig Ó Scanaill
- Department of Anaesthetics and Pain Therapy, King's College Hospital NHS Foundation Trust, London, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michael Marber
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Tim Clayton
- London School of Hygiene and Tropical Medicine, Medical Statistics, 1 Keppel Street, London WC1E 7HT, UK
| | - Gudrun Kunst
- Department of Anaesthetics and Pain Therapy, King's College Hospital NHS Foundation Trust, London, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| |
Collapse
|