1
|
Sun Y, Xiao Z, Zhao H, An Y. Serum Dickkopf-3 as a biomarker for predicting acute kidney injury in postoperative intensive care patients. Minerva Anestesiol 2025; 91:306-313. [PMID: 39912573 DOI: 10.23736/s0375-9393.24.18677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and significant complication in the Intensive Care Unit (ICU), affecting more than half of all patients admitted. This condition is associated with increased morbidity and mortality, underscoring the urgent need for accurate and specific biomarkers to enable early diagnosis and intervention. Dickkopf-3 (DKK3) has emerged as a promising candidate biomarker for renal injury. METHODS We conducted a single-center, prospective cohort study from March 1 to July 1, 2023, enrolling 166 non-cardiac postoperative patients admitted to the ICU. Serum and urinary DKK3 levels were quantified using enzyme-linked immunosorbent assay (ELISA) kits. A multifactorial logistic regression model was constructed, incorporating changes in serum creatinine (ΔScr), cystatin C (CysC), serum DKK3 levels, and the serum DKK3 to urine DKK3 ratio. RESULTS Elevated serum DKK3 levels were significantly associated with an increased incidence of AKI and a composite outcome of adverse events (AKI or death). The multifactorial logistic regression model exhibited excellent performance, with an area under the receiver operating characteristic curve (AUC) of 0.98. Decision curve analysis (DCA) demonstrated a net clinical benefit of utilizing serum DKK3 levels to guide treatment decisions, particularly at higher risk thresholds. CONCLUSIONS Serum DKK3 is a robust diagnostic biomarker for AKI, effectively stratifying patients based on protein levels. The predictive model that incorporates DKK3 provides a valuable tool for clinical decision-making in the ICU setting. Further validation in larger and more diverse populations is warranted.
Collapse
Affiliation(s)
- Yao Sun
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Zengli Xiao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China -
| |
Collapse
|
2
|
Sun Y, Xiao Z, Yang S, Hao C, Zhao H, An Y. Advances and insights for DKK3 in non-cancerous diseases: a systematic review. PeerJ 2025; 13:e18935. [PMID: 39959827 PMCID: PMC11830365 DOI: 10.7717/peerj.18935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
This review delves into the role of Dickkopf-3 (DKK3), a secreted glycoprotein and member of the Dickkopf family, in non-malignant diseases. DKK3 is particularly known for its regulatory effects on the Wnt signaling pathway, a critical mediator in various biological processes including cell proliferation, differentiation, and migration. Our review highlights DKK3's influence in disorders of the cardiovascular, respiratory, renal, and muscular systems, where it contributes to disease progression by modulating these key biological processes. As an emerging biomarker, DKK3's levels have been found to correlate with various disease states, underscoring its potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yao Sun
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Zengli Xiao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Shuguang Yang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Chenxiao Hao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Huiying Zhao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Youzhong An
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
3
|
Pan Z, Lv J, Zhao L, Xing K, Ye R, Zhang Y, Chen S, Yang P, Yu H, Lin Y, Li R, Wang D, Fang J, Dong Y, Sheng J, Wang X, Shan G, Zhang S, Cheng H, Xu Q, Guo X. CircARCN1 aggravates atherosclerosis by regulating HuR-mediated USP31 mRNA in macrophages. Cardiovasc Res 2024; 120:1531-1549. [PMID: 39028686 DOI: 10.1093/cvr/cvae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/08/2024] [Accepted: 05/05/2024] [Indexed: 07/21/2024] Open
Abstract
AIMS Circular RNAs (circRNAs) are considered important regulators of biological processes, but their impact on atherosclerosis development, a key factor in coronary artery disease (CAD), has not been fully elucidated. We aimed to investigate their potential use in patients with CAD and the pathogenesis of atherosclerosis. METHODS AND RESULTS Patients with stable angina (SA) or acute coronary syndrome (ACS) and controls were selected for transcriptomic screening and quantification of circRNAs in blood cells. We stained carotid plaque samples for circRNAs and performed gain- and loss-of-function studies in vitro. Western blots, protein interaction analysis, and molecular approaches were used to perform the mechanistic study. ApoE-/- mouse models were employed in functional studies with adeno-associated virus-mediated genetic intervention. We demonstrated elevated circARCN1 expression in peripheral blood mononuclear cells from patients with SA or ACS, especially in those with ACS. Furthermore, higher circARCN1 levels were associated with a higher risk of developing SA and ACS. We also observed elevated expression of circARCN1 in carotid artery plaques. Further analysis indicated that circARCN1 was mainly expressed in monocytes and macrophages, which was also confirmed in atherosclerotic plaques. Our in vitro studies provided evidence that circARCN1 affected the interaction between HuR and ubiquitin-specific peptidase 31 (USP31) mRNA, resulting in attenuated USP31-mediated NF-κB activation. Interestingly, macrophage accumulation and inflammation in atherosclerotic plaques were markedly decreased when circARCN1 was knocked down with adeno-associated virus in macrophages of ApoE-/- mice, while circARCN1 overexpression in the model exacerbated atherosclerotic lesions. CONCLUSIONS Our findings provide solid evidence macrophagic-expressed circARCN1 plays a role in atherosclerosis development by regulating HuR-mediated USP31 mRNA stability and NF-κB activation, suggesting that circARCN1 may serve as a factor for atherosclerotic lesion formation.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Acute Coronary Syndrome/genetics
- Acute Coronary Syndrome/pathology
- Acute Coronary Syndrome/metabolism
- Angina, Stable/genetics
- Angina, Stable/metabolism
- Angina, Stable/pathology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/pathology
- Case-Control Studies
- Coronary Artery Disease/genetics
- Coronary Artery Disease/pathology
- Coronary Artery Disease/metabolism
- Disease Models, Animal
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Gene Expression Regulation
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- NF-kappa B/metabolism
- Plaque, Atherosclerotic
- RAW 264.7 Cells
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Signal Transduction
- THP-1 Cells
- Ubiquitin Thiolesterase/genetics
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin-Specific Proteases/genetics
- Ubiquitin-Specific Proteases/metabolism
Collapse
Affiliation(s)
- Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaidi Xing
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runze Ye
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuesheng Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailong Yu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangkai Lin
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruobing Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Dong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianpeng Sheng
- Zhejiang Province Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, China
| | - Shan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Coban M, Algul Durak B, Sebnem Karakan M. Relationship of Dickkopf-1 With Atherosclerosis and Arterial Stiffness in Renal Transplant Recipients. Transplant Proc 2024; 56:1937-1946. [PMID: 39477726 DOI: 10.1016/j.transproceed.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Dickkopf wingless (Wnt) signaling pathway inhibitor-1 (DKK-1) is a potent antagonist of the WNT canonical signaling pathway. DKK-1 is a substance that exerts anabolic effects on bone and is also involved in vascular cell regulation. The study aimed to determine the relationship of DKK-1 with atherosclerosis as determined by carotid artery intima-media thickness (CA-IMT) and arterial stiffness (AS) as determined by brachial-ankle pulse wave velocity (baPWV) in renal transplant recipients (RTRs). METHODS A total of 62 (62%) male and 38 (438%) female RTRs with a mean age of 44.22 ± 10.88 years were included in the study. RTRs were compared with 65 healthy individuals. CA-IMT measurement with ultrasonography was used as a marker of atherosclerosis. The presence of AS was detected with the baPWV device. RESULTS Creatinine, CA-IMT, and baPWV were higher in the RTRs compared to the healthy subjects. No difference was determined between the two groups regarding log10 DKK-1. No difference was noted in the levels of CA-IMT and baPWV in patients with log10 DKK-1 > 3.83 pg/mL compared to patients with ≤3.83 pg/mL. Correlation and multivariate analyses showed no correlation between log10 DKK-1 and CA-IMT and baPWV. DISCUSSION In RTRs, an increased development of atherosclerosis and AS was observed compared to healthy individuals. There was no difference in DKK-1 between the groups based on improved renal function. DKK-1 was not correlated with atherosclerosis and AS.
Collapse
Affiliation(s)
- Melahat Coban
- Department of Nephrology, Bilkent City Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
5
|
Zhang Y, Guan Z, Gong H, Ni Z, Xiao Q, Guo X, Xu Q. The Role of Progenitor Cells in the Pathogenesis of Arteriosclerosis. CARDIOLOGY DISCOVERY 2024; 4:231-244. [DOI: 10.1097/cd9.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The increasing incidence of arteriosclerosis has become a significant global health burden. Arteriosclerosis is characterized by the thickening and hardening of arterial walls, which can lead to the narrowing or complete blockage of blood vessels. However, the pathogenesis of the disease remains incompletely understood. Recent research has shown that stem and progenitor cells found in the bone marrow and local vessel walls play a role in the development of arteriosclerosis by differentiating into various types of vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and inflammatory cells. This review aims to provide a comprehensive understanding of the role of stem and progenitor cells in the pathogenesis of arteriosclerosis, shedding light on the underlying mechanisms and potential therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ziyin Guan
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhichao Ni
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
6
|
Ueland T, Butt N, Lekva T, Ørn S, Manhenke C, Aukrust P, Larsen AI. High dose statin treatment reduces circulating Dickkopf-1 following acute myocardial infarction. Int J Cardiol 2024; 406:132035. [PMID: 38604450 DOI: 10.1016/j.ijcard.2024.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Secreted glycoproteins of the Dickkopf (DKK) family modify Wnt signaling and may influence plaque destabilization but their modulation by statins in MI patients is not known. METHODS We measured plasma DKK-1 and DKK-3 in patients with acute ST-segment elevation MI (STEMI) before percutaneous coronary intervention (PCI) and after 2 and 7 days and 2 months in patients receiving short-term high-dose (40 mg rosuvastatin, given before PCI; n = 25) and moderate dose (20 mg simvastatin, given the day after PCI; n = 34). In vitro modulation of DKK-1 in human umbilical vein endothelial cells (HUVECs) by statins were assessed. RESULTS (i) Patients receiving high dose rosuvastatin had a marked decline in DKK-1 at day 2 which was maintained throughout the study period. However, a more prevalent use of β-blockers in the simvastatin group, that could have contributed to higher DKK-1 levels in these patients. (ii) There was a strong correlation between baseline DKK-1 levels and change in DKK-1 from baseline to day 2 in patients receiving high dose rosuvastatin treatment. (iii) DKK-3 increased at day 2 but returned to baseline levels at 2 months in both treatment groups. (iv) Statin treatment dose-dependently decreased DKK-1 mRNA and protein levels in HUVEC. CONCLUSIONS Our findings suggest that high dose statin treatment with 40 mg rosuvastatin could persistently down-regulate DKK-1 levels, even at 2 months after the initial event in STEMI patients.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| | - Noreen Butt
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stein Ørn
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway; Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Cord Manhenke
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alf Inge Larsen
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
7
|
Xu P, Cao Y, Zhang S, Liu X, Zhang M, Zhang C. The predictive value of serum Dickkopf-1, Dickkopf-3 level to coronary artery disease and acute coronary syndrome. Int J Cardiol 2024; 403:131887. [PMID: 38382851 DOI: 10.1016/j.ijcard.2024.131887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Previous studies have already confirmed the association between Dickkopf (Dkk) protein and the occurrence and progression of atherosclerosis. However, there is limited clinical evidence regarding the serum levels of Dickkopf-1 (Dkk1) and Dickkopf-3 (Dkk3) in relation to atherosclerotic cardiovascular disease (ASCVD), particularly acute coronary syndrome (ACS). MATERIALS AND METHODS A total of 88 healthy volunteers and 280 patients with coronary artery disease (CAD) undergoing coronary angiography for angina between October 2021 and October 2022, including 96 cases of stable angina (SA), 96 of unstable angina (UA) and 88 of acute myocardial infarction (AMI) were included finally. The serum concentrations of Dkk1 and Dkk3 were measured using electrochemiluminescence of Meso Scale Discovery. The predictive value of single or combined application of serum Dkk1 and Dkk3 in CAD and ACS were evaluated. RESULTS The serum levels of Dkk1 were significantly higher in the SA group, UA group, and AMI group compared to the control group. Multivariable logistic regression analysis demonstrated that elevated serum Dkk1 levels were independent predictive factors for increased risk of CAD and ACS (OR = 1.027, 95%CI = 1.019-1.034, p < 0.001; OR = 1.045, 95%CI = 1.028-1.053, p < 0.001, respectively). Receiver operating characteristic curve (ROC) analysis showed that the optimal cutoff value of serum Dkk1 for predicting ACS was 205 ng/dl, with a sensitivity of 82.6% and specificity of 96.6%. The area under the curve (AUC) was 0.930 (95%CI: 0.899-0.961, p < 0.001). Regarding Dkk3, serum Dkk3 levels were elevated in CAD patients compared to the healthy control group, and significantly higher in ACS patients compared to SA patients. Serum Dkk3 was significantly associated with increased risk of CAD and ACS (OR = 1.131, 95%CI = 1.091-1.173, p < 0.001; OR = 1.201, 95%CI = 1.134-1.271, p < 0.001, respectively). ROC curve analysis showed that the optimal cutoff value of serum Dkk3 for predicting ACS was 50.82 ng/ml, with a sensitivity of 85.9% and specificity of 87.5%. The AUC was 0.925 (95%CI: 0.894-0.956, p < 0.001). When serum Dkk1 and Dkk3 are combined as predictive factors for ACS, the AUC was 0.975. CONCLUSION Serum levels of Dkk1 and Dkk3 are significantly associated with an increased risk of CAD and ACS, and they possess predictive value for CAD and ACS. The combination of serum Dkk1 and Dkk3 is a superior predictive factor for CAD and ACS.
Collapse
Affiliation(s)
- Panpan Xu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Zhou D, Qin H, Miao L, Xu Y, Yu L, Wang J. Predictive value of glycoprotein DKK3 for early neurological deterioration after ischemic stroke. Clinics (Sao Paulo) 2024; 79:100360. [PMID: 38678874 PMCID: PMC11066595 DOI: 10.1016/j.clinsp.2024.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE To explore the value of serum Dickkopf-3 (sDKK3) in predicting Early Neurological Deterioration (END) and in-hospital adverse outcomes in acute ischemic stroke (AIS) patients. METHODS AIS patients (n = 200) were included and assessed by the National Institutes of Health Stroke Rating Scale. Serum Dkk3 levels were assessed by ELISA. END was defined as an increase of ≥ 4 points in NIHSS score within 72h. The biological threshold of sDKK3 level and END occurrence were predicted based on X-tile software. Primary outcomes were END and all-cause death, and the secondary outcome was ICU admission during hospitalization. The logistic regression model and Cox risk regression model were applied to evaluate the relationship between DKK3 level and END incidence, all-cause in-hospital mortality, and in-hospital adverse outcomes (ICU admission). RESULTS During hospitalization, the incidence of END in patients with AIS was 13.0 %, and the mortality rate within 7 days after END was 11.54 % (3/26). In patients below the serum DKK3 cutoff (93.0 pg/mL), the incidence of END was 43.5 % (20/48). Patients with lower sDKK3 levels were associated with a 1.188-fold increased risk of developing END (OR = 1.188, 95 % CI 1.055‒1.369, p < 0.0001). However, there was no significant association with admission to the ICU. sDKK3 below the threshold (93.0 pg/mL) was a risk factor for death. CONCLUSION Predictive threshold levels of serum DKK3 based on X-tile software may be a potential predictive biomarker of in-hospital END in patients with AIS, and low levels of DKK3 are independently associated with increased in-hospital mortality.
Collapse
Affiliation(s)
- DongLiang Zhou
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - HongWei Qin
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - Lei Miao
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - Ying Xu
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - Lan Yu
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - JianMin Wang
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| |
Collapse
|
10
|
Martin Flores N, Podpolny M, McLeod F, Workman I, Crawford K, Ivanov D, Leonenko G, Escott-Price V, Salinas PC. Downregulation of Dickkopf-3, a Wnt antagonist elevated in Alzheimer's disease, restores synapse integrity and memory in a disease mouse model. eLife 2024; 12:RP89453. [PMID: 38285009 PMCID: PMC10945611 DOI: 10.7554/elife.89453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Increasing evidence supports a role for deficient Wnt signaling in Alzheimer's disease (AD). Studies reveal that the secreted Wnt antagonist Dickkopf-3 (DKK3) colocalizes to amyloid plaques in AD patients. Here, we investigate the contribution of DKK3 to synapse integrity in healthy and AD brains. Our findings show that DKK3 expression is upregulated in the brains of AD subjects and that DKK3 protein levels increase at early stages in the disease. In hAPP-J20 and hAPPNL-G-F/NL-G-F mouse AD models, extracellular DKK3 levels are increased and DKK3 accumulates at dystrophic neuronal processes around plaques. Functionally, DKK3 triggers the loss of excitatory synapses through blockade of the Wnt/GSK3β signaling with a concomitant increase in inhibitory synapses via activation of the Wnt/JNK pathway. In contrast, DKK3 knockdown restores synapse number and memory in hAPP-J20 mice. Collectively, our findings identify DKK3 as a novel driver of synaptic defects and memory impairment in AD.
Collapse
Affiliation(s)
- Nuria Martin Flores
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Marina Podpolny
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Faye McLeod
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Isaac Workman
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Karen Crawford
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Dobril Ivanov
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Ganna Leonenko
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
- UK Dementia Research Institute, Cardiff UniversityCardiffUnited Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Mourtada J, Thibaudeau C, Wasylyk B, Jung AC. The Multifaceted Role of Human Dickkopf-3 (DKK-3) in Development, Immune Modulation and Cancer. Cells 2023; 13:75. [PMID: 38201279 PMCID: PMC10778571 DOI: 10.3390/cells13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The human Dickkopf (DKK) family includes four main secreted proteins, DKK-1, DKK-2, DKK-3, and DKK-4, as well as the DKK-3 related protein soggy (Sgy-1 or DKKL1). These glycoproteins play crucial roles in various biological processes, and especially modulation of the Wnt signaling pathway. DKK-3 is distinct, with its multifaceted roles in development, stem cell differentiation and tissue homeostasis. Intriguingly, DKK-3 appears to have immunomodulatory functions and a complex role in cancer, acting as either a tumor suppressor or an oncogene, depending on the context. DKK-3 is a promising diagnostic and therapeutic target that can be modulated by epigenetic reactivation, gene therapy and DKK-3-blocking agents. However, further research is needed to optimize DKK-3-based therapies. In this review, we comprehensively describe the known functions of DKK-3 and highlight the importance of context in understanding and exploiting its roles in health and disease.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Chloé Thibaudeau
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Graffenstaden, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, 67404 Illkirch Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Graffenstaden, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| |
Collapse
|
12
|
Wang W, Ma L, Zhao Y, Liu M, Ye W, Li X. Research progress on the role of the Wnt signaling pathway in pituitary adenoma. Front Endocrinol (Lausanne) 2023; 14:1216817. [PMID: 37780610 PMCID: PMC10538627 DOI: 10.3389/fendo.2023.1216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Pituitary adenoma (PA) is the third most common central nervous system tumor originating from the anterior pituitary, but its pathogenesis remains unclear. The Wnt signaling pathway is a conserved pathway involved in cell proliferation, Self-renewal of stem cells, and cell differentiation. It is related to the occurrence of various tumors, including PA. This article reviews the latest developments in Wnt pathway inhibitors and pathway-targeted drugs. It discusses the possibility of combining Wnt pathway inhibitors with immunotherapy to provide a theoretical basis for the combined treatment of PA.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianfeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Dhumale P, Nielsen JV, Hansen ACS, Burton M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH, Sheikh SP. CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects. Sci Rep 2023; 13:14401. [PMID: 37658225 PMCID: PMC10474028 DOI: 10.1038/s41598-023-41535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Cellular heterogeneity represents a major challenge for regenerative treatment using freshly isolated Adipose Derived Regenerative Cells (ADRCs). Emerging data suggest superior efficacy of ADRCs as compared to the ex vivo expanded and more homogeneous ADRCs (= ASCs) for indications involving (micro)vascular deficiency, however, it remains unknown which ADRC cell subtypes account for the improvement. Surprisingly, we found regarding erectile dysfunction (ED) that the number of injected CD31+ ADRCs correlated positively with erectile function 12 months after one bolus of autologous ADRCs. Comprehensive in vitro and ex vivo analyses confirmed superior pro-angiogenic and paracrine effects of human CD31+ enriched ADRCs compared to the corresponding CD31- and parent ADRCs. When CD31+, CD31- and ADRCs were co-cultured in aortic ring- and corpus cavernous tube formation assays, the CD31+ ADRCs induced significantly higher tube development. This effect was corroborated using conditioned medium (CM), while quantitative mass spectrometric analysis suggested that this is likely explained by secretory pro-angiogenic proteins including DKK3, ANGPT2, ANAX2 and VIM, all enriched in CD31+ ADRC CM. Single-cell RNA sequencing showed that transcripts of the upregulated and secreted proteins were present in 9 endothelial ADRC subsets including endothelial progenitor cells in the heterogenous non-cultured ADRCs. Our data suggest that the vascular benefit of using ADRCs in regenerative medicine is dictated by CD31+ ADRCs.
Collapse
Affiliation(s)
- Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | | | - Mark Burton
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | | | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Søren Paludan Sheikh
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark.
| |
Collapse
|
14
|
Yang X, Zong Y, Zhang Z, Zhao Y, Gao X, Zhang J, Hou Q, Li R, Xiao B. Identification of Potential Abnormal Methylation-Modified Genes in Coronary Artery Ectasia. Int J Genomics 2023; 2023:4969605. [PMID: 37662558 PMCID: PMC10474963 DOI: 10.1155/2023/4969605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Background Coronary artery ectasia (CAE) is an easily recognized abnormality of coronary artery anatomy and morphology. However, its pathogenesis remains unclear. Objectives This study aimed to identify abnormal methylation-modified genes in patients with CAE, which could provide a research basis for CAE. Methods Peripheral venous blood samples from patients with CAE were collected for RNA sequencing to identify differentially expressed genes (DEGs), followed by functional enrichment. Then, the DNA methylation profile of CAE was downloaded from GSE87016 (HumanMethylation450 BeadChip data, involving 11 cases and 12 normal controls) to identify differentially methylated genes (DMGs). Finally, after taking interaction genes between DEGs and DMGs, abnormal methylation-modified genes were identified, followed by protein-protein interaction analysis and expression validation using reverse transcriptase polymerase chain reaction. Results A total of 152 DEGs and 4318 DMGs were obtained from RNA sequencing and the GSE87016 dataset, respectively. After taking interaction genes, 9 down-regulated DEGs due to hypermethylation and 11 up-regulated DEGs due to hypomethylation were identified in CAE. A total of 10 core abnormal methylation-modified genes were identified, including six down-regulated DEGs due to hypermethylation (netrin G1, ADAM metallopeptidase domain 12, immunoglobulin superfamily member 10, sarcoglycan dela, Dickkopf WNT signaling pathway inhibitor 3, and GATA binding protein 6), and four up-regulated DEGs due to hypomethylation (adrenomedullin, ubiquitin specific peptidase 18, lymphocyte antigen 6 family member E, and MX dynamin-like GTPase 1). Some signaling pathways were identified in patients with CAE, including cell adhesion molecule, O-glycan biosynthesis, and the renin-angiotensin system. Conclusions Abnormal methylation-modified DEGs involved in signaling pathways may be involved in CAE development.
Collapse
Affiliation(s)
- Xiuchun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Zong
- School of Nursing, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhentian Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueying Gao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Renyi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yang Z, Huang X, Zhang J, You K, Xiong Y, Fang J, Getachew A, Cheng Z, Yu X, Wang Y, Wu F, Wang N, Feng S, Lin X, Yang F, Chen Y, Wei H, Li YX. Hepatic DKK1-driven steatosis is CD36 dependent. Life Sci Alliance 2023; 6:e202201665. [PMID: 36410795 PMCID: PMC9679335 DOI: 10.26508/lsa.202201665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide; about 25% of NAFLD silently progress into steatohepatitis, in which some of them may develop into fibrosis, cirrhosis and liver failure. However, few drugs are available for NAFLD, partly because of an incomplete understanding of its pathogenic mechanisms. Here, using in vivo and in vitro gain- and loss-of-function approaches, we identified up-regulated DKK1 plays a pivotal role in high-fat diet-induced NAFLD and its progression. Mechanistic analysis reveals that DKK1 enhances the capacity of hepatocytes to uptake fatty acids through the ERK-PPARγ-CD36 axis. Moreover, DKK1 increased insulin resistance by activating the JNK signaling, which in turn exacerbates disorders of hepatic lipid metabolism. Our finding suggests that DKK1 may be a potential therapeutic and diagnosis candidate for NAFLD and metabolic disorder progression.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinping Huang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaye Zhang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Xiong
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ji Fang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Anteneh Getachew
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ziqi Cheng
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorui Yu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan Wang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feima Wu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ning Wang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shufen Feng
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianhua Lin
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongcheng Wei
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
17
|
Sellahewa SG, Li JY, Xiao Q. Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts. J Funct Biomater 2022; 14:21. [PMID: 36662068 PMCID: PMC9866165 DOI: 10.3390/jfb14010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives.
Collapse
Affiliation(s)
- Saneth Gavishka Sellahewa
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jojo Yijiao Li
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
18
|
Zhang D, Cao Y, Liu D, Zhang J, Guo Y. The Etiology and Molecular Mechanism Underlying Smooth Muscle Phenotype Switching in Intimal Hyperplasia of Vein Graft and the Regulatory Role of microRNAs. Front Cardiovasc Med 2022; 9:935054. [PMID: 35966541 PMCID: PMC9365958 DOI: 10.3389/fcvm.2022.935054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the phenotypic transformation of venous smooth muscle cells (SMCs) from differentiated (contractile) to dedifferentiated (proliferative and migratory) phenotypes causes excessive proliferation and further migration to the intima leading to intimal hyperplasia, which represents one of the key pathophysiological mechanisms of vein graft restenosis. In recent years, numerous miRNAs have been identified as specific phenotypic regulators of vascular SMCs (VSMCs), which play a vital role in intimal hyperplasia in vein grafts. The review sought to provide a comprehensive overview of the etiology of intimal hyperplasia, factors affecting the phenotypic transformation of VSMCs in vein graft, and molecular mechanisms of miRNAs involved in SMCs phenotypic modulation in intimal hyperplasia of vein graft reported in recent years.
Collapse
Affiliation(s)
- Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiran Cao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yingqiang Guo,
| |
Collapse
|
19
|
Sanabria-de la Torre R, García-Fontana C, González-Salvatierra S, Andújar-Vera F, Martínez-Heredia L, García-Fontana B, Muñoz-Torres M. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:6995. [PMID: 35805996 PMCID: PMC9266892 DOI: 10.3390/ijms23136995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents "mandatory damage" in the development of microvascular complications and only "introductory damage" in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila González-Salvatierra
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Zhang LQ, Gao SJ, Sun J, Li DY, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J Neuroinflammation 2022; 19:129. [PMID: 35658977 PMCID: PMC9164405 DOI: 10.1186/s12974-022-02495-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Microglial activation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely understood. Here, we investigated the role of Dickkopf (DKK) 3 and its interplay with microglial activation in the spinal cord in neuropathic pain. METHODS In this study, we investigated the effects of intrathecal injection of recombinant DKK3 (rDKK3) on mechanical allodynia and microglial activation in the spinal cord after spared nerve injury (SNI) in rats by western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). RESULTS We found that SNI induced a significant decrease in the levels of DKK3, Kremen-1 and Dishevelled-1 (DVL-1) and up-regulated the expression of phosphorylated apoptosis signal-regulating kinase 1 (p-ASK1), phosphorylated c-JUN N-terminal kinase (p-JNK), phosphorylated p38 (p-p38) in the spinal cord. Moreover, our results showed that exogenous intrathecal administration of rDKK3 inhibited expression of p-ASK1, p-JNK, p-p38, promoted the transformation of microglia from M1 type to M2 type, and decreased the production of pro-inflammatory cytokines compared to the rats of SNI + Vehicle. However, these effects were reversed by intrathecal administration of Kremen-1 siRNA or Dishevelled-1 (DVL-1) siRNA. CONCLUSIONS These results suggest that DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation, at least partly, by the Kremen-1 and DVL-1 pathways.
Collapse
Affiliation(s)
- Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
22
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, Guo C, Yao K. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:647953. [PMID: 34631806 PMCID: PMC8492936 DOI: 10.3389/fcvm.2021.647953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Coronary artery disease (CAD) is the leading cause of cardiovascular death. The competitive endogenous RNAs (ceRNAs) hypothesis is a new theory that explains the relationship between lncRNAs and miRNAs. The mechanism of ceRNAs in the pathological process of CAD has not been fully elucidated. The objective of this study was to explore the ceRNA mechanism in CAD using the integrative bioinformatics analysis and provide new research ideas for the occurrence and development of CAD. Methods: The GSE113079 dataset was downloaded, and differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) were identified using the limma package in the R language. Weighted gene correlation network analysis (WGCNA) was performed on DElncRNAs and DEGs to explore lncRNAs and genes associated with CAD. Functional enrichment analysis was performed on hub genes in the significant module identified via WGCNA. Four online databases, including TargetScan, miRDB, miRTarBase, and Starbase, combined with an online tool, miRWalk, were used to construct ceRNA regulatory networks. Results: DEGs were clustered into ten co-expression modules with different colors using WGCNA. The brown module was identified as the key module with the highest correlation coefficient. 188 hub genes were identified in the brown module for functional enrichment analysis. DElncRNAs were clustered into sixteen modules, including seven modules related to CAD with the correlation coefficient more than 0.5. Three ceRNA networks were identified, including OIP5-AS1-miR-204-5p/miR-211-5p-SMOC1, OIP5-AS1-miR-92b-3p-DKK3, and OIP5-AS1-miR-25-3p-TMEM184B. Conclusion: Three ceRNA regulatory networks identified in this study may play crucial roles in the occurrence and development of CAD, which provide novel insights into the ceRNA mechanism in CAD.
Collapse
Affiliation(s)
- Yuyao Ji
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runda Wu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Zhang Y, Wu H, He R, Ye C, Chen H, Wang J, Li Z. Dickkopf-2 knockdown protects against classic macrophage polarization and lipid loading by activation of Wnt/β-catenin signaling. J Cardiol 2021; 78:328-333. [PMID: 34030936 DOI: 10.1016/j.jjcc.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Wnt/β-catenin signaling pathway plays an important role in regulation of macrophage activation implicated in the development of atherosclerosis. However, as a negative regulator of Wnt/β-catenin, the potential role of Dickkopf-2 (Dkk2) on macrophage activation remains unexplored. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs) collected from ApoE knockout mice upon oxidation low lipoprotein (Ox-LDL) administration were performed to test the expression of Dkk2. The loss-of-function strategy using siRNA-Dkk2 was further utilized for the function of Dkk2. Inhibition of β-catenin with XAV939 (a β-catenin specific inhibitor) was further used for testing its effect on macrophage activation mediated by Dkk2 knockdown. RESULTS AND CONCLUSION In the current study, real time-polymerase chain reaction analysis demonstrated that an up-regulated Dkk2 expression was observed in BMDMs and MPMs of ApoE knockout mice upon Ox-LDL administration, which was confirmed by western blot. The double immunofluorescence staining further exhibited that Dkk2 showed a strong immunoreactivity in BMDMs and primarily located in cytoplasm of macrophages. Dkk2 knockdown significantly decreased the genes related to classic M1 polarized macrophage but increased alternative M2 polarized macrophage markers. Moreover, Dkk2 silencing dramatically attenuated foam cell formation which was contributed by promoted markers' expression associated with cholesterol efflux but attenuated markers to cholesterol influx. Mechanistically, we observed that Dkk2 knockdown activated Wnt/β-catenin signaling by promoting β-catenin to translocate into the nuclei of macrophages, and XAV939 reversed the ameliorated effect of Dkk2 silencing macrophage activation. Taken together, these results suggested that downregulated Dkk2 expression in macrophages was responsible for the inactivation of macrophage through targeting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yuan Zhang
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Hongkun Wu
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Rui He
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Changlun Ye
- Department of Cardiology, Chongqing Qijiang District People's Hospital, Chongqing, PR China
| | - Hao Chen
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Jiao Wang
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Zhenggong Li
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
26
|
The emerging plasma biomarker Dickkopf-3 (DKK3) and its association with renal and cardiovascular disease in the general population. Sci Rep 2021; 11:8642. [PMID: 33883651 PMCID: PMC8060267 DOI: 10.1038/s41598-021-88107-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
Dickkopf-3 (DKK3) is an emerging biomarker for cardiovascular disease (CVD) and chronic kidney disease (CKD). Herein, baseline DKK3 plasma levels were measured in 8420 subjects from the Prevention of Renal and Vascular ENd-stage Disease (PREVEND) cohort, a large general population cohort, using enzyme-linked immunosorbent assays. Associations with clinical variables and outcomes were analysed. Median DKK3 level was 32.8 ng/ml (28.0–39.0). In multivariable linear regression analysis, the strongest correlates for plasma DKK3 were age, body mass index and estimated glomerular filtration rate (eGFR). At baseline, 564 (6.7%) subjects had CVD (defined as a myocardial infarction and/or cerebrovascular accident) and 1361 (16.2%) subjects had CKD (defined as eGFR < 60 ml/min/1.73m2 and/or urinary albumin excretion (UAE) > 30 mg/24 h). Of subjects with known CVD and CKD follow-up status (respectively 7828 and 5548), 669 (8.5%) developed CVD and 951 (17.1%) developed CKD (median follow-up respectively 12.5 and 10.2 years). Crude logistic regression analysis revealed that DKK3 levels were associated with prevalent CVD (Odds ratio: 2.14 [1.76–2.61] per DKK3 doubling, P < 0.001) and CKD (Odds ratio: 1.84 [1.59–2.13] per DKK3 doubling, P < 0.001). In crude Cox proportional hazard regression analysis, higher DKK3 levels were associated with higher risk for new-onset CVD (Hazard ratio: 1.47 [1.13–1.91] per DKK3 doubling, P = 0.004) and CKD (Hazard ratio: 1.45, [1.25–1.69] per DKK3 doubling, P < 0.001). However, these associations remained no longer significant after correction for common clinical variables and risk factors, though independently predicted for new-onset CKD in a subgroup of subjects with the lowest UAE values. Together, DKK3 plasma levels are associated with cardiovascular risk factors, but are generally not independently associated with prevalent and new-onset CVD and CKD and only predicted for new-onset CKD in those subjects with the lowest UAE values.
Collapse
|
27
|
Ueland T, Abraityte A, Norum H, Varathalingam S, Gullestad L, Aukrust P, Andreassen AK. Circulating regulators of the wingless pathway in precapillary pulmonary hypertension. Respirology 2021; 26:574-581. [PMID: 33830565 DOI: 10.1111/resp.14048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Dysregulated Wnt signalling has been implicated in pulmonary hypertension (PH). We hypothesized that plasma levels of secreted Wnt proteins would be increased in patients with precapillary PH, correlate with indices of vascular resistance and cardiac function and give information on long-term prognosis. METHODS We measured the Wnt ligand Wnt5a and secreted Wnt antagonists Dickkopf (DKK) DKK1, DKK3, secreted frizzled-related protein 3 (sFRP3), Wnt inhibitory factor-1 (WIF1) and sclerostin (SOST) in 106 patients with precapillary PH and 40 healthy controls. A second sample was obtained after a median of 4 months (n = 52). During a median of 90 months follow-up, 67 patients died. RESULTS Our main findings were (i) Precapillary PH is characterized by enhanced systemic Wnt activity as reflected by elevated plasma levels of Wnt5a and secreted antagonists irrespective of diagnostic subgroups. (ii) WIF1 and in particular Wnt5a correlated with pulmonary vascular resistance and cardiac dysfunction. (iii) High levels of Wnt5a, sFRP3, DKK3 and WIF1 were associated with poor prognosis in age- and sex-adjusted analysis (hazard ratios per log/SD change ~1.4) and for DKK3 after further adjustment with right arterial pressure, pulmonary oxygen saturation, cardiac index, N-terminal pro B-type natriuretic peptide and peak oxygen uptake (VO2 ). Finally, an elevation of Wnt5a and DKK3 during follow-up was independently associated with poor prognosis. CONCLUSION Our data indicate that Wnt signalling pathways could be implicated in the pathogenesis of precapillary PH, and that some of the Wnt-related molecules (i.e., Wnt5a and DKK3) should be further investigated in these patients.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Aurelija Abraityte
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Hilde Norum
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sharanga Varathalingam
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Arne K Andreassen
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
28
|
Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol 2021; 49:996-1023. [PMID: 33576319 DOI: 10.1177/0192623320985045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A host of novel renal biomarkers have been developed over the past few decades which have enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar underlying mechanisms and the tubulointerstitial compartment has a functional role in the progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio, for predicting outcomes in CKD patients. This review is an introduction to alternative assays that can be utilized in chronic (>3 months duration) nonclinical safety studies to provide information on renal dysfunction and to demonstrate specific situations where these assays could be utilized in nonclinical drug development. Novel biomarkers such as symmetrical dimethyl arginine, dickkopf homolog 3, and cystatin C predict chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring.
Collapse
Affiliation(s)
- Leslie A Obert
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | - Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Daniela Ennulat
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | | |
Collapse
|
29
|
Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M, Pinto A. Molecular Biology of Atherosclerotic Ischemic Strokes. Int J Mol Sci 2020; 21:9372. [PMID: 33317034 PMCID: PMC7763838 DOI: 10.3390/ijms21249372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people who have diabetes, the disease mentioned above constitutes together with stroke a severe social and economic burden. In diabetic patients after an ischemic stroke, an exorbitant activation of inflammatory molecular pathways and ongoing inflammation is responsible for more severe brain injury and impairment, promoting the advancement of ischemic stroke and diabetes. Considering that the ominous prognosis of ischemic brain damage could by partially clarified by way of already known risk factors the auspice would be modifying poor outcome in the post-stroke phase detecting novel biomolecules associated with poor prognosis and targeting them for revolutionary therapeutic strategies.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (M.G.P.); (M.C.V.); (F.C.); (M.D.); (A.P.)
| | | | | | | | | | | |
Collapse
|
30
|
Wang L, Liu S, Niu J, Zhao Z, Xu M, Lu J, Li M, Wang T, Chen Y, Wang S, Dai M, Bi Y, Wang W, Ning G, Xu Y. Serum Dickkopf-3 Level Is Inversely Associated with Significant Coronary Stenosis in an Asymptomatic Chinese Cohort. Int Heart J 2020; 61:1107-1113. [PMID: 33191341 DOI: 10.1536/ihj.20-094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dickkopp-3 (DKK3) has been identified to play a protection role against atherosclerosis. However, little is known about the relationship between serum DKK3 levels and subclinical coronary atherosclerosis. We aimed to investigate the association of serum DKK3 with coronary stenosis in an asymptomatic Chinese population. A total of 550 Chinese adults aged 40-60 years and without symptoms or histories of cardiovascular diseases were randomly selected to undergo coronary computed tomography angiography. We defined ≥ 50% luminal narrowing as significant coronary stenosis and measured serum DKK3 levels by an enzyme-linked immunosorbent assay (ELISA). Fifty-nine participants had significant coronary stenosis and 223 had < 50% coronary stenosis. Proportions of significant coronary stenosis were 13.7%, 11.4%, and 7.1% in DKK3 tertiles 1-3, respectively (Ptrend = 0.0427). In the univariable multinomial logistic regression model, a decreasing DKK3 tertile was associated with significant coronary stenosis with borderline significance (OR: 1.40; 95% confidence intervals (CI): 0.98-1.99, P = 0.0642). In the multivariable regression model, participants in the lowest DKK3 tertile were associated with a 1.42-fold increased risk of significant coronary stenosis than those in the highest DKK3 tertile (OR: 2.42; 95% CI: 1.10-5.33; P = 0.0279) after adjustment for conventional cardiovascular risk factors. In addition, associations between DKK3 and significant coronary stenosis were consistent among subgroups. However, no significant association was found between serum DKK3 levels and < 50% coronary stenosis. Therefore, we have added to the existing evidence that serum DKK3 is inversely associated with the risk of significant coronary stenosis in asymptomatic middle-aged Chinese.
Collapse
Affiliation(s)
- Long Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shanshan Liu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jingya Niu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhiyun Zhao
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Min Xu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jieli Lu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mian Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Tiange Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuhong Chen
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shuangyuan Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Meng Dai
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yufang Bi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Guang Ning
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yu Xu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
31
|
Rakipovski G, Rolin B, Barascuk N, Lund HE, Bjørn Bonde MF, Djordjevic D, Wulff-Larsen PG, Petersen M, Kirk RK, Hultman K, Manfe V, Blume N, Zahn S, Lengquist M, Maegdefessel L, Hovingh GK, Conde-Knape K, Hedin U, Matic L, Nyberg M. A neutralizing antibody against DKK1 does not reduce plaque formation in classical murine models of atherosclerosis: Is the therapeutic potential lost in translation? Atherosclerosis 2020; 314:1-9. [PMID: 33129080 DOI: 10.1016/j.atherosclerosis.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Clinical interventions targeting nonlipid risk factors are needed given the high residual risk of atherothrombotic events despite effective control of dyslipidemia. Dickkopf-1 (DKK1) plays a lipid-independent role in vascular pathophysiology but its involvement in atherosclerosis development and its therapeutic attractiveness remain to be established. METHODS Patient data, in vitro studies and pharmacological intervention in murine models of atherosclerosis were utilized. RESULTS In patients' material (n = 127 late stage plaque specimens and n = 10 control vessels), DKK1 mRNA was found to be higher in atherosclerotic plaques versus control arteries. DKK1 protein was detected in the luminal intimal area and in the necrotic core of plaques. DKK1 was released from isolated primary human platelets (~12 - 21-fold) and endothelial cells (~1.4-2.5-fold) upon stimulation with different pathophysiological stimuli. In ApoE-/- and Ldlr-/- mice, plasma DKK1 concentrations were similar to those observed in humans, whereas DKK1 expression in different atheroprone arterial segments was very low/absent. Chronic treatment with a neutralizing DKK1 antibody effectively reduced plasma concentrations, however, plaque lesion area was not reduced in ApoE-/- and Ldlr-/- mice fed a western diet for 14 and 16 weeks. Anti-DKK1 treatment increased bone volume and bone mineral content. CONCLUSIONS Functional inhibition of DKK1 with an antibody does not alter atherosclerosis progression in classical murine models. This may reflect the absence of DKK1 expression in plaques and more advanced animal disease models could be needed to evaluate the role and therapeutic attractiveness of DKK1 in late stage complications such as plaque destabilization, calcification, rupture and thrombosis.
Collapse
Affiliation(s)
| | - Bidda Rolin
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | | | | | | | - Maj Petersen
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Karin Hultman
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Valentina Manfe
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Niels Blume
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Stefan Zahn
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden; Technical University of Munich, Klinikum Rechts der Isar, Department for Vascular and Endovascular Surgery, Munich, Germany
| | - G Kees Hovingh
- Chief Medical Office, Novo Nordisk A/S, Soeborg, Denmark; Department of Vascular Medicine, Academisch Medisch Centrum, Amsterdam, Netherlands
| | | | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Michael Nyberg
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark.
| |
Collapse
|
32
|
Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10:200128. [PMID: 33081636 PMCID: PMC7653355 DOI: 10.1098/rsob.200128] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
The Wnt signalling pathways are composed of a highly conserved cascade of events that govern cell differentiation, apoptosis and cell orientation. Three major and distinct Wnt signalling pathways have been characterized: the canonical Wnt pathway (or Wnt/β-catenin pathway), the non-canonical planar cell polarity pathway and the non-canonical Wnt/Ca2+ pathway. Altered Wnt signalling pathway has been associated with diverse diseases such as disorders of bone density, different malignancies, cardiac malformations and heart failure. Coronary artery disease is the most common type of heart disease in the United States. Atherosclerosis is a multi-step pathological process, which starts with lipid deposition and endothelial cell dysfunction, triggering inflammatory reactions, followed by recruitment and aggregation of monocytes. Subsequently, monocytes differentiate into tissue-resident macrophages and transform into foam cells by the uptake of modified low-density lipoprotein. Meanwhile, further accumulations of lipids, infiltration and proliferation of vascular smooth muscle cells, and deposition of the extracellular matrix occur under the intima. An atheromatous plaque or hyperplasia of the intima and media is eventually formed, resulting in luminal narrowing and reduced blood flow to the myocardium, leading to chest pain, angina and even myocardial infarction. The Wnt pathway participates in all different stages of this process, from endothelial dysfunction to lipid deposit, and from initial inflammation to plaque formation. Here, we focus on the role of Wnt cascade in pathophysiological mechanisms that take part in coronary artery disease from both clinical and experimental perspectives.
Collapse
Affiliation(s)
- Ya Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Arpita Neogi
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2020; 17:172-184. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT-β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.
Collapse
|
34
|
Piek A, Suthahar N, Voors AA, de Boer RA, Silljé HHW. A combined bioinformatics, experimental and clinical approach to identify novel cardiac-specific heart failure biomarkers: is Dickkopf-3 (DKK3) a possible candidate? Eur J Heart Fail 2020; 22:2065-2074. [PMID: 32809235 PMCID: PMC7756877 DOI: 10.1002/ejhf.1988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Aims Cardiac specificity provides an advantage in correlating heart failure (HF) biomarker plasma levels with indices of cardiac function and remodelling, as shown for natriuretic peptides. Using bioinformatics, we explored the cardiac specificity of secreted proteins and investigated in more detail the relationship of Dickkopf‐3 (DKK3) gene expression and DKK3 plasma concentrations with cardiac function and remodelling in (pre)clinical studies. Methods and results The cardiac specificity of secreted proteins was determined using RNAseq data for a large panel of organs and tissues. This showed that natriuretic peptides (NPPA and NPPB) are highly cardiac‐specific (>99%), whereas other HF biomarkers, including galectin‐3 (Gal‐3, LGALS3) and growth differentiation factor‐15 (GDF‐15), lack cardiac specificity (<4%). DKK3 was cardiac‐enriched (44%), warranting further investigation. In three different HF mouse models, cardiac Dkk3 expression was altered, but DKK3 plasma concentrations were not. In humans, DKK3 plasma concentrations were higher in HF patients (n = 2090) in comparison with age‐ and sex‐matched controls without HF (n = 240) (46.4 ng/mL vs. 36.3 ng/mL; P < 0.001). Multivariate regression analysis revealed that DKK3 was strongly associated with HF risk factors and comorbidities, including age, kidney function and atrial fibrillation. After correction for existing prediction models, DKK3 did not independently predict HF outcome [all‐cause mortality/HF hospitalization, hazard ratio 1.13 (0.79–1.61) per DKK3 doubling; P = 0.503]. Conclusions Of actively secreted HF biomarkers, only natriuretic peptides showed high cardiac specificity. Despite a cardiac specificity of 44%, secreted DKK3 had limited additional diagnostic and prognostic value.
Collapse
Affiliation(s)
- Arnold Piek
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Navin Suthahar
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
35
|
Tom I, Pham VC, Katschke KJ, Li W, Liang WC, Gutierrez J, Ah Young A, Figueroa I, Eshghi ST, Lee CV, Kanodia J, Snipas SJ, Salvesen GS, Lai P, Honigberg L, van Lookeren Campagne M, Kirchhofer D, Baruch A, Lill JR. Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy. Proc Natl Acad Sci U S A 2020; 117:9952-9963. [PMID: 32345717 PMCID: PMC7211935 DOI: 10.1073/pnas.1917608117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.
Collapse
Affiliation(s)
- Irene Tom
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - Victoria C Pham
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Kenneth J Katschke
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Wei Li
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Wei-Ching Liang
- Department of Antibody Discovery, Genentech, Inc., South San Francisco, CA 94080
| | - Johnny Gutierrez
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - Andrew Ah Young
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Isabel Figueroa
- Drug Metabolism, Pharmacokinetics, and Bioanalysis, AbbVie, South San Francisco, CA 94090
| | - Shadi Toghi Eshghi
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - ChingWei V Lee
- Biology Core Support, Gilead Sciences, Foster City, CA 94404
| | - Jitendra Kanodia
- Clinical and Translational Pharmacology, Theravance Biopharma, Inc., South San Francisco, CA 94080
| | - Scott J Snipas
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Guy S Salvesen
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Phillip Lai
- Early Clinical Development OMNI Department, Genentech, Inc., South San Francisco, CA 94080
| | - Lee Honigberg
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Amos Baruch
- Biomarker Development, Calico Life Sciences, LLC, South San Francisco, CA 94080
| | - Jennie R Lill
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, Inc., South San Francisco, CA 94080;
| |
Collapse
|
36
|
Xu Y, Nowrangi D, Liang H, Wang T, Yu L, Lu T, Lu Z, Zhang JH, Luo B, Tang J. DKK3 attenuates JNK and AP-1 induced inflammation via Kremen-1 and DVL-1 in mice following intracerebral hemorrhage. J Neuroinflammation 2020; 17:130. [PMID: 32331523 PMCID: PMC7181567 DOI: 10.1186/s12974-020-01794-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is the most devastating stroke subtype, with a poor prognosis and few proven treatments. Neuroinflammation is associated with ICH-induced brain injury and unfavorable outcomes. There is growing evidence that Dickkopf (DKK) 3 plays a key role in the adaptive anti-inflammatory and neuroprotective responses following intracerebral hemorrhage. This study aimed to evaluate the protective effects of DKK3 against brain edema and neuroinflammation in a mice model of ICH. METHODS Male, adult CD1 mice were subjected to sham or ICH surgery using a collagenase injection model. ICH animals received either recombinant DKK3, Kremen-1 siRNA, or DVL-1 siRNA. The neurobehavioral deficits were evaluated at 24 h, 72 h, and 28 days after ICH induction. Western blot and immunofluorescence were employed to examine the expression and localization of DKK3, Kremen-1, Dishevelled-1 (DVL-1), c-JUN N-terminal kinase (JNK), Activator protein-1 (AP-1), cleaved caspase-1, NF-κB, and IL-1β in the brain. RESULTS The expression of endogenous DKK3 and DVL-1 was transiently decreased after ICH compared to that in the sham group. Compared to the mice of ICH, exogenous rDKK3 administration reduced the brain water content and affected the neurological functions in ICH mice. Moreover, DKK3 was colocalized with Kremen-1 in microglia. Using a Kremen-1 or DVL-1 siRNA-induced in vivo knockdown approach, we demonstrated that the effects of DKK3 against ICH were mediated, at least partly, by the Kremen-1 and DVL-1 pathways. CONCLUSIONS DKK3 improves the neurological outcomes, potentially by decreasing JNK/AP-1-mediated inflammation, thereby ameliorating the short- and long-term sequelae after ICH.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241000, Anhui, China
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
- Department of Neurology, Wannan Medical College First Affiliated Hospital, Wuhu, 241000, Anhui, China
| | - Derek Nowrangi
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Zhejiang, 310003, Hangzhou, China
| | - Tian Wang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Lingyan Yu
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Tai Lu
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Zhengyang Lu
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Zhejiang, 310003, Hangzhou, China.
| | - Jiping Tang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA.
| |
Collapse
|
37
|
Song KM, Kim WJ, Choi MJ, Limanjaya A, Ghatak K, Minh NN, Ock J, Yin GN, Hong SS, Suh JK, Ryu JK. Intracavernous delivery of Dickkopf3 gene or peptide rescues erectile function through enhanced cavernous angiogenesis in the diabetic mouse. Andrology 2020; 8:1387-1397. [PMID: 32170840 DOI: 10.1111/andr.12784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe peripheral angiopathy in patients with diabetes is a major contributing factor for low response rate to phosphodiesterase-5 inhibitors. OBJECTIVES To examine whether and how Dickkopf3 (DKK3), a secreted modulator of the Wnt pathway that known to be involved in endothelial cell repair and vascular progenitor cell migration, restores erectile function in diabetic mice. METHODS Eight-week-old C57BL/6 mice received intraperitoneal injections of streptozotocin (50 mg/kg for 5 days). Eight weeks after the diabetes was induced, the efficacy of DKK3 was determined by three independent experiments: experiment 1 (DKK3 peptide [5 μg in 20 μL PBS]); experiment 2 (DKK3 plasmid DNA with electroporation [10, 40, or 100 μg in 20 μL PBS, respectively]); and experiment 3 (DKK3 adenovirus [1 × 107 , 1 × 108 , 1 × 109 virus particles per 20 μL, respectively]). Erectile function was measured by electrical stimulation of the cavernous nerve one week (for peptide) or two weeks (for genes) after treatment. The angiogenic activity of DKK3 was determined in diabetic penis in vivo and in primary cultured mouse cavernous endothelial cells (MCECs) in vitro. RESULTS The cavernous expression of DKK3 protein was significantly lower in the diabetic mice than in controls. DKK3 peptide or adenovirus significantly improved erectile function in diabetic mice (70% of the control values). DKK3 adenovirus profoundly restored cavernous endothelial cell and pericyte contents and increased endothelial junction proteins in diabetic mice in vivo. DKK3 peptide induced upregulation of angiogenic factors (angiopoietin-1, vascular endothelial growth factor, and basic fibroblast growth factor) and accelerated tube formation in MCECs cultivated under the high-glucose condition in vitro. CONCLUSION DKK3 restored cavernous vascular integrity and improved erectile function in diabetic mice. Therapeutic cavernous angiogenesis by the use of DKK3 will be a promising therapeutic strategy to treat diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Woo-Jean Kim
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Department of Anatomy, Kosin University College of Medicine, Busan, Korea
| | - Min-Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Nguyen Nhat Minh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Soon-Sun Hong
- Department of Drug Development, Inha University School of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Department of Urology, Inha University Hospital, Incheon, Korea
| |
Collapse
|
38
|
Fan Y, Chen Y, Zhang J, Yang F, Hu Y, Zhang L, Zeng C, Xu Q. Protective Role of RNA Helicase DEAD-Box Protein 5 in Smooth Muscle Cell Proliferation and Vascular Remodeling. Circ Res 2020; 124:e84-e100. [PMID: 30879402 DOI: 10.1161/circresaha.119.314062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE RNA helicases, highly conserved enzymes, are currently believed to be not only involved in RNA modulation, but also in other biological processes. We recently reported that RNA helicase DDX (DEAD-box protein)-5 is required for maintaining the homeostasis of vascular smooth muscle cells (SMCs). However, the expression and function of RNA helicase in vascular physiology and disease is unknown. OBJECTIVE To investigate the role of RNA helicase in vascular diseases. METHODS AND RESULTS We showed here that DDX-5 was the most abundant DEAD-box protein expressed in human and rodent artery, which mainly located in SMCs. It was demonstrated that DDX-5 levels were reduced in cytokine-stimulated SMCs and vascular lesions. DDX-5 knocking down or deficiency increased SMC proliferation and migration, whereas overexpression of DDX-5 prevented aberrant proliferation and migration of SMCs. Mechanistic studies revealed transcription factor GATA (GATA-binding protein)-6 as a novel downstream target of DDX-5, which directly interacted with GATA-6 and protected it from MDM (mouse double minute)-2-mediated degradation. Our ChIP assay identified a previously unreported binding of p27Kip1 promoter to GATA-6. DDX-5 increased the recruitment of GATA-6 to p27Kip1 promoter, which enhanced p27Kip1 expression and maintained SMC quiescence. Finally, we showed exacerbated neointima formation in DDX-5 SMC-deficient mice after femoral artery injury, whereas overexpression of DDX-5 potently inhibited vascular remodeling in balloon-injured rat carotid artery. CONCLUSIONS These findings provide the first evidence for a role of RNA helicase DDX-5 in the protection against SMC proliferation, migration, and neointimal hyperplasia. Our data extend the fundamental role of RNA helicase beyond RNA modulation, which provides the basic information for new therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Ye Fan
- From the Department of Respiratory Disease, Xinqiao Hospital (Y.F., J.Z.), Third Military Medical University, Chongqing, China
| | - Yikuan Chen
- Department of Vascular Surgery, Second Affiliated Hospital, Chongqing Medical University, China (Y.C.)
| | - Jing Zhang
- From the Department of Respiratory Disease, Xinqiao Hospital (Y.F., J.Z.), Third Military Medical University, Chongqing, China
| | - Feng Yang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.)
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, United Kingdom (Y.H., Q.X.)
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital (C.Z.), Third Military Medical University, Chongqing, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.).,School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, United Kingdom (Y.H., Q.X.)
| |
Collapse
|
39
|
Elevated levels of the secreted wingless agonist R-spondin 3 in preeclamptic pregnancies. J Hypertens 2020; 38:1347-1354. [DOI: 10.1097/hjh.0000000000002362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Chen T, Karamariti E, Hong X, Deng J, Wu Y, Gu W, Simpson R, Wong MM, Yu B, Hu Y, Qu A, Xu Q, Zhang L. DKK3 (Dikkopf-3) Transdifferentiates Fibroblasts Into Functional Endothelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2020; 39:765-773. [PMID: 30816803 DOI: 10.1161/atvbaha.118.311919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective- To determine the role of a cytokine-like protein DKK3 (dikkopf-3) in directly transdifferentiating fibroblasts into endothelial cells (ECs) and the underlying mechanisms. Approach and Results- DKK3 overexpression in human fibroblasts under defined conditions for 4 days led to a notable change in cell morphology and progenitor gene expression. It was revealed that these cells went through mesenchymal-to-epithelial transition and subsequently expressed KDR (kinase insert domain receptor) at high levels. Further culture in EC defined media led to differentiation of these progenitors into functional ECs capable of angiogenesis both in vitro and in vivo, which was regulated by the VEGF (vascular endothelial growth factor)/miR (microRNA)-125a-5p/Stat3 (signal transducer and activator of transcription factor 3) axis. More importantly, fibroblast-derived ECs showed the ability to form a patent endothelium-like monolayer in tissue-engineered vascular grafts ex vivo. Conclusions- These data demonstrate that DKK3 is capable of directly differentiating human fibroblasts to functional ECs under defined media and provides a novel potential strategy for endothelial regeneration.
Collapse
Affiliation(s)
- Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.)
| | - Eirini Karamariti
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Xuechong Hong
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Jiacheng Deng
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Yutao Wu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.)
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Russell Simpson
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Mei Mei Wong
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.).,School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.)
| |
Collapse
|
41
|
Zhu Z, Guo D, Zhong C, Wang A, Xu T, Peng Y, Peng H, Li Q, Ju Z, Geng D, Chen J, Zhang Y, He J. Serum dickkopf-3 is associated with death and vascular events after ischemic stroke: an observational study from CATIS. J Neuroinflammation 2020; 17:12. [PMID: 31918729 PMCID: PMC6953290 DOI: 10.1186/s12974-019-1680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dickkopf-3 (Dkk-3) is implicated in the progression of atherosclerosis. This study aimed to investigate the association between serum Dkk-3 and the prognosis of ischemic stroke. METHODS We measured serum Dkk-3 levels in 3344 ischemic stroke patients from CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). The primary outcome was a combination of death and vascular events within 3 months after ischemic stroke. RESULTS During 3 months of follow-up, the cumulative incidence rates of primary outcome among ischemic stroke patients in five quintiles of serum Dkk-3 (from low to high) were 4.49%, 3.74%, 2.54%, 5.23%, and 6.73%, respectively (log-rank p = 0.004). Multivariable Cox proportional hazards regression analyses showed that compared with the third quintile of serum Dkk-3, the adjusted hazard ratios (95% confidence intervals) associated with the first and fifth quintile were 3.49 (1.46-8.34) and 4.23 (1.86-9.64) for primary outcome, 3.47 (1.06-11.36) and 5.30 (1.81-15.51) for death, and 2.66 (1.01-7.01) and 3.35 (1.33-8.40) for vascular events, respectively. Multivariable-adjusted Cox proportional hazards regression model with restricted cubic splines showed a U-shaped association between serum Dkk-3 and the risk of primary outcome (p for nonlinearity = 0.030). Moreover, adding serum Dkk-3 to conventional risk factors could improve the predictive power for primary outcome (net reclassification improvement 28.44%, p < 0.001; integrated discrimination improvement 0.48%, p = 0.001). CONCLUSIONS Both low and high serum Dkk-3 levels are associated with increased risks of death and vascular events within 3 months after ischemic stroke, indicating that serum Dkk-3 may have a special effect on the prognosis of ischemic stroke. We also found that serum Dkk-3 might be a prognostic biomarker for ischemic stroke. Further studies are needed to replicate our findings and to determine the optimal levels of serum Dkk-3.
Collapse
Affiliation(s)
- Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China.,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Qunwei Li
- Department of Epidemiology, School of Public Health, Taishan Medical College, Tai'an, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao City, Inner Mongolia, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China.
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
42
|
Issa Bhaloo S, Wu Y, Le Bras A, Yu B, Gu W, Xie Y, Deng J, Wang Z, Zhang Z, Kong D, Hu Y, Qu A, Zhao Q, Xu Q. Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration. Circ Res 2019; 123:451-466. [PMID: 29980568 PMCID: PMC6092110 DOI: 10.1161/circresaha.118.312945] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Vascular progenitor cells play key roles in physiological and pathological vascular remodeling—a process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. Objective: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identified as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. Methods and Results: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specific saturation binding assays identified a high-affinity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed efficient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specific antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. Conclusions: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.
Collapse
Affiliation(s)
- Shirin Issa Bhaloo
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Alexandra Le Bras
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Yao Xie
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Zhihong Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| |
Collapse
|
43
|
Xu S, Jiang J, Zhang Y, Chen T, Zhu M, Fang C, Mi Y. Discovery of potential plasma protein biomarkers for acute myocardial infarction via proteomics. J Thorac Dis 2019; 11:3962-3972. [PMID: 31656670 DOI: 10.21037/jtd.2019.08.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Acute myocardial infarction (AMI) is an acute disease with high mortality and seriously threatens human health. The identification of new effective biological markers for AMI is a prerequisite for treatment. Most proteomic studies have focused on atherosclerotic plaques, vascular cells, monocytes and platelets in the blood; however, the concentration of these factors in plasma is low, making it difficult to measure the complexity of plasma components. Moreover, some studies have examined the plasma protein of patients with acute coronary syndrome with histochemistry; however, the results are not consistent. Therefore, it is necessary to further investigate the differential proteins in the plasma of patients with AMI via proteomics to identify new biomarkers of AMI. Methods In this study, immunodepletion of high-abundance plasma proteins followed by an isobaric tagging for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was used to analyze plasma samples from 5 control individuals and 10 AMI patients. Results Four hundred sixty-eight proteins were identified from two samples, and 33 proteins were differentially expressed in AMI patients compared to the controls. Among the 33 proteins, 12 proteins showed a ≥1.5-fold change between AMI and control samples. These proteins included fatty acid binding protein 3 (FABP3, ratio =6.36), creatine kinase-MB (CK-MB ratio =4.89), adenylate kinase1 (AK1 ratio =4.16), pro-platelet basic protein (PPBP ratio =3.29), creatine kinase (CK ratio =2.88), platelet factor 4 (PF4 ratio =2.62), peptidyl prolyl isomerase Cyclophilin A (PPIA ratio =2.05), Cofilin-1 (CFL1 ratio =1.81), coronin1A (CORO1A ratio =1.71), protein kinase M (PKM ratio =1.63), ribonuclease inhibitor (RNH1, ratio =1.67), and triose phosphate isomerase (TPI1 ratio =1.56). By contrast, there was a decrease of 19 proteins, such as adiponectin (ADIPOQ ratio =0.70), insulin-like growth factor binding protein6 (IGFBP6 ratio =0.70), Dickkopf-related protein 3 (DKK3 ratio =0.70) and complement 4B (C4B ratio =0.68). The most over-represented term was regulation of cell proliferation in the cellular component category of Gene Ontology (GO). The top 3 biological process terms were regulation of cell proliferation, response to wounding and wound healing. These proteins included immune proteins, blood coagulation proteins, lipid metabolism proteins, cytoskeleton proteins, energy metabolism proteins, gene regulation proteins, myocutaneous proteins, and myocardial remodeling proteins and were highly connected with each other, which indicates that the functional network of these processes contribute to the pathophysiology of AMI. Conclusions In conclusion, the present quantitative proteomic study identified novel AMI biomarker candidates and might provide fundamental information for the development of an AMI biomarker.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Jianjun Jiang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Yang Zhang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Tingting Chen
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Min Zhu
- Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Chongfeng Fang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Yafei Mi
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
44
|
Gu W, Nowak WN, Xie Y, Le Bras A, Hu Y, Deng J, Issa Bhaloo S, Lu Y, Yuan H, Fidanis E, Saxena A, Kanno T, Mason AJ, Dulak J, Cai J, Xu Q. Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arterioscler Thromb Vasc Biol 2019; 39:2049-2066. [PMID: 31340667 PMCID: PMC6766361 DOI: 10.1161/atvbaha.119.312732] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) plays a vital role in maintaining vascular homeostasis. However, most studies ascribed the function of PVAT in vascular remodeling to adipokines secreted by the perivascular adipocytes. Whether mesenchymal stem cells exist in PVAT and play a role in vascular regeneration remain unknown. Approach and Results: Single-cell RNA-sequencing allowed direct visualization of the heterogeneous PVAT-derived mesenchymal stem cells (PV-ADSCs) at a high resolution and revealed 2 distinct subpopulations, among which one featured signaling pathways crucial for smooth muscle differentiation. Pseudotime analysis of cultured PV-ADSCs unraveled their smooth muscle differentiation trajectory. Transplantation of cultured PV-ADSCs in mouse vein graft model suggested the contribution of PV-ADSCs to vascular remodeling through smooth muscle differentiation. Mechanistically, treatment with TGF-β1 (transforming growth factor β1) and transfection of microRNA (miR)-378a-3p mimics induced a similar metabolic reprogramming of PV-ADSCs, including upregulated mitochondrial potential and altered lipid levels, such as increased cholesterol and promoted smooth muscle differentiation. CONCLUSIONS Single-cell RNA-sequencing allows direct visualization of PV-ADSC heterogeneity at a single-cell level and uncovers 2 subpopulations with distinct signature genes and signaling pathways. The function of PVAT in vascular regeneration is partly attributed to PV-ADSCs and their differentiation towards smooth muscle lineage. Mechanistic study presents miR-378a-3p which is a potent regulator of metabolic reprogramming as a potential therapeutic target for vascular regeneration.
Collapse
Affiliation(s)
- Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Witold N Nowak
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Yao Xie
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Alexandra Le Bras
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Shirin Issa Bhaloo
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| | - Yao Lu
- Center of Clinical Pharmacology, Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China (Y.L., H.Y., J.C.)
| | - Hong Yuan
- Center of Clinical Pharmacology, Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China (Y.L., H.Y., J.C.)
| | - Efthymios Fidanis
- Genomics Research Platform, Biomedical Research Centre at Guy's Hospital, London, United Kingdom (E.F., A.S.)
| | - Alka Saxena
- Genomics Research Platform, Biomedical Research Centre at Guy's Hospital, London, United Kingdom (E.F., A.S.)
| | - Tokuwa Kanno
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, United Kingdom (T.K., A.J.M.)
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, United Kingdom (T.K., A.J.M.)
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland (J. Dulak)
| | - Jingjing Cai
- Center of Clinical Pharmacology, Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China (Y.L., H.Y., J.C.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)
| |
Collapse
|
45
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
46
|
Pontremoli M, Brioschi M, Baetta R, Ghilardi S, Banfi C. Identification of DKK-1 as a novel mediator of statin effects in human endothelial cells. Sci Rep 2018; 8:16671. [PMID: 30420710 PMCID: PMC6232108 DOI: 10.1038/s41598-018-35119-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
This study shows that DKK-1, a member of the Dickkopf family and a regulator of the Wnt pathways, represents a novel target of statins which, through the inhibition of HMG-CoA reductase and of non-steroidal isoprenoid intermediates, exert extra-beneficial effect in preventing atherosclerosis beyond their effect on the lipid profile. We found that atorvastatin downregulates DKK-1 protein (−88.3 ± 4.1%) and mRNA expression (−90 ± 4.2%) through the inhibition of Cdc42, Rho and Rac geranylgeranylated proteins. Further, a combined approach based on the integration of label-free quantitative mass spectrometry based-proteomics and gene silencing allowed us to demonstrate that DKK-1 itself mediates, at least in part, statin effects on human endothelial cells. Indeed, DKK-1 is responsible for the regulation of the 21% of the statin-modulated proteins, which include, among others, clusterin/apoJ, plasminogen activator inhibitor type 1 (PAI-1), myristoylated alanine-rich C-kinase substrate (MARCKS), and pentraxin 3 (PTX3). The Gene Ontology enrichment annotation revealed that DKK-1 is also a potential mediator of the extracellular matrix organization, platelet activation and response to wounding processes induced by statin. Finally, we found that plasma level of DKK-1 from cholesterol-fed rabbits treated with atorvastatin (2.5 mg/kg/day for 8 weeks) was lower (−42 ± 23%) than that of control animals. Thus, DKK-1 is not only a target of statin but it directly regulates the expression of molecules involved in a plethora of biological functions, thus expanding its role, which has been so far restricted mainly to cancer.
Collapse
|
47
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
48
|
Karamariti E, Zhai C, Yu B, Qiao L, Wang Z, Potter CMF, Wong MM, Simpson RML, Zhang Z, Wang X, Del Barco Barrantes I, Niehrs C, Kong D, Zhao Q, Zhang Y, Hu Y, Zhang C, Xu Q. DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 38:425-437. [PMID: 29284609 DOI: 10.1161/atvbaha.117.310079] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 12/13/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS In the present study, we used a murine model of atherosclerosis (ApoE-/-) in conjunction with DKK3-/- and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1+ (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.
Collapse
Affiliation(s)
- Eirini Karamariti
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Chungang Zhai
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Baoqi Yu
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Lei Qiao
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Zhihong Wang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Claire M F Potter
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Mei Mei Wong
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Russell M L Simpson
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Xiaocong Wang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Ivan Del Barco Barrantes
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Christof Niehrs
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Deling Kong
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Qiang Zhao
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Yun Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Cheng Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.).
| | - Qingbo Xu
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.).
| |
Collapse
|