1
|
Williams MG, Faber ZJ, Kelley TJ. Comparison of artificial intelligence image processing with manual leucocyte differential to score immune cell infiltration in a mouse infection model of cystic fibrosis. J Pathol Inform 2025; 17:100438. [PMID: 40297061 PMCID: PMC12036075 DOI: 10.1016/j.jpi.2025.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Immune cell differentials are most commonly performed manually or with the use of automated cell sorting devices. However, manual review by research personnel can be both subjective and time consuming, and cell sorting approaches consume samples and demand additional reagents to perform the differential. We have created an artificial intelligence (AI) image processing pipeline using the Biodock.ai platform to classify immune cell types from Giemsa-stained cytospins of mouse bronchoalveolar lavage fluid. Through multiple rounds of training and refinement, we have created a tool that is as accurate as manual review of slide images while removing the subjectivity and making the process mostly hands off, saving researcher time for other tasks and improving core turnaround for experiments. This AI-based image processing is directly compatible with current workflows utilizing stained slides, in contrast to a change to a flow cytometry-based approach, which requires both specialized equipment, reagents, and expertise.
Collapse
Affiliation(s)
- Madeline G. Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Zachary J. Faber
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas J. Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Schelde K, Rosenjack J, Sonneborn C, Jafri A, Kavran M, Brumbaugh S, Rietsch A, Darrah RJ, Hodges CA, Flask CA, Kelley TJ, Drumm ML. A minimally invasive bronchoscopic approach for direct delivery to murine airways and application to models of pulmonary infection. Lab Anim 2023; 57:611-622. [PMID: 37382374 PMCID: PMC10693731 DOI: 10.1177/00236772231175553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/23/2023] [Indexed: 06/30/2023]
Abstract
The laboratory mouse is used extensively for human disease modeling and preclinical therapeutic testing for efficacy, biodistribution, and toxicity. The variety of murine models available, and the ability to create new ones, eclipses all other species, but the size of mice and their organs create challenges for many in vivo studies. For pulmonary research, improved methods to access murine airways and lungs, and track substances administered to them, would be desirable. A nonsurgical endoscopic system with a camera, effectively a bronchoscope, coupled with a cryoimaging fluorescence microscopy technique to view the lungs in 3D, is described here that allows visualization of the procedure, including the anatomical location at which substances are instilled and fluorescence detection of those substances. We have applied it to bacterial infection studies to characterize better and optimize a chronic lung infection murine model in which we instill bacteria-laden agarose beads into the airways and lungs to extend the duration of the infection and inflammation. The use of the endoscope as guidance for placing a catheter into the airways is simple and quick, requiring only momentary sedation, and reduces post-procedural mortality compared with our previous instillation method that includes a trans-tracheal surgery. The endoscopic method improves speed and precision of delivery while reducing the stress on animals and the number of animals generated and used for experiments.
Collapse
Affiliation(s)
- Karen Schelde
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | - Julie Rosenjack
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | - Claire Sonneborn
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | - Michael Kavran
- Department of Radiology, University Hospitals Cleveland Medical Center, USA
| | | | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, USA
| | - Rebecca J Darrah
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | | | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, USA
| |
Collapse
|
3
|
Lock GDA, Helfer VE, Dias BB, Torres BGS, De Araújo BV, Dalla Costa T. Population pharmacokinetic modeling of the influence of chronic and acute biofilm-forming Pseudomonas aeruginosa lung infection on ciprofloxacin free pulmonary and epithelial lining fluid concentrations. Eur J Pharm Sci 2023; 189:106546. [PMID: 37517670 DOI: 10.1016/j.ejps.2023.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
We previously reported that ciprofloxacin (CIP) free lung interstitial concentrations are decreased by biofilm-forming Pseudomonas aeruginosa pulmonary chronic (14 d) infection. To get a better understanding on the influence of infection on CIP lung distribution, in the present study free lung interstitial fluid and epithelial lining fluid (ELF) concentrations were determined by microdialysis in biofilm-forming P. aeruginosa acutely (2 d) and chronically infected (14 d) Wistar rats following CIP 20 mg/kg i.v. bolus dosing. A popPK model was developed, using NONMEM® (version 7.4.3) with FOCE+I, with plasma data described as a three-compartment model with first-order elimination. For lung data inclusion, the model was expanded to four compartments and ELF concentrations were described as a fraction of lung levels estimated as a distribution factor (ƒD). Acute infection had a minor impact on plasma and lung CIP distribution and both infection stages did not alter ELF drug penetration. Probability of target attainment of ƒAUC0-24/MIC ≥ 90 using 20 mg q8h, equivalent to 400 mg q8h in humans, showed that CIP free concentrations in plasma are adequate to successfully treat lung infections. However, lung and ELF free interstitial concentrations might be insufficient to result in efficacious treatment of biofilm-forming P. aeruginosa chronic infection. However, lung and ELF free interstitial concentrations might be insufficient to result in efficacious treatment of biofilm-forming P. aeruginosa chronic infection.
Collapse
Affiliation(s)
- Graziela De Araujo Lock
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Victória Etges Helfer
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bernar Dias
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Gaelzer Silva Torres
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana Verlindo De Araújo
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Teresa Dalla Costa
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Dang AT, Begka C, Pattaroni C, Caley LR, Floto RA, Peckham DG, Marsland BJ. Butyrate regulates neutrophil homeostasis and impairs early antimicrobial activity in the lung. Mucosal Immunol 2023; 16:476-485. [PMID: 37178819 PMCID: PMC10412508 DOI: 10.1016/j.mucimm.2023.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Short-chain fatty acids (SCFAs) are metabolites that are produced after microbial fermentation of dietary fiber and impact cell metabolism and anti-inflammatory pathways both locally in the gut and systemically. In preclinical models, administration of SCFAs, such as butyrate, ameliorates a range of inflammatory disease models including allergic airway inflammation, atopic dermatitis, and influenza infection. Here we report the effect of butyrate on a bacteria-induced acute neutrophil-driven immune response in the airways. Butyrate impacted discrete aspects of hematopoiesis in the bone marrow resulting in the accumulation of immature neutrophils. During Pseudomonas aeruginosa infection, butyrate treatment led to the enhanced mobilization of neutrophils to the lungs as a result of increased CXCL2 expression by lung macrophages. Despite this increase in granulocyte numbers and their enhanced phagocytic capacity, neutrophils failed to control early bacterial growth. Butyrate reduced the expression of nicotinamide adenine dinucleotide phosphate, oxidase complex components required for reactive oxygen species production, and reduced secondary granule enzymes, culminating in impaired bactericidal activity. These data reveal that SCFAs tune neutrophil maturation and effector function in the bone marrow under homeostatic conditions, potentially to mitigate against excessive granulocyte-driven immunopathology, but their consequently restricted bactericidal capacity impairs early control of Pseudomonas infection.
Collapse
Affiliation(s)
- Anh Thu Dang
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Christina Begka
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Céline Pattaroni
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Laura R Caley
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - R Andres Floto
- University of Cambridge, Molecular Immunity Unit, Department of Medicine, Cambridge, United Kingdom; Royal Papworth Hospital, Cambridge Centre for Lung Infection, Cambridge, United Kingdom
| | - Daniel G Peckham
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
5
|
Sandri A, Saitta GM, Veschetti L, Boschi F, Passarelli Mantovani R, Carelli M, Melotti P, Signoretto C, Boaretti M, Malerba G, Lleò MM. In Vivo Inflammation Caused by Achromobacter spp. Cystic Fibrosis Clinical Isolates Exhibiting Different Pathogenic Characteristics. Int J Mol Sci 2023; 24:ijms24087432. [PMID: 37108596 PMCID: PMC10139000 DOI: 10.3390/ijms24087432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based on different pathogenic characteristics previously assessed: virulence in Galleria mellonella larvae, cytotoxicity in human bronchial epithelial cells, and biofilm formation. Acute lung infection was established by intratracheal instillation with 10.5 × 108 bacterial cells in wild-type and CFTR-knockout (KO) mice expressing a luciferase gene under control of interleukin-8 promoter. Lung inflammation was monitored by in vivo bioluminescence imaging up to 48 h after infection, and mortality was recorded up to 96 h. Lung bacterial load was evaluated by CFU count. Virulent isolates caused higher lung inflammation and mice mortality, especially in KO animals. Isolates both virulent and cytotoxic showed higher persistence in mice lungs, while biofilm formation was not associated with lung inflammation, mice mortality, or bacterial persistence. A positive correlation between virulence and lung inflammation was observed. These results indicate that Achromobacter spp. pathogenic characteristics such as virulence and cytotoxicity may be associated with clinically relevant effects and highlight the importance of elucidating their mechanisms.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giulia Maria Saitta
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Laura Veschetti
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Rebeca Passarelli Mantovani
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Maria Carelli
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giovanni Malerba
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria M Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| |
Collapse
|
6
|
Reyne N, McCarron A, Cmielewski P, Parsons D, Donnelley M. To bead or not to bead: A review of Pseudomonas aeruginosa lung infection models for cystic fibrosis. Front Physiol 2023; 14:1104856. [PMID: 36824474 PMCID: PMC9942929 DOI: 10.3389/fphys.2023.1104856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterised by recurring bacterial infections resulting in inflammation, lung damage and ultimately respiratory failure. Pseudomonas aeruginosa is considered one of the most important lung pathogens in those with cystic fibrosis. While multiple cystic fibrosis animal models have been developed, many fail to mirror the cystic fibrosis lung disease of humans, including the colonisation by opportunistic environmental pathogens. Delivering bacteria to the lungs of animals in different forms is a way to model cystic fibrosis bacterial lung infections and disease. This review presents an overview of previous models, and factors to consider when generating a new P. aeruginosa lung infection model. The future development and application of lung infection models that more accurately reflect human cystic fibrosis lung disease has the potential to assist in understanding the pathophysiology of cystic fibrosis lung disease and for developing treatments.
Collapse
Affiliation(s)
- Nicole Reyne
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia,*Correspondence: Nicole Reyne,
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| |
Collapse
|
7
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
O'Brien TJ, Hassan MM, Harrison F, Welch M. An in vitro model for the cultivation of polymicrobial biofilms under continuous-flow conditions. F1000Res 2021; 10:801. [PMID: 34557293 PMCID: PMC8442117 DOI: 10.12688/f1000research.55140.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
The airways of people with cystic fibrosis (CF) are often chronically colonised with a diverse array of bacterial and fungal species. However, little is known about the relative partitioning of species between the planktonic and biofilm modes of growth in the airways. Existing in vivo and in vitro models of CF airway infection are ill-suited for the long-term recapitulation of mixed microbial communities. Here we describe a simple, in vitro continuous-flow model for the cultivation of polymicrobial biofilms and planktonic cultures on different substrata. Our data provide evidence for inter-species antagonism and synergism in biofilm ecology. We further show that the type of substratum on which the biofilms grow has a profound influence on their species composition. This happens without any major alteration in the composition of the surrounding steady-state planktonic community. Our experimentally-tractable model enables the systematic study of planktonic and biofilm communities under conditions that are nutritionally reminiscent of the CF airway microenvironment, something not possible using any existing in vivo models of CF airway infection.
Collapse
Affiliation(s)
| | | | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| |
Collapse
|
9
|
van Heeckeren AM, Sutton MT, Fletcher DR, Hodges CA, Caplan AI, Bonfield TL. Enhancing Cystic Fibrosis Immune Regulation. Front Pharmacol 2021; 12:573065. [PMID: 34054509 PMCID: PMC8155373 DOI: 10.3389/fphar.2021.573065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
In cystic fibrosis (CF), sustained infection and exuberant inflammation results in debilitating and often fatal lung disease. Advancement in CF therapeutics has provided successful treatment regimens for a variety of clinical consequences in CF; however effective means to treat the pulmonary infection and inflammation continues to be problematic. Even with the successful development of small molecule cystic fibrosis transmembrane conductance regulator (CFTR) correctors and potentiators, there is only a modest effect on established infection and inflammation in CF patients. In the pursuit of therapeutics to treat inflammation, the conundrum to address is how to overcome the inflammatory response without jeopardizing the required immunity to manage pathogens and prevent infection. The key therapeutic would have the capacity to dull the inflammatory response, while sustaining the ability to manage infections. Advances in cell-based therapy have opened up the avenue for dynamic and versatile immune interventions that may support this requirement. Cell based therapy has the capacity to augment the patient’s own ability to manage their inflammatory status while at the same time sustaining anti-pathogen immunity. The studies highlighted in this manuscript outline the potential use of cell-based therapy for CF. The data demonstrate that 1) total bone marrow aspirates containing Cftr sufficient hematopoietic and mesenchymal stem cells (hMSCs) provide Cftr deficient mice >50% improvement in survival and improved management of infection and inflammation; 2) myeloid cells can provide sufficient Cftr to provide pre-clinical anti-inflammatory and antimicrobial benefit; 3) hMSCs provide significant improvement in survival and management of infection and inflammation in CF; 4) the combined interaction between macrophages and hMSCs can potentially enhance anti-inflammatory and antimicrobial support through manipulating PPARγ. These data support the development of optimized cell-based therapeutics to enhance CF patient’s own immune repertoire and capacity to maintain the balance between inflammation and pathogen management.
Collapse
Affiliation(s)
- Anna M van Heeckeren
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Morgan T Sutton
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, United States
| | - David R Fletcher
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Craig A Hodges
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tracey L Bonfield
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
10
|
Bonfield TL, Sutton MT, Fletcher DR, Folz MA, Ragavapuram V, Somoza RA, Caplan AI. Donor-defined mesenchymal stem cell antimicrobial potency against nontuberculous mycobacterium. Stem Cells Transl Med 2021; 10:1202-1216. [PMID: 33943038 PMCID: PMC8284776 DOI: 10.1002/sctm.20-0521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic nontuberculous mycobacterial infections with Mycobacterium avium and Mycobacterium intracellulare complicate bronchiectasis, chronic obstructive airway disease, and the health of aging individuals. These insidious intracellular pathogens cause considerable morbidity and eventual mortality in individuals colonized with these bacteria. Current treatment regimens with antibiotic macrolides are both toxic and often inefficient at providing infection resolution. In this article, we demonstrate that human marrow‐derived mesenchymal stem cells are antimicrobial and anti‐inflammatory in vitro and in the context of an in vivo sustained infection of either M. avium and/or M. intracellulare.
Collapse
Affiliation(s)
- Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Morgan T Sutton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, Tennessee, USA
| | - David R Fletcher
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael A Folz
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vaishnavi Ragavapuram
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
12
|
O'Brien TJ, Welch M. Recapitulation of polymicrobial communities associated with cystic fibrosis airway infections: a perspective. Future Microbiol 2019; 14:1437-1450. [PMID: 31778075 DOI: 10.2217/fmb-2019-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The airways of persons with cystic fibrosis are prone to infection by a diverse and dynamic polymicrobial consortium. Currently, no models exist that permit recapitulation of this consortium within the laboratory. Such microbial ecosystems likely have a network of interspecies interactions, serving to modulate metabolic pathways and impact upon disease severity. The contribution of less abundant/fastidious microbial species on this cross-talk has often been neglected due to lack of experimental tractability. Here, we critically assess the existing models for studying polymicrobial infections. Particular attention is paid to 3Rs-compliant in vitro and in silico infection models, offering significant advantages over mammalian infection models. We outline why these models will likely become the 'go to' approaches when recapitulating polymicrobial cystic fibrosis infection.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
13
|
Cutone A, Lepanto MS, Rosa L, Scotti MJ, Rossi A, Ranucci S, De Fino I, Bragonzi A, Valenti P, Musci G, Berlutti F. Aerosolized Bovine Lactoferrin Counteracts Infection, Inflammation and Iron Dysbalance in A Cystic Fibrosis Mouse Model of Pseudomonas aeruginosa Chronic Lung Infection. Int J Mol Sci 2019; 20:ijms20092128. [PMID: 31052156 PMCID: PMC6540064 DOI: 10.3390/ijms20092128] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting several organs including airways. Bacterial infection, inflammation and iron dysbalance play a major role in the chronicity and severity of the lung pathology. The aim of this study was to investigate the effect of lactoferrin (Lf), a multifunctional iron-chelating glycoprotein of innate immunity, in a CF murine model of Pseudomonas aeruginosa chronic lung infection. To induce chronic lung infection, C57BL/6 mice, either cystic fibrosis transmembrane conductance regulator (CFTR)-deficient (Cftrtm1UNCTgN(FABPCFTR)#Jaw) or wild-type (WT), were intra-tracheally inoculated with multidrug-resistant MDR-RP73 P. aeruginosa embedded in agar beads. Treatments with aerosolized bovine Lf (bLf) or saline were started five minutes after infection and repeated daily for six days. Our results demonstrated that aerosolized bLf was effective in significantly reducing both pulmonary bacterial load and infiltrated leukocytes in infected CF mice. Furthermore, for the first time, we showed that bLf reduced pulmonary iron overload, in both WT and CF mice. In particular, at molecular level, a significant decrease of both the iron exporter ferroportin and iron storage ferritin, as well as luminal iron content was observed. Overall, bLf acts as a potent multi-targeting agent able to break the vicious cycle induced by P. aeruginosa, inflammation and iron dysbalance, thus mitigating the severity of CF-related pathology and sequelae.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Mellani Jinnett Scotti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Alice Rossi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Serena Ranucci
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Ida De Fino
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| | - Francesca Berlutti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
14
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
15
|
Drumm M. Giants in Chest Medicine: Professor Pamela B. Davis, MD, PhD. Chest 2018; 154:240-241. [PMID: 30080499 DOI: 10.1016/j.chest.2018.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/28/2022] Open
Affiliation(s)
- Mitchell Drumm
- Departments of Pediatrics, and Genetics and Genome Sciences, The Research Institute for Children's Health, Connie and Jim Brown Professor in Cystic Fibrosis Research, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
16
|
Effects of Fine Particulate Matter on Pseudomonas aeruginosa Adhesion and Biofilm Formation In Vitro. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6287932. [PMID: 30069474 PMCID: PMC6057421 DOI: 10.1155/2018/6287932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022]
Abstract
Respiratory infections of Pseudomonas aeruginosa are a major cause of mortality and morbidity for hospitalized patients. Fine particulate matter (FPM) is known to have interactions with some bacterial infection in the respiratory system. In this report, we investigate the effect of different concentration of FPM on P. aeruginosa attachment and biofilm formation using in vitro cell culture systems. P. aeruginosa were cultured to form mature biofilms on hydroxyapatite-coated peg and the number of bacteria in the biofilms was enumerated. Morphology of biofilm was imaged with scanning electron microscopy and confocal laser scanning microscopy. Bacterial affinity change to the cell membrane was evaluated with attached colony counting and fluorescence microscopy images. Alteration of bacterial surface hydrophobicity and S100A4 protein concentration were explored as mechanisms of P. aeruginosa adhesion to human cells. There were a concentration-dependent increase of thickness and surface roughness of biofilm mass. P. aeruginosa adherence to respiratory epithelial cells was increased after FPM treatment. Bacterial surface hydrophobicity and S1000A4 protein concentration were increased with proportionally the dose of FPM in media. FPM in the airway could enhance both the adhesion of P. aeruginosa to epithelial cells and biofilm formation. Bacterial surface hydrophobicity and human cell plasma membrane injury are associated with binding of P. aeruginosa on airway epithelial cells and biofilm formation.
Collapse
|
17
|
McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018; 19:54. [PMID: 29609604 PMCID: PMC5879563 DOI: 10.1186/s12931-018-0750-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Martin Donnelley
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - David Parsons
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
18
|
Maura D, Bandyopadhaya A, Rahme LG. Animal Models for Pseudomonas aeruginosa Quorum Sensing Studies. Methods Mol Biol 2018; 1673:227-241. [PMID: 29130177 DOI: 10.1007/978-1-4939-7309-5_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS) systems play global regulatory roles in bacterial virulence. They synchronize the expression of multiple virulence factors and they control and modulate bacterial antibiotic tolerance systems and host defense mechanisms. Therefore, it is important to obtain knowledge about QS modes of action and to test putative therapeutics that may interrupt QS actions in the context of infections. This chapter describes methods to study bacterial pathogenesis in murine acute and persistent/relapsing infection models, using the Gram-negative bacterial pathogen Pseudomonas aeruginosa as an example. These infection models can be used to probe bacterial virulence functions and in mechanistic studies, as well as for the assessment of the therapeutic potential of antibacterials, including anti-virulence agents.
Collapse
Affiliation(s)
- Damien Maura
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Shriners Hospitals for Children Boston, Boston, MA, USA
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Shriners Hospitals for Children Boston, Boston, MA, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Shriners Hospitals for Children Boston, Boston, MA, USA.
| |
Collapse
|
19
|
Martin C, Ohayon D, Alkan M, Mocek J, Pederzoli-Ribeil M, Candalh C, Thevenot G, Millet A, Tamassia N, Cassatella MA, Thieblemont N, Burgel PR, Witko-Sarsat V. Neutrophil-Expressed p21/waf1 Favors Inflammation Resolution in Pseudomonas aeruginosa Infection. Am J Respir Cell Mol Biol 2017; 54:740-50. [PMID: 26517580 DOI: 10.1165/rcmb.2015-0047oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neutrophil-associated inflammation during Pseudomonas aeruginosa lung infection is a determinant of morbidity in cystic fibrosis (CF). Neutrophil apoptosis is a key factor in inflammation resolution and is controlled by cytosolic proliferating cell nuclear antigen (PCNA). p21/Waf1, a cyclin-dependent kinase inhibitor, is a partner of PCNA, and its mRNA is up-regulated in human neutrophils during LPS challenge. We show here that, after 7 days of persistent infection with P. aeruginosa, neutrophilic inflammation was more prominent in p21(-/-) compared with wild-type (WT) mice. Notably, no intrinsic defect in the phagocytosis of apoptotic cells by macrophages was found in p21(-/-) compared with WT mice. Inflammatory cell analysis in peritoneal lavages after zymosan-induced peritonitis showed a significantly increased number of neutrophils at 48 hours in p21(-/-) compared with WT mice. In vitro analysis was consistent with delayed neutrophil apoptosis in p21(-/-) compared with WT mice. Ectopic expression of p21/waf1 in neutrophil-differentiated PLB985 cells potentiated apoptosis and reversed the prosurvival effect of PCNA. In human neutrophils, p21 messenger RNA was induced by TNF-α, granulocyte colony-stimulating factor, and LPS. Neutrophils isolated from patients with CF showed enhanced survival, which was reduced after treatment with a carboxy-peptide derived from the sequence of p21/waf1. Notably, p21/waf1 was detected by immunohistochemistry in neutrophils within lungs from patients with CF. Our data reveal a novel role for p21/waf1 in the resolution of inflammation via its ability to control neutrophil apoptosis. This mechanism may be relevant in the neutrophil-dominated inflammation observed in CF and other chronic inflammatory lung conditions.
Collapse
Affiliation(s)
- Clémence Martin
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,2 Department of Pneumology, Cochin Hospital, France
| | - Delphine Ohayon
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Manal Alkan
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Julie Mocek
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Magali Pederzoli-Ribeil
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Céline Candalh
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Guiti Thevenot
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Arnaud Millet
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Nicola Tamassia
- 6 Department of Medicine, Section of General Pathology, Verona, Italy
| | | | - Nathalie Thieblemont
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Pierre-Régis Burgel
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,2 Department of Pneumology, Cochin Hospital, France
| | - Véronique Witko-Sarsat
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| |
Collapse
|
20
|
Lorenz A, Pawar V, Häussler S, Weiss S. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 2016; 590:3941-3959. [PMID: 27730639 DOI: 10.1002/1873-3468.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.
Collapse
Affiliation(s)
- Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| |
Collapse
|
21
|
Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect Immun 2016; 84:2410-21. [PMID: 27271746 DOI: 10.1128/iai.00284-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/31/2016] [Indexed: 01/13/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by an excessive neutrophilic inflammatory response within the airway as a result of defective cystic fibrosis transmembrane receptor (CFTR) expression and function. Interleukin-17A induces airway neutrophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated with the pathophysiology of cystic fibrosis. The objectives of this study were to use the preclinical murine model of cystic fibrosis lung infection and inflammation to investigate the role of IL-17 in CF lung pathophysiology and explore therapeutic intervention with a focus on IL-17. Cftr-deficient mice (CF mice) and wild-type mice (WT mice) infected with P. aeruginosa had robust IL-17 production early in the infection associated with a persistent elevated inflammatory response. Intratracheal administration of IL-17 provoked a neutrophilic response in the airways of WT and CF animals which was similar to that observed with P. aeruginosa infection. The neutralization of IL-17 prior to infection significantly improved the outcomes in the CF mice, suggesting that IL-17 may be a therapeutic target. We demonstrate in this report that the pathophysiological contribution of IL-17 may be due to the induction of chemokines from the epithelium which is augmented by a deficiency of Cftr and ongoing inflammation. These studies demonstrate the in vivo contribution of IL-17 in cystic fibrosis lung disease and the therapeutic validity of attenuating IL-17 activity in cystic fibrosis.
Collapse
|
22
|
Enhanced Clearance of Pseudomonas aeruginosa by Peroxisome Proliferator-Activated Receptor Gamma. Infect Immun 2016; 84:1975-1985. [PMID: 27091928 DOI: 10.1128/iai.00164-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secrete a variety of virulence factors. Quorum sensing (QS) is a mechanism wherein small diffusible molecules, specifically acyl-homoserine lactones, are produced by P. aeruginosa to promote virulence. We show here that macrophage clearance of P. aeruginosa (PAO1) is enhanced by activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ). Macrophages treated with a PPARγ agonist (pioglitazone) showed enhanced phagocytosis and bacterial killing of PAO1. It is known that PAO1 QS molecules are inactivated by PON-2. QS molecules are also known to inhibit activation of PPARγ by competitively binding PPARγ receptors. In accord with this observation, we found that infection of macrophages with PAO1 inhibited expression of PPARγ and PON-2. Mechanistically, we show that PPARγ induces macrophage paraoxonase 2 (PON-2), an enzyme that degrades QS molecules produced by P. aeruginosa Gene silencing studies confirmed that enhanced clearance of PAO1 in macrophages by PPARγ is PON-2 dependent. Further, we show that PPARγ agonists also enhance clearance of P. aeruginosa from lungs of mice infected with PAO1. Together, these data demonstrate that P. aeruginosa impairs the ability of host cells to mount an immune response by inhibiting PPARγ through secretion of QS molecules. These studies define a novel mechanism by which PPARγ contributes to the host immunoprotective effects during bacterial infection and suggest a role for PPARγ immunotherapy for P. aeruginosa infections.
Collapse
|
23
|
The fermentation product 2,3-butanediol alters P. aeruginosa clearance, cytokine response and the lung microbiome. ISME JOURNAL 2016; 10:2978-2983. [PMID: 27177192 DOI: 10.1038/ismej.2016.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Diseases that favor colonization of the respiratory tract with Pseudomonas aeruginosa are characterized by an altered airway microbiome. Virulence of P. aeruginosa respiratory tract infection is likely influenced by interactions with other lung microbiota or their products. The bacterial fermentation product 2,3-butanediol enhances virulence and biofilm formation of P. aeruginosa in vitro. This study assessed the effects of 2,3-butanediol on P. aeruginosa persistence, inflammatory response, and the lung microbiome in vivo. Here, P. aeruginosa grown in the presence of 2,3-butanediol and encapsulated in agar beads persisted longer in the murine respiratory tract, induced enhanced TNF-α and IL-6 responses and resulted in increased colonization in the lung tissue by environmental microbes. These results led to the following hypothesis that now needs to be tested with a larger study: fermentation products from the lung microbiota not only have a role in P. aeruginosa virulence and abundance, but also on the increased colonization of the respiratory tract with environmental microbes, resulting in dynamic shifts in microbiota diversity and disease susceptibility.
Collapse
|
24
|
Taylor PR, Bonfield TL, Chmiel JF, Pearlman E. Neutrophils from F508del cystic fibrosis patients produce IL-17A and express IL-23 - dependent IL-17RC. Clin Immunol 2016; 170:53-60. [PMID: 27155366 DOI: 10.1016/j.clim.2016.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a chronic pulmonary disease that is associated with persistent microbial infection and chronic neutrophil infiltration, and also with elevated production of the pro-inflammatory cytokine IL-17A (IL-17). In the current study, we examined IL-17 and the inducible IL-17RC receptor subunit in neutrophils from Pseudomonas aeruginosa infected F508del CF patients at the time of pulmonary exacerbation, and again following intravenous antibiotic treatment. Neutrophils expressed Il17a and Il17rc transcripts and protein at the time of pulmonary exacerbation, which were absent following antibiotic treatment. Further, CF sputum induced IL-23 - dependent Il17rc expression in neutrophils from healthy individuals. Similarly, IL-17 producing neutrophils were detected in F508del and Cftr(-/-) mice infected intranasally with P. aeruginosa. In the sputum of CF subjects, the percentage IL-17 producing neutrophils correlated with elastase and MMP9 activity; therefore, this population of neutrophils may be an important contributor to the severity of pulmonary disease in CF patients.
Collapse
Affiliation(s)
- Patricia R Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, United States
| | - Tracey L Bonfield
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, United States
| | - James F Chmiel
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, United States
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, United States; The University of California, Irvine, United States.
| |
Collapse
|
25
|
Abstract
BACKGROUND Mutation of cystic fibrosis transmembrane conductance regulator (CFTR) in the airway epithelial cells can lead to recurrent airway inflammation in cystic fibrosis (CF). Dysfunction of CFTR in neutrophils could contribute to LPS-induced acute lung inflammation. Deficiency of CFTR could also facilitate platelet aggregation and neutrophil-platelet interaction and promote inflammation. AIM To study whether inhibition or mutation of CFTR in alveolar macrophages (AMs) or peritoneal macrophages (PMs) would promote their proinflammatory responses and whether dysfunction of CFTR would deteriorate acute E. coli-induced lung or peritoneal inflammation. DESIGN Laboratory study. METHODS ELISA was used to determine production of proinflammatory cytokines in the CFTR inhibited or mutated macrophages under LPS challenge. Lung or peritoneum lavage was used to analyze proinflammatory parameters and cell differentiation. Excess lung water and lung vascular permeability were measured for evaluating severity of acute lung inflammation. RESULTS Escherichia coli LPS simulation in AMs increased CFTR expression. Inhibition or mutation of CFTR in both AMs and PMs enhanced production of tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2). Mutation of CFTR in macrophages exaggerated production of cytokines through NF-kB and p38 MAPK. Inhibition of CFTR by MalH2 or CFTRinh-172 deteriorates E. coli-induced acute lung inflammation. Deficiency of CFTR promotes migration of monocytes and neutrophils in E. coli pneumonia and peritonitis mouse models. CONCLUSIONS CFTR expressed by alveolar or peritoneal macrophages regulates acute proinflammatory responses.
Collapse
Affiliation(s)
- Z Gao
- From the Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - X Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China and Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA
| |
Collapse
|
26
|
Dennis EA, Coats MT, Griffin SE, Hale JY, Novak L, Briles DE, Crain MJ. The Effects of CFTR and Mucoid Phenotype on Susceptibility and Innate Immune Responses in a Mouse Model of Pneumococcal Lung Disease. PLoS One 2015; 10:e0140335. [PMID: 26469863 PMCID: PMC4607445 DOI: 10.1371/journal.pone.0140335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported the isolation of highly mucoid serotype 3 Streptococcus pneumoniae (Sp) from the respiratory tracts of children with cystic fibrosis (CF). Whether these highly mucoid Sp contribute to, or are associated with, respiratory failure among patients with CF remains unknown. Other mucoid bacteria, predominately Pseudomonas aeruginosa, are associated with CF respiratory decline. We used a mouse model of CF to study pneumococcal pneumonia with highly mucoid serotype 3 and non-mucoid serotype 19A Sp isolates. We investigated susceptibility to infection, survival, and bacterial counts from bronchoaviolar lavage samples and lung homogenates, as well as associated inflammatory cytokines at the site of infection, and lung pathology. Congenic CFTR-/- mice and wild-type (WT)-mice were infected intranasally with CHB756, CHB1126, and WU2 (highly mucoid capsular serotype 3, intermediately mucoid serotype 3, and less mucoid serotype 3, respectively), or CHB1058 (non-mucoid serotype 19A). BAL, lung homogenates, and blood were collected from mice 5 days post-infection. Higher CFU recovery and shorter survival were observed following infection of CFTR-/- mice with CHB756 compared to infection with CHB1126, WU2, or CHB1058 (P≤0.001). Additionally, CFTR-/- mice infected with CHB756 and CHB1126 were more susceptible to infection than WT-mice (P≤0.05). Between CFTR-/- mice and WT-mice, no significant differences in TNF-α, CXCL1/KC concentrations, or lung histopathology were observed. Our results indicate that highly mucoid type 3 Sp causes more severe lung disease than non-mucoid Sp, and does so more readily in the lungs of CFTR-/- than WT-mice.
Collapse
Affiliation(s)
- Evida A. Dennis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mamie T. Coats
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama, United States of America
| | - Sarah E. Griffin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joanetha Y. Hale
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lea Novak
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marilyn J. Crain
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
27
|
Mazzi P, Caveggion E, Lapinet-Vera JA, Lowell CA, Berton G. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines. THE JOURNAL OF IMMUNOLOGY 2015; 195:2383-95. [PMID: 26232427 DOI: 10.4049/jimmunol.1402011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Myeloid leukocyte recruitment into the lung in response to environmental cues represents a key factor for the induction of lung damage. We report that Hck- and Fgr-deficient mice show a profound impairment in early recruitment of neutrophils and monocytes in response to bacterial LPS. The reduction in interstitial and airway neutrophil recruitment was not due to a cell-intrinsic migratory defect, because Hck- and Fgr-deficient neutrophils were attracted to the airways by the chemokine CXCL2 as wild type cells. However, early accumulation of chemokines and TNF-α in the airways was reduced in hck(-/-)fgr(-/-) mice. Considering that chemokine and TNF-α release into the airways was neutrophil independent, as suggested by a comparison between control and neutrophil-depleted mice, we examined LPS-induced chemokine secretion by neutrophils and macrophages in wild type and mutant cells. Notably, mutant neutrophils displayed a marked deficit in their capability to release the chemokines CXCL1, CXCL2, CCL3, and CCL4 and TNF-α in response to LPS. However, intracellular accumulation of these chemokines and TNF-α, as well as secretion of a wide array of cytokines, including IL-1α, IL-1β, IL-6, and IL-10, by hck(-/-)fgr(-/-) neutrophils was normal. Intriguingly, secretion of CXCL1, CXCL2, CCL2, CCL3, CCL4, RANTES, and TNF-α, but not IL-1α, IL-1β, IL-6, IL-10, and GM-CSF, was also markedly reduced in bone marrow-derived macrophages. Consistently, the Src kinase inhibitors PP2 and dasatinib reduced chemokine secretion by neutrophils and bone marrow-derived macrophages. These findings identify Src kinases as a critical regulator of chemokine secretion in myeloid leukocytes during lung inflammation.
Collapse
Affiliation(s)
- Paola Mazzi
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Elena Caveggion
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Josè A Lapinet-Vera
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Giorgio Berton
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| |
Collapse
|
28
|
Caverly LJ, Caceres SM, Fratelli C, Happoldt C, Kidwell KM, Malcolm KC, Nick JA, Nichols DP. Mycobacterium abscessus morphotype comparison in a murine model. PLoS One 2015; 10:e0117657. [PMID: 25675351 PMCID: PMC4326282 DOI: 10.1371/journal.pone.0117657] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/30/2014] [Indexed: 11/18/2022] Open
Abstract
Pulmonary infections with Mycobacterium abscessus (M. abscessus) are increasingly prevalent in patients with lung diseases such as cystic fibrosis. M. abscessus exists in two morphotypes, smooth and rough, but the impact of morphotype on virulence is unclear. We developed an immune competent mouse model of pulmonary M. abscessus infection and tested the differences in host inflammatory response between the morphotypes of M. abscessus. Smooth and rough morphotypes of M. abscessus were isolated from the same American Type Culture Collection strain. Wild type and cystic fibrosis mice were intratracheally inoculated with known quantities of M. abscessus suspended in fibrin plugs. At the time of sacrifice lung and splenic tissues and bronchoalveolar lavage fluid were collected and cultured. Bronchoalveolar lavage fluid was analyzed for leukocyte count, differential and cytokine expression. Pulmonary infection with M. abscessus was present at both 3 days and 14 days post-inoculation in all groups at greater levels than systemic infection. Inoculation with M. abscessus rough morphotype resulted in more bronchoalveolar lavage fluid neutrophils compared to smooth morphotype at 14 days post-inoculation in both wild type (p = 0.01) and cystic fibrosis (p<0.01) mice. Spontaneous in vivo conversion from smooth to rough morphotype occurred in 12/57 (21%) of mice. These mice trended towards greater weight loss than mice in which morphotype conversion did not occur. In the described fibrin plug model of M. abscessus infection, pulmonary infection with minimal systemic dissemination is achieved with both smooth and rough morphotypes. In this model M. abscessus rough morphotype causes a greater host inflammatory response than the smooth based on bronchoalveolar lavage fluid neutrophil levels.
Collapse
Affiliation(s)
- Lindsay J. Caverly
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Silvia M. Caceres
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Cori Fratelli
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Carrie Happoldt
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Kelley M. Kidwell
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth C. Malcolm
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David P. Nichols
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| |
Collapse
|
29
|
Palomo J, Marchiol T, Piotet J, Fauconnier L, Robinet M, Reverchon F, Le Bert M, Togbe D, Buijs-Offerman R, Stolarczyk M, Quesniaux VFJ, Scholte BJ, Ryffel B. Role of IL-1β in experimental cystic fibrosis upon P. aeruginosa infection. PLoS One 2014; 9:e114884. [PMID: 25500839 PMCID: PMC4264861 DOI: 10.1371/journal.pone.0114884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis is associated with increased inflammatory responses to pathogen challenge. Here we revisited the role of IL-1β in lung pathology using the experimental F508del-CFTR murine model on C57BL/6 genetic background (Cftr(tm1eur) or d/d), on double deficient for d/d and type 1 interleukin-1 receptor (d/d X IL-1R1-/-), and antibody neutralization. At steady state, young adult d/d mice did not show any signs of spontaneous lung inflammation. However, IL-1R1 deficiency conferred partial protection to repeated P. aeruginosa endotoxins/LPS lung instillation in d/d mice, as 50% of d/d mice succumbed to inflammation, whereas all d/d x IL-1R1-/- double mutants survived with lower initial weight loss and less pulmonary collagen and mucus production, suggesting that the absence of IL-1R1 signaling is protective in d/d mice in LPS-induced lung damage. Using P. aeruginosa acute lung infection we found heightened neutrophil recruitment in d/d mice with higher epithelial damage, increased bacterial load in BALF, and augmented IL-1β and TNF-α in parenchyma as compared to WT mice. Thus, F508del-CFTR mice show enhanced IL-1β signaling in response to P. aeruginosa. IL-1β antibody neutralization had no effect on lung homeostasis in either d/d or WT mice, however P. aeruginosa induced lung inflammation and bacterial load were diminished by IL-1β antibody neutralization. In conclusion, enhanced susceptibility to P. aeruginosa in d/d mice correlates with an excessive inflammation and with increased IL-1β production and reduced bacterial clearance. Further, we show that neutralization of IL-1β in d/d mice through the double mutation d/d x IL-1R1-/- and in WT via antibody neutralization attenuates inflammation. This supports the notion that intervention in the IL-1R1/IL-1β pathway may be detrimental in CF patients.
Collapse
Affiliation(s)
- Jennifer Palomo
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | | | - Julie Piotet
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | | | | | - Flora Reverchon
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | | | | | | | | | - Valérie F. J. Quesniaux
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Bob J. Scholte
- Erasmus MC, Cell Biology department, Rotterdam, The Netherlands
- * E-mail: (BS); (BR)
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
- Institute of Infectious Disease and Molecular Medicine, IDM, Cape Town, South Africa
- * E-mail: (BS); (BR)
| |
Collapse
|
30
|
Pfister S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, Fritschy JM. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol 2014; 523:406-30. [PMID: 25271146 DOI: 10.1002/cne.23686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium (OE) of mice deficient in cystic fibrosis transmembrane conductance regulator (CFTR) exhibits ion transport deficiencies reported in human CF airways, as well as progressive neuronal loss, suggesting defects in olfactory neuron homeostasis. Microvillar cells, a specialized OE cell-subtype, have been implicated in maintaining tissue homeostasis. These cells are endowed with a PLCβ2/IP3 R3/TRPC6 signal transduction pathway modulating release of neuropeptide Y (NPY), which stimulates OE stem cell activity. It is unknown, however, whether microvillar cells also mediate the deficits observed in CFTR-null mice. Here we show that Cftr mRNA in mouse OE is exclusively localized in microvillar cells and CFTR immunofluorescence is coassociated with the scaffolding protein NHERF-1 and PLCβ2 in microvilli. In CFTR-null mice, PLCβ2 was undetectable, NHERF-1 mislocalized, and IP3 R3 more intensely stained, along with increased levels of NPY, suggesting profound alteration of the PLCβ2/IP3 R3 signaling pathway. In addition, basal olfactory neuron homeostasis was altered, shown by increased progenitor cell proliferation, differentiation, and apoptosis and by reduced regenerative capacity following methimazole-induced neurodegeneration. The importance of CFTR in microvillar cells was further underscored by decreased thickness of the OE mucus layer and increased numbers of immune cells within this tissue in CFTR-KO mice. Finally, we observed enhanced immune responses to an acute viral-like infection, as well as hyper-responsiveness to chemical and physical stimuli applied intranasally. Taken together, these data strengthen the notion that microvillar cells in the OE play a key role in maintaining tissue homeostasis and identify several mechanisms underlying this regulation through the multiple functions of CFTR.
Collapse
Affiliation(s)
- Sandra Pfister
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, Kühl M, Jensen PØ, Høiby N. The in vivo biofilm. Trends Microbiol 2013; 21:466-74. [PMID: 23827084 DOI: 10.1016/j.tim.2013.06.002] [Citation(s) in RCA: 522] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/26/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms, and we suggest new strategies for improving this discrepancy.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Department of International Health, Immunology, and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology 9301, Juliane Mariesvej 22, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bonfield TL, Lennon D, Ghosh SK, DiMarino AM, Weinberg A, Caplan AI. Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.32019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Paroni M, Moalli F, Nebuloni M, Pasqualini F, Bonfield T, Nonis A, Mantovani A, Garlanda C, Bragonzi A. Response of CFTR-deficient mice to long-term chronic Pseudomonas aeruginosa infection and PTX3 therapy. J Infect Dis 2012; 208:130-8. [PMID: 23087427 DOI: 10.1093/infdis/jis636] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model. METHODS Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence. RESULTS Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule. CONCLUSIONS These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.
Collapse
Affiliation(s)
- Moira Paroni
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJV, Hanrahan JW, Lukacs GL. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell 2012; 23:4188-202. [PMID: 22973054 PMCID: PMC3484098 DOI: 10.1091/mbc.e12-06-0424] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functional expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuates expression and secretion of the proinflammatory cytokines IL-6, IL-8, and CXCL1/2 in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport may contribute to lung inflammation in cystic fibrosis. Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Bonfield TL, Hodges CA, Cotton CU, Drumm ML. Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid-derived cells slows resolution of inflammation and infection. J Leukoc Biol 2012; 92:1111-22. [PMID: 22859830 DOI: 10.1189/jlb.0412188] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The absence or reduction of CFTR function causes CF and results in a pulmonary milieu characterized by bacterial colonization and unresolved inflammation. The ineffectiveness at controlling infection by species such as Pseudomonas aeruginosa suggests defects in innate immunity. Macrophages, neutrophils, and DCs have all been shown to express CFTR mRNA but at low levels, raising the question of whether CFTR has a functional role in these cells. Bone marrow transplants between CF and non-CF mice suggest that these cells are inherently different; we confirm this observation using conditional inactivation of Cftr in myeloid-derived cells. Mice lacking Cftr in myeloid cells overtly appear indistinguishable from non-CF mice until challenged with bacteria instilled into the lungs and airways, at which point, they display survival and inflammatory profiles intermediate in severity as compared with CF mice. These studies demonstrate that Cftr is involved directly in myeloid cell function and imply that these cells contribute to the pathophysiological phenotype of the CF lung.
Collapse
Affiliation(s)
- T L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4948, USA.
| | | | | | | |
Collapse
|
36
|
Lubamba B, Huaux F, Lebacq J, Marbaix E, Dhooghe B, Panin N, Wallemacq P, Leal T. Immunomodulatory activity of vardenafil on induced lung inflammation in cystic fibrosis mice. J Cyst Fibros 2012; 11:266-73. [DOI: 10.1016/j.jcf.2012.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 01/22/2023]
|
37
|
|
38
|
Soltzberg J, Frischmann S, van Heeckeren C, Brown N, Caplan A, Bonfield TL. Quantitative microscopy in murine models of lung inflammation. ANALYTICAL AND QUANTITATIVE CYTOLOGY AND HISTOLOGY 2011; 33:245-252. [PMID: 22611751 PMCID: PMC4195243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To develop a quantitative means to measure lung inflammation using the murine models of chronic asthma and cystic fibrosis (CF). STUDY DESIGN Translational-based medicine often utilizes animal models to study new and innovative therapeutics. In asthma and CF, the animal models focus on airway inflammation and remodeling. The asthma model is based on hypersensitivity-induced airway disease, whereas the CF model focuses on the inflammatory response to infection with Pseudomonas aeruginosa. Qualitative measures of inflammation and lung pathophysiology introduce significant variability and difficulty in interpreting interventional outcomes. The highly sensitive and reproducible quantitative computational program interfaced with Image Pro Microscopy to monitor changes in lung inflammation and lung pathophysiology. The software interfaces with image microscopy and automates the lung section review process. RESULTS Results from this program recapitulated data obtained by manual point counting of inflammation, bronchoalveolar lavage differential, and histology. The data show a low coefficient of variation and high reproducibility between slides and sections. CONCLUSION Utilization of this new microscopy program will enhance the quantitative means of establishing changes in lung structure and inflammation as a measure of therapeutic intervention with the ability of refining interpretation of in vivo models potentially short-circuiting translation into the clinical setting.
Collapse
Affiliation(s)
- Joseph Soltzberg
- Hawken School, Gates Mills, Ohio
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| | - Sarah Frischmann
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| | | | - Nicole Brown
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| | - Arnold Caplan
- Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Tracey L. Bonfield
- Department of Pediatrics and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
39
|
Bodas M, Min T, Vij N. Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol 2011; 300:L811-20. [PMID: 21378025 PMCID: PMC3119127 DOI: 10.1152/ajplung.00408.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/28/2011] [Indexed: 01/06/2023] Open
Abstract
Apoptosis of lung epithelial and endothelial cells by exposure to cigarette smoke (CS) severely damages the lung tissue, leading to the pathogenesis of emphysema, but the underlying mechanisms are poorly understood. We have recently established a direct correlation between decreased lipid raft CFTR expression and emphysema progression through increased ceramide accumulation. In the present work, we investigated the role of membrane CFTR in regulating apoptosis and autophagy responses to CS exposure. We report a constitutive and CS-induced increase in the number of TUNEL-positive apoptotic cells in Cftr(-/-) murine lungs compared with Cftr(+/+) murine lungs that also correlated with a concurrent increase in the expression of ceramide, NF-κB, CD95/Fas, lipid raft proteins, and zonula occludens (ZO)-1/2 (P < 0.001). We also verified that stable wild-type CFTR expression in CFBE41o(-) cells controls constitutively elevated caspase-3/7 activity (-1.6-fold, P < 0.001). Our data suggest that membrane CFTR regulates ceramide-enriched lipid raft signaling platforms required for the induction of Fas-mediated apoptotic signaling. In addition, lack of membrane CFTR also modulates autophagy, as demonstrated by the significant increase in constitutive (P < 0.001) and CSE-induced (P < 0.005) perinuclear accumulation of green fluorescent protein-microtubule-associated protein 1 light chain-3 (LC3) in the absence of membrane CFTR (CFBE41o(-) cells). The significant constitutive and CS-induced increase (P < 0.05) in p62 and LC3β expression in CFTR-deficient cells and mice corroborates these findings and suggest a defective autophagy response in the absence of membrane CFTR. Our data demonstrate the critical role of membrane-localized CFTR in regulating apoptotic and autophagic responses in CS-induced lung injury that may be involved in the pathogenesis of severe emphysema.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Pediatric Respiratory Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
40
|
Tiesset H, Bernard H, Bartke N, Beermann C, Flachaire E, Desseyn JL, Gottrand F, Husson MO. (n-3) long-chain PUFA differentially affect resistance to Pseudomonas aeruginosa infection of male and female cftr-/- mice. J Nutr 2011; 141:1101-7. [PMID: 21525256 DOI: 10.3945/jn.110.134585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to determine whether oral supplementation with EPA/DHA (10.5 and 5.1% of fat, respectively) could improve the outcome of pulmonary P. aeruginosa infection in cftr(-/-) mice compared with wild-type (Wt) mice similarly treated. Because gender could influence the susceptibility of cftr-deficient mice, results were analyzed by gender. Wt and (-/-) mice were randomized for 6 wk to consume a control or EPA/DHA diet, infected with endotracheal injection of 5 × 10(7) CFU/mouse of P. aeruginosa, and killed 24 h later. Cftr(-/-) mice were more susceptible to infection than were Wt mice; (-/-) males had more neutrophils (P < 0.01) and a higher keratinocyte-derived chemokine (KC) level (P < 0.05), and (-/-) females had greater lung injury and mortality (P < 0.05). Female (-/-) mice were more susceptible than (-/-) males with a higher mortality and lung injury (P < 0.05). The EPA/DHA diet reduced neutrophil numbers and KC and IL-6 levels (P < 0.05) in (-/-) males and reduced mortality rate (P < 0.001), lung permeability, and IL-6 level (P < 0.05) in (-/-) females compared with (-/-) mice fed the control diet. These results were associated with a reduction in the pulmonary bacterial load (P < 0.05), an increase in the EPA/DHA concentration in cell membranes of (-/-) males and females (P < 0.01), and an increased weight gain only in males compared with (-/-) mice fed the control diet (P < 0.01). In conclusion, EPA/DHA improves the host resistance of (-/-) mice, although the beneficial effect differed in males and females.
Collapse
Affiliation(s)
- Hélène Tiesset
- Inserm U995, IFR 114, University Lille Nord de France, Lille 59045, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mueller C, Braag SA, Keeler A, Hodges C, Drumm M, Flotte TR. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am J Respir Cell Mol Biol 2011; 44:922-9. [PMID: 20724552 PMCID: PMC3135852 DOI: 10.1165/rcmb.2010-0224oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/26/2010] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF), the most common fatal monogenic disease in the United States, results from mutations in CF transmembrane conductance regulator (CFTR), a chloride channel. The mechanisms by which CFTR mutations cause lung disease in CF are not fully defined but may include altered ion and water transport across the airway epithelium and aberrant inflammatory and immune responses to pathogens within the airways. We have shown that Cftr(-/-) mice mount an exaggerated IgE response toward Aspergillus fumigatus, with higher levels of IL-13 and IL-4, mimicking both the T helper cell type 2-biased immune responses seen in patients with CF. Herein, we demonstrate that these aberrations are primarily due to Cftr deficiency in lymphocytes rather than in the epithelium. Adoptive transfer experiments with CF splenocytes confer a higher IgE response to Aspergillus fumigatus compared with hosts receiving wild-type splenocytes. The predilection of Cftr-deficient lymphocytes to mount T helper cell type 2 responses with high IL-13 and IL-4 was confirmed by in vitro antigen recall experiments. Conclusive data on this phenomenon were obtained with conditional Cftr knockout mice, where mice lacking Cftr in T cell lineages developed higher IgE than their wild-type control littermates. Further analysis of Cftr-deficient lymphocytes revealed an enhanced intracellular Ca(2+) flux in response to T cell receptor activation. This was accompanied by an increase in nuclear localization of the calcium-sensitive transcription factor, nuclear factor of activated T cell, which could drive the IL-13 response. In summary, our data identified that CFTR dysfunction in T cells can lead directly to aberrant immune responses. These findings implicate the lymphocyte population as a potentially important target for CF therapeutics.
Collapse
Affiliation(s)
- Christian Mueller
- University of Massachusetts Medical School Department of Pediatrics and Gene Therapy Center, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Mouse models of cystic fibrosis: Phenotypic analysis and research applications. J Cyst Fibros 2011; 10 Suppl 2:S152-71. [DOI: 10.1016/s1569-1993(11)60020-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Abstract
Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.
Collapse
Affiliation(s)
- John T Fisher
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | | |
Collapse
|
44
|
Lenz AM, Qadan M, Gardner SA, Cheadle WG. Impact of microbial tolerance in persistent secondary Klebsiella pneumoniae peritonitis. Cytokine 2011; 53:84-93. [DOI: 10.1016/j.cyto.2010.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/25/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
|
45
|
Bodas M, Min T, Mazur S, Vij N. Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. THE JOURNAL OF IMMUNOLOGY 2010; 186:602-13. [PMID: 21135173 DOI: 10.4049/jimmunol.1002850] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ceramide accumulation mediates the pathogenesis of chronic obstructive lung diseases. Although an association between lack of cystic fibrosis transmembrane conductance regulator (CFTR) and ceramide accumulation has been described, it is unclear how membrane-CFTR may modulate ceramide signaling in lung injury and emphysema. Cftr(+/+) and Cftr(-/-) mice and cells were used to evaluate the CFTR-dependent ceramide signaling in lung injury. Lung tissue from control and chronic obstructive pulmonary disease patients was used to verify the role of CFTR-dependent ceramide signaling in pathogenesis of chronic emphysema. Our data reveal that CFTR expression inversely correlates with severity of emphysema and ceramide accumulation in chronic obstructive pulmonary disease subjects compared with control subjects. We found that chemical inhibition of de novo ceramide synthesis controls Pseudomonas aeruginosa-LPS-induced lung injury in Cftr(+/+) mice, whereas its efficacy was significantly lower in Cftr(-/-) mice, indicating that membrane-CFTR is required for controlling lipid-raft ceramide levels. Inhibition of membrane-ceramide release showed enhanced protective effect in controlling P. aeruginosa-LPS-induced lung injury in Cftr(-/-) mice compared with that in Cftr(+/+) mice, confirming our observation that CFTR regulates lipid-raft ceramide levels and signaling. Our results indicate that inhibition of de novo ceramide synthesis may be effective in disease states with low CFTR expression like emphysema and chronic lung injury but not in complete absence of lipid-raft CFTR as in ΔF508-cystic fibrosis. In contrast, inhibiting membrane-ceramide release has the potential of a more effective drug candidate for ΔF508-cystic fibrosis but may not be effectual in treating lung injury and emphysema. Our data demonstrate the critical role of membrane-localized CFTR in regulating ceramide accumulation and inflammatory signaling in lung injury and emphysema.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Pediatric Respiratory Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
46
|
Wang Y, Cela E, Gagnon S, Sweezey NB. Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice. Respir Res 2010; 11:166. [PMID: 21118573 PMCID: PMC3006363 DOI: 10.1186/1465-9921-11-166] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/30/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Among patients with cystic fibrosis (CF), females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with Pseudomonas aeruginosa (P. aeruginosa). A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17β-estradiol (E2) plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1) or type 2 (Th2) lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL)-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with P. aeruginosa by a Th17-mediated mechanism. RESULTS Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the P. aeruginosa strain PA508 (PA508), to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL) fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils). Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against P. aeruginosa in vitro. CONCLUSIONS Our data show that E2 increases the severity of PA508 pneumonia in adult CF male mice, and suggest two potential mechanisms: enhancement of Th17-regulated inflammation and suppression of innate antibacterial defences. Although this animal model does not recapitulate all aspects of human CF lung disease, our present findings argue for further investigation of the effects of E2 on inflammation and infection with P. aeruginosa in the CF lung.
Collapse
Affiliation(s)
- Yufa Wang
- Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Vij N, Min T, Marasigan R, Belcher CN, Mazur S, Ding H, Yong KT, Roy I. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology 2010; 8:22. [PMID: 20868490 PMCID: PMC2954907 DOI: 10.1186/1477-3155-8-22] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 09/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in CF. The most common mutation, ΔF508-CFTR, is a temperature-sensitive, trafficking mutant with reduced chloride transport and exaggerated immune response. The ΔF508-CFTR is misfolded, ubiquitinated, and prematurely degraded by proteasome mediated- degradation. We recently demonstrated that selective inhibition of proteasomal pathway by the FDA approved drug PS-341 (pyrazylcarbonyl-Phe-Leuboronate, a.k.a. Velcade or bortezomib) ameliorates the inflammatory pathophysiology of CF cells. This proteasomal drug is an extremely potent, stable, reversible and selective inhibitor of chymotryptic threonine protease-activity. The apprehension in considering the proteasome as a therapeutic target is that proteasome inhibitors may affect proteostasis and consecutive processes. The affect on multiple processes can be mitigated by nanoparticle mediated PS-341 lung-delivery resulting in favorable outcome observed in this study. RESULTS To overcome this challenge, we developed a nano-based approach that uses drug loaded biodegradable nanoparticle (PLGA-PEGPS-341) to provide controlled and sustained drug delivery. The in vitro release kinetics of drug from nanoparticle was quantified by proteasomal activity assay from days 1-7 that showed slow drug release from day 2-7 with maximum inhibition at day 7. For in vivo release kinetics and biodistribution, these drug-loaded nanoparticles were fluorescently labeled, and administered to C57BL6 mice by intranasal route. Whole-body optical imaging of the treated live animals demonstrates efficient delivery of particles to murine lungs, 24 hrs post treatment, followed by biodegradation and release over time, day 1-11. The efficacy of drug release in CF mice (Cftr-/-) lungs was determined by quantifying the changes in proteasomal activity (~2 fold decrease) and ability to rescue the Pseudomonas aeruginosa LPS (Pa-LPS) induced inflammation, which demonstrates the rescue of CF lung disease in murine model. CONCLUSION We have developed a novel drug delivery system to provide sustained delivery of CF "correctors" and "anti-inflammatories" to the lungs. Moreover, we demonstrate here the therapeutic efficacy of nano-based proteostasis-modulator to rescue Pa-LPS induced CF lung disease.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatric Respiratory Sciences, Johns Hopkins University School of Medicine, Baltimore, 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Experimental investigation of the immunoregulatory and anti-inflammatory effects of the traditional Chinese medicine "Li-Yan Zhi-Ke Granule" for relieving chronic pharyngitis in rats. Mol Biol Rep 2010; 38:199-203. [PMID: 20349277 DOI: 10.1007/s11033-010-0095-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 03/15/2010] [Indexed: 02/05/2023]
Abstract
Chronic pharyngitis, a chronic inflammation of the pharyngeal mucous membrane and submucous lymphoid tissues, is often caused by unsatisfactory treatment of acute pharyngitis or repeated occurrences of upper respiratory tract infection and is related to a high-dust environment. Traditional herbal pharmacotherapy is well known for combining plant species to create complex phytochemical mixtures in the attempt to ameliorate pathophysiological processes. The aim of current study is to investigate the effect of immunoregulation and anti-inflammation with the traditional Chinese medicine (TCM) "Li-Yan Zhi-Ke Granule" in rats. Determination of serum hemolysin and the carbon particle clearance test were performed. The results demonstrate that administration of the TCM "Li-Yan Zhi-Ke Granule" may improve the effect of phagocytosis by mononuclear macrophages and immune function in rats, and may also increase the immunoregulatory and anti-inflammatory responses of rats with chronic pharyngitis. This traditional drug could relieve the symptoms of sore throat and cough in rats with chronic pharyngitis.
Collapse
|
49
|
Moser C, Van Gennip M, Bjarnsholt T, Jensen PØ, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Høiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117:95-107. [PMID: 19239431 PMCID: PMC2774147 DOI: 10.1111/j.1600-0463.2008.00018.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dominant cause of premature death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes significant genetic changes, resulting in diversifying geno- and phenotypes. Such an adaptation may generate different host responses. To experimentally reflect the year-long chronic lung infection in CF, groups of BALB/c mice were infected with clonal isolates from different periods (1980, 1988, 1997, 1999 and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production of macrophage inflammatory protein-2 (MIP-2) and granulocyte colony-stimulating factor (G-CSF). In contrast, the mucoid clones were more virulent and virulence increased with time, resulting in impaired pulmonary clearing of the latest clone, severe inflammation and increased pulmonary MIP-2 and G-CSF production. In conclusion, adaptation of P. aeruginosa in CF is reflected by changed ability to establish lung infection and results in distinct host responses to mucoid and non-mucoid phenotypes.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61:128-39. [PMID: 19138713 DOI: 10.1016/j.addr.2008.09.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
Abstract
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College London, Manresa Road, London SW36LR, UK.
| | | |
Collapse
|