1
|
Wang T, Chen X, Yao Y, Chen W, Li H, Xu Y, Guan T, Gong J, Qiu X, Zhu T. Pro-Thrombotic Changes in Response to Ambient Ozone Exposure Exacerbated by Temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8391-8401. [PMID: 40262116 DOI: 10.1021/acs.est.4c13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Recent evidence links high temperatures to increased ozone-related cardiovascular mortality in a changing climate, but the underlying biological mechanisms remain unclear. We investigated the associations between short-term ozone exposure and pro-thrombosis, a key process in the pathophysiology of cardiovascular diseases across varying temperatures (5-30 °C) in a longitudinal panel study of 135 participants in Beijing, China. Pro-thrombotic biomarkers and whole blood transcriptome data were measured repeatedly. Bayesian kernel machine regression revealed that higher serum thromboxane (Tx)B2 levels were associated with increasing levels of joint exposure to air pollutants over 1 week when ozone rather than other pollutants contributed most to the overall effect. Causal mediation analyses found 715 transcripts associated with an increase in TxB2 following ozone exposure, which were enriched in pathways, including ribosome, thermogenesis, oxidative phosphorylation, and pathways of neurodegeneration. As the temperature increased, we observed a stronger association between ozone exposure and TxB2 increase. The TxB2 increments per interquartile range increase in the one-week average of ozone were 6.6, 13.2, 14.8, 16.6, and 18.4 units when the temperatures were 6.5, 15.0, 17.6, 21.4, and 26.7 °C, respectively. The number of mediating transcripts enriched in pathways related to translation, environmental adaptation, energy metabolism, and human diseases was also greater at higher temperatures than at lower ones. This study suggests that higher temperatures exacerbate ozone-related pro-thrombotic response, providing a biological basis for the increased risk of ozone-associated cardiovascular mortality at high temperatures.
Collapse
Affiliation(s)
- Teng Wang
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xi Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
- Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan 071800, China
| | - Yuan Yao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| | - Wu Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Haonan Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tianjia Guan
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Qu S, Liang Y, Deng S, Li Y, Yang Y, Liu T, Chen L, Li Y. Pharmacotherapeutic Strategies for Fine Particulate Matter-Induced Lung and Cardiovascular Damage: Marketed Drugs, Traditional Chinese Medicine, and Biological Agents. Cardiovasc Toxicol 2025; 25:666-691. [PMID: 40113640 DOI: 10.1007/s12012-025-09985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Fine particulate matter (PM2.5), defined as airborne particles with a diameter of ≤ 2.5 μm, represents a major constituent of air pollution and has been globally implicated in exacerbating public health burdens by elevating morbidity and mortality rates associated with respiratory and cardiovascular diseases (CVDs). Adverse health effects of PM2.5 exposure manifest across diverse susceptibility profiles and durations of exposure, spanning both acute and chronic timelines. While prior reviews have predominantly focused on elucidating the toxicological mechanisms underlying PM2.5-induced pathologies, there remains a paucity of comprehensive summaries addressing therapeutic interventions for cardiopulmonary damage. This review systematically synthesizes pharmacological agents with potential therapeutic efficacy against PM2.5-induced pulmonary and cardiovascular injury. By integrating mechanistic insights with translational perspectives, this work aims to provide a foundational framework for advancing research into novel therapeutic strategies targeting PM2.5-associated cardiopulmonary disorders.
Collapse
Affiliation(s)
- Shuiqing Qu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuoqiu Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanmin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Dong TF, Sun WQ, Li XY, Sun L, Li HB, Liu LL, Wang Y, Wang HL, Yang LS, Zha ZQ. Short-term associations between ambient PM 1, PM 2.5, and PM 10 and hospital admissions, length of hospital stays, and hospital expenses for patients with cardiovascular diseases in rural areas of Fuyang, East China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1059-1071. [PMID: 39041841 DOI: 10.1080/09603123.2024.2380353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Evidence on the impacts of PM1, PM2.5, and PM10 on the hospital admissions, length of hospital stays (LOS), and hospital expenses among patients with cardiovascular disease (CVD) is still limited in China, especially in rural areas. This study was performed in eight counties of Fuyang from 1 January 2015 to 30 June 2017. We use a three-stage time-series analysis to explore the effects of short-term exposure to PM1, PM2.5, and PM10 on hospital admissions, LOS, and hospital expenses for CVDs. An increment of 10 ug/m3 in PM1, PM2.5, and PM10 corresponded to an increment of 1.82% (95% CI: 1.34, 2.30), 0.96% (95% CI: 0.44, 1.48), and 0.79% (95% CI: 0.63%, 0.95%) in CVD hospital admissions, respectively. We observed that daily concentrations of PMs were associated with an increase in hospital admissions, LOS, and expenses for CVDs. Sustained endeavors are required to reduce air pollution so as to attenuate disease burdens from CVDs.
Collapse
Affiliation(s)
- Teng-Fei Dong
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Wan-Qi Sun
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Xing-Yang Li
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Huai-Biao Li
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Ling-Li Liu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Yuan- Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Hong-Li Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Zhen-Qiu Zha
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| |
Collapse
|
4
|
Breidenbach JD, French BW, Shrestha U, Adya ZK, Wooten RM, Fribley AM, Malhotra D, Haller ST, Kennedy DJ. Acute Exposure to Aerosolized Nanoplastics Modulates Redox-Linked Immune Responses in Human Airway Epithelium. Antioxidants (Basel) 2025; 14:424. [PMID: 40298680 PMCID: PMC12024294 DOI: 10.3390/antiox14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Micro- and nanoplastics (MPs and NPs) are pervasive environmental pollutants detected in aquatic ecosystems, with emerging evidence suggesting their presence in airborne particles generated by water body motion. Inhalation exposure to airborne MPs and NPs remains understudied despite documented links between occupational exposure to these particles and adverse respiratory outcomes, including airway inflammation, oxidative stress, and chronic respiratory diseases. This study explored the effects of acute NP exposure on a fully differentiated 3D human airway epithelial model derived from 14 healthy donors. Airway epithelium was exposed to aerosolized 50 nm polystyrene NPs at concentrations ranging from 2.5 to 2500 µg/mL for three minutes per day over three days. Functional assays revealed no significant alterations in tissue integrity, cell survival, mucociliary clearance, or cilia beat frequency, suggesting intact epithelial function post-exposure. However, cytokine and chemokine profiling identified a significant five-fold increase in CCL3 (MIP-1α), a neutrophilic chemoattractant, in NP-exposed samples compared to controls. This was corroborated by increased neutrophil chemotaxis in response to conditioned media from NP-exposed tissues, indicating a pro-inflammatory neutrophilic response. Conversely, levels of interleukins (IL-21, IL-2, IL-15), CXCL10, and TGF-β were significantly reduced, suggesting immunomodulatory effects that may impair adaptive immune responses and tissue repair mechanisms. These findings demonstrate that short-term exposure to NP-containing aerosols induces a distinct pro-inflammatory response in airway epithelium, characterized by enhanced neutrophil recruitment and reduced secretion of key immune modulators. These findings underscore the potential for aerosolized NPs to induce oxidative and inflammatory stress, raising concerns about their long-term impact on respiratory health and redox regulation.
Collapse
Affiliation(s)
- Joshua D. Breidenbach
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Benjamin W. French
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
| | - Upasana Shrestha
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zaneh K. Adya
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Andrew M. Fribley
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
| | - Deepak Malhotra
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA (B.W.F.); (U.S.); (Z.K.A.); (A.M.F.); (D.M.)
| |
Collapse
|
5
|
Wu J, Wang L, Han X, Huang L, Meng Q, Yang T, Deji Q, Wang Z, Guo B, Zhao X. Hypothetical Behavioral Interventions for Mitigating the Cardiovascular Effects of Long-Term Fine Particulate Matter Exposure: Analyses From 2 Prospective Cohorts. J Am Heart Assoc 2025; 14:e038624. [PMID: 40079333 DOI: 10.1161/jaha.124.038624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Whether healthy behaviors can attenuate the adverse association between ambient fine particulate matter (PM2.5) and cardiovascular disease (CVD) is inconclusive. METHODS AND RESULTS The parametric g-formula was used to quantify the potential reduction in PM2.5 effect on CVD under different scenarios of hypothetical behavioral interventions (including dietary patterns, physical activity, body mass index, alcohol consumption, smoking, and dietary supplements). Feasible intervention scenarios, defined on the basis of values considered feasible in previous real-world interventions (eg, overweight participants lose 6.69% of their weight). Intensive scenarios, in which all participants are adopting completely healthy behaviors (eg, maintain normal weight). We also estimate the effect of joint interventions that incorporate the above behaviors. Long-term PM2.5 exposure was associated with incident CVD in both cohorts, with the risk difference per 1000 person-years for a 5 μg/m3 increase in PM2.5 being 1.42 (95% CI, 1.04-1.79) in the UKB (UK Biobank) and 2.15 (95% CI, 1.65-2.59) in the Sichuan Cohort (China Multi-Ethnic Cohort, Sichuan Region). In both feasible and intensive scenarios, improving diet, physical activity, and body mass index could significantly reduce the risk difference of PM2.5 on CVD, with the reduced proportion ranging from 4.59% to 37.22%. A feasible joint hypothetical intervention on 6 behaviors would reduce the effect of PM2.5 on CVD by 31.47% (10.13%-57.26%) and 19.75% (10.78%-42.89%) in the low-pollution UK Biobank and high-pollution Sichuan cohort, respectively. A combination of more intensive interventions would reduce risk difference by 57.51% (21.64%-100.69%) and 45.54% (22.66%-106.66%), respectively. CONCLUSIONS Healthier behaviors could serve as individual-level complementary strategies to emission control for minimizing the health impact of PM2.5, whether in high- or low-pollution areas.
Collapse
Affiliation(s)
- Jialong Wu
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Liang Wang
- Chengdu Center for Disease Control &Prevention Chengdu Sichuan China
| | - Xu Han
- Health Information Center of Sichuan Province Chengdu Sichuan China
| | - Linya Huang
- Health Information Center of Sichuan Province Chengdu Sichuan China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health Kunming Medical University Kunming Yunnan China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Guizhou Medical University Guiyang China
| | | | - Zihao Wang
- Chongqing Municipal Center for Disease Control and Prevention Chongqing China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
6
|
Qi Q, Xue Y, Madani NA, Tangang RT, Yu F, Nair A, Romeiko XX, Luo G, Brackett I, Thorncroft C, Lin S. Individual effects and interactions between ultrafine particles and extreme temperatures on hospital admissions of high burden diseases. ENVIRONMENT INTERNATIONAL 2025; 197:109348. [PMID: 40020633 DOI: 10.1016/j.envint.2025.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Health effects of ultrafine particles (UFPs) and their interactions with temperature are less studied. We investigated the risks of UFPs concentrations and extreme temperatures on hospitalizations for high-burden diseases (HBDs) in New York State (NYS). METHODS This case-crossover study included hospitalizations for HBDs that contain ischemic heart diseases, diabetes, stroke, kidney diseases, and depression using NYS Hospital Discharge Data (2013-2018). Daily pollutants and temperature data were obtained from a chemical transport model validated by multiple prior studies. UFP changes were measured using interquartile range increase, and extreme heat and cold were defined as temperatures >= 90th% and <=10th% respectively by month and location. Conditional logistic regression was applied controlling for criteria pollutants, relative humidity, and time-varying variables. RESULTS Among 1,308,518 cases, significant risk ratios (RR) were observed for UFPs (RRs ranged: 1.009-1.012) and extreme heat (RRs ranged: 1.024-1.028) on overall HBDs, but extreme cold had protective effects on HBDs. The adverse effect of UFPs had significant interactions with extreme cold and was higher in winter and fall. UFPs affected all HBD subtypes except kidney diseases, and extreme heat increased the risks of ischemic heart disease and kidney disease. There were disparities across demographics in exposures-HBDs associations although they were not statistically significant. Elevated UFP concentrations were associated with four clinical indicators (hospital stays, charges etc.). CONCLUSION We observe positive associations between elevated UFP concentrations or extreme heat and HBD hospitalizations, but negative associations with extreme cold. The UFPs' risks were higher in children and during cold seasons.
Collapse
Affiliation(s)
- Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yukang Xue
- Department of Educational Psychology, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Najm Alsadat Madani
- Institute for Health and the Environment, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Randy T Tangang
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Fangqun Yu
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Arshad Nair
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiaobo Xue Romeiko
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Gan Luo
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Isa Brackett
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Chris Thorncroft
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shao Lin
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| |
Collapse
|
7
|
Emam BH, Shaban NZ, Zaky A, AbdulKader MA, Shaban SY, Kolaib NM, Habashy NH. Synergistic ameliorating effect of dithiophenolate chitosan nanoparticle and Solanum nigrum combination against lead-induced cardiotoxicity in rats. Food Chem Toxicol 2025; 197:115290. [PMID: 39894383 DOI: 10.1016/j.fct.2025.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Lead (Pb) toxicity is one of the most common causes of human cardiotoxicity. We evaluated the therapeutic role of Solanum nigrum extract (SNE) and dithiophenolate-chitosan nanoparticle (DTP-CSNP) on Pb-induced cardiotoxicity in rats, and the results were compared with the dimercaptosuccinic acid (DMSA, reference drug). Additionally, the combination effect of SNE and DTP-CSNP against Pb-induced cardiotoxicity was assessed. The study focused on the determination of the antioxidant, anti-inflammatory, anti-apoptotic, and cardiotherapeutic functions of SNE (375 mg/kg), DTP-CSNP (20 and 40 mg/kg), and their combination (SNE + DTP40). The characterization of SNE and DTP-CSNP was studied. The results showed that SNE contains phenolics, flavonoids, ascorbic acid, and minerals, which may play an important role in its therapeutic effect. SNE, DTP20, and DTP40 exhibited a therapeutic impact against cardiotoxicity by reducing Pb levels, oxidative stress, inflammation, and cell death. Moreover, they regulated the abnormal levels of cardiac biomarkers induced by Pb toxicity. DTP-CSNP showed a superior therapeutic effect to DMSA, and the SNE + DTP40 combination displayed a synergistic anti-cardiotoxic effect (combination index < 1). These results were in harmony with heart histopathology. Thus, the combination of both SNE and DTP-CSNP has powerful efficacy in the treatment of cardiotoxicity and can be a good alternative to DMSA.
Collapse
Affiliation(s)
- Bahira H Emam
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amira Zaky
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammad A AbdulKader
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Nourhan M Kolaib
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
8
|
Liu RL, Xu ZL, Hu YL, Lv XY, Yao QZ, He JL, Fu LJ, Geng LH, Wang T, Zhong ZH, Zhu YJ, Ding YB. Association between PM 2.5 components and poor ovarian response in assisted reproductive technology patients: A retrospective cohort study identifying sensitive exposure windows in China. ENVIRONMENT INTERNATIONAL 2025; 196:109321. [PMID: 39919508 DOI: 10.1016/j.envint.2025.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
Environmental factors, particularly various components of fine particulate matter (PM2.5) (i.e., sulfate [SO42-], nitrate [NO3-], ammonium [NH4+], organic matter [OM] and black carbon [BC]), are increasingly recognized as potential risk factors for poor ovarian response (POR) in fertility treatments. However, existing research is limited, and the critical periods of vulnerability to exposure to PM2.5 and its components remain unclear. In this retrospective cohort study, we included 38,619 patients undergoing their first in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatment, defining POR as the primary outcome based on the POSEIDON criteria. We divided the six months prior to oocyte pick up (OPU) into different exposure windows and used logistic regression models to assess the association between pollutants and POR. Results showed that exposure to PM2.5 and its components in the three months before OPU significantly increased the odds of POR. The distributed lag nonlinear model (DLNM) analysis revealed the lagged effects of PM2.5 component exposure, particularly during lag weeks 2-5, where exposure was significantly associated with the occurrence of POR. This period may represent a sensitive window for exposure. Meanwhile, the restricted cubic spline (RCS) analysis indicated that the odds of POR gradually increased with higher pollutant concentrations. These findings underscore the urgent need for public health measures during sensitive stages of follicular development, particularly policies aimed at reducing environmental pollutant exposure among women of reproductive age to protect reproductive health.
Collapse
Affiliation(s)
- Rui-Ling Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Epidemiology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Zhi-Lei Xu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Epidemiology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Ling Hu
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, 610011 Sichuan, China
| | - Xing-Yu Lv
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, 610011 Sichuan, China
| | - Quan-Zi Yao
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Epidemiology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Liang He
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Li-Juan Fu
- Department of Epidemiology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Li-Hong Geng
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, 610011 Sichuan, China
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhao-Hui Zhong
- Department of Epidemiology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yi-Jian Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Epidemiology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
9
|
Viesi E, Perricone U, Aloy P, Giugno R. APBIO: bioactive profiling of air pollutants through inferred bioactivity signatures and prediction of novel target interactions. J Cheminform 2025; 17:13. [PMID: 39891207 PMCID: PMC11786462 DOI: 10.1186/s13321-025-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
More sophisticated representations of compounds attempt to incorporate not only information on the structure and physicochemical properties of molecules, but also knowledge about their biological traits, leading to the so-called bioactivity profile. The bioactive profiling of air pollutants is challenging and crucial, as their biological activity and toxicological effects have not been deeply investigated yet, and further exploration could shed light on the impact of air pollution on complex disorders. Therefore, a biological signature that simultaneously captures the chemistry and the biology of small molecules may be beneficial in predicting the behaviour of such ligands towards a protein target. Moreover, the interactivity between biological entities can be represented through combined feature vectors that can be given as input to a machine learning (ML) model to capture the underlying interaction. To this end, we propose a chemogenomic approach, called Air Pollutant Bioactivity (APBIO), which integrates compound bioactivity signatures and target sequence descriptors to train ML classifiers subsequently used to predict potential compound-target interactions (CTIs). We report the performances of the proposed methodology and, via external validation sets, demonstrate its outperformance compared to existing molecular representations in terms of model generalizability. We have also developed a publicly available Streamlit application for APBIO at ap-bio.streamlit.app, allowing users to predict associations between investigated compounds and protein targets.Scientific contributionWe derived ex novo bioactivity signatures for air pollutant molecules to capture their biological behaviour and associations with protein targets. The proposed chemogenomic methodology enables the prediction of novel CTIs for known or similar compounds and targets through well-established and efficient ML models, deepening our insight into the molecular interactions and mechanisms that may have a deleterious impact on human biological systems.
Collapse
Affiliation(s)
- Eva Viesi
- Department of Computer Science, University of Verona, Verona, Italy.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Ugo Perricone
- Molecular Informatics Unit, Ri.MED Foundation, Palermo, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
10
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Yu C, Xu J, Xu S, Tang L, Zhang X, Chen W, Yu T. The impacts of noise and air pollution on breast cancer risk in European and East Asian populations: Insights from genetic evidence. Public Health 2025; 238:197-205. [PMID: 39675203 DOI: 10.1016/j.puhe.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES Previous studies have reported associations of noise and air pollution with breast cancer (BC) risk, but the causality remains unclear. This study aimed to explore the effects of noise and air pollution on BC from a genetic perspective. STUDY DESIGN Genetic association study. METHODS We began our investigation by visualizing the development trends in this field through bibliometric analysis. Subsequently, we conducted Mendelian randomization analyses to assess the effects of noise (daytime and evening) and air pollution (NO2, NOx, PM2.5, PM2.5-10, and PM10) on BC. Genetic variants extracted from genome-wide association studies (GWAS) robustly associated with noise and air pollution were used as instrumental variables. The GWAS data for BC in European and East Asian populations were obtained from the Breast Cancer Association Consortium and the Biobank Japan, respectively. RESULTS The effects of noise and air pollution on BC are receiving increasing attention. In the European population, genetically predicted exposure to NO2 (OR: 1.9381; 95% CI: 1.2873-2.9180; P = 0.0015) and PM10 (OR: 1.4187; 95% CI: 1.0880-1.8500; P = 0.0098) were positively associated with overall BC risk. Subtype analyses showed that PM10 was significantly related to the risks of both ER+ (OR: 1.6165; 95% CI: 1.1778-2.2186; P = 0.0030) and ER- (OR: 1.6228; 95% CI: 1.0175-2.5881; P = 0.0421) BC. Additionally, NO2 only increased the risk of ER+ BC (OR: 1.7429; 95% CI: 1.0679-2.8444; P = 0.0262), but not ER- BC. In East Asians, genetically predicted NO2 was positively related to BC risk (OR: 1.1394; 95% CI: 1.0082-1.2877; P = 0.0366). CONCLUSIONS Our study gave new evidence from a genetic standpoint underscoring that improving the environmental quality of residential areas is conducive to reducing BC risk.
Collapse
Affiliation(s)
- Chengdong Yu
- Department of Medical Oncology, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, China; Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Jiawei Xu
- Department of Medical Oncology, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, China; Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siyi Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lei Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaofang Zhang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China.
| | - Ting Yu
- Department of Medical Oncology, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, China.
| |
Collapse
|
12
|
Singh T, Chaudhary E, Roy A, Ghosh S, Dey S. Meeting clean air targets could reduce the burden of hypertension among women of reproductive age in India. Int J Epidemiol 2024; 54:dyaf007. [PMID: 39907622 DOI: 10.1093/ije/dyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Air pollution is one of the leading risk factors for hypertension globally. However, limited epidemiological evidence exists in developing countries, specifically with indigenous health data and for fine particulate matter (PM2.5) composition. Here, we addressed this knowledge gap in India. METHODS Using a logistic regression model, we estimated the association between hypertension (systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg) prevalence among women of reproductive age (WRA, 15-49 years) from the fifth round of the National Family Health Survey and long-term exposure to PM2.5 and its composition, after adjusting for confounders. We also explored the moderating effects of socioeconomic indicators through a multiplicative interaction with PM2.5. RESULTS Hypertension prevalence increased by 5.2% (95% uncertainty interval: 4.8%-5.7%) for every 10 μg/m3 increase in ambient PM2.5 exposure. Significant moderating effects were observed among smokers against nonsmokers and for various sociodemographic parameters. Among PM2.5 species, every interquartile range increase in black carbon (BC) and sulphate exposure was significantly associated with higher odds of hypertension than for organic carbon and dust. We estimated that achieving the National Clean Air Program target and World Health Organization air quality guidelines can potentially reduce hypertension prevalence by 2.42% and 4.21%, respectively. CONCLUSION Our results demonstrate that increasing ambient PM2.5 exposure is associated with a higher prevalence of hypertension among WRA in India. The risk is not uniform across various PM2.5 species and is higher with BC and sulphate. Achieving clean air targets can substantially reduce the hypertension burden in this population.
Collapse
Affiliation(s)
- Taruna Singh
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Ekta Chaudhary
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- Department of Epidemiology, University of Michigan School of Public Health, Michigan, United States
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences Delhi, New Delhi, India
| | - Santu Ghosh
- Department of Biostatistics, St. John's Medical College, Bangalore, Karnataka, India
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- Adjunct Faculty, Department of Health, Policy & Management, Korea University, Seoul, South Korea
| |
Collapse
|
13
|
Ginos BNR, de Crom TOE, Ghanbari M, Voortman T. Long-term air pollution exposure and the blood metabolome: The rotterdam study. ENVIRONMENTAL RESEARCH 2024; 263:120131. [PMID: 39389196 DOI: 10.1016/j.envres.2024.120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Air pollution is a well-established risk factor for several adverse health outcomes, but the specific molecular mechanisms, particularly those involving metabolic processes, remain incompletely understood. OBJECTIVE To evaluate associations between long-term air pollutant exposure and circulating plasma metabolites in two sub-cohorts of the population-based Rotterdam Study. METHODS We analyzed data from 1455 participants of sub-cohort I (mean age 76.9 years, 58% female, 2002-2004) and 1061 participants from sub-cohort III (mean age 62.6 years, 56% female, 2012-2014). Mean annual exposure to fine particulate matter (PM2.5), black carbon, nitrogen dioxide, and ozone (measured both annually and in warm seasons only) were estimated at residential addresses using land use regression models. Plasma metabolites were measured by Metabolon Inc., using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Cross-sectional associations between each air pollutant and 940 metabolites were determined using linear regression models. Benjamini-Hochberg false discovery rate (FDR) was utilized to control for multiple testing. Enrichment analysis was performed on statistically significant associated metabolites to identify significant metabolic pathways (p-value <0.05). RESULTS In sub-cohort I, PM2.5, black carbon, nitrogen dioxide, annual ozone and ozone in warm season were statistically significantly associated with, respectively, 63, 30, 20, 31, and 41 metabolites (FDR <0.05) mostly belonging to lipid and amino acid sub-classes, and unannotated metabolites. Sphinganine, X - 16576 and 2-pyrrolidinone displayed statistically significant associations across all five air pollutants. In sub-cohort III, black carbon, nitrogen dioxide and ozone in warm seasons were associated with a single unannotated metabolite (X - 24970), and annual ozone with two unannotated metabolites (X - 24970 and X - 24306). Enriched pathways identified in sub-cohort I included pyrimidine metabolism and steroid hormone biosynthesis. CONCLUSIONS Our study revealed associations of long-term air pollutant exposure with several metabolites and enrichment of two pathways, which are known to be involved in the adrenal and reproductive system and cell metabolism.
Collapse
Affiliation(s)
- Bigina N R Ginos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Bennett RM, Reilly JP. Environmental Risk Factors for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:797-807. [PMID: 39442998 PMCID: PMC11969571 DOI: 10.1016/j.ccm.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Several environmental exposures increase susceptibility to the acute respiratory distress syndrome (ARDS). Specifically, chronic exposure to ambient air pollution, cigarette smoke, and alcohol "prime" the lung via epithelial injury, endothelial dysfunction, and immunomodulatory mechanisms, increasing the risk and severity of ARDS following an array of acute insults. Future research of these pathways may reveal therapeutic targets. Relevant emerging threats, such as electronic cigarettes and vaping, wildfire smoke, and the environmental hazards associated with climate change, may also be associated with ARDS. Building upon existing public policy interventions can prevent substantial morbidity and mortality from ARDS.
Collapse
Affiliation(s)
- Rachel M Bennett
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 5042 Gates Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - John P Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 5042 Gates Building, 3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, 5042 Gates Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Beydon M, Roeser A, Costedoat-Chalumeau N, de Sainte-Marie B, Nguyen Y. [Impact of climate change on immune-mediated inflammatory diseases]. Rev Med Interne 2024; 45:739-743. [PMID: 39647962 DOI: 10.1016/j.revmed.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Affiliation(s)
- Maxime Beydon
- Service de médecine interne, hôpital Beaujon, AP-HP Nord, université Paris Cité, Clichy, France
| | - Anaïs Roeser
- Équipe auto-immunité et immunité lymphocytaire B, institut Necker-Enfants malades, université Paris Cité, Paris, France
| | - Nathalie Costedoat-Chalumeau
- Service de médecine interne, hôpital Cochin, AP-HP Centre, université Paris Cité, Paris, France; Inserm UMR1153, Centre de recherche en épidémiologie et statistiques, Paris, France
| | | | - Yann Nguyen
- Service de médecine interne, hôpital Beaujon, AP-HP Nord, université Paris Cité, Clichy, France; Inserm UMR1153, Centre de recherche en épidémiologie et statistiques, Paris, France.
| |
Collapse
|
16
|
Kausar S, Tongchai P, Yadoung S, Sabir S, Pata S, Khamduang W, Chawansuntati K, Yodkeeree S, Wongta A, Hongsibsong S. Impact of fine particulate matter (PM 2.5) on ocular health among people living in Chiang Mai, Thailand. Sci Rep 2024; 14:26479. [PMID: 39489750 PMCID: PMC11532337 DOI: 10.1038/s41598-024-77288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Considering the limited information on the impact of PM2.5 content on ocular health, a follow-up study was conducted on 50 healthy adults. Samples were collected twice, once before the PM2.5 exposure season and again after exposure. Daily PM2.5 concentration data was gathered from Thung Satok monitoring station. All subjects completed the self-structured ocular symptom questionnaire. The concentrations of 1-OHP were determined using HPLC-FLD. Logistic regression analysis investigated the relationship between PM2.5 toxicity and ocular symptoms. The findings revealed that daily PM2.5 concentrations surpassed the WHO-recommended range by around threefold. Exposure to PM2.5 significantly raised the likelihood of ocular redness (adjusted OR: 12.39, 95% CI), watering (adjusted OR: 2.56, 95% CI), and dryness (adjusted OR: 5.06, 95% CI). Additionally, these symptoms had an exposure-response relationship with increasing 1-OHP levels. Ocular symptoms worsened in frequency and severity during the high PM2.5 season, showing a strong link to elevated PM2.5 levels. Lymphocyte counts were also positively correlated with redness, watering, and dryness during high PM2.5 exposure. In conclusion, our study shows that subjects exposed to higher PM2.5 levels presented more significant ocular surface alterations.
Collapse
Affiliation(s)
- Sobia Kausar
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phanika Tongchai
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sumed Yadoung
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and NCD Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Shamsa Sabir
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supansa Pata
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Woottichai Khamduang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kriangkrai Chawansuntati
- Research Center for Molecular and Cell Biology, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anurak Wongta
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and NCD Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Yuan A, Halabicky O, Liu J. Association between air pollution exposure and brain cortical thickness throughout the lifespan: A systematic review. Neuroscience 2024; 559:209-219. [PMID: 39236801 DOI: 10.1016/j.neuroscience.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Increasing research has focused on the impact of air pollution on brain health. As the prevalence of air pollution is increasing alongside other environmental harms, the importance of studying the effects of these changes on human health has become more significant. Additionally, gaining insight into how air pollution exposure, measured at different points in the lifespan, can affect brain structure is critical, as this could be a precursor to cognitive decline later in life. The purpose of this review was to synthesize the literature on the association between air pollutant exposure and cortical thickness, a structural change with known associations with later cognition and neurodegenerative disease. After screening, twelve studies were included in this systematic review. Across a majority of studies, results suggest significant associations between increasing air pollution exposure and decreases in cortical thickness, primarily in areas such as prefrontal cortex, precuneus, and temporal regions of the brain. These results did differ somewhat between age groups and different air pollutants, with the most prominent results being found with exposure to PM2.5, the smallest particulate matter size included in the review. In the future, it is important to continue studying cortical thickness as it is essential to brain functioning and can be influential in disease progression. Furthermore, conducting more longitudinal studies in which air pollution is measured as a cumulation throughout the lifespan would help elucidate when exposure is most impactful and when brain structural changes become observable.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Warnakulasuriya T, Medagoda K, Kottahachchi D, Luke D, Wadasinghe D, Rathnayake P, Ariyawansa J, Dissanayake T, Sandeepani P, De Silva DC, Devanarayana NM. Exploring the impact of occupational exposure: A study on cardiovascular autonomic functions of male gas station attendants in Sri Lanka. Physiol Rep 2024; 12:e70071. [PMID: 39462981 PMCID: PMC11513408 DOI: 10.14814/phy2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Fuel dispensing at fuel stations is performed manually by unprotected male gas station attendants in Sri Lanka, who have long working hours. These workers are exposed to hydrocarbon fuels associated with multiple health effects by modulation of the autonomic nervous system. This study was performed to determine cardiovascular autonomic functions among fuel pump attendants in Sri Lanka. Fuel pump attendants (n = 50) aged between 19 and 65 years were identified for the study from seven fuel stations. They were compared with age- and gender-matched controls (n = 46) without occupational exposure to fuel. A physical examination was performed before the autonomic function and heart rate variability (HRV) assessment. There were no significant differences in weight, height, or BMI between the study and the control populations (p > 0.05). Both the systolic blood pressure (SBP) (Mann Whitney U (MWU) = 743.5, p = 0.003) and diastolic blood pressure (DBP) (MWU = 686.5, p = 0.001) were significantly higher among the gas station attendants compared to controls. Valsalva ratio was significantly higher among the study group (MW U = 874.00, p = 0.043) compared to controls. The HRV analysis showed significantly higher SDNN and SD2 (MWU = 842.00, p = 0.034, and MWU = 843.50, p = 0.035 respectively) among the gas station attendants compared to controls. The changes to the cardiovascular autonomic parameters among those exposed to fuel vapor as a gas station attendant indicate an increase in sympathetic outflow to the vessels. In the occupational setting as fuel pump attendants need periodic monitoring.
Collapse
Affiliation(s)
| | - Kushan Medagoda
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dulani Kottahachchi
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dunya Luke
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dilesha Wadasinghe
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Prasanna Rathnayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Janaki Ariyawansa
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Tharuka Dissanayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Pavani Sandeepani
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Deepthi C. De Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | | |
Collapse
|
19
|
Guo C, Yang J, Ma J, Chen J, Chen S, Zheng Y, Huang B, Yu J, Li T, He S. Ambient fine particulate matter and its constituents may exacerbate the acceleration of aging in adults. ENVIRONMENT INTERNATIONAL 2024; 192:109019. [PMID: 39305790 DOI: 10.1016/j.envint.2024.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Both ambient fine particulate matter (PM2.5) and aging are important urban concerns. However, the associations between PM2.5 constituents and the acceleration of aging (AA) remain unclear. We included 16,051 adults (aged 25-80 years) with 19,252 medical observations in Taiwan during 2008-2017. 2-year average PM2.5 and its five major constituents were assessed using a two-stage machine learning model at a resolution of 1 km2. AA was determined by the difference between the Klemera-Doubal biological age and chronological age. A linear mixed model (LMM) with inverse probability weights was used to examine the associations between AA and air pollution. In a semi-randomized study design, we applied a post-matching LMM to assess the impacts of changes in air pollution exposure on AA. Each interquartile range increase in ambient PM2.5, SO4-2, NO3-, NH4+, organic matters (OM), and black carbon (BC) was associated with a 0.20 (95 %confidence interval [CI]: 0.17-0.24), 0.19 (0.15-0.23), 0.14 (0.11-0.18), 0.21 (0.17-0.24), 0.22 (0.19-0.26) and 0.25 (0.21-0.28) year increase in AA, respectively. BC was generally associated with the greatest increase in AA as compared to other constituents. We did not find evident thresholds in their concentration-response associations. Participants exposed to increased levels of PM2.5, SO4-2, NO3-, NH4+, OM, and BC experienced an increase in AA of 0.11 (-0.07-0.29), 0.20 (0.02-0.39), 0.15 (-0.02-0.33), 0.12 (-0.07-0.31), 0.24 (0.07-0.41), and 0.30 (0.07-0.52) years, respectively, compared to those exposed to decreased/unchanged levels. Long-term exposure to ambient PM2.5 and its constituents may accelerate biological aging among Chinese adults. Exposed to increased levels may further aggregate the aging process. This study suggests that reducing exposure to air pollution is beneficial, even for residents within moderately-to-highly polluted regions, such as Taiwan. Rigorous regulation of PM2.5 and its constituents may prevent the acceleration of biological age.
Collapse
Affiliation(s)
- Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong Special Administrative Region; Urban Systems Institute, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region.
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jun Ma
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong Special Administrative Region
| | - Jie Chen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| | - Siyi Chen
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong Special Administrative Region
| | - Yiling Zheng
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong Special Administrative Region
| | - Bo Huang
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong Special Administrative Region; Department of Geography, Faculty of Social Sciences, the University of Hong Kong, Hong Kong Special Administrative Region
| | - Jianzhen Yu
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Tiantian Li
- Department of Environmental Health Risk Assessment, Chinese Center for Disease Control and Prevention, China
| | - Shenjing He
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong Special Administrative Region; Urban Systems Institute, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
20
|
Bai X, Qu H, Ye Z, Wang R, He G, Huang Z, Jiang Z, Zhang C, Li S, Li G. Relationship between short-term exposure to sulfur dioxide and emergency ambulance dispatches due to cardiovascular disease. Environ Epidemiol 2024; 8:e341. [PMID: 39323988 PMCID: PMC11424135 DOI: 10.1097/ee9.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Background The relationship between sulfur dioxide (SO2) and cardiovascular disease (CVD) remains inconclusive. We aimed to clarify the association between short-term exposure to SO2 and emergency ambulance dispatches (EADs) due to CVD. Methods We collected daily data on the number of EADs due to CVD, air pollutants, and meteorological factors between October 2013 and June 2018 in Guangzhou, China. We used the quasi-Poisson generalized additive model combined with a distributed lag nonlinear model to estimate the short-term effect of SO2 on EADs due to CVD in multivariable models. Subgroup and sensitivity analyses were also performed. Results A total of 37,889 EADs due to CVD were documented during the study period. The average daily SO2 concentration was 12.5 μg/m3. A significant relationship between SO2 and EADs due to CVD was found, with a relative risk of 1.04 (95% confidence interval: 1.02, 1.06) with each 10 μg/m3 increment of SO2 at lag 0-1. The relationship was stronger in males, for participants aged ≥65 years, and in the cold season; however, no significant modification by subgroup was found in the association between SO2 and EADs due to CVD. Similar results from sensitivity analyses to the main findings were observed. Conclusions Short-term exposure to SO2 was significantly associated with increased EADs due to CVD.
Collapse
Affiliation(s)
- Xuerui Bai
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hongying Qu
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zebing Ye
- Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Ruoting Wang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongguo Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhiying Jiang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
22
|
Zhou H, Hong F, Wang L, Tang X, Guo B, Luo Y, Yu H, Mao D, Liu T, Feng Y, Baima Y, Zhang J, Zhao X. Air pollution and risk of 32 health conditions: outcome-wide analyses in a population-based prospective cohort in Southwest China. BMC Med 2024; 22:370. [PMID: 39256817 PMCID: PMC11389248 DOI: 10.1186/s12916-024-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Uncertainty remains about the long-term effects of air pollutants (AP) on multiple diseases, especially subtypes of cardiovascular disease (CVD). We aimed to assess the individual and joint associations of fine particulate matter (PM2.5), along with its chemical components, nitrogen dioxide (NO2) and ozone (O3), with risks of 32 health conditions. METHODS A total of 17,566 participants in Sichuan Province, China, were included in 2018 and followed until 2022, with an average follow-up period of 4.2 years. The concentrations of AP were measured using a machine-learning approach. The Cox proportional hazards model and quantile g-computation were applied to assess the associations between AP and CVD. RESULTS Per interquartile range (IQR) increase in PM2.5 mass, NO2, O3, nitrate, ammonium, organic matter (OM), black carbon (BC), chloride, and sulfate were significantly associated with increased risks of various conditions, with hazard ratios (HRs) ranging from 1.06 to 2.48. Exposure to multiple air pollutants was associated with total cardiovascular disease (HR 1.75, 95% confidence intervals (CIs) 1.62-1.89), hypertensive diseases (1.49, 1.38-1.62), cardiac arrests (1.52, 1.30-1.77), arrhythmia (1.76, 1.44-2.15), cerebrovascular diseases (1.86, 1.65-2.10), stroke (1.77, 1.54-2.03), ischemic stroke (1.85, 1.61-2.12), atherosclerosis (1.77, 1.57-1.99), diseases of veins, lymphatic vessels, and lymph nodes (1.32, 1.15-1.51), pneumonia (1.37, 1.16-1.61), inflammatory bowel diseases (1.34, 1.16-1.55), liver diseases (1.59, 1.43-1.77), type 2 diabetes (1.48, 1.26-1.73), lipoprotein metabolism disorders (2.20, 1.96-2.47), purine metabolism disorders (1.61, 1.38-1.88), anemia (1.29, 1.15-1.45), sleep disorders (1.54, 1.33-1.78), renal failure (1.44, 1.21-1.72), kidney stone (1.27, 1.13-1.43), osteoarthritis (2.18, 2.00-2.39), osteoporosis (1.36, 1.14-1.61). OM had max weights for joint effects of AP on many conditions. CONCLUSIONS Long-term exposure to increased levels of multiple air pollutants was associated with risks of multiple health conditions. OM accounted for substantial weight for these increased risks, suggesting it may play an important role in these associations.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuewei Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Luo
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Hui Yu
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Deqiang Mao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Ting Liu
- Chenghua District Center for Disease Control and Prevention, Chengdu, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yangji Baima
- School of Medicine, Tibet University, Tibet, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Day MW, Daley C, Wu Y, Pathmaraj M, Verner MA, Caron-Beaudoin É. Altered oxidative stress and antioxidant biomarkers concentrations in pregnant individuals exposed to oil and gas sites in Northeastern British Columbia. Toxicol Sci 2024; 201:73-84. [PMID: 38897649 PMCID: PMC11347777 DOI: 10.1093/toxsci/kfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Northeastern British Columbia is a region of prolific unconventional oil and gas (UOG) activity. UOG activity can release volatile organic compounds (VOCs) which can elevate oxidative stress and disrupt antioxidant activity in exposed pregnant individuals, potentially increasing the risk of adverse pregnancy outcomes. This study measured biomarkers of oxidative stress and antioxidant activity in pooled urine samples of 85 pregnant individuals living in Northeastern British Columbia, to analyze associations between indoor air VOCs, oil and gas well density and proximity metrics, and biomarker concentrations. Concentrations of catalase, superoxide dismutase (SOD), glutathione S-transferase, total antioxidant capacity, 6-hydroxymelatonin sulfate (aMT6s), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-isoprostane were measured using assay kits. Associations between exposure metrics and biomarker concentrations were determined using multiple linear regression models adjusted for biomarker-specific covariables. UOG proximity was associated with decreased SOD and 8-OHdG. Decreased 8-OHdG was associated with increased proximity to all wells. Decreased aMT6s were observed with increased indoor air hexanal concentrations. MDA was negatively associated with indoor air 1,4-dioxane concentrations. No statistically significant associations were found between other biomarkers and exposure metrics. Although some associations linked oil and gas activity to altered oxidative stress and antioxidant activity, the possibility of chance findings due to the large number of tests cannot be discounted. This study shows that living near UOG wells may alter oxidative stress and antioxidant activity in pregnant individuals. More research is needed to elucidate underlying mechanisms and to what degree UOG activity affects oxidative stress and antioxidant activity.
Collapse
Affiliation(s)
- Matthew W Day
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Yifan Wu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Maduomethaa Pathmaraj
- Department of Health and Society, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre de Recherche en santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC H3C 3J7, Canada
| | - Élyse Caron-Beaudoin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
- Department of Health and Society, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| |
Collapse
|
24
|
Rahman ML, Shu XO, Jones DP, Hu W, Ji BT, Blechter B, Wong JYY, Cai Q, Yang G, Gao YT, Zheng W, Rothman N, Walker D, Lan Q. A nested case-control study of untargeted plasma metabolomics and lung cancer among never-smoking women within the prospective Shanghai Women's Health Study. Int J Cancer 2024; 155:508-518. [PMID: 38651675 PMCID: PMC11284831 DOI: 10.1002/ijc.34929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 04/25/2024]
Abstract
The etiology of lung cancer in never-smokers remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Here, we aimed to enhance our understanding of lung cancer pathogenesis among never-smokers using untargeted metabolomics. This nested case-control study included 395 never-smoking women who developed lung cancer and 395 matched never-smoking cancer-free women from the prospective Shanghai Women's Health Study with 15,353 metabolic features quantified in pre-diagnostic plasma using liquid chromatography high-resolution mass spectrometry. Recognizing that metabolites often correlate and seldom act independently in biological processes, we utilized a weighted correlation network analysis to agnostically construct 28 network modules of correlated metabolites. Using conditional logistic regression models, we assessed the associations for both metabolic network modules and individual metabolic features with lung cancer, accounting for multiple testing using a false discovery rate (FDR) < 0.20. We identified a network module of 121 features inversely associated with all lung cancer (p = .001, FDR = 0.028) and lung adenocarcinoma (p = .002, FDR = 0.056), where lyso-glycerophospholipids played a key role driving these associations. Another module of 440 features was inversely associated with lung adenocarcinoma (p = .014, FDR = 0.196). Individual metabolites within these network modules were enriched in biological pathways linked to oxidative stress, and energy metabolism. These pathways have been implicated in previous metabolomics studies involving populations exposed to known lung cancer risk factors such as traffic-related air pollution and polycyclic aromatic hydrocarbons. Our results suggest that untargeted plasma metabolomics could provide novel insights into the etiology and risk factors of lung cancer among never-smokers.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gong Yang
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Douglas Walker
- Division of Environmental Health, School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Xu H, He X, Zhang B, Li M, Zhu Y, Wang T, Liu S, Shu M, Ding D, Wang Y, Zhao Q, Li J, Song X, Huang W. Low-level ambient ozone exposure associated with neutrophil extracellular traps and pro-atherothrombotic biomarkers in healthy adults. Atherosclerosis 2024; 395:117509. [PMID: 38523002 DOI: 10.1016/j.atherosclerosis.2024.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Uncertainty of the causality determinations for ambient ozone (O3) on cardiovascular events is heightened by the limited understanding of the mechanisms involved in humans. We aimed to examine the pro-atherothrombotic impacts of O3 exposure and to explore the potential mediating roles of dysfunctional neutrophils, focusing on neutrophil extracellular traps (NETs). METHODS A longitudinal panel study of 152 healthy adults was conducted in the cool to cold months with relatively low levels of O3 between September 2019 and January 2020 in Beijing, China. Four repeated measurements of indicators reflecting atherothrombotic balance and NETs were performed for each participant. RESULTS Daily average exposure levels of ambient O3 were 16.6 μg/m3 throughout the study period. Per interquartile range increase in average concentrations of O3 exposure at prior up to 7 days, we observed elevations of 200.1-276.3% in D-dimer, 27.2-36.8% in thrombin-antithrombin complex, 10.8-60.3% in plasminogen activator inhibitor 1, 13.9-21.8% in soluble P-selectin, 16.5-45.1% in matrix metalloproteinase-8, and 2.4-12.4% in lipoprotein-associated phospholipase A2. These pro-atherothrombotic changes were accompanied by endothelial activation, lung injury, and immune inflammation. O3 exposure was also positively associated with circulating NETs indicators, including citrullinated histone H3, neutrophil elastase, myeloperoxidase, and double-stranded DNA. Mediation analyses indicated that NETs could mediate O3-associated pro-atherothrombotic responses. The observational associations remained significant and robust after controlling for other pollutants, and were generally greater in participants with low levels of physical activity. CONCLUSIONS Ambient O3 exposure was associated with significant increases in NETs and pro-atherothrombotic potential, even at exposure levels well below current air quality guidelines of the World Health Organization.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xinghou He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Bin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Mengyao Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Shengcong Liu
- Division of Cardiology, Peking University First Hospital, Beijing, China
| | - Mushui Shu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Ding Ding
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Yu Wang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
26
|
Wang J, Gueye-Ndiaye S, Castro-Diehl C, Bhaskar S, Li L, Tully M, Rueschman M, Owens J, Gold DR, Chen J, Phipatanakul W, Adamkiewicz G, Redline S. Associations between indoor fine particulate matter (PM 2.5) and sleep-disordered breathing in an urban sample of school-aged children. Sleep Health 2024:S2352-7218(24)00133-5. [PMID: 39095254 PMCID: PMC11785818 DOI: 10.1016/j.sleh.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Environmental risk factors may contribute to sleep-disordered breathing. We investigated the association between indoor particulate matter ≤2.5µm in aerodynamic diameter (PM2.5) and sleep-disordered breathing in children in an urban US community. METHODS The sample consisted of children aged 6-12years living in predominantly low-income neighborhoods in Boston, Massachusetts. Indoor PM2.5 was measured in participants' main living areas for 7days using the Environmental Multipollutant Monitoring Assembly device. High indoor PM2.5 exposure was defined as greater than the sample weekly average 80th percentile level (≥15.6 μg/m3). Sleep-disordered breathing was defined as an Apnea-Hypopnea-Index (AHI) or Oxygen-Desaturation-Index (ODI) (≥3% desaturation) of ≥5 events/hour. Habitual loud snoring was defined as caregiver-report of loud snoring (most or all the time each week) over the past 4weeks. We examined the associations of PM2.5 with sleep-disordered breathing or snoring using logistic regression adjusting for potential confounders. RESULTS The sample included 260 children (mean age 9.6years; 41% female), with 32% (n = 76) classified as having sleep-disordered breathing. In a logistic regression model adjusted for socioeconomics and seasonality, children exposed to high indoor PM2.5 levels (n = 53) had a 3.53-fold increased odds for sleep-disordered breathing (95%CI: 1.57, 8.11, p = .002) compared to those with lower indoor PM2.5. This association persisted after additional adjustments for physical activity, outdoor PM2.5, environmental tobacco smoke, and health characteristics. Similar associations were observed for snoring and indoor PM2.5. CONCLUSIONS: Children with higher indoor PM2.5 exposure had greater odds of sleep-disordered breathing and habitual loud snoring, suggesting that indoor air quality contributes to sleep disparities.
Collapse
Affiliation(s)
- Jing Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Seyni Gueye-Ndiaye
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Pulmonary and Sleep Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Cecilia Castro-Diehl
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjana Bhaskar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Le Li
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Meg Tully
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Rueschman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Judith Owens
- Division of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Diane R Gold
- Harvard Medical School, Boston, Massachusetts, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jarvis Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, Massachusetts, USA; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
27
|
Zhao J, Mei Y, Li A, Zhou Q, Zhao M, Xu J, Li Y, Li K, Yang M, Xu Q. Association between PM 2.5 constituents and cardiometabolic risk factors: Exploring individual and combined effects, and mediating inflammation. CHEMOSPHERE 2024; 359:142251. [PMID: 38710413 DOI: 10.1016/j.chemosphere.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The individual and combined effects of PM2.5 constituents on cardiometabolic risk factors are sparsely investigated. Besides, the key cardiometabolic risk factor that PM2.5 constituents targeted and the biological mechanisms remain unclear. METHOD A multistage, stratified cluster sampling survey was conducted in two typically air-polluted Chinese cities. The PM2.5 and its constituents including sulfate, nitrate, ammonium, organic matter, and black carbon were predicted using a machine learning model. Twenty biomarkers in three category were simultaneously adopted as cardiometabolic risk factors. We explored the individual and mixture association of long-term PM2.5 constituents with these markers using generalized additive model and quantile-based g-computation, respectively. To minimize potential confounding effects, we accounted for covariates including demographic, lifestyle, meteorological, temporal trends, and disease-related information. We further used ROC curve and mediation analysis to identify the key subclinical indicators and explore whether inflammatory mediators mediate such association, respectively. RESULT PM2.5 constituents was positively correlated with HOMA-B, TC, TG, LDL-C and LCI, and negatively correlated with PP and RC. Further, PM2.5 constituent mixture was positive associated with DBP, MAP, HbA1c, HOMA-B, AC, CRI-1 and CRI-2, and negative associated with PP and HDL-C. The ROC analysis further reveals that multiple cardiometabolic risk factors can collectively discriminate exposure to PM2.5 constituents (AUC>0.9), among which PP and CRI-2 as individual indicators exhibit better identifiable performance for nitrate and ammonium (AUC>0.75). We also found that multiple blood lipid indicators may be affected by PM2.5 and its constituents, possibly mediated through complement C3 or hsCRP. CONCLUSION Our study suggested associations of individual and combined PM2.5 constituents exposure with cardiometabolic risk factors. PP and CRI-2 were the targeted markers of long-term exposure to nitrate and ammonium. Inflammation may serve as a mediating factor between PM2.5 constituents and dyslipidemia, which enhance current understanding of potential pathways for PM2.5-induced preclinical cardiovascular responses.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
28
|
Wen T, Puett RC, Liao D, Kanter J, Mittleman MA, Lanzkron SM, Yanosky JD. Short-term air pollution levels and sickle cell disease hospital encounters in South Carolina: A case-crossover analysis. ENVIRONMENTAL RESEARCH 2024; 252:118766. [PMID: 38583660 DOI: 10.1016/j.envres.2024.118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic disorder and symptoms may be sensitive to environmental stressors. Although it has been hypothesized that exposure to outdoor air pollution could trigger acute SCD events, evidence is limited. METHODS We obtained SCD administrative data on hospital encounters in South Carolina from 2002 to 2019. We estimated outdoor air pollutant (particulate matter<2.5 μm (PM2.5), ozone (O3), and PM2.5 elemental carbon (EC) concentrations at residential zip codes using spatio-temporal models. Using a random bi-directional, fixed-interval case-crossover study design, we investigated the relationship between air pollution exposure over 1-, 3-, 5-, 9-, and14-day periods with SCD hospital encounters. RESULTS We studied 8410 patients with 144,129 hospital encounters. We did not observe associations among all patients with SCD and adults for PM2.5, O3, and EC. We observed positive associations among children for 9- and 14-day EC (OR: 1.05 (95% confidence interval (CI): 1.02, 1.08) and OR: 1.05 (95% CI: 1.02, 1.09), respectively) and 9- and 14-day O3 (OR: 1.04 (95%CI: 1.00, 1.08)) for both. CONCLUSIONS Our findings suggest that short-term (within two-weeks) levels of EC and O3 and may be associated with SCD hospital encounters among children. Two-pollutant model results suggest that EC is more likely responsible for effects on SCD than O3. More research is needed to confirm our findings.
Collapse
Affiliation(s)
- Tong Wen
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Robin C Puett
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Julie Kanter
- Division of Hematology and Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, Boston, MA, USA
| | - Sophie M Lanzkron
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
29
|
Liu C, Zhang B, Liu C, Zhang Y, Zhao K, Zhang P, Tian M, Lu Z, Guo X, Jia X. Association of ambient ozone exposure and greenness exposure with hemorrhagic stroke mortality at different times: A cohort study in Shandong Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116356. [PMID: 38678691 DOI: 10.1016/j.ecoenv.2024.116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Evidence on the association between long-term ozone exposure and greenness exposure and hemorrhagic stroke (HS) is limited, with mixed results. One potential source of this inconsistency is the difference in exposure time metrics. This study aimed to investigate the association between long-term exposure to ambient ozone, greenness, and mortality from HS using exposure metrics at different times. We also examined whether greenness exposure modified the relationship between ozone exposure and mortality due to HS. The study population consisted of 45771 participants aged ≥40 y residing in 20 counties in Shandong Province who were followed up from 2013 to 2019. Ozone exposure metrics (annual mean and warm season) and the normalized difference a measure of greenness exposure, were calculated. The relationship between environmental exposures (ozone and greenness exposures) and mortality from HS was assessed using time-dependent Cox proportional hazards models, and the modification of greenness exposure was examined using stratified analysis with interaction terms. The person-years at the end of follow-up were 90,663. With full adjustments, the risk of death from hemorrhagic stroke increased by 5% per interquartile range increase in warm season ozone [hazard ratio =1.05; 95 % confidence interval: 1.01-1.08]. No clear association was observed between annual ozone and mortality HS. Both the annual and summer NDVI were found to reduce the risk of HS mortality. The relationships were influenced by age, sex, and residence (urban or rural). Furthermore, greenness exposure was shown to have a modifying effect on the relationship between ozone exposure and the occurrence of HS mortality (P for interaction = 0.001). Long-term exposure to warm season O3 was positively associated with HS mortality, while greenness exposure was inversely associated with HS mortality. Greenness exposure may mitigate the negative effects of warm season ozone exposure on HS mortality.
Collapse
Affiliation(s)
- Chengrong Liu
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chao Liu
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Yingying Zhang
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Ke Zhao
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Meihui Tian
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Xianjie Jia
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
30
|
Li Q, Zhang Y, Fang J, Sun Q, Du Y, Wang Y, Lei J, Zhu Y, Xue X, Chen R, Kan H, Li T. Effect of air purification on blood pressure and heart rate among school children: A cluster, randomized, double-blind crossover trial. CHINESE SCIENCE BULLETIN 2024; 69:2454-2462. [DOI: 10.1360/tb-2023-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Leinweber ME, Meisenbacher K, Schmandra T, Karl T, Torsello G, Walensi M, Geisbuesch P, Schmitz-Rixen T, Jung G, Hofmann AG. Exploring the Effects of Local Air Pollution on Popliteal Artery Aneurysms. J Clin Med 2024; 13:3250. [PMID: 38892961 PMCID: PMC11172973 DOI: 10.3390/jcm13113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives: A growing body of evidence highlights the effects of air pollution on chronic and acute cardiovascular diseases, such as associations between PM10 and several cardiovascular events. However, evidence of the impact of fine air pollutants on the development and progression of peripheral arterial aneurysms is not available. Methods: Data were obtained from the multicenter PAA outcome registry POPART and the German Environment Agency. Means of the mean daily concentration of PM10, PM2.5, NO2, and O3 concentrations were calculated for 2, 10, and 3650 days prior to surgery for each patient. Additionally, weighted ten-year averages were analyzed. Correlation was assessed by calculating Pearson correlation coefficients, and regression analyses were conducted as multiple linear or multiple logistic regression, depending on the dependent variable. Results: For 1193 patients from the POPART registry, paired air pollution data were available. Most patients were male (95.6%) and received open surgical repair (89.9%). On a regional level, the arithmetic means of the daily means of PM10 between 2000 and 2022 were neither associated with average diameters nor runoff vessels. Negative correlations for mean PAA diameter and mean NO2, as well as a positive correlation with mean O3, were found; however, they were not statistically significant. On patient level, no evidence for an association of mean PM10 exposure over ten years prior to inclusion in the registry and PAA diameter or the number of runoff vessels was found. Weighted PM10, NO2, and O3 exposure over ten years also did not result in significant associations with aneurysm diameter or runoff vessels. Short-term air pollutant concentrations were not associated with symptomatic PAAs or with perioperative complications. Conclusions: We found no indication that long-term air pollutant concentrations are associated with PAA size or severity, neither on a regional nor individual level. Additionally, short-term air pollution showed no association with clinical presentation or treatment outcomes.
Collapse
Affiliation(s)
| | - Katrin Meisenbacher
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Schmandra
- Department of Vascular Surgery, Sana Klinikum Offenbach, 63069 Offenbach, Germany
| | - Thomas Karl
- Department of Vascular and Endovascular Surgery, Klinikum am Plattenwald, SLK-Kliniken Heilbronn GmbH, 74177 Bad Friedrichshall, Germany
| | - Giovanni Torsello
- Department for Vascular Surgery, Franziskus Hospital Münster, 48145 Münster, Germany
| | - Mikolaj Walensi
- Department of Vascular Surgery and Phlebology, Contilia Heart and Vascular Center, 45138 Essen, Germany
| | - Phillip Geisbuesch
- Department of Vascular and Endovascular Surgery, Klinikum Stuttgart, 70199 Stuttgart, Germany
| | - Thomas Schmitz-Rixen
- German Society of Surgery, Langenbeck-Virchow-Haus, Luisenstraße 58/59, 10117 Berlin, Germany
| | - Georg Jung
- Department of Vascular and Endovascular Surgery, Luzerner Kantonsspital, 6000 Lucern, Switzerland
| | - Amun Georg Hofmann
- FIFOS—Forum for Integrative Research and Systems Biology, 1170 Vienna, Austria
| |
Collapse
|
32
|
Zhou H, Liang X, Zhang X, Wu J, Jiang Y, Guo B, Wang J, Meng Q, Ding X, Baima Y, Li J, Wei J, Zhang J, Zhao X. Associations of Long-Term Exposure to Fine Particulate Constituents With Cardiovascular Diseases and Underlying Metabolic Mediations: A Prospective Population-Based Cohort in Southwest China. J Am Heart Assoc 2024; 13:e033455. [PMID: 38761074 PMCID: PMC11179805 DOI: 10.1161/jaha.123.033455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The health effects of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) might differ depending on compositional variations. Little is known about the joint effect of PM2.5 constituents on metabolic syndrome and cardiovascular disease (CVD). This study aims to evaluate the combined associations of PM2.5 components with CVD, identify the most detrimental constituent, and further quantify the mediation effect of metabolic syndrome. METHODS AND RESULTS A total of 14 427 adults were included in a cohort study in Sichuan, China, and were followed to obtain the diagnosis of CVD until 2021. Metabolic syndrome was defined by the simultaneous occurrence of multiple metabolic disorders measured at baseline. The concentrations of PM2.5 chemical constituents within a 1-km2 grid were derived based on satellite- and ground-based detection methods. Cox proportional hazard models showed that black carbon, organic matter (OM), nitrate, ammonium, chloride, and sulfate were positively associated with CVD risks, with hazard ratios (HRs) ranging from 1.24 to 2.11 (all P<0.05). Quantile g-computation showed positive associations with 4 types of CVD risks (HRs ranging from 1.48 to 2.25, all P<0.05). OM and chloride had maximum weights for CVD risks. Causal mediation analysis showed that the positive association of OM with total CVD was mediated by metabolic syndrome, with a mediation proportion of 1.3% (all P<0.05). CONCLUSIONS Long-term exposure to PM2.5 chemical constituents is positively associated with CVD risks. OM and chloride appear to play the most responsible role in the positive associations between PM2.5 and CVD. OM is probably associated with CVD through metabolic-related pathways.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention Chengdu Sichuan China
| | - Xueli Zhang
- Health Information Center of Sichuan Province Chengdu Sichuan China
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Ye Jiang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Junhua Wang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Guizhou Medical University Guiyang China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health Kunming Medical University Kunming Yunnan China
| | - Xianbin Ding
- Chongqing Municipal Center for Disease Control and Prevention Chongqing China
| | | | - Jingzhong Li
- Tibet Center for Disease Control and Prevention Lhasa Tibet China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center University of Maryland College Park MD USA
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
33
|
Yang H, Wang Z, Zhou Y, Gao Z, Xu J, Xiao S, Dai C, Wu F, Deng Z, Peng J, Ran P. Association between long-term ozone exposure and readmission for chronic obstructive pulmonary disease exacerbation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123811. [PMID: 38531467 DOI: 10.1016/j.envpol.2024.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
The relationship between long-term ozone (O₃) exposure and readmission for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains elusive. In this study, we collected individual-level information on AECOPD hospitalizations from a standardized electronic database in Guangzhou from January 1, 2014, to December 31, 2015. We calculated the annual mean O₃ concentration prior to the dates of the index hospitalization for AECOPD using patients' residential addresses. Employing Cox proportional hazards models, we assessed the association between long-term O₃ concentration and the risk of AECOPD readmission across several time frames (30 days, 90 days, 180 days, and 365 days). We estimated the disease and economic burden of AECOPD readmissions attributable to O₃ using a counterfactual approach. Of the 4574 patients included in the study, 1398 (30.6%) were readmitted during the study period, with 262 (5.7%) readmitted within 30 days. The annual mean O₃ concentration was 90.3 μg/m3 (standard deviation [SD] = 8.2 μg/m3). A 10-μg/m3 increase in long-term O₃ concentration resulted in a hazard ratio (HR) for AECOPD readmission within 30 days of 1.28 (95% confidence interval [CI], 1.09 to 1.49), with similar results for readmission within 90, 180, and 365 days. Older patients (aged 75 years or above) and males were more susceptible (HR, 1.33; 95% CI, 1.10-1.61 and HR, 1.29; 95% CI, 1.09-1.53, respectively). The population attributable fraction for 30-day readmission due to O₃ exposure was 29.0% (95% CI, 28.4%-30.0%), and the attributable mean cost per participant was 362.3 USD (354.5-370.2). Long-term exposure to elevated O₃ concentrations is associated with an increased risk of AECOPD readmission, contributing to a significant disease and economic burden.
Collapse
Affiliation(s)
- Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Zhaosheng Gao
- Guangzhou Health Technology Appraisal and Talent Evaluation Center, Guangzhou Municipal Health Commission, Guangzhou, China
| | - Jing Xu
- Guangzhou Health Technology Appraisal and Talent Evaluation Center, Guangzhou Municipal Health Commission, Guangzhou, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Longgang District Central Hospital, Shenzhen, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China.
| |
Collapse
|
34
|
Qiao JC, Sun LJ, Zhang MY, Gui SY, Wang XC, Hu CY. Association between ambient particulate matter exposure and mitochondrial DNA copy number: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171423. [PMID: 38442762 DOI: 10.1016/j.scitotenv.2024.171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Ambient particulate matter (PM) has been recognized as inducing oxidative stress, which could contribute to mitochondrial damage and dysfunction. However, studies investigating the association between ambient PM and mitochondria, particularly mitochondrial DNA copy number (mtDNA-CN), have yielded inconsistent results. METHODS We conducted comprehensive literature searches to identify observational studies published before July 17, 2023, examining the association between ambient PM exposure and mtDNA-CN. Meta-analysis using random effects model was employed to calculate the pooled effect estimates for general individual exposures, as well as for prenatal exposure with specific trimester. Additionally, the quality and level of evidence for each exposure-outcome pair was evaluated. RESULTS A total of 10 studies were included in the systematic review and meta-analysis. The results indicated that general individual exposure to PM2.5 (β = -0.084, 95 % CI: -0.521, 0.353; I2 = 93 %) and PM10 (β = 0.035, 95 % CI: -0.129, 0.199; I2 = 95 %) did not significantly affect mtDNA-CN. Prenatal exposure to PM2.5 (β = 0.023, 95 % CI: -0.087, 0.133; I2 = 0 %) and PM10 (β = 0.006, 95 % CI: -0.135; 0.147; I2 = 51 %) were also not significantly associated with mtDNA-CN in offspring. The level of evidence for each tested exposure-outcome pair was assessed as "inadequate." CONCLUSIONS The findings of this systematic review and meta-analysis indicate that there is an "inadequate" strength of evidence for the association between general individual or prenatal exposure to ambient PM and mtDNA-CN. Future research necessitates studies with more rigorous design, enhanced control of confounding factors, and improved measures of exposure to substantiate our findings.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Liang-Jie Sun
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Xin-Chen Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
35
|
Wei B, Zhou Y, Li Q, Zhen S, Wu Q, Xiao Z, Liao J, Zhu B, Duan J, Yang X, Liang F. Outdoor fine particulate matter exposure and telomere length in humans: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116206. [PMID: 38518608 DOI: 10.1016/j.ecoenv.2024.116206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 μg/m3 increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (β) of -0.12 (95% CI: -0.20, -0.03, I2= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I2= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.
Collapse
Affiliation(s)
- Bincai Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yawen Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyi Xiao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China..
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
36
|
Elavsky S, Burda M, Cipryan L, Kutáč P, Bužga M, Jandackova V, Chow SM, Jandacka D. Physical activity and menopausal symptoms: evaluating the contribution of obesity, fitness, and ambient air pollution status. Menopause 2024; 31:310-319. [PMID: 38377450 PMCID: PMC10959689 DOI: 10.1097/gme.0000000000002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OBJECTIVE The menopausal transition is accompanied by transient symptoms that have been linked to subclinical cardiovascular disease (CVD); CVD has also been linked to air pollution. Physical activity (PA) reduces CVD, improves body composition, and can reduce menopausal symptoms. The purpose of this study was to assess the links between PA and menopausal symptoms and whether obesity, fitness, and air pollution status play a role in this relationship. METHODS Women (40-60 y; N = 243; mean [SD] age, 47.8 [5.6] y) from areas with high versus low air pollution enrolled in the Healthy Aging in Industrial Environment Program 4 prospective cohort study completed psychological, cardiorespiratory fitness, body composition, and menopausal status screening followed by a 14-day prospective assessment of menopausal symptoms (Menopause Rating Scale) using a mobile application. Daily PA was assessed objectively across 14 days via Fitbit Charge 3 monitor. General linear mixed models were conducted and controlled for age, menopausal status, day in the study, wear time, and neuroticism. RESULTS Peri/postmenopausal women ( β = 0.43, P < 0.001) and those residing in a high-air-pollution environment ( β = 0.45, P < 0.05) reported more somatovegetative symptoms. Hot flashes alone were associated with peri/postmenopausal status ( β = 0.45, P < 0.001), and for women residing in a high-air-pollution environment, lower reporting of hot flashes was observed on days when a woman was more physically active than usual ( β = -0.15, P < 0.001). No associations were found for cardiorespiratory fitness and visceral fat with any of the symptoms. CONCLUSIONS PA may enhance resilience to hot flashes, especially when residing in high-air-pollution environments where we also observed higher reporting of somatovegetative menopausal symptoms.
Collapse
Affiliation(s)
- Steriani Elavsky
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic IT4Innovations
| | - Lukáš Cipryan
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| | - Petr Kutáč
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| | - Marek Bužga
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Vera Jandackova
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Sy-Miin Chow
- Department of Human Development and Family Studies, College of Health and Human Development, Penn State University, USA
| | - Daniel Jandacka
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| |
Collapse
|
37
|
Liu C, Qiao Y. The association between long-term exposure to ambient PM 2.5 and high-density lipoprotein cholesterol level among chinese middle-aged and older adults. BMC Cardiovasc Disord 2024; 24:173. [PMID: 38515043 PMCID: PMC10956307 DOI: 10.1186/s12872-024-03835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Recently, the impact of PM2.5 on human health has been intensively studied, especially the respiratory system. High-density lipoprotein plays a crucial role in removing excess cholesterol from cells and transporting it to the liver for excretion. However, the effects of ambient PM2.5 on high-density lipoprotein (HDL) level have not been further studied. Our research aims to investigate the potential association between ambient PM2.5 concentrations and high-density lipoprotein (HDL) levels within the middle-aged and older adults in China. METHODS We employed data from individuals aged 45 years and above who were participants in Wave 3 of the China Health and Retirement Longitudinal Study (CHARLS). The high-quality, high-resolution PM2.5 exposure concentration data for each participant were obtained from the ChinaHighAirPollutants (CHAP) dataset, while the HDL levels were derived from blood samples collected during CHARLS Wave 3. This analysis constitutes a cross-sectional study involving a total of 12,519 participants. To investigate associations, we conducted multivariate linear regression analysis, supplemented by subgroup analysis. RESULTS In this cross-sectional investigation, we discerned a negative association between prolonged exposure to ambient PM2.5 constituents and high-density lipoprotein (HDL) levels. The observed correlation between ambient PM2.5 and HDL levels suggests that older individuals residing in areas with elevated PM2.5 concentrations exhibit a reduction in HDL levels (Beta: -0.045; 95% CI: -0.056, -0.035; P < 0.001). Upon adjusting for age in Model I, the Beta coefficient remained consistent at -0.046 (95% CI: -0.056, -0.035; p < 0.001). This association persisted even after accounting for various potential confounding factors (Beta = -0.031, 95% CI: -0.041, -0.021, p < 0.001). CONCLUSIONS Our study reveals a statistically significant negative correlation between sustained exposure to higher concentrations of ambient PM2.5 and high-density lipoprotein (HDL) levels among Chinese middle-aged and older individuals.
Collapse
Affiliation(s)
- Chaolin Liu
- Department of surgery, Sichuan Province orthopedic hospital, Cheng, China
| | - Yong Qiao
- Department of surgery, Sichuan Province orthopedic hospital, Cheng, China.
| |
Collapse
|
38
|
Del Río SG, Plans-Beriso E, Ramis R, Ortolá R, Pastor R, Sotos-Prieto M, Castelló A, Requena RO, Moleón JJJ, Félix BMF, Muriel A, Miret M, Mateos JLA, Choi YH, Rodríguez-Artalejo F, Fernández-Navarro P, García-Esquinas E. Exposure to residential traffic and trajectories of unhealthy ageing: results from a nationally-representative cohort of older adults. Environ Health 2024; 23:15. [PMID: 38303067 PMCID: PMC10832178 DOI: 10.1186/s12940-024-01057-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Traffic exposure has been associated with biomarkers of increased biological ageing, age-related chronic morbidities, and increased respiratory, cardiovascular, and all-cause mortality. Whether it is associated with functional impairments and unhealthy ageing trajectories is unknown. METHODS Nationally representative population-based cohort with 3,126 community-dwelling individuals aged ≥60 years who contributed 8,291 biannual visits over a 10 year period. Unhealthy ageing was estimated with a deficit accumulation index (DAI) based on the number and severity of 52 health deficits, including 22 objectively-measured impairments in physical and cognitive functioning. Differences in DAI at each follow-up across quintiles of residential traffic density (RTD) at 50 and 100 meters, and closest distance to a petrol station, were estimated using flexible marginal structural models with inverse probability of censoring weights. Models were adjusted for sociodemographic and time-varying lifestyle factors, social deprivation index at the census tract and residential exposure to natural spaces. RESULTS At baseline, the mean (SD) age and DAI score of the participants were 69.0 (6.6) years and 17.02 (11.0) %, and 54.0% were women. The median (IQR) RTD at 50 and 100 meters were 77 (31-467) and 509 (182-1802) vehicles/day, and the mean (SD) distance to the nearest petrol station of 962 (1317) meters. The average increase in DAI (95%CI) for participants in quintiles Q2-Q5 (vs Q1) of RTD at 50 meters was of 1.51 (0.50, 2.53), 0.98 (-0.05, 2.01), 2.20 (1.18, 3.21) and 1.98 (0.90, 3.05), respectively. Consistent findings were observed at 100 meters. By domains, most of the deficits accumulated with increased RTD were of a functional nature, although RTD at 50 meters was also associated with worse self-reported health, increased vitality problems and higher incidence of chronic morbidities. Living closer to a petrol station was associated with a higher incidence of functional impairments and chronic morbidities. CONCLUSIONS Exposure to nearby residential traffic is associated with accelerated trajectories of unhealthy ageing. Diminishing traffic pollution should become a priority intervention for adding healthy years to life in the old age.
Collapse
Affiliation(s)
- Sergio Gómez Del Río
- Department of Preventive Medicine, Hospital Central de la Cruz Roja San José y Santa Adela, Madrid, Spain
| | - Elena Plans-Beriso
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Rebeca Ramis
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Rosario Ortolá
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto Pastor
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Mercedes Sotos-Prieto
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- IMDEA-Food Institute (CEI UAM+CSIC), Madrid, Spain
| | - Adela Castelló
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Rocío Olmedo Requena
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - José Juan Jiménez Moleón
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Borja María Fernández Félix
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Clinical Biostatistics Unit, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Alfonso Muriel
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Clinical Biostatistics Unit, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Department of Nursery and Physiotherapy, Universidad de Alcalá, Madrid, Spain
| | - Marta Miret
- Department of Psychiatry, Universidad Autónoma de Madrid, Madrid, Spain
- Consortium for Biomedical Research in Mental Health (CIBER en Salud Mental - CIBERSAM), Madrid, Spain
| | - Jose Luis Ayuso Mateos
- Department of Psychiatry, Universidad Autónoma de Madrid, Madrid, Spain
- Consortium for Biomedical Research in Mental Health (CIBER en Salud Mental - CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitario de La Princesa, Madrid, Spain
| | - Yoon-Hyeong Choi
- School of Health and Environmental Science, College of Health Science, Korea University, Seoul, Korea
| | - Fernando Rodríguez-Artalejo
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA-Food Institute (CEI UAM+CSIC), Madrid, Spain
| | - Pablo Fernández-Navarro
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.
| | - Esther García-Esquinas
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.
| |
Collapse
|
39
|
Yu J, Zhu A, Liu M, Dong J, Chen R, Tian T, Liu T, Ma L, Ruan Y. Association Between Air Pollution and Cardiovascular Disease Hospitalizations in Lanzhou City, 2013-2020: A Time Series Analysis. GEOHEALTH 2024; 8:e2022GH000780. [PMID: 38173697 PMCID: PMC10762694 DOI: 10.1029/2022gh000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.
Collapse
Affiliation(s)
- Jingze Yu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Anning Zhu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Miaoxin Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Jiyuan Dong
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Rentong Chen
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tian Tian
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tong Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Li Ma
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Ye Ruan
- School of Public HealthLanzhou UniversityLanzhouPR China
| |
Collapse
|
40
|
Requia WJ, Vicedo-Cabrera AM, Amini H, Schwartz JD. Short-term air pollution exposure and mortality in Brazil: Investigating the susceptible population groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122797. [PMID: 37879554 DOI: 10.1016/j.envpol.2023.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
This is the first study to examine the association between ambient air pollution (PM2.5, O3, and NO2) and mortality (in different population groups by sex and age) based on a nationwide death record across Brazil over a 15-year period (2003-2017). We used a time-series analytic approach with a distributed lag model. Our study population includes 2,872,084 records of deaths in Brazil between 2003 and 2017. Men accounted for a higher proportion of deaths, with 58% for all-cause mortality, 54% for respiratory mortality, and 52% for circulatory mortality. Most individuals were over 65 years of age. Our results suggest an association between air pollution and mortality in Brazil. The direction, statistical significance, and effect size of these associations varied considerably by type of air pollutant, region, and population group (sex and age group). In particular, the older population group (>65 years) was most affected. The national meta-analysis for the entire data set (without stratification by sex and age) showed that for every 10 μg/m3 increase in PM2.5 concentration, the risk of death from respiratory diseases increased by 2.93% (95%CI: 1.42; 4.43). For every 10 ppb increase in O3, there is a 2.21% (95%CI: 0.59; 3.83) increase in the risk of all-cause mortality for the group of all people between 46 and 65 years old, and a 3.53% (95%CI: 0.34; 6.72) increase in the risk of circulatory mortality for the group of women, all ages. For every 10 ppb increase in NO2, the risk of respiratory mortality increases by 17.56% (95%CI: 4.44; 30.64) and the risk of all-cause mortality by 5.63% (95%CI: 1.83; 9.44). The results of our study provide epidemiological evidence that air pollution is associated with a higher risk of cardiorespiratory mortality in Brazil. Given the lack of nationwide studies on air pollution in Brazil, our research is an important contribution to the local and international literature that can provide better support to policymakers to improve air quality and public health.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil.
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Oeschger Center for Climate Change Research, Bern, Switzerland
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
41
|
Borchert W, Grady ST, Chen J, DeVille NV, Roscoe C, Chen F, Mita C, Holland I, Wilt GE, Hu CR, Mehta U, Nethery RC, Albert CM, Laden F, Hart JE. Air Pollution and Temperature: a Systematic Review of Ubiquitous Environmental Exposures and Sudden Cardiac Death. Curr Environ Health Rep 2023; 10:490-500. [PMID: 37845484 PMCID: PMC11016309 DOI: 10.1007/s40572-023-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Environmental exposures have been associated with increased risk of cardiovascular mortality and acute coronary events, but their relationship with out-of-hospital cardiac arrest (OHCA) and sudden cardiac death (SCD) remains unclear. SCD is an important contributor to the global burden of cardiovascular disease worldwide. RECENT FINDINGS Current literature suggests a relationship between environmental exposures and cardiovascular disease, but their relationship with OHCA/SCD remains unclear. A literature search was conducted in PubMed, Embase, Web of Science, and Global Health. Of 5138 studies identified by our literature search, this review included 30 studies on air pollution, 42 studies on temperature, 6 studies on both air pollution and temperature, and 1 study on altitude exposure and OHCA/SCD. Particulate matter air pollution, ozone, and both hot and cold temperatures are associated with increased risk of OHCA/SCD. Pollution and other exposures related to climate change play an important role in OHCA/SCD incidence.
Collapse
Affiliation(s)
- William Borchert
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA.
- Harvard Kenneth C. Griffin Graduate School of Arts and Sciences, Cambridge, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Stephanie T Grady
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Jie Chen
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole V DeVille
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Charlotte Roscoe
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Futu Chen
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Harvard Kenneth C. Griffin Graduate School of Arts and Sciences, Cambridge, MA, USA
| | - Carol Mita
- Countway Library, Harvard Medical School, Boston, MA, USA
| | - Isabel Holland
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Grete E Wilt
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Harvard Kenneth C. Griffin Graduate School of Arts and Sciences, Cambridge, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cindy R Hu
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Harvard Kenneth C. Griffin Graduate School of Arts and Sciences, Cambridge, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Unnati Mehta
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Harvard Kenneth C. Griffin Graduate School of Arts and Sciences, Cambridge, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel C Nethery
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Division of Preventative Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 1301, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Ranta A, Ozturk S, Wasay M, Giroud M, Béjot Y, Reis J. Environmental factors and stroke: Risk and prevention. J Neurol Sci 2023; 454:120860. [PMID: 37944211 DOI: 10.1016/j.jns.2023.120860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Stroke is a leading cause of death and adult disability globally. In addition to traditional risk factors, environmental risk factors have emerged over the recent past and are becoming increasingly important. The disproportionate rise of stroke incidence in low- and middle-income countries has been attributed, at least in part, to environmental factors. This narrative review provides details on the interplay between the environment and health generally and stroke specifically, covering topics including air pollution, atmospheric brown clouds, desert dust storms, giant wildfires, chemical contamination, biological aggressors, urbanization, and climate change. It also covers some beneficial environmental effects such as can be harnessed from the exposure to green spaces. It concludes with a summary of pragmatic actions that can be taken to help address some of these challenges at individual, community, and political advocacy levels.
Collapse
Affiliation(s)
- Annemarei Ranta
- Department of Medicine, University of Otago, Wellington, New Zealand; Department of Neurology, Wellington Hospital, Wellington, New Zealand.
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Mohammad Wasay
- Department of Medicine, Aga Khan University, Karachi, Pakistan.
| | - Maurice Giroud
- Department of Neurology, University Hospital of Dijon, France; Dijon Stroke Registry, Pathophysiology and Epidemiology of cerebrocardiovascular diseases (EA7460), University of Bourgogne, Dijon, France.
| | - Yannick Béjot
- Department of Neurology, University Hospital of Dijon, France; Dijon Stroke Registry, Pathophysiology and Epidemiology of cerebrocardiovascular diseases (EA7460), University of Bourgogne, Dijon, France.
| | - Jacques Reis
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
44
|
Adam J, Rupprecht S, Künstler ECS, Hoyer D. Heart rate variability as a marker and predictor of inflammation, nosocomial infection, and sepsis - A systematic review. Auton Neurosci 2023; 249:103116. [PMID: 37651781 DOI: 10.1016/j.autneu.2023.103116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The autonomic nervous system interacts with the immune system via the inflammatory response. Heart rate variability (HRV), a marker of autonomic activity, is associated with inflammation, and nosocomial infections/sepsis, and has clinical implications for the monitoring of at-risk patients. Due to the vagal tone's influence on anti-inflammatory immune response, this association may predominately be reflected by vagally-mediated HRV indices. However, HRV's predictive significance on inflammation/infection remains unclear. METHODS 843 studies examining the associations/prognostic value of HRV indices on inflammation, and nosocomial infection/sepsis were screened in this systematic review. According to inclusion and exclusion criteria, 68 associative studies and 14 prediction studies were included. RESULTS HRV and pro-inflammatory state were consistently associated in healthy subjects and patient groups. Pro-inflammatory state was related to reduced total power HRV including vagally- and non-vagally-mediated HRV indices. Similar, compared to controls, HRV reductions were observed during nosocomial infections/sepsis. Only limited evidence supports the predictive value of HRV in the development of nosocomial infections/sepsis. Reduced very low frequency power HRV showed the highest predictive value in adults, even with different clinical conditions. In neonates, an increased heart rate characteristic score, combining reduced total power HRV, decreased complexity, and vagally-dominated asymmetry, predicted sepsis. CONCLUSIONS Pro-inflammatory state is related to an overall reduction in HRV rather than a singular reduction in vagally-mediated HRV indices, reflecting the complex autonomic-regulatory changes occurring during inflammation. The potential benefit of using continuous HRV monitoring for detecting nosocomial infection-related states, and the implications for clinical outcome, need further clarification.
Collapse
Affiliation(s)
- Josephine Adam
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Sven Rupprecht
- Department of Neurology, Jena University Hospital, Jena, Germany; Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Erika C S Künstler
- Department of Neurology, Jena University Hospital, Jena, Germany; Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Dirk Hoyer
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
45
|
Guo X, Su W, Wang H, Li N, Song Q, Liang Q, Sun C, Liang M, Zhou Z, Song EJ, Sun Y. Short-term exposure to ambient ozone and cardiovascular mortality in China: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:958-975. [PMID: 35438585 DOI: 10.1080/09603123.2022.2066070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a major public health concern in China. Notwithstanding this, there is limited evidence regarding the impact of short-term exposure to ambient ozone on cardiovascular mortality in the Chinese population. Therefore, we conducted this meta-analysis to address this important question. The random-effects model was applied to pool the results from individual studies. Finally, 32 effect estimates extracted from 19 studies were pooled in this meta-analysis. The pooled relative risk for cardiovascular mortality for each 10 µg/m3 increment in ozone concentration was 1.0068 (95% CI: 1.0049, 1.0086). Ths significant positive association between ozone exposure and cardiovascular mortality was also observed in different two-pollutant models. This meta-analysis revealed that exposure to ozone was associated with an increased risk of cardiovascular mortality in China, and more efforts on controlling the population from ozone are needed to improve cardiovascular health of Chinese population.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
- Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
46
|
Oyebode IH, Just AC, Ravel J, Elovitz MA, Burris HH. Impact of exposure to air pollution on cervicovaginal microbial communities. ENVIRONMENTAL RESEARCH 2023; 233:116492. [PMID: 37354930 PMCID: PMC10527781 DOI: 10.1016/j.envres.2023.116492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Vaginal microbial communities can be dominated by anaerobic (community state type IV, CST IV) or Lactobacillus (other CSTs) species. CST IV is a risk factor for spontaneous preterm birth (sPTB) and is more common among Black than White populations. In the US, average air pollution exposures are higher among Black compared to White people and exert systemic health effects. We sought to (1) quantify associations of air pollution, specifically particulate matter <2.5 μm in diameter (PM2.5), with CST IV and (2) explore the extent to which racial disparities in PM2.5 exposure might explain racial differences in the prevalence of CST IV. DESIGN Methods: We performed a secondary analysis of 566 participants of the Motherhood & Microbiome study. PM2.5 exposures were derived from a machine learning model integrating NASA satellite and EPA ground monitor data. Previously, cervicovaginal swabs from 15 to 20 weeks' gestation were analyzed using 16 S rRNA sequencing and hierarchical clustering assigned CSTs. Multivariable logistic regression models calculated adjusted odds ratios of CST IV (vs. other CSTs) per interquartile range (IQR) increment of PM2.5. Race-stratified and mediation analyses were performed. RESULTS Higher PM2.5 exposure was associated with CST IV (aOR 1.39, 95% CI 1.02-1.91). Further adjustment for race/ethnicity attenuated the association (aOR 1.34, 95% CI: 0.97-1.83). Black participants (vs. White) had higher median PM2.5 exposure (10.6 vs. 9.6 μg/m3, P < 0.001) and higher prevalence of CST IV (47% vs. 11%, P < 0.001). Mediation analysis revealed that higher PM2.5 exposure may explain 3.9% (P = 0.038) and 3.3% (P = 0.15) of the Black-White disparity in CST IV in unadjusted and adjusted models, respectively. CONCLUSION PM2.5 was associated with CST IV, a risk factor for sPTB. Additionally, PM2.5 exposure may partially explain racial differences in the prevalence of CST IV. Further research is warranted to discover how environmental exposures affect microbial composition and perpetuate racial health disparities.
Collapse
Affiliation(s)
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michal A Elovitz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather H Burris
- Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Pan X, Hong F, Li S, Wu J, Xu H, Yang S, Chen K, Baima K, Nima Q, Meng Q, Xia J, Xu J, Guo B, Lin H, Xie L, Zhang J, Zhao X. Long-term exposure to ambient PM 2.5 constituents is associated with dyslipidemia in Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115384. [PMID: 37603926 DOI: 10.1016/j.ecoenv.2023.115384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Ambient particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) consists of various toxic constituents. However, the health effect of PM2.5 may differ depending on its constituents, but the joint effect of PM2.5 constituents remains incompletely understood. OBJECTIVE Our goal was to evaluate the joint effect of long-term PM2.5 constituent exposures on dyslipidemia and identify the most hazardous chemical constituent. METHODS This study included 67,015 participants from the China Multi-Ethnic Cohort study. The average yearly levels of PM2.5 constituents for all individuals at their residences were assessed through satellite remote sensing and chemical transport modeling. Dyslipidemia was defined as one or more following abnormal blood lipid concentrations: total cholesterol (TC) ≥ 6.22 mmol/L, triglycerides (TG) ≥ 2.26 mmol/L, high-density lipoprotein cholesterol (HDL-C) < 1.04 mmol/L, and low-density lipoprotein cholesterol (LDL-C) ≥ 4.14 mmol/L. The logistic regression model was utilized to examine the single effect of PM2.5 constituents on dyslipidemia, while the weighted quantile sum regression model for the joint effect. RESULTS The odds ratio with a 95 % confidence interval for dyslipidemia positively related to per-SD increase in the three-year average was 1.29 (1.20-1.38) for PM2.5 mass, 1.25 (1.17-1.34) for black carbon, 1.24 (1.16-1.33) for ammonium, 1.33 (1.24-1.43) for nitrate, 1.34 (1.25-1.44) for organic matter, 1.15 (1.08-1.23) for sulfate, 1.30 (1.22-1.38) for soil particles, and 1.12 (1.05-1.92) for sea salt. Stronger associations were observed in individuals < 65 years of age, males, and those with low physical activity. Joint exposure to PM2.5 constituents was positively related to dyslipidemia (OR: 1.09, 95 %CI: 1.05-1.14). Nitrate was identified as the constituent with the largest weight (weighted at 0.387). CONCLUSIONS Long-term exposure to PM2.5 constituents poses a significant risk to dyslipidemia and nitrate might be the most responsible for the risk. These findings indicate that reducing PM2.5 constituent exposures, especially nitrate, could be beneficial to alleviate the burden of disease attributed to PM2.5-related dyslipidemia.
Collapse
Affiliation(s)
- Xianmou Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Shaokun Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejun Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kangzhuo Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Qucuo Nima
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jinjie Xia
- Chengdu Center for Disease Control & Prevention, China
| | - Jingru Xu
- Chongqing Municipal Center for Disease Control and Prevention, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Gueye-Ndiaye S, Williamson AA, Redline S. Disparities in Sleep-Disordered Breathing: Upstream Risk Factors, Mechanisms, and Implications. Clin Chest Med 2023; 44:585-603. [PMID: 37517837 PMCID: PMC10513750 DOI: 10.1016/j.ccm.2023.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Sleep-disordered breathing (SDB) refers to a spectrum of disorders ranging from habitual snoring without frank episodes of obstructed breathing or desaturation during sleep to obstructive sleep apnea, where apneas and hypopneas repetitively occur with resultant intermittent hypoxia, arousal, and sleep disruption. Disparities in SDB reflect its overall high prevalence in children and adults from racially and ethnically minoritized or low socioeconomic status backgrounds coupled with high rates of underdiagnosis and suboptimal treatment.
Collapse
Affiliation(s)
- Seyni Gueye-Ndiaye
- Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Ariel A Williamson
- Children's Hospital of Philadelphia, 2716 South Street Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Redline
- Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Wallace DA, Gallagher JP, Peterson SR, Ndiaye-Gueye S, Fox K, Redline S, Johnson DA. Is exposure to chemical pollutants associated with sleep outcomes? A systematic review. Sleep Med Rev 2023; 70:101805. [PMID: 37392613 PMCID: PMC10528206 DOI: 10.1016/j.smrv.2023.101805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Environmental exposures may influence sleep; however, the contributions of environmental chemical pollutants to sleep health have not been systematically investigated. We conducted a systematic review to identify, evaluate, summarize, and synthesize the existing evidence between chemical pollutants (air pollution, exposures related to the Gulf War and other conflicts, endocrine disruptors, metals, pesticides, solvents) and dimensions of sleep health (architecture, duration, quality, timing) and disorders (sleeping pill use, insomnia, sleep-disordered breathing)). Of the 204 included studies, results were mixed; however, the synthesized evidence suggested associations between particulate matter, exposures related to the Gulf War, dioxin and dioxin-like compounds, and pesticide exposure with worse sleep quality; exposures related to the Gulf War, aluminum, and mercury with insomnia and impaired sleep maintenance; and associations between tobacco smoke exposure with insomnia and sleep-disordered breathing, particularly in pediatric populations. Possible mechanisms relate to cholinergic signaling, neurotransmission, and inflammation. Chemical pollutants are likely key determinants of sleep health and disorders. Future studies should aim to evaluate environmental exposures on sleep across the lifespan, with a particular focus on developmental windows and biological mechanisms, as well as in historically marginalized or excluded populations.
Collapse
Affiliation(s)
- Danielle A Wallace
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Jayden Pace Gallagher
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shenita R Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, USA
| | - Seyni Ndiaye-Gueye
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kathleen Fox
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Dayna A Johnson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
50
|
Wu J, Li S, Duan J, Li Y, Wang J, Deng P, Meng C, Wang W, Yuan H, Lu Y, Shen M, Zhao Q. Association of joint exposure to various ambient air pollutants during adolescence with blood pressure in young adulthood. J Clin Hypertens (Greenwich) 2023; 25:708-714. [PMID: 37409562 PMCID: PMC10423767 DOI: 10.1111/jch.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023]
Abstract
The association of various air pollutants exposure during adolescence with blood pressure (BP) in young adulthood is uncertain. We intended to evaluate the long-term association of individual and joint air pollutants exposure during adolescence with BP in young adulthood. This cross-sectional study of incoming students was conducted in five geographically disperse universities in China during September and October 2018. Mean concentrations of particulate matter with diameters ≤2.5 μm (PM2.5 ), ≤10 μm (PM10 ), nitrogen dioxides (NO2 ), carbon monoxide (CO), sulfur dioxide (SO2 ), and ozone (O3 ) at participants' residential addresses during 2013-2018 were collected from the Chinese Air Quality Reanalysis dataset. Generalized linear mixed models (GLM) and quantile g-computation (QgC) models were utilized to estimate the association between individual and joint air pollutants exposure and systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP). A total of 16,242 participants were included in the analysis. The GLM analyses showed that PM2.5 , PM10 , NO2 , CO, and SO2 were significantly positively associated with SBP and PP, while O3 was positively associated with DBP. The QgC analyses indicated that long-term exposure to a mixture of the six air pollutants had a significant positive joint association with SBP and PP. In conclusion, air pollutant co-exposure during adolescence may influence BP in young adulthood. The findings of this study emphasized the impacts of multiple air pollutants interactions on potential health and the need of minimizing pollution exposures in the environment.
Collapse
Affiliation(s)
- Jingjing Wu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info‐physicsCentral South UniversityChangshaChina
| | - Jingwen Duan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yalan Li
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Peizhi Deng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Changjiang Meng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yao Lu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
- School of Life Course SciencesKing's College LondonLondonUK
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Qiuping Zhao
- Fuwai Central China Cardiovascular HospitalHeart Center of Henan Provincial People's HospitalZhengzhouChina
| |
Collapse
|