1
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
2
|
Jäger N, Pöhlmann S, Rodnina MV, Ayyub SA. Interferon-Stimulated Genes that Target Retrovirus Translation. Viruses 2024; 16:933. [PMID: 38932225 PMCID: PMC11209297 DOI: 10.3390/v16060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| |
Collapse
|
3
|
Jäger N, Ayyub SA, Peske F, Liedtke D, Bohne J, Hoffmann M, Rodnina MV, Pöhlmann S. The Inhibition of Gag-Pol Expression by the Restriction Factor Shiftless Is Dispensable for the Restriction of HIV-1 Infection. Viruses 2024; 16:583. [PMID: 38675925 PMCID: PMC11055011 DOI: 10.3390/v16040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The interferon-induced host cell protein Shiftless (SFL) inhibits -1 programmed ribosomal frameshifting (-1PRF) required for the expression of HIV-1 Gal-Pol and the formation of infectious HIV-1 particles. However, the specific regions in SFL required for antiviral activity and the mechanism by which SFL inhibits -1PRF remain unclear. Employing alanine scanning mutagenesis, we found that basic amino acids in the predicted zinc ribbon motif of SFL are essential for the suppression of Gag-Pol expression but dispensable for anti-HIV-1 activity. We have shown that SFL inhibits the expression of the murine leukemia virus (MLV) Gag-Pol polyprotein and the formation of infectious MLV particles, although Gag-Pol expression of MLV is independent of -1PRF but requires readthrough of a stop codon. These findings indicate that SFL might inhibit HIV-1 infection by more than one mechanism and that SFL might target programmed translational readthrough as well as -1PRF signals, both of which are regulated by mRNA secondary structure elements.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; (S.A.A.); (F.P.); (D.L.); (M.V.R.)
| | - Frank Peske
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; (S.A.A.); (F.P.); (D.L.); (M.V.R.)
| | - David Liedtke
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; (S.A.A.); (F.P.); (D.L.); (M.V.R.)
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; (S.A.A.); (F.P.); (D.L.); (M.V.R.)
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
4
|
Rowe T, Davis W, Wentworth DE, Ross T. Differential interferon responses to influenza A and B viruses in primary ferret respiratory epithelial cells. J Virol 2024; 98:e0149423. [PMID: 38294251 PMCID: PMC10878268 DOI: 10.1128/jvi.01494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 02/01/2024] Open
Abstract
Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.
Collapse
Affiliation(s)
- Thomas Rowe
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - William Davis
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - David E. Wentworth
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - Ted Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Hwang JH, You YS, Yeom SW, Lee MG, Lee JH, Kim MG, Kim JS. Influenza viral infection is a risk factor for severe illness in COVID-19 patients: a nationwide population-based cohort study. Emerg Microbes Infect 2023; 12:2164215. [PMID: 36580041 PMCID: PMC9858545 DOI: 10.1080/22221751.2022.2164215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to prepare for the twindemic of influenza and SARS-CoV-2 infection, we investigated the association between influenza infection and subsequent severity of SARS-CoV-2 infection. A population-based nationwide cohort study was performed using data from the National Health Insurance Service (NHIS) in the Republic of Korea. This study included 274,126 individuals who underwent SARS-CoV-2 PCR testing between 20 January 2020 and 1 October 2020. Among these patients, 28,338 tested positive for SARS-CoV-2, and 4,003 of these individuals had a history of influenza. The control group was selected through 1:1 propensity score matching. In the group of 4,003 COVID-19-positive individuals with no history of influenza, 192 (4.8%) experienced severe illness from COVID-19 infection. In the group of 4,003 COVID-19-positive individuals with a history of influenza, 260 (6.5%) had severe illness from COVID-19, and the overall adjusted odds ratio (aOR) was 1.29 (95% confidence interval 1.04-1.59). Among the 4,003 COVID-19-positive individuals with a history of influenza, severe COVID-19 infection was experienced by 143 of 1,760 (8.1%) with an influenza history within 1 year before the onset of COVID-19, 48 of 1,129 (4.3%) between 1 and 2 years, and 69 of 1,114 (6.2%) between 2 and 3 years before COVID-19 onset, and the aORs were 1.54 (1.20-1.98), 1.19 (0.84-1.70), and 1.00 (0.73-1.37), respectively. In conclusion, individuals who had an influenza infection less than 1 year before COVID-19 infection were at an increased risk of experiencing severe illness from the SARS-CoV-2 infection. To control the public health burden, it is essential that effective public health control measures, which include influenza vaccination, hand washing, cough etiquette, and mask use are in place.
Collapse
Affiliation(s)
- Jeong-Hwan Hwang
- Department of Internal Medicine, Division of Infectious Diseases, Jeonbuk National University Medical School, Jeonju, South Korea,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Yeon Seok You
- Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea,Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Sang Woo Yeom
- Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea
| | - Min Gyu Lee
- Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea
| | - Jong-hwan Lee
- Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Min Gul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea,Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, South Korea, Min Gul Kim Department of Pharmacology, Jeonbuk National University Medical School, Jeonju54907, South Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea,Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea,Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, South Korea,Jong Seung Kim Department of Medical Informatics, Jeonbuk National University, Jeonju54907, South Korea; Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju54907, South Korea
| |
Collapse
|
7
|
Zhao Y, Sui L, Wu P, Li L, Liu L, Ma B, Wang W, Chi H, Wang ZD, Wei Z, Hou Z, Zhang K, Niu J, Jin N, Li C, Zhao J, Wang G, Liu Q. EGR1 functions as a new host restriction factor for SARS-CoV-2 to inhibit virus replication through the E3 ubiquitin ligase MARCH8. J Virol 2023; 97:e0102823. [PMID: 37772822 PMCID: PMC10653994 DOI: 10.1128/jvi.01028-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/13/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Emerging vaccine-breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight an urgent need for novel antiviral therapies. Understanding the pathogenesis of coronaviruses is critical for developing antiviral drugs. Here, we demonstrate that the SARS-CoV-2 N protein suppresses interferon (IFN) responses by reducing early growth response gene-1 (EGR1) expression. The overexpression of EGR1 inhibits SARS-CoV-2 replication by promoting IFN-regulated antiviral protein expression, which interacts with and degrades SARS-CoV-2 N protein via the E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. The MARCH8 mutants without ubiquitin ligase activity are no longer able to degrade SARS-CoV-2 N proteins, indicating that MARCH8 degrades SARS-CoV-2 N proteins dependent on its ubiquitin ligase activity. This study found a novel immune evasion mechanism of SARS-CoV-2 utilized by the N protein, which is helpful for understanding the pathogenesis of SARS-CoV-2 and guiding the design of new prevention strategies against the emerging coronaviruses.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Liyan Sui
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Ping Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Baohua Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Wenfang Wang
- Department of Pathogenbiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Hongmiao Chi
- Department of Pathogenbiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Ze-Dong Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Kaiyu Zhang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoqing Wang
- Department of Pathogenbiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
9
|
Xia JY, Zeng YF, Wu XJ, Xu F. Short-term ex vivo tissue culture models help study human lung infectionsA review. Medicine (Baltimore) 2023; 102:e32589. [PMID: 36607848 PMCID: PMC9829290 DOI: 10.1097/md.0000000000032589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most studies on human lung infection have been performed using animal models, formalin or other fixed tissues, and in vitro cultures of established cell lines. However, the experimental data and results obtained from these studies may not completely represent the complicated molecular events that take place in intact human lung tissue in vivo. The newly developed ex vivo short-term tissue culture model can mimic the in vivo microenvironment of humans and allow investigations of different cell types that closely interact with each other in intact human lung tissues. Therefore, this kind of model may be a promising tool for future studies of different human lung infections, owing to its special advantages in providing more realistic events that occur in vivo. In this review, we have summarized the preliminary applications of this novel short-term ex vivo tissue culture model, with a particular emphasis on its applications in some common human lung infections.
Collapse
Affiliation(s)
- Jing-Yan Xia
- Department of Radiation Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yi-Fei Zeng
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Xue-Jie Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
- * Correspondence: Feng Xu, Department of Infectious Diseases, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang 310009, PR China (e-mail: )
| |
Collapse
|
10
|
Zhang H, Alford T, Liu S, Zhou D, Wang J. Influenza virus causes lung immunopathology through down-regulating PPARγ activity in macrophages. Front Immunol 2022; 13:958801. [PMID: 36091002 PMCID: PMC9452838 DOI: 10.3389/fimmu.2022.958801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Fatal influenza (flu) virus infection often activates excessive inflammatory signals, leading to multi-organ failure and death, also referred to as cytokine storm. PPARγ (Peroxisome proliferator-activated receptor gamma) agonists are well-known candidates for cytokine storm modulation. The present study identified that influenza infection reduced PPARγ expression and decreased PPARγ transcription activity in human alveolar macrophages (AMs) from different donors. Treatment with PPARγ agonist Troglitazone ameliorated virus-induced proinflammatory cytokine secretion but did not interfere with the IFN-induced antiviral pathway in human AMs. In contrast, PPARγ antagonist and knockdown of PPARγ in human AMs further enhanced virus-stimulated proinflammatory response. In a mouse model of influenza infection, flu virus dose-dependently reduced PPARγ transcriptional activity and decreased expression of PPARγ. Moreover, PPARγ agonist troglitazone significantly reduced high doses of influenza infection-induced lung pathology. In addition, flu infection reduced PPARγ expression in all mouse macrophages, including AMs, interstitial macrophages, and bone-marrow-derived macrophages but not in alveolar epithelial cells. Our results indicate that the influenza virus specifically targets the PPARγ pathway in macrophages to cause acute injury to the lung.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Dongming Zhou, ; Hongbo Zhang,
| | - Taylor Alford
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Shuangquan Liu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Dongming Zhou, ; Hongbo Zhang,
| | - Jieru Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
11
|
Rodriguez W, Muller M. Shiftless, a Critical Piece of the Innate Immune Response to Viral Infection. Viruses 2022; 14:1338. [PMID: 35746809 PMCID: PMC9230503 DOI: 10.3390/v14061338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Since its initial characterization in 2016, the interferon stimulated gene Shiftless (SHFL) has proven to be a critical piece of the innate immune response to viral infection. SHFL expression stringently restricts the replication of multiple DNA, RNA, and retroviruses with an extraordinary diversity of mechanisms that differ from one virus to the next. These inhibitory strategies include the negative regulation of viral RNA stability, translation, and even the manipulation of RNA granule formation during viral infection. Even more surprisingly, SHFL is the first human protein found to directly inhibit the activity of the -1 programmed ribosomal frameshift, a translation recoding strategy utilized across nearly all domains of life and several human viruses. Recent literature has shown that SHFL expression also significantly impacts viral pathogenesis in mouse models, highlighting its in vivo efficacy. To help reconcile the many mechanisms by which SHFL restricts viral replication, we provide here a comprehensive review of this complex ISG, its influence over viral RNA fate, and the implications of its functions on the virus-host arms race for control of the cell.
Collapse
Affiliation(s)
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| |
Collapse
|
12
|
Scavone C, Mascolo A, Rafaniello C, Sportiello L, Trama U, Zoccoli A, Bernardi FF, Racagni G, Berrino L, Castaldo G, Coscioni E, Rossi F, Capuano A. Therapeutic strategies to fight COVID-19: Which is the status artis? Br J Pharmacol 2022; 179:2128-2148. [PMID: 33960398 PMCID: PMC8239658 DOI: 10.1111/bph.15452] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a complex disease, and many difficulties are faced today especially in the proper choice of pharmacological treatments. The role of antiviral agents for COVID-19 is still being investigated and evidence for immunomodulatory and anti-inflammatory drugs is quite conflicting, whereas the use of corticosteroids is supported by robust evidence. The use of heparins in hospitalized critically ill patients is preferred over other anticoagulants. There are conflicting data on the use of convalescent plasma and vitamin D. According to the World Health Organization (WHO), many vaccines are in Phase III clinical trials, and some of them have already received marketing approval in European countries and in the United States. In conclusion, drug repurposing has represented the main approach recently used in the treatment of patients with COVID-19. At this moment, analysis of efficacy and safety data of drugs and vaccines used in real-life context is strongly needed. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Annamaria Mascolo
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Liberata Sportiello
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Ugo Trama
- Regional Pharmaceutical UnitU.O.D. 06 Politica del Farmaco e DispositiviNaplesItaly
| | - Alice Zoccoli
- Clinical Innovation OfficeUniversità Campus Bio‐MedicoRomeItaly
| | - Francesca Futura Bernardi
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
- Regional Pharmaceutical UnitU.O.D. 06 Politica del Farmaco e DispositiviNaplesItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
- CEINGE—Advanced Biotechnology ScarlNaplesItaly
| | | | - Francesco Rossi
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
- Clinical Innovation OfficeUniversità Campus Bio‐MedicoRomeItaly
| | - Annalisa Capuano
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| |
Collapse
|
13
|
Gao X, Zhu B, Wu Y, Li C, Zhou X, Tang J, Sun J. TFAM-Dependent Mitochondrial Metabolism Is Required for Alveolar Macrophage Maintenance and Homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1456-1466. [PMID: 35165165 PMCID: PMC9801487 DOI: 10.4049/jimmunol.2100741] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/29/2021] [Indexed: 01/04/2023]
Abstract
Alveolar macrophages (AMs) are major lung tissue-resident macrophages capable of proliferating and self-renewal in situ. AMs are vital in pulmonary antimicrobial immunity and surfactant clearance. The mechanisms regulating AM compartment formation and maintenance remain to be fully elucidated currently. In this study, we have explored the roles of mitochondrial transcription factor A (TFAM)-mediated mitochondrial fitness and metabolism in regulating AM formation and function. We found that TFAM deficiency in mice resulted in significantly reduced AM numbers and impaired AM maturation in vivo. TFAM deficiency was not required for the generation of AM precursors nor the differentiation of AM precursors into AMs, but was critical for the maintenance of AM compartment. Mechanistically, TFAM deficiency diminished gene programs associated with AM proliferation and self-renewal and promoted the expression of inflammatory genes in AMs. We further showed that TFAM-mediated AM compartment impairment resulted in defective clearance of cellular debris and surfactant in the lung and increased the host susceptibility to severe influenza virus infection. Finally, we found that influenza virus infection in AMs led to impaired TFAM expression and diminished mitochondrial fitness and metabolism. Thus, our data have established the critical function of TFAM-mediated mitochondrial metabolism in AM maintenance and function.
Collapse
Affiliation(s)
- Xiaochen Gao
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Bibo Zhu
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Chaofan Li
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Xian Zhou
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Jinyi Tang
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jie Sun
- Department of Immunology, Mayo Clinic, Rochester, MN;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Carter Immunology Center, University of Virginia, Charlottesville, VA; and
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
14
|
Mathé J, Benhammadi M, Kobayashi KS, Brochu S, Perreault C. Regulation of MHC Class I Expression in Lung Epithelial Cells during Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1021-1033. [PMID: 35173036 DOI: 10.4049/jimmunol.2100664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Lung infections are a perennial leading cause of death worldwide. The lung epithelium comprises three main cell types: alveolar type I (AT1), alveolar type II (AT2), and bronchiolar cells. Constitutively, these three cell types express extremely low amounts of surface MHC class I (MHC I) molecules, that is, <1% of levels found on medullary thymic epithelial cells (ECs). We report that inhalation of the TLR4 ligand LPS upregulates cell surface MHC I by ∼25-fold on the three subtypes of mouse lung ECs. This upregulation is dependent on Nlrc5, Stat1, and Stat2 and caused by a concerted production of the three IFN families. It is nevertheless hampered, particularly in AT1 cells, by the limited expression of genes instrumental in the peptide loading of MHC I molecules. Genes involved in production and response to cytokines and chemokines were selectively induced in AT1 cells. However, discrete gene subsets were selectively downregulated in AT2 or bronchiolar cells following LPS inhalation. Genes downregulated in AT2 cells were linked to cell differentiation and cell proliferation, and those repressed in bronchiolar cells were primarily involved in cilium function. Our study shows a delicate balance between the expression of transcripts maintaining lung epithelium integrity and transcripts involved in Ag presentation in primary lung ECs.
Collapse
Affiliation(s)
- Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX; and
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada;
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada;
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Before the "cytokine storm": Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev 2022; 63:108-118. [PMID: 35039221 PMCID: PMC8741331 DOI: 10.1016/j.cytogfr.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the ongoing COVID-19 pandemic, and causes many health complications, including major lung diseases. Besides investigations into the virology of SARS-CoV-2, understanding the immunological routes underlying the clinical manifestations of COVID-19 is important for developing effective therapeutic interventions. The clearance of SARS-CoV-2-infected apoptotic cells by professional efferocytes, through a process termed as 'efferocytosis', is essential for maintaining tissue homeostasis, and reducing the chances of health complications caused by SARS-CoV-2 infection. In this review, we focus on the cellular events leading to engagement of the SARS-CoV-2 with type 2 alveolar cells, and how SARS-COV-2 infection impairs the macrophage anti-inflammatory programming. We also discuss accounts of impaired efferocytosis, and the “cytokine storm” which occur concomitantly with the SARS-CoV-2 infection. Finally, we propose how targeting impaired efferocytosis, due to the SARS-CoV-2 infection, may be a beneficial therapeutic strategy to combat COVID-19, and its complications.
Collapse
|
16
|
Uddin MB, Sajib EH, Hoque SF, Hassan MM, Ahmed SSU. Macrophages in respiratory system. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:299-333. [DOI: 10.1016/b978-0-12-822368-0.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X, Zhou X, Niu X, Wang L, Su M. The Molecular Mechanism of Multiple Organ Dysfunction and Targeted Intervention of COVID-19 Based on Time-Order Transcriptomic Analysis. Front Immunol 2021; 12:729776. [PMID: 34504502 PMCID: PMC8421734 DOI: 10.3389/fimmu.2021.729776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is caused by the novel coronavirus that has spread rapidly around the world, leading to high mortality because of multiple organ dysfunction; however, its underlying molecular mechanism is unknown. To determine the molecular mechanism of multiple organ dysfunction, a bioinformatics analysis method based on a time-order gene co-expression network (TO-GCN) was performed. First, gene expression profiles were downloaded from the gene expression omnibus database (GSE161200), and a TO-GCN was constructed using the breadth-first search (BFS) algorithm to infer the pattern of changes in the different organs over time. Second, Gene Ontology enrichment analysis was used to analyze the main biological processes related to COVID-19. The initial gene modules for the immune response of different organs were defined as the research object. The STRING database was used to construct a protein-protein interaction network of immune genes in different organs. The PageRank algorithm was used to identify five hub genes in each organ. Finally, the Comparative Toxicogenomics Database played an important role in exploring the potential compounds that target the hub genes. The results showed that there were two types of biological processes: the body's stress response and cell-mediated immune response involving the lung, trachea, and olfactory bulb (olf) after being infected by COVID-19. However, a unique biological process related to the stress response is the regulation of neuronal signals in the brain. The stress response was heterogeneous among different organs. In the lung, the regulation of DNA morphology, angiogenesis, and mitochondrial-related energy metabolism are specific biological processes related to the stress response. In particular, an effect on tracheal stress response was made by the regulation of protein metabolism and rRNA metabolism-related biological processes, as biological processes. In the olf, the distinctive stress responses consist of neural signal transmission and brain behavior. In addition, myeloid leukocyte activation and myeloid leukocyte-mediated immunity in response to COVID-19 can lead to a cytokine storm. Immune genes such as SRC, RHOA, CD40LG, CSF1, TNFRSF1A, FCER1G, ICAM1, LAT, LCN2, PLAU, CXCL10, ICAM1, CD40, IRF7, and B2M were predicted to be the hub genes in the cytokine storm. Furthermore, we inferred that resveratrol, acetaminophen, dexamethasone, estradiol, statins, curcumin, and other compounds are potential target drugs in the treatment of COVID-19.
Collapse
Affiliation(s)
- Miao Zou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xiaoyun Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Luoying Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xingcheng Yi
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yue Qiu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xirui Yin
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xuan Zhou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xinhui Niu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Liuli Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| |
Collapse
|
18
|
Rasmi Y, Babaei G, Nisar MF, Noreen H, Gholizadeh-Ghaleh Aziz S. Revealed pathophysiological mechanisms of crosslinking interaction of affected vital organs in COVID-19. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:1005-1021. [PMID: 34539310 PMCID: PMC8432959 DOI: 10.1007/s00580-021-03269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is one of the main serious challenges of human societies, which emerged in December 2019 from China and quickly extends to all parts of the world. The virus was previously believed to only affect the lungs and respiratory system, but subsequent research has revealed that it affects a variety of organs. For this reason, this disease is known as a multiorgan disease. Current article aimed to highlight latest information and updates about molecular studies regarding pathogenesis of SARS-CoV-2 in kidney, liver, and cardiovascular and respiratory systems, as well as the mechanisms of interaction of these organs with each other to cause clinical manifestations in patients.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia Medical Sciences University (UMSU), Urmia, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia Medical Sciences University (UMSU), Urmia, Iran
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100 Pakistan
| | - Hina Noreen
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100 Pakistan
| | | |
Collapse
|
19
|
Bridges JP, Vladar EK, Huang H, Mason RJ. Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax 2021; 77:203-209. [PMID: 34404754 DOI: 10.1136/thoraxjnl-2021-217561] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
COVID-19 has different clinical stages, and effective therapy depends on the location and extent of the infection. The purpose of this review is to provide a background for understanding the progression of the disease throughout the pulmonary epithelium and discuss therapeutic options. The prime sites for infection that will be contrasted in this review are the conducting airways and the gas exchange portions of the lung. These two sites are characterised by distinct cellular composition and innate immune responses, which suggests the use of distinct therapeutic agents. In the nose, ciliated cells are the primary target cells for SARS-CoV-2 viral infection, replication and release. Infected cells shed their cilia, which disables mucociliary clearance. Evidence further points to a suppressed or incompletely activated innate immune response to SARS-CoV-2 infection in the upper airways. Asymptomatic individuals can still have a productive viral infection and infect others. In the gas exchange portion of the lung, the alveolar type II epithelial cell is the main target cell type. Cell death and marked innate immune response during infection likely contribute to alveolar damage and resultant acute respiratory distress syndrome. Alveolar infection can precipitate a hyperinflammatory state, which is the target of many therapies in severe COVID-19. Disease resolution in the lung is variable and may include scaring and long-term sequalae because the alveolar type II cells are also progenitor cells for the alveolar epithelium.
Collapse
Affiliation(s)
- James P Bridges
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA .,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eszter K Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine and Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Robert J Mason
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
20
|
Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol 2021; 12:720109. [PMID: 34367190 PMCID: PMC8335157 DOI: 10.3389/fimmu.2021.720109] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a contagious viral disease caused by SARS-CoV-2 that led to an ongoing pandemic with massive global health and socioeconomic consequences. The disease is characterized primarily, but not exclusively, by respiratory clinical manifestations ranging from mild common cold symptoms, including cough and fever, to severe respiratory distress and multi-organ failure. Macrophages, a heterogeneous group of yolk-sac derived, tissue-resident mononuclear phagocytes of complex ontogeny present in all mammalian organs, play critical roles in developmental, homeostatic and host defense processes with tissue-dependent plasticity. In case of infection, they are responsible for early pathogen recognition, initiation and resolution of inflammation, as well as repair of tissue damage. Monocytes, bone-marrow derived blood-resident phagocytes, are recruited under pathological conditions such as viral infections to the affected tissue to defend the organism against invading pathogens and to aid in efficient resolution of inflammation. Given their pivotal function in host defense and the potential danger posed by their dysregulated hyperinflammation, understanding monocyte and macrophage phenotypes in COVID-19 is key for tackling the disease's pathological mechanisms. Here, we outline current knowledge on monocytes and macrophages in homeostasis and viral infections and summarize concepts and key findings on their role in COVID-19. While monocytes in the blood of patients with moderate COVID-19 present with an inflammatory, interferon-stimulated gene (ISG)-driven phenotype, cellular dysfunction epitomized by loss of HLA-DR expression and induction of S100 alarmin expression is their dominant feature in severe disease. Pulmonary macrophages in COVID-19 derived from infiltrating inflammatory monocytes are in a hyperactivated state resulting in a detrimental loop of pro-inflammatory cytokine release and recruitment of cytotoxic effector cells thereby exacerbating tissue damage at the site of infection.
Collapse
Affiliation(s)
- Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Zhou A, Dong X, Liu M, Tang B. Comprehensive Transcriptomic Analysis Identifies Novel Antiviral Factors Against Influenza A Virus Infection. Front Immunol 2021; 12:632798. [PMID: 34367124 PMCID: PMC8337049 DOI: 10.3389/fimmu.2021.632798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) has a higher genetic variation, leading to the poor efficiency of traditional vaccine and antiviral strategies targeting viral proteins. Therefore, developing broad-spectrum antiviral treatments is particularly important. Host responses to IAV infection provide a promising approach to identify antiviral factors involved in virus infection as potential molecular drug targets. In this study, in order to better illustrate the molecular mechanism of host responses to IAV and develop broad-spectrum antiviral drugs, we systematically analyzed mRNA expression profiles of host genes in a variety of human cells, including transformed and primary epithelial cells infected with different subtypes of IAV by mining 35 microarray datasets from the GEO database. The transcriptomic results showed that IAV infection resulted in the difference in expression of amounts of host genes in all cell types, especially those genes participating in immune defense and antiviral response. In addition, following the criteria of P<0.05 and |logFC|≥1.5, we found that some difference expression genes were overlapped in different cell types under IAV infection via integrative gene network analysis. IFI6, IFIT2, ISG15, HERC5, RSAD2, GBP1, IFIT3, IFITM1, LAMP3, USP18, and CXCL10 might act as key antiviral factors in alveolar basal epithelial cells against IAV infection, while BATF2, CXCL10, IFI44L, IL6, and OAS2 played important roles in airway epithelial cells in response to different subtypes of IAV infection. Additionally, we also revealed that some overlaps (BATF2, IFI44L, IFI44, HERC5, CXCL10, OAS2, IFIT3, USP18, OAS1, IFIT2) were commonly upregulated in human primary epithelial cells infected with high or low pathogenicity IAV. Moreover, there were similar defense responses activated by IAV infection, including the interferon-regulated signaling pathway in different phagocyte types, although the differentially expressed genes in different phagocyte types showed a great difference. Taken together, our findings will help better understand the fundamental patterns of molecular responses induced by highly or lowly pathogenic IAV, and the overlapped genes upregulated by IAV in different cell types may act as early detection markers or broad-spectrum antiviral targets.
Collapse
Affiliation(s)
- Ao Zhou
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.,Basic Medical College, Southwest Medical University, Luzhou, China
| | - Xia Dong
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengyun Liu
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bin Tang
- Basic Medical College, Southwest Medical University, Luzhou, China.,Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, China
| |
Collapse
|
22
|
Schweitzer KS, Crue T, Nall JM, Foster D, Sajuthi S, Correll KA, Nakamura M, Everman JL, Downey GP, Seibold MA, Bridges JP, Serban KA, Chu HW, Petrache I. Influenza virus infection increases ACE2 expression and shedding in human small airway epithelial cells. Eur Respir J 2021; 58:2003988. [PMID: 33419885 PMCID: PMC8378143 DOI: 10.1183/13993003.03988-2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrate high rates of co-infection with respiratory viruses, including influenza A (IAV), suggesting pathogenic interactions. METHODS We investigated how IAV may increase the risk of COVID-19 lung disease, focusing on the receptor angiotensin-converting enzyme (ACE)2 and the protease TMPRSS2, which cooperate in the intracellular uptake of SARS-CoV-2. RESULTS We found, using single-cell RNA sequencing of distal human nondiseased lung homogenates, that at baseline, ACE2 is minimally expressed in basal, goblet, ciliated and secretory epithelial cells populating small airways. We focused on human small airway epithelial cells (SAECs), central to the pathogenesis of lung injury following viral infections. Primary SAECs from nondiseased donor lungs apically infected (at the air-liquid interface) with IAV (up to 3×105 pfu; ∼1 multiplicity of infection) markedly (eight-fold) boosted the expression of ACE2, paralleling that of STAT1, a transcription factor activated by viruses. IAV increased the apparent electrophoretic mobility of intracellular ACE2 and generated an ACE2 fragment (90 kDa) in apical secretions, suggesting cleavage of this receptor. In addition, IAV increased the expression of two proteases known to cleave ACE2, sheddase ADAM17 (TACE) and TMPRSS2 and increased the TMPRSS2 zymogen and its mature fragments, implicating proteolytic autoactivation. CONCLUSION These results indicate that IAV amplifies the expression of molecules necessary for SARS-CoV-2 infection of the distal lung. Furthermore, post-translational changes in ACE2 by IAV may increase vulnerability to lung injury such as acute respiratory distress syndrome during viral co-infections. These findings support efforts in the prevention and treatment of influenza infections during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Taylor Crue
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Jordan M Nall
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Daniel Foster
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Satria Sajuthi
- Dept of Pediatrics, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | | | - Mari Nakamura
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Gregory P Downey
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Max A Seibold
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Dept of Pediatrics, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - James P Bridges
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karina A Serban
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hong Wei Chu
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Both authors contributed equally as lead authors and supervised the work
| | - Irina Petrache
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Both authors contributed equally as lead authors and supervised the work
| |
Collapse
|
23
|
Zarski LM, Vaala WE, Barnett DC, Bain FT, Soboll Hussey G. A Live-Attenuated Equine Influenza Vaccine Stimulates Innate Immunity in Equine Respiratory Epithelial Cell Cultures That Could Provide Protection From Equine Herpesvirus 1. Front Vet Sci 2021; 8:674850. [PMID: 34179166 PMCID: PMC8224402 DOI: 10.3389/fvets.2021.674850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Equine herpesvirus 1 (EHV-1) ubiquitously infects horses worldwide and causes respiratory disease, abortion, and equine herpesvirus myeloencephalopathy. Protection against EHV-1 disease is elusive due to establishment of latency and immune-modulatory features of the virus. These include the modulation of interferons, cytokines, chemokines, antigen presentation, and cellular immunity. Because the modulation of immunity likely occurs at the site of first infection—the respiratory epithelium, we hypothesized that the mucosal influenza vaccine Flu Avert® I.N. (Flu Avert), which is known to stimulate strong antiviral responses, will enhance antiviral innate immunity, and that these responses would also provide protection from EHV-1 infection. To test our hypothesis, primary equine respiratory epithelial cells (ERECs) were treated with Flu Avert, and innate immunity was evaluated for 10 days following treatment. The timing of Flu Avert treatment was also evaluated for optimal effectiveness to reduce EHV-1 replication by modulating early immune responses to EHV-1. The induction of interferons, cytokine and chemokine mRNA expression, and protein secretion was evaluated by high-throughput qPCR and multiplex protein analysis. Intracellular and extracellular EHV-1 titers were determined by qPCR. Flu Avert treatment resulted in the modulation of IL-8, CCL2, and CXCL9 starting at days 5 and 6 post-treatment. Coinciding with the timing of optimal chemokine induction, our data also suggested the same timing for reduction of EHV-1 replication. In combination, our results suggest that Flu Avert may be effective at counteracting some of the immune-modulatory properties of EHV-1 at the airway epithelium and the peak for this response occurs 5–8 days post-Flu Avert treatment. Future in vivo studies are needed to investigate Flu Avert as a prophylactic in situations where EHV-1 exposure may occur.
Collapse
Affiliation(s)
- Lila M Zarski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, East Lansing, MI, United States
| | | | | | | | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, East Lansing, MI, United States
| |
Collapse
|
24
|
Zhu B, Wu Y, Huang S, Zhang R, Son YM, Li C, Cheon IS, Gao X, Wang M, Chen Y, Zhou X, Nguyen Q, Phan AT, Behl S, Taketo MM, Mack M, Shapiro VS, Zeng H, Ebihara H, Mullon JJ, Edell ES, Reisenauer JS, Demirel N, Kern RM, Chakraborty R, Cui W, Kaplan MH, Zhou X, Goldrath AW, Sun J. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity 2021; 54:1200-1218.e9. [PMID: 33951416 PMCID: PMC8192557 DOI: 10.1016/j.immuni.2021.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.
Collapse
Affiliation(s)
- Bibo Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yue Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Su Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ruixuan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Young Min Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chaofan Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Min Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Xian Zhou
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Quynh Nguyen
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony T Phan
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Virginia S Shapiro
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - John J Mullon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Janani S Reisenauer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nadir Demirel
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan M Kern
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
I'm Infected, Eat Me! Innate Immunity Mediated by Live, Infected Cells Signaling To Be Phagocytosed. Infect Immun 2021; 89:IAI.00476-20. [PMID: 33558325 DOI: 10.1128/iai.00476-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innate immunity against pathogens is known to be mediated by barriers to pathogen invasion, activation of complement, recruitment of immune cells, immune cell phagocytosis of pathogens, death of infected cells, and activation of the adaptive immunity via antigen presentation. Here, we propose and review evidence for a novel mode of innate immunity whereby live, infected host cells induce phagocytes to phagocytose the infected cell, thereby potentially reducing infection. We discuss evidence that host cells, infected by virus, bacteria, or other intracellular pathogens (i) release nucleotides and chemokines as find-me signals, (ii) expose on their surface phosphatidylserine and calreticulin as eat-me signals, (iii) release and bind opsonins to induce phagocytosis, and (iv) downregulate don't-eat-me signals CD47, major histocompatibility complex class I (MHC1), and sialic acid. As long as the pathogens of the host cell are destroyed within the phagocyte, then infection can be curtailed; if antigens from the pathogens are cross-presented by the phagocyte, then an adaptive response would also be induced. Phagocytosis of live infected cells may thereby mediate innate immunity.
Collapse
|
26
|
Alipoor SD, Mortaz E, Jamaati H, Tabarsi P, Bayram H, Varahram M, Adcock IM. COVID-19: Molecular and Cellular Response. Front Cell Infect Microbiol 2021; 11:563085. [PMID: 33643932 PMCID: PMC7904902 DOI: 10.3389/fcimb.2021.563085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
In late December 2019, a vtiral pneumonia with an unknown agent was reported in Wuhan, China. A novel coronavirus was identified as the causative agent. Because of the human-to-human transmission and rapid spread; coronavirus disease 2019 (COVID-19) has rapidly increased to an epidemic scale and poses a severe threat to human health; it has been declared a public health emergency of international concern (PHEIC) by the World Health Organization (WHO). This review aims to summarize the recent research progress of COVID-19 molecular features and immunopathogenesis to provide a reference for further research in prevention and treatment of SARS coronavirus2 (SARS-CoV-2) infection based on the knowledge from researches on SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasan Bayram
- Department of Pulmonary Medicine, Koc University School of Medicine, Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
27
|
Neto MLR, da Silva CGL, do Socorro Vieira dos Santos M, Cândido EL, de Lima MAP, de França Lacerda Pinheiro S, Junior RFFP, Teixeira CS, Machado SSF, Pinheiro LFG, de Sousa GO, Galvão LMA, Gomes KGS, Medeiros KA, Diniz LA, de Oliveira ÍGP, Santana JRP, Rocha MAB, Damasceno IA, Cordeiro TL, da Silva Sales W. Epidemiology and Etiopathogeny of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1352:45-71. [DOI: 10.1007/978-3-030-85109-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Yee M, David Cohen E, Haak J, Dylag AM, O'Reilly MA. Neonatal hyperoxia enhances age-dependent expression of SARS-CoV-2 receptors in mice. Sci Rep 2020; 10:22401. [PMID: 33372179 PMCID: PMC7769981 DOI: 10.1038/s41598-020-79595-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-morbidities. People who were born preterm may be at greater risk for COVID-19 because their early exposure to oxygen (hyperoxia) at birth increases the severity of respiratory viral infections. Hyperoxia at birth increases the severity of influenza A virus infections in adult mice by reducing the number of alveolar epithelial type 2 (AT2) cells. Since AT2 cells express the SARS-CoV-2 receptors angiotensin converting enzyme (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2), their expression should decline as AT2 cells are depleted by hyperoxia. Instead, ACE2 was detected in airway Club cells and endothelial cells at birth, and then AT2 cells at one year of age. Neonatal hyperoxia stimulated expression of ACE2 in Club cells and in AT2 cells by 2 months of age. It also stimulated expression of TMPRSS2 in the lung. Increased expression of SARS-CoV-2 receptors was blocked by mitoTEMPO, a mitochondrial superoxide scavenger that reduced oxidative stress and DNA damage seen in oxygen-exposed mice. Our finding that hyperoxia enhances the age-dependent expression of SARS-CoV-2 receptors in mice helps explain why COVID-19 lung disease is greater in the elderly and people with pre-existing co-morbidities.
Collapse
Affiliation(s)
- Min Yee
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - E David Cohen
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Jeannie Haak
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Andrew M Dylag
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Michael A O'Reilly
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
Bhatia R, Ganti SS, Narang RK, Rawal RK. Strategies and Challenges to Develop Therapeutic Candidates against COVID-19 Pandemic. Open Virol J 2020. [DOI: 10.2174/1874357902014010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
31
|
Brosnahan SB, Jonkman AH, Kugler MC, Munger JS, Kaufman DA. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler Thromb Vasc Biol 2020; 40:2586-2597. [PMID: 32960072 PMCID: PMC7571846 DOI: 10.1161/atvbaha.120.314515] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 emerged as a serious human pathogen in late 2019, causing the disease coronavirus disease 2019 (COVID-19). The most common clinical presentation of severe COVID-19 is acute respiratory failure consistent with the acute respiratory distress syndrome. Airway, lung parenchymal, pulmonary vascular, and respiratory neuromuscular disorders all feature in COVID-19. This article reviews what is known about the effects of severe acute respiratory syndrome coronavirus-2 infection on different parts of the respiratory system, clues to understanding the underlying biology of respiratory disease, and highlights current and future translation and clinical research questions.
Collapse
Affiliation(s)
- Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - Annemijn H Jonkman
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Toronto, Canada (A.H.J.).,Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands (A.H.J.)
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - David A Kaufman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| |
Collapse
|
32
|
Ferraccioli ES, Gremese E, Ferraccioli G. Morbidity and Mortality From COVID-19 Are Not Increased Among Children or Patients With Autoimmune Rheumatic Disease-Possible Immunologic Rationale: Comment on the Article by Henderson et al. Arthritis Rheumatol 2020; 72:1772-1774. [PMID: 32779839 PMCID: PMC7323440 DOI: 10.1002/art.41399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022]
Affiliation(s)
| | - Elisa Gremese
- Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | |
Collapse
|
33
|
Kinast V, Plociennikowska A, Anggakusuma, Bracht T, Todt D, Brown RJP, Boldanova T, Zhang Y, Brüggemann Y, Friesland M, Engelmann M, Vieyres G, Broering R, Vondran FWR, Heim MH, Sitek B, Bartenschlager R, Pietschmann T, Steinmann E. C19orf66 is an interferon-induced inhibitor of HCV replication that restricts formation of the viral replication organelle. J Hepatol 2020; 73:549-558. [PMID: 32294532 DOI: 10.1016/j.jhep.2020.03.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS HCV is a positive-strand RNA virus that primarily infects human hepatocytes. Recent studies have reported that C19orf66 is expressed as an interferon (IFN)-stimulated gene; however, the intrinsic regulation of this gene within the liver as well as its antiviral effects against HCV remain elusive. METHODS Expression of C19orf66 was quantified in both liver biopsies and primary human hepatocytes, with or without HCV infection. Mechanistic studies of the potent anti-HCV phenotype mediated by C19orf66 were conducted using state-of-the-art virological, biochemical and genetic approaches, as well as correlative light and electron microscopy and transcriptome and proteome analysis. RESULTS Upregulation of C19orf66 mRNA was observed in both primary human hepatocytes upon HCV infection and in the livers of patients with chronic hepatitis C (CHC). In addition, pegIFNα/ribavirin therapy induced C19orf66 expression in patients with CHC. Transcriptomic profiling and whole cell proteomics of hepatoma cells ectopically expressing C19orf66 revealed no induction of other antiviral genes. Expression of C19orf66 restricted HCV infection, whereas CRIPSPR/Cas9 mediated knockout of C19orf66 attenuated IFN-mediated suppression of HCV replication. Co-immunoprecipitation followed by mass spectrometry identified a stress granule protein-dominated interactome of C19orf66. Studies with subgenomic HCV replicons and an expression system revealed that C19orf66 expression impairs HCV-induced elevation of phosphatidylinositol-4-phosphate, alters the morphology of the viral replication organelle (termed the membranous web) and thereby targets viral RNA replication. CONCLUSION C19orf66 is an IFN-stimulated gene, which is upregulated in hepatocytes within the first hours post IFN treatment or HCV infection in vivo. The encoded protein possesses specific antiviral activity against HCV and targets the formation of the membranous web. Our study identifies C19orf66 as an IFN-inducible restriction factor with a novel antiviral mechanism that specifically targets HCV replication. LAY SUMMARY Interferon-stimulated genes are thought to be important to for antiviral immune responses to HCV. Herein, we analysed C19orf66, an interferon-stimulated gene, which appears to inhibit HCV replication. It prevents the HCV-induced elevation of phosphatidylinositol-4-phosphate and alters the morphology of HCV's replication organelle.
Collapse
Affiliation(s)
- Volker Kinast
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Agnieszka Plociennikowska
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Anggakusuma
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Vector Development department, research at uniQure, Paasheuvelweg 25A, 1105 BP, Amsterdam, The Netherlands
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Tujana Boldanova
- Department of Biomedicine, University of Basel and Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Yudi Zhang
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Yannick Brüggemann
- Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Martina Friesland
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Michael Engelmann
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Markus H Heim
- Department of Biomedicine, University of Basel and Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany; German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Faculty of Medicine, Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
34
|
Yee M, Cohen ED, Haak J, Dylag AM, O'Reilly MA. Neonatal hyperoxia enhances age-dependent expression of SARS-CoV-2 receptors in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743585 PMCID: PMC7386505 DOI: 10.1101/2020.07.22.215962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-morbidities. People who were born preterm may be at greater risk for COVID-19 because their early exposure to oxygen at birth increases their risk of being hospitalized when infected with RSV and other respiratory viruses. Our prior studies in mice showed how high levels of oxygen (hyperoxia) between postnatal days 0-4 increases the severity of influenza A virus infections by reducing the number of alveolar epithelial type 2 (AT2) cells. Because AT2 cells express the SARS-CoV-2 receptors angiotensin converting enzyme (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2), we expected their expression would decline as AT2 cells were depleted by hyperoxia. Instead, we made the surprising discovery that expression of Ace2 and Tmprss2 mRNA increases as mice age and is accelerated by exposing mice to neonatal hyperoxia. ACE2 is primarily expressed at birth by airway Club cells and becomes detectable in AT2 cells by one year of life. Neonatal hyperoxia increases ACE2 expression in Club cells and makes it detectable in 2-month-old AT2 cells. This early and increased expression of SARS-CoV-2 receptors was not seen in adult mice who had been administered the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia. Our finding that early life insults such as hyperoxia enhances the age-dependent expression of SARS-CoV-2 receptors in the respiratory epithelium helps explain why COVID-19 lung disease is greater in the elderly and people with pre-existing co-morbidities.
Collapse
Affiliation(s)
- Min Yee
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - E David Cohen
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - Jeannie Haak
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - Andrew M Dylag
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - Michael A O'Reilly
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| |
Collapse
|
35
|
Saha A, Saha B. Novel coronavirus SARS-CoV-2 (Covid-19) dynamics inside the human body. Rev Med Virol 2020; 30:e2140. [PMID: 32686248 PMCID: PMC7404608 DOI: 10.1002/rmv.2140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
A knowledge‐based cybernetic framework model representing the dynamics of SARS‐CoV‐2 inside the human body has been studied analytically and in silico to explore the pathophysiologic regulations. The following modeling methodology was developed as a platform to introduce a predictive tool supporting a therapeutic approach to Covid‐19 disease. A time‐dependent nonlinear system of ordinary differential equations model was constructed involving type‐I cells, type‐II cells, SARS‐CoV‐2 virus, inflammatory mediators, interleukins along with host pulmonary gas exchange rate, thermostat control, and mean pressure difference. This formalism introduced about 17 unknown parameters. Estimating these unknown parameters requires a mathematical association with the in vivo sparse data and the dynamic sensitivities of the model. The cybernetic model can simulate a dynamic response to the reduced pulmonary alveolar gas exchange rate, thermostat control, and mean pressure difference under a very critical condition based on equilibrium (steady state) values of the inflammatory mediators and system parameters. In silico analysis of the current cybernetical approach with system dynamical modeling can provide an intellectual framework to help experimentalists identify more active therapeutic approaches.
Collapse
Affiliation(s)
- Asit Saha
- The Lambda Academy of Science, Success, Western Australia, Australia
| | - Barsha Saha
- The Lambda Academy of Science, Success, Western Australia, Australia
| |
Collapse
|
36
|
Capuano A, Rossi F, Paolisso G. Covid-19 Kills More Men Than Women: An Overview of Possible Reasons. Front Cardiovasc Med 2020; 7:131. [PMID: 32766284 PMCID: PMC7380096 DOI: 10.3389/fcvm.2020.00131] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
The high mortality observed in Covid-19 patients may be related to unrecognized pulmonary embolism, pulmonary thrombosis, or other underlying cardiovascular diseases. Recent data have highlighted that the mortality rate of Covid-19 seems to be higher in male patients compared to females. In this paper, we have analyzed possible factors that may underline this sex difference in terms of activity of the immune system and its modulation by sex hormones, coagulation pattern, and preexisting cardiovascular diseases as well as effects deriving from smoking and drinking habits. Future studies are needed to evaluate the effects of sex differences on the prevalence of infections, including Covid-19, its outcome, and the responses to antiviral treatments.
Collapse
Affiliation(s)
- Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Regional Centre of Pharmacovigilance, Campania Region, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Regional Centre of Pharmacovigilance, Campania Region, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
37
|
Mason RJ. Thoughts on the alveolar phase of COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319:L115-L120. [PMID: 32493030 PMCID: PMC7347958 DOI: 10.1152/ajplung.00126.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
COVID-19 can be divided into three clinical stages, and one can speculate that these stages correlate with where the infection resides. For the asymptomatic phase, the infection mostly resides in the nose, where it elicits a minimal innate immune response. For the mildly symptomatic phase, the infection is mostly in the pseudostratified epithelium of the larger airways and is accompanied by a more vigorous innate immune response. In the conducting airways, the epithelium can recover from the infection, because the keratin 5 basal cells are spared and they are the progenitor cells for the bronchial epithelium. There may be more severe disease in the bronchioles, where the club cells are likely infected. The devastating third phase is in the gas exchange units of the lung, where ACE2-expressing alveolar type II cells and perhaps type I cells are infected. The loss of type II cells results in respiratory insufficiency due to the loss of pulmonary surfactant, alveolar flooding, and possible loss of normal repair, since type II cells are the progenitors of type I cells. The loss of type I and type II cells will also block normal active resorption of alveolar fluid. Subsequent endothelial damage leads to transudation of plasma proteins, formation of hyaline membranes, and an inflammatory exudate, characteristic of ARDS. Repair might be normal, but if the type II cells are severely damaged alternative pathways for epithelial repair may be activated, which would result in some residual lung disease.
Collapse
|
38
|
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55:13993003.00607-2020. [PMID: 32269085 PMCID: PMC7144260 DOI: 10.1183/13993003.00607-2020] [Citation(s) in RCA: 501] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
COVID-19 is a major health concern and can be devastating, especially for the elderly. COVID-19 is the disease caused by SARS-CoV2 the virus. Although much is known about the mortality of the clinical disease, much less is known about its pathobiology. Although details of the cellular responses to this virus are not known, a probable course of events can be postulated based on past studies with SARS-CoV. A cellular biology perspective is useful for framing research questions and explaining the clinical course by focusing on the areas of the respiratory tract that are involved. Based on the cells that are likely infected, COVID-19 can be divided into three phases that correspond to different clinical stages of the disease [1]. COVID-19 can be understood by the region of the lung that is infected. Mild disease will be confined to the conducting airways and severe disease will involve the gas exchange portion of the lung.
Collapse
Affiliation(s)
- Robert J Mason
- National Jewish Health, Dept of Medicine, Denver, CO, USA
| |
Collapse
|
39
|
Woods PS, Doolittle LM, Rosas LE, Nana-Sinkam SP, Tili E, Davis IC. Increased expression of microRNA-155-5p by alveolar type II cells contributes to development of lethal ARDS in H1N1 influenza A virus-infected mice. Virology 2020; 545:40-52. [PMID: 32308197 DOI: 10.1016/j.virol.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022]
Abstract
Alveolar type II (ATII) cells are essential to lung function and a primary site of influenza A virus (IAV) replication. Effects of IAV infection on ATII cell microRNA (miR) expression have not been comprehensively investigated. Infection of C57BL/6 mice with 10,000 or 100 pfu/mouse of IAV A/WSN/33 (H1N1) significantly altered expression of 73 out of 1908 mature murine miRs in ATII cells at 2 days post-infection (d.p.i.) and 253 miRs at 6 d.p.i. miR-155-5p (miR-155) showed the greatest increase in expression within ATII cells at both timepoints and the magnitude of this increase correlated with inoculum size and pulmonary edema severity. Influenza-induced lung injury was attenuated in C57BL/6-congenic miR-155-knockout mice without affecting viral replication. Attenuation of lung injury was dependent on deletion of miR-155 from stromal cells and was recapitulated in ATII cell-specific miR-155-knockout mice. These data suggest that ATII cell miR-155 is a potential therapeutic target for IAV-induced ARDS.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - Lauren M Doolittle
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - Lucia E Rosas
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - S Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Columbus, OH, USA
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA.
| |
Collapse
|
40
|
Benam KH, Denney L, Ho LP. How the Respiratory Epithelium Senses and Reacts to Influenza Virus. Am J Respir Cell Mol Biol 2019; 60:259-268. [PMID: 30372120 DOI: 10.1165/rcmb.2018-0247tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human lung is constantly exposed to the environment and potential pathogens. As the interface between host and environment, the respiratory epithelium has evolved sophisticated sensing mechanisms as part of its defense against pathogens. In this review, we examine how the respiratory epithelium senses and responds to influenza A virus, the biggest cause of respiratory viral deaths worldwide.
Collapse
Affiliation(s)
- Kambez H Benam
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado.,2 Department of Bioengineering, University of Colorado Denver, Aurora, Colorado; and
| | - Laura Denney
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ling-Pei Ho
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
41
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
42
|
C19ORF66 Broadly Escapes Virus-Induced Endonuclease Cleavage and Restricts Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.00373-19. [PMID: 30944177 DOI: 10.1128/jvi.00373-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
One striking characteristic of certain herpesviruses is their ability to induce rapid and widespread RNA decay in order to gain access to host resources. This phenotype is induced by viral endoribonucleases, including SOX in Kaposi's sarcoma-associated herpesvirus (KSHV), muSOX in murine gammaherpesvirus 68 (MHV68), BGLF5 in Epstein-Barr virus (EBV), and vhs in herpes simplex virus 1 (HSV-1). Here, we performed comparative transcriptome sequencing (RNA-seq) upon expression of these herpesviral endonucleases in order to characterize their effect on the host transcriptome. Consistent with previous reports, we found that approximately two-thirds of transcripts were downregulated in cells expressing any of these viral endonucleases. Among the transcripts spared from degradation, we uncovered a cluster of transcripts that systematically escaped degradation from all tested endonucleases. Among these escapees, we identified C19ORF66 and reveal that this transcript is protected from degradation by its 3' untranslated region (UTR). We then show that C19ORF66 is a potent KSHV restriction factor by impeding early viral gene expression, suggesting that its ability to escape viral cleavage may be an important component of the host response to viral infection. Collectively, our comparative approach is a powerful tool to pinpoint key regulators of the viral-host interplay and led us to uncover a novel KSHV regulator.IMPORTANCE Viruses are master regulators of the host gene expression machinery. This is crucial to promote viral infection and to dampen host immune responses. Many viruses, including herpesviruses, express RNases that reduce host gene expression through widespread mRNA decay. However, it emerged that some mRNAs escape this fate, although it has been difficult to determine whether these escaping transcripts benefit viral infection or instead participate in an antiviral mechanism. To tackle this question, we compared the effect of the herpesviral RNases on the human transcriptome and identified a cluster of transcripts consistently escaping degradation from all tested endonucleases. Among the protected mRNAs, we identified the transcript C19ORF66 and showed that it restricts Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Collectively, these results provide a framework to explore how the control of RNA fate in the context of viral-induced widespread mRNA degradation may influence the outcome of viral infection.
Collapse
|
43
|
Abstract
Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.
Collapse
|
44
|
Leach SM, Finigan J, Vasu VT, Mishra R, Ghosh M, Foster D, Mason R, Kosmider B, Farias Hesson E, Kern JA. The Kinome of Human Alveolar Type II and Basal Cells, and Its Reprogramming in Lung Cancer. Am J Respir Cell Mol Biol 2019; 61:481-491. [PMID: 30917006 DOI: 10.1165/rcmb.2018-0283oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The discovery of mutant tyrosine kinases as oncogenic drivers of lung adenocarcinomas has changed the basic understanding of lung cancer development and therapy. Yet, expressed kinases (kinome) in lung cancer progenitor cells, as well as whether kinase expression and the overall kinome changes or is reprogrammed upon transformation, is incompletely understood. We hypothesized that the kinome differs between lung cancer progenitor cells, alveolar type II cells (ATII), and basal cells (BC) and that their respective kinomes undergo distinct lineage-specific reprogramming to adenocarcinomas and squamous cell carcinomas upon transformation. We performed RNA sequencing on freshly isolated human ATII, BC, and lung cancer cell lines to define the kinome in nontransformed cells and transformed cells. Our studies identified a unique kinome for ATII and BC and changes in their kinome upon transformation to their respective carcinomas.
Collapse
Affiliation(s)
- Sonia M Leach
- Department of Biomedical Research.,Center for Genes, Environment and Health, and
| | - Jay Finigan
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Vihas T Vasu
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India; and
| | - Rangnath Mishra
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Moumita Ghosh
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Mason
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Beata Kosmider
- Department of Physiology.,Department of Thoracic Medicine and Surgery, and.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | | | - Jeffrey A Kern
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
45
|
Luukkainen A, Puan KJ, Yusof N, Lee B, Tan KS, Liu J, Yan Y, Toppila-Salmi S, Renkonen R, Chow VT, Rotzschke O, Wang DY. A Co-culture Model of PBMC and Stem Cell Derived Human Nasal Epithelium Reveals Rapid Activation of NK and Innate T Cells Upon Influenza A Virus Infection of the Nasal Epithelium. Front Immunol 2018; 9:2514. [PMID: 30467502 PMCID: PMC6237251 DOI: 10.3389/fimmu.2018.02514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Background: We established an in vitro co-culture model involving H3N2-infection of human nasal epithelium with peripheral blood mononuclear cells (PBMC) to investigate their cross-talk during early H3N2 infection. Methods: Nasal epithelium was differentiated from human nasal epithelial stem/progenitor cells and cultured wtih fresh human PBMC. PBMC and supernatants were harvested after 24 and 48 h of co-culture with H3N2-infected nasal epithelium. We used flow cytometry and Luminex to characterize PBMC subpopulations, their activation and secretion of cytokine and chemokines. Results: H3N2 infection of the nasal epithelium associated with significant increase in interferons (IFN-α, IFN-γ, IL-29), pro-inflammatory cytokines (TNF-α, BDNF, IL-3) and viral-associated chemokines (IP-10, MCP-3, I-TAC, MIG), detectable already after 24 h. This translates into rapid activation of monocytes, NK-cells and innate T-cells (MAIT and γδ T cells), evident with CD38+ and/or CD69+ upregulation. Conclusions: This system may contribute to in vitro mechanistic immunological studies bridging systemic models and possibly enable the development of targeted immunomodulatory therapies.
Collapse
Affiliation(s)
- Annika Luukkainen
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanna Toppila-Salmi
- Haartman Institute, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Ye S, Cowled CJ, Yap CH, Stambas J. Deep sequencing of primary human lung epithelial cells challenged with H5N1 influenza virus reveals a proviral role for CEACAM1. Sci Rep 2018; 8:15468. [PMID: 30341336 PMCID: PMC6195505 DOI: 10.1038/s41598-018-33605-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Current prophylactic and therapeutic strategies targeting human influenza viruses include vaccines and antivirals. Given variable rates of vaccine efficacy and antiviral resistance, alternative strategies are urgently required to improve disease outcomes. Here we describe the use of HiSeq deep sequencing to analyze host gene expression in primary human alveolar epithelial type II cells infected with highly pathogenic avian influenza H5N1 virus. At 24 hours post-infection, 623 host genes were significantly upregulated, including the cell adhesion molecule CEACAM1. H5N1 virus infection stimulated significantly higher CEACAM1 protein expression when compared to influenza A PR8 (H1N1) virus, suggesting a key role for CEACAM1 in influenza virus pathogenicity. Furthermore, silencing of endogenous CEACAM1 resulted in reduced levels of proinflammatory cytokine/chemokine production, as well as reduced levels of virus replication following H5N1 infection. Our study provides evidence for the involvement of CEACAM1 in a clinically relevant model of H5N1 infection and may assist in the development of host-oriented antiviral strategies.
Collapse
Affiliation(s)
- Siying Ye
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia. .,AAHL CSIRO Deakin Collaborative Biosecurity Laboratory, East Geelong, Victoria, Australia.
| | | | - Cheng-Hon Yap
- University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - John Stambas
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.,AAHL CSIRO Deakin Collaborative Biosecurity Laboratory, East Geelong, Victoria, Australia
| |
Collapse
|
47
|
Transcriptome Analysis of Infected and Bystander Type 2 Alveolar Epithelial Cells during Influenza A Virus Infection Reveals In Vivo Wnt Pathway Downregulation. J Virol 2018; 92:JVI.01325-18. [PMID: 30111569 DOI: 10.1128/jvi.01325-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/12/2018] [Indexed: 12/29/2022] Open
Abstract
Influenza virus outbreaks remain a serious threat to public health. A greater understanding of how cells targeted by the virus respond to the infection can provide insight into the pathogenesis of disease. Here we examined the transcriptional profile of in vivo-infected and uninfected type 2 alveolar epithelial cells (AEC) in the lungs of influenza virus-infected mice. We show for the first time the unique gene expression profiles induced by the in vivo infection of AEC as well as the transcriptional response of uninfected bystander cells. This work allows us to distinguish the direct and indirect effects of infection at the cellular level. Transcriptome analysis revealed that although directly infected and bystander AEC from infected animals shared many transcriptome changes compared to AEC from uninfected animals, directly infected cells produce more interferon and express lower levels of Wnt signaling-associated transcripts, while concurrently expressing more transcripts associated with cell death pathways, than bystander uninfected AEC. The Wnt signaling pathway was downregulated in both in vivo-infected AEC and in vitro-infected human lung epithelial A549 cells. Wnt signaling did not affect type I and III interferon production by infected A549 cells. Our results reveal unique transcriptional changes that occur within infected AEC and show that influenza virus downregulates Wnt signaling. In light of recent findings that Wnt signaling is essential for lung epithelial stem cells, our findings reveal a mechanism by which influenza virus may affect host lung repair.IMPORTANCE Influenza virus infection remains a major public health problem. Utilizing a recombinant green fluorescent protein-expressing influenza virus, we compared the in vivo transcriptomes of directly infected and uninfected bystander cells from infected mouse lungs and discovered many pathways uniquely regulated in each population. The Wnt signaling pathway was downregulated in directly infected cells and was shown to affect virus but not interferon production. Our study is the first to discern the in vivo transcriptome changes induced by direct viral infection compared to mere exposure to the lung inflammatory milieu and highlight the downregulation of Wnt signaling. This downregulation has important implications for understanding influenza virus pathogenesis, as Wnt signaling is critical for lung epithelial stem cells and lung epithelial cell differentiation. Our findings reveal a mechanism by which influenza virus may affect host lung repair and suggest interventions that prevent damage or accelerate recovery of the lung.
Collapse
|
48
|
Sweeney TE, Lofgren S, Khatri P, Rogers AJ. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury. Am J Respir Cell Mol Biol 2017; 57:184-192. [PMID: 28324666 DOI: 10.1165/rcmb.2016-0395oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E-16). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Collapse
Affiliation(s)
- Timothy E Sweeney
- 1 Stanford Institute for Immunity, Transplantation and Infection.,2 Biomedical Informatics Research, and
| | - Shane Lofgren
- 1 Stanford Institute for Immunity, Transplantation and Infection.,2 Biomedical Informatics Research, and
| | - Purvesh Khatri
- 1 Stanford Institute for Immunity, Transplantation and Infection.,2 Biomedical Informatics Research, and
| | - Angela J Rogers
- 3 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Domm W, Yee M, Misra RS, Gelein R, Nogales A, Martinez-Sobrido L, O'Reilly MA. Oxygen-dependent changes in lung development do not affect epithelial infection with influenza A virus. Am J Physiol Lung Cell Mol Physiol 2017; 313:L940-L949. [PMID: 28798254 DOI: 10.1152/ajplung.00203.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Infants born prematurely often require supplemental oxygen, which contributes to aberrant lung development and increased pulmonary morbidity following a respiratory viral infection. We have been using a mouse model to understand how early-life hyperoxia affects the adult lung response to influenza A virus (IAV) infection. Prior studies showed how neonatal hyperoxia (100% oxygen) increased sensitivity of adult mice to infection with IAV [IAV (A/Hong Kong/X31) H3N2] as defined by persistent inflammation, pulmonary fibrosis, and mortality. Since neonatal hyperoxia alters lung structure, we used a novel fluorescence-expressing reporter strain of H1N1 IAV [A/Puerto Rico/8/34 mCherry (PR8-mCherry)] to evaluate whether it also altered early infection of the respiratory epithelium. Like Hong Kong/X31, neonatal hyperoxia increased morbidity and mortality of adult mice infected with PR8-mCherry. Whole lung imaging and histology suggested a modest increase in mCherry expression in adult mice exposed to neonatal hyperoxia compared with room air-exposed animals. However, this did not reflect an increase in airway or alveolar epithelial infection when mCherry-positive cells were identified and quantified by flow cytometry. Instead, a modest increase in the number of CD45-positive macrophages expressing mCherry was detected. While neonatal hyperoxia does not alter early epithelial infection with IAV, it may increase the activity of macrophages toward infected cells, thereby enhancing early epithelial injury.
Collapse
Affiliation(s)
- William Domm
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York; and
| | - Ravi S Misra
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York; and
| | - Robert Gelein
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York; and
| |
Collapse
|
50
|
Yee M, Domm W, Gelein R, Bentley KLDM, Kottmann RM, Sime PJ, Lawrence BP, O'Reilly MA. Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. Am J Respir Cell Mol Biol 2017; 56:453-464. [PMID: 27967234 DOI: 10.1165/rcmb.2016-0150oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An aberrant oxygen environment at birth increases the severity of respiratory viral infections later in life through poorly understood mechanisms. Here, we show that alveolar epithelial cell (AEC) 2 cells (AEC2s), progenitors for AEC1 cells, are depleted in adult mice exposed to neonatal hypoxia or hyperoxia. Airway cells expressing surfactant protein (SP)-C and ATP binding cassette subfamily A member 3, alveolar pod cells expressing keratin (KRT) 5, and pulmonary fibrosis were observed when these mice were infected with a sublethal dose of HKx31, H3N2 influenza A virus. This was not seen in infected siblings birthed into room air. Genetic lineage tracing studies in mice exposed to neonatal hypoxia or hyperoxia revealed pre-existing secretoglobin 1a1+ cells produced airway cells expressing SP-C and ATP binding cassette subfamily A member 3. Pre-existing Kr5+ progenitor cells produced squamous alveolar cells expressing receptor for advanced glycation endproducts, aquaporin 5, and T1α in alveoli devoid of AEC2s. They were not the source of KRT5+ alveolar pod cells. These oxygen-dependent changes in epithelial cell regeneration and fibrosis could be recapitulated by conditionally depleting AEC2s in mice using diphtheria A toxin and then infecting with influenza A virus. Likewise, airway cells expressing SP-C and alveolar cells expressing KRT5 were observed in human idiopathic pulmonary fibrosis. These findings suggest that alternative progenitor lineages are mobilized to regenerate the alveolar epithelium when AEC2s are severely injured or depleted by previous insults, such as an adverse oxygen environment at birth. Because these lineages regenerate AECs in spatially distinct compartments of a lung undergoing fibrosis, they may not be sufficient to prevent disease.
Collapse
Affiliation(s)
| | | | | | | | - R Matthew Kottmann
- 4 Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Patricia J Sime
- 4 Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | | | | |
Collapse
|