1
|
Olanlokun JO, Odedeyi A, Oderinde SO, Owolabi BA, Koorbanally NA, Olorunsogo OO. Antiplasmodial evidence, host mitochondrial biology and possible mechanisms of action of a composite extract of Azadiractha indica and Curcuma longa in Plasmodium berghei-infected mice. J Parasit Dis 2024; 48:872-890. [PMID: 39493471 PMCID: PMC11527860 DOI: 10.1007/s12639-024-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 11/05/2024] Open
Abstract
Azadirachta indica A. Juss (Meliaceae) (AI) and Curcuma longa L. (Zingiberaceae) (CL) are used for malaria treatment but their anti-glycolytic and host mitochondrial effects have not been studied. The AI stem-bark and CL rhizomes were extracted with methanol. Methanol extract of CL (Turmeric) was partitioned to yield methanol fraction (MF). Swiss mice infected with Plasmodium berghei (NK 65 strain) were treated with 200 and 400 mg/kg of AI and turmeric for seven days. Turmeric and MF (200 and 400 mg/kg) were combined with 400 mg/kg AI to treat mice infected with Plasmodium berghei (ANKA strain) for four days. Drug and infected controls mice were treated with artemether lumefantrine (10 mg/kg) and distilled water (10 mL/kg), respectively. Serum lactate dehydrogenase (LDH) and aldolase activities were determined. Liver mitochondria were obtained for mitochondrial permeability transition (mPT) pore opening and FoF1 ATPase assays. The curcumin content of turmeric was determined using HPLC while LD50 of Turmeric and AI was also determined. The AI, and its combination with turmeric decreased parasite load and increased chemosuppression in both sensitive and resistant studies while MF and its combinations with AI induced mPT pore opening. In the resistant experiment, AI + Turmeric 400 mg/kg decreased FoF1 ATPase, LDH and aldolase activities against the infected control. The LD50 values of both extracts were above 2000 mg/kg while the MF had the highest curcumin content. Antiplasmodial mechanisms of action of AI, CL and their combinations involve anti-glycolytic effects. Their composite formulations are more potent in malaria treatment.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Aminat Odedeyi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Obaloluwa Oderinde
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bunmi Adesola Owolabi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Nappi TJ, Butler NS. Tragedy of the commons: the resource struggle during Plasmodium infection. Trends Parasitol 2024; 40:1135-1143. [PMID: 39547909 DOI: 10.1016/j.pt.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Plasmodium spp. have an ancient history with humans, having been described in ancient texts dating back 3500 years ago, which has led to an evolutionary arms race between Plasmodium and humans with Plasmodium successfully subverting durable, sterilizing host immunity. Mechanisms of immune evasion include polymorphism and antigenic variation, as well as dysregulated immune responses, each facilitating transmission and Plasmodium parasite persistence. Notably, metabolite signaling cues in the host and parasite have more recently been appreciated as key drivers for disease progression. Here, we highlight the metabolic interplay between the host and Plasmodium parasites during malaria. We discuss how immunometabolism studies may be leveraged to elucidate this complex relationship and offer opportunities to augment either vaccine- or infection-induced protective immunity.
Collapse
Affiliation(s)
- Taylen J Nappi
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Kazane KR, Labarta-Bajo L, Zangwill DR, Liimatta K, Vargas F, Weldon KC, Dorrestein PC, Zúñiga EI. Metabolomic Profiling Reveals Potential of Fatty Acids as Regulators of Stem-like Exhausted CD8 T Cells During Chronic Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617124. [PMID: 39416134 PMCID: PMC11483027 DOI: 10.1101/2024.10.07.617124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chronic infections drive a CD8 T cell program termed T cell exhaustion, characterized by reduced effector functions. While cell-intrinsic mechanisms underlying CD8 T cell exhaustion have been extensively studied, the impact of the metabolic environment in which exhausted CD8 T cells (Tex) operate remains less clear. Using untargeted metabolomics and the murine lymphocytic choriomeningitis virus infection model we investigated systemic metabolite changes early and late following acute versus chronic viral infections. We identified distinct short-term and persistent metabolite shifts, with the most significant differences occurring transiently during the acute phase of the sustained infection. This included nutrient changes that were independent of viral loads and partially associated with CD8 T cell-induced anorexia and lipolysis. One remarkable observation was the elevation of medium- and long-chain fatty acid (FA) and acylcarnitines during the early phase after chronic infection. During this time, virus-specific CD8 T cells from chronically infected mice exhibited increased lipid accumulation and uptake compared to their counterparts from acute infection, particularly stem-like Tex (Tex STEM ), a subset that generates effector-like Tex INT which directly limit viral replication. Notably, only Tex STEM increased oxidative metabolism and ATP production upon FA exposure. Consistently, short-term reintroduction of FA during late chronic infection exclusively improved Tex STEM mitochondrial fitness, percentages and numbers. This treatment, however, also reduced Tex INT , resulting in compromised viral control. Our study offers a valuable resource for investigating the role of specific metabolites in regulating immune responses during acute and chronic viral infections and highlights the potential of long-chain FA to influence Tex STEM and viral control during a protracted infection. Significance This study examines systemic metabolite changes during acute and chronic viral infections. Notably, we identified an early, transient nutrient shift in chronic infection, marked by an increase in medium- and long-chain fatty acid related species. Concomitantly, a virus-specific stem-like T cell population, essential for maintaining other T cells, displayed high lipid avidity and was capable of metabolizing exogenous fatty acids. Administering fatty acids late in chronic infection, when endogenous lipid levels had normalized, expanded this stem-like T cell population and enhanced their mitochondrial fitness. These findings highlight the potential role of fatty acids in regulating stem-like T cells in chronic settings and offer a valuable resource for studying other metabolic signatures in both acute and persistent infections.
Collapse
|
4
|
Nahid DS, Coffey KA, Bei AK, Cordy RJ. Understanding the significance of oxygen tension on the biology of Plasmodium falciparum blood stages: From the human body to the laboratory. PLoS Pathog 2024; 20:e1012514. [PMID: 39298535 DOI: 10.1371/journal.ppat.1012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Plasmodium falciparum undergoes sequestration within deep tissues of the human body, spanning multiple organ systems with differing oxygen (O2) concentrations. The parasite is exposed to an even greater range of O2 concentrations as it transitions from the human to the mosquito host, suggesting a high level of plasticity as it navigates these different environments. In this review, we explore factors that may contribute to the parasite's response to different environmental O2 concentrations, recognizing that there are likely multiple pieces to this puzzle. We first review O2-sensing mechanisms, which exist in other apicomplexans such as Toxoplasma gondii and consider whether similar systems could exist in Plasmodium. Next, we review morphological and functional changes in P. falciparum's mitochondrion during the asexual-to-sexual stage transition and discuss how these changes overlap with the parasite's access to O2. We then delve into reactive oxygen species (ROS) as ROS production is influenced by O2 availability and oxidative stress impacts Plasmodium intraerythrocytic development. Lastly, given that the primary role of the red blood cell (RBC) is to deliver O2 throughout the body, we discuss how changes in the oxygenation status of hemoglobin, the RBC's O2-carrying protein and key nutrient for Plasmodium, could also potentially impact the parasite's growth during intraerythrocytic development. This review also highlights studies that have investigated P. falciparum biology under varying O2 concentrations and covers technical aspects related to P. falciparum cultivation in the lab, focusing on sources of technical variation that could alter the amount of dissolved O2 encountered by cells during in vitro experiments. Lastly, we discuss how culture systems can better replicate in vivo heterogeneity with respect to O2 gradients, propose ideas for further research in this area, and consider translational implications related to O2 and malaria.
Collapse
Affiliation(s)
- Dinah S Nahid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kevin A Coffey
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
5
|
Shambhavi, Gaurav D. Autoimmune Hemolytic Anemia in a Pediatric Patient with Chronic Vivax Malaria. Indian J Pediatr 2024; 91:980. [PMID: 38409563 DOI: 10.1007/s12098-024-05084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Shambhavi
- Department of Pediatrics, Shaheed Nirmal Mahto Medical College, Dhanbad, Jharkhand, India.
| | - Deepak Gaurav
- Department of Pediatrics, Shaheed Nirmal Mahto Medical College, Dhanbad, Jharkhand, India
| |
Collapse
|
6
|
Binns HC, Alipour E, Sherlock CE, Nahid DS, Whitesides JF, Cox AO, Furdui CM, Marrs GS, Kim-Shapiro DB, Cordy RJ. Amino acid supplementation confers protection to red blood cells before Plasmodium falciparum bystander stress. Blood Adv 2024; 8:2552-2564. [PMID: 38537079 PMCID: PMC11131086 DOI: 10.1182/bloodadvances.2023010820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
ABSTRACT Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to the malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells (RBCs). Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report conditioned medium from Plasmodium falciparum culture induces oxidative stress in uninfected, catalase-depleted RBCs. As cell-permeable precursors to glutathione, we demonstrate the benefit of pre-exposure to exogenous glutamine, cysteine, and glycine amino acids for RBCs. Importantly, this pretreatment intrinsically prepares RBCs to mitigate oxidative stress.
Collapse
Affiliation(s)
- Heather Colvin Binns
- Department of Biology, Wake Forest University, Winston-Salem, NC
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC
| | | | - Dinah S. Nahid
- Department of Biology, Wake Forest University, Winston-Salem, NC
| | - John F. Whitesides
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anderson O’Brien Cox
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Cristina M. Furdui
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Glen S. Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC
| | | | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
7
|
Nikulkova M, Abdrabou W, Carlton JM, Idaghdour Y. Exploiting integrative metabolomics to study host-parasite interactions in Plasmodium infections. Trends Parasitol 2024; 40:313-323. [PMID: 38508901 PMCID: PMC10994734 DOI: 10.1016/j.pt.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Despite years of research, malaria remains a significant global health burden, with poor diagnostic tests and increasing antimalarial drug resistance challenging diagnosis and treatment. While 'single-omics'-based approaches have been instrumental in gaining insight into the biology and pathogenicity of the Plasmodium parasite and its interaction with the human host, a more comprehensive understanding of malaria pathogenesis can be achieved through 'multi-omics' approaches. Integrative methods, which combine metabolomics, lipidomics, transcriptomics, and genomics datasets, offer a holistic systems biology approach to studying malaria. This review highlights recent advances, future directions, and challenges involved in using integrative metabolomics approaches to interrogate the interactions between Plasmodium and the human host, paving the way towards targeted antimalaria therapeutics and control intervention methods.
Collapse
Affiliation(s)
- Maria Nikulkova
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 11101, USA; Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University, Abu Dhabi, United Arab Emirates
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 11101, USA; Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Ramalho T, Assis PA, Ojelabi O, Tan L, Carvalho B, Gardinassi L, Campos O, Lorenzi PL, Fitzgerald KA, Haynes C, Golenbock DT, Gazzinelli RT. Itaconate impairs immune control of Plasmodium by enhancing mtDNA-mediated PD-L1 expression in monocyte-derived dendritic cells. Cell Metab 2024; 36:484-497.e6. [PMID: 38325373 PMCID: PMC10940217 DOI: 10.1016/j.cmet.2024.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/27/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.
Collapse
Affiliation(s)
- Theresa Ramalho
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Patricia A Assis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ogooluwa Ojelabi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Brener Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Osvaldo Campos
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, Sao Paulo, Brazil
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole Haynes
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Douglas T Golenbock
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Oljuskin T, Azodi N, Volpedo G, Bhattacharya P, Markle HL, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Nakhasi HL. Leishmania major centrin knock-out parasites reprogram tryptophan metabolism to induce a pro-inflammatory response. iScience 2023; 26:107593. [PMID: 37744403 PMCID: PMC10517402 DOI: 10.1016/j.isci.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.
Collapse
Affiliation(s)
- Timur Oljuskin
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hannah L. Markle
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
- Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Pandey MK. Uncovering the Lipid Web: Discovering the Multifaceted Roles of Lipids in Human Diseases and Therapeutic Opportunities. Int J Mol Sci 2023; 24:13223. [PMID: 37686028 PMCID: PMC10487860 DOI: 10.3390/ijms241713223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Lipids, characterized by their hydrophobic nature, encompass a wide range of molecules with distinct properties and functions [...].
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC-7016, Suit R1.019A, Cincinnati, OH 45229, USA; or ; Tel.: +1-513-803-1694; Fax: +1-513-636-1321
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Binns HC, Alipour E, Nahid DS, Whitesides JF, Cox AO, Furdui CM, Marrs GS, Kim-Shapiro DB, Cordy RJ. Amino acid supplementation confers protection to red blood cells prior to Plasmodium falciparum bystander stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540951. [PMID: 37292635 PMCID: PMC10245693 DOI: 10.1101/2023.05.16.540951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells. Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report that conditioned media from Plasmodium falciparum culture induces oxidative stress in healthy uninfected RBCs. Additionally, we show the benefit of amino acid pre-exposure for RBCs and how this pre-treatment intrinsically prepares RBCs to mitigate oxidative stress. Key points Intracellular ROS is acquired in red blood cells incubated with Plasmodium falciparum conditioned media Glutamine, cysteine, and glycine amino acid supplementation increased glutathione biosynthesis and reduced ROS levels in stressed RBCs.
Collapse
|
12
|
Abdi AI, Achcar F, Sollelis L, Silva-Filho JL, Mwikali K, Muthui M, Mwangi S, Kimingi HW, Orindi B, Andisi Kivisi C, Alkema M, Chandrasekar A, Bull PC, Bejon P, Modrzynska K, Bousema T, Marti M. Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife 2023; 12:e85140. [PMID: 36916164 PMCID: PMC10059685 DOI: 10.7554/elife.85140] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
The malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor ap2-g, is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission. We examine markers of host immunity and metabolism, and markers of parasite growth and transmission investment. We find that inflammatory responses associated with reduced plasma lysophosphatidylcholine levels are associated with markers of increased investment in parasite sexual reproduction (i.e. transmission investment) and reduced growth (i.e. asexual replication). This association becomes stronger with falling transmission and suggests that parasites can rapidly respond to the within-host environment, which in turn is subject to changing transmission.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - João Luiz Silva-Filho
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | | | | | | | | | | | - Cheryl Andisi Kivisi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Manon Alkema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Amrita Chandrasekar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Peter C Bull
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Katarzyna Modrzynska
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Teun Bousema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| |
Collapse
|
13
|
Farinella DN, Kaur S, Tran V, Cabrera-Mora M, Joyner CJ, Lapp SA, Pakala SB, Nural MV, DeBarry JD, Kissinger JC, Jones DP, Moreno A, Galinski MR, Cordy RJ. Malaria disrupts the rhesus macaque gut microbiome. Front Cell Infect Microbiol 2023; 12:1058926. [PMID: 36710962 PMCID: PMC9880479 DOI: 10.3389/fcimb.2022.1058926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.
Collapse
Affiliation(s)
| | - Sukhpreet Kaur
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Suman B. Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Department of Genetics, University of Georgia, Athens, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Alberto Moreno
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,*Correspondence: Regina Joice Cordy,
| |
Collapse
|
14
|
Investigation of Plasma-Derived Lipidome Profiles in Experimental Cerebral Malaria in a Mouse Model Study. Int J Mol Sci 2022; 24:ijms24010501. [PMID: 36613941 PMCID: PMC9820457 DOI: 10.3390/ijms24010501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Cerebral malaria (CM), a fatal complication of Plasmodium infection that affects children, especially under the age of five, in sub-Saharan Africa and adults in South-East Asia, results from incompletely understood pathogenetic mechanisms. Increased release of circulating miRNA, proteins, lipids and extracellular vesicles has been found in CM patients and experimental mouse models. We compared lipid profiles derived from the plasma of CBA mice infected with Plasmodium berghei ANKA (PbA), which causes CM, to those from Plasmodium yoelii (Py), which does not. We previously showed that platelet-free plasma (18k fractions enriched from plasma) contains a high number of extracellular vesicles (EVs). Here, we found that this fraction produced at the time of CM differed dramatically from those of non-CM mice, despite identical levels of parasitaemia. Using high-resolution liquid chromatography-mass spectrometry (LCMS), we identified over 300 lipid species within 12 lipid classes. We identified 45 and 75 lipid species, mostly including glycerolipids and phospholipids, with significantly altered concentrations in PbA-infected mice compared to Py-infected and uninfected mice, respectively. Total lysophosphatidylethanolamine (LPE) levels were significantly lower in PbA infection compared to Py infection and controls. These results suggest that experimental CM could be characterised by specific changes in the lipid composition of the 18k fraction containing circulating EVs and can be considered an appropriate model to study the role of lipids in the pathophysiology of CM.
Collapse
|
15
|
Urinary Metabolic Profiling in Volunteers Undergoing Malaria Challenge in Gabon. Metabolites 2022; 12:metabo12121224. [PMID: 36557262 PMCID: PMC9783708 DOI: 10.3390/metabo12121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas.
Collapse
|
16
|
DeBarry JD, Nural MV, Pakala SB, Nayak V, Warrenfeltz S, Humphrey J, Lapp SA, Cabrera-Mora M, Brito CFA, Jiang J, Saney CL, Hankus A, Stealey HM, DeBarry MB, Lackman N, Legall N, Lee K, Tang Y, Gupta A, Trippe ED, Bridger RR, Weatherly DB, Peterson MS, Jiang X, Tran V, Uppal K, Fonseca LL, Joyner CJ, Karpuzoglu E, Cordy RJ, Meyer EVS, Wells LL, Ory DS, Lee FEH, Tirouvanziam R, Gutiérrez JB, Ibegbu C, Lamb TJ, Pohl J, Pruett ST, Jones DP, Styczynski MP, Voit EO, Moreno A, Galinski MR, Kissinger JC. MaHPIC malaria systems biology data from Plasmodium cynomolgi sporozoite longitudinal infections in macaques. Sci Data 2022; 9:722. [PMID: 36433985 PMCID: PMC9700667 DOI: 10.1038/s41597-022-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.
Collapse
Affiliation(s)
- Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Suman B Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vishal Nayak
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Cancer Data Science Initiatives, Frederick National Laboratory for Cancer Research, Post Office Box B, Frederick, MD, 21702, USA
| | - Susanne Warrenfeltz
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jay Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Cristiana F A Brito
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Laboratório de Malária, Instituto René Rachou/Fiocruz Minas, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190 009, Brazil
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia L Saney
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30605, USA
| | - Allison Hankus
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Senior Public Health Informaticist, MITRE Corp, Atlanta, GA, 30345, USA
| | - Hannah M Stealey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan B DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Nicolas Lackman
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, Institute of Bioinformatics, Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Kevin Lee
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Tang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Valted Seq, 704 Quince Orchard Rd, Gaithersburg, MD, 20878, USA
| | - Elizabeth D Trippe
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Federal Drug Administration, Silver Spring, MD, 20993, USA
| | - Robert R Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Brent Weatherly
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Mariko S Peterson
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Xuntian Jiang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32603, USA
| | - Chester J Joyner
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ebru Karpuzoglu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Regina J Cordy
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biology, Wake Forest University, Winston Salem, NC, 27103, USA
| | - Esmeralda V S Meyer
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Institutional Animal Care and Use Committee, Research Compliance and Research Integrity Office, Emory University, Atlanta, GA, 30322, USA
| | - Lance L Wells
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel S Ory
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Casma Therapeutics, Cambridge, MA, 02139, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Juan B Gutiérrez
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chris Ibegbu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tracey J Lamb
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Sarah T Pruett
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Chora ÂF, Mota MM, Prudêncio M. The reciprocal influence of the liver and blood stages of the malaria parasite's life cycle. Int J Parasitol 2022; 52:711-715. [PMID: 35367213 DOI: 10.1016/j.ijpara.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
While the liver and blood stages of the Plasmodium life cycle are commonly regarded as two separate fields of malaria research, several studies have pointed towards the existence of a bidirectional cross-talk, where one stage of mammalian infection may impact the establishment and progression of the other. Despite the constraints in experimentally addressing concurrent liver and blood stage Plasmodium infections, animal models and clinical studies have unveiled a plethora of molecular interactions between the two. Here, we review the current knowledge on the reciprocal influence of hepatic and erythrocytic infection by malaria parasites, and discuss its impacts on immunity, pathology and vaccination against this deadly disease.
Collapse
Affiliation(s)
- Ângelo Ferreira Chora
- Instituto de Medicina Molecular João Lobo Antunes, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
18
|
Das A, Sahu W, Ojha DK, Reddy KS, Suar M. Comparative Analysis of Host Metabolic Alterations in Murine Malaria Models with Uncomplicated or Severe Malaria. J Proteome Res 2022; 21:2261-2276. [PMID: 36169658 DOI: 10.1021/acs.jproteome.2c00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria varies in severity, with complications ranging from uncomplicated to severe malaria. Severe malaria could be attributed to peripheral hyperparasitemia or cerebral malaria. The metabolic interactions between the host and Plasmodium species are yet to be understood during these infections of varied pathology and severity. An untargeted metabolomics approach utilizing the liquid chromatography-mass spectrometry platform has been used to identify the affected host metabolic pathways and associated metabolites in the serum of murine malaria models with uncomplicated malaria, hyperparasitemia, and experimental cerebral malaria. We report that mice with malaria share similar metabolic attributes like higher levels of bile acids, bile pigments, and steroid hormones that have been reported for human malaria infections. Moreover, in severe malaria, upregulated levels of metabolites like phenylalanine, histidine, valine, pipecolate, ornithine, and pantothenate, with decreased levels of arginine and hippurate, were observed. Metabolites of sphingolipid metabolism were upregulated in experimental cerebral malaria. Higher levels of 20-hydroxy-leukotriene B4 and epoxyoctadecamonoenoic acids were found in uncomplicated malaria, with lower levels observed for experimental cerebral malaria. Our study provides insights into host biology during different pathological stages of malaria disease and would be useful for the selection of animal models for evaluating diagnostic and therapeutic interventions against malaria. The raw data files are available via MetaboLights with the identifier MTBLS4387.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India.,Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - Deepak Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India.,Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| |
Collapse
|
19
|
Peterson MS, Joyner CJ, Lapp SA, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Soderberg SR, Nural MV, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutierrez JB, Cordy RJ, Galinski MR. Plasmodium knowlesi Cytoadhesion Involves SICA Variant Proteins. Front Cell Infect Microbiol 2022; 12:888496. [PMID: 35811680 PMCID: PMC9260704 DOI: 10.3389/fcimb.2022.888496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.
Collapse
Affiliation(s)
- Mariko S. Peterson
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica A. Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Jennifer S. Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Celia L. Saney
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Luis L. Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Wayne T. Cheng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Jianlin Jiang
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Stephanie R. Soderberg
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Allison Hankus
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Ebru Karpuzoglu
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Alberto Moreno
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Juan B. Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, United States
| | - Regina Joice Cordy
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Goo YK. Vivax Malaria and the Potential Role of the Subtelomeric Multigene vir Superfamily. Microorganisms 2022; 10:microorganisms10061083. [PMID: 35744600 PMCID: PMC9228997 DOI: 10.3390/microorganisms10061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Vivax malaria, caused by Plasmodium vivax, remains a public health concern in Central and Southeast Asia and South America, with more than two billion people at risk of infection. Compared to Plasmodium falciparum, P. vivax is considered a benign infection. However, in recent decades, incidences of severe vivax malaria have been confirmed. The P. falciparum erythrocyte membrane protein 1 family encoded by var genes is known as a mediator of severe falciparum malaria by cytoadherence property. Correspondingly, the vir multigene superfamily has been identified as the largest multigene family in P. vivax and is implicated in cytoadherence to endothelial cells and immune response activation. In this review, the functions of vir genes are reviewed in the context of their potential roles in severe vivax malaria.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
22
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
23
|
Multi Platforms Strategies and Metabolomics Approaches for the Investigation of Comprehensive Metabolite Profile in Dogs with Babesia canis Infection. Int J Mol Sci 2022; 23:ijms23031575. [PMID: 35163517 PMCID: PMC8835742 DOI: 10.3390/ijms23031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
Collapse
|
24
|
Peterson MS, Joyner CJ, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Lapp SA, Soderberg SR, Nural MV, Humphrey JC, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutiérrez JB, Cordy RJ, Galinski MR. Clinical recovery of Macaca fascicularis infected with Plasmodium knowlesi. Malar J 2021; 20:486. [PMID: 34969401 PMCID: PMC8719393 DOI: 10.1186/s12936-021-03925-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.
Collapse
Affiliation(s)
- Mariko S Peterson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Chester J Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jessica A Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jennifer S Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Celia L Saney
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wayne T Cheng
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jianlin Jiang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Stacey A Lapp
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Stephanie R Soderberg
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jay C Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Allison Hankus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- The MITRE Corporation, Atlanta, GA, USA
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Ebru Karpuzoglu
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for Topical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Alberto Moreno
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
- Pathology, Drug Safety, and DMPK, Boehringer Ingelheim Animal Health USA, Inc., Athens, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Juan B Gutiérrez
- Department of Mathematics, University of Georgia, Athens, GA, USA
- Department of Mathematics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Regina Joice Cordy
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Mary R Galinski
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Little TS, Cunningham DA, Vandomme A, Lopez CT, Amis S, Alder C, Addy JWG, McLaughlin S, Hosking C, Christophides G, Reid AJ, Langhorne J. Analysis of pir gene expression across the Plasmodium life cycle. Malar J 2021; 20:445. [PMID: 34823519 PMCID: PMC8614022 DOI: 10.1186/s12936-021-03979-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background Plasmodium interspersed repeat (pir) is the largest multigene family in the genomes of most Plasmodium species. A variety of functions for the PIR proteins which they encode have been proposed, including antigenic variation, immune evasion, sequestration and rosetting. However, direct evidence for these is lacking. The repetitive nature of the family has made it difficult to determine function experimentally. However, there has been some success in using gene expression studies to suggest roles for some members in virulence and chronic infection. Methods Here pir gene expression was examined across the life cycle of Plasmodium berghei using publicly available RNAseq data-sets, and at high resolution in the intraerythrocytic development cycle using new data from Plasmodium chabaudi. Results Expression of pir genes is greatest in stages of the parasite which invade and reside in red blood cells. The marked exception is that liver merozoites and male gametocytes produce a very large number of pir gene transcripts, notably compared to female gametocytes, which produce relatively few. Within the asexual blood stages different subfamilies peak at different times, suggesting further functional distinctions. Representing a subfamily of its own, the highly conserved ancestral pir gene warrants further investigation due to its potential tractability for functional investigation. It is highly transcribed in multiple life cycle stages and across most studied Plasmodium species and thus is likely to play an important role in parasite biology. Conclusions The identification of distinct expression patterns for different pir genes and subfamilies is likely to provide a basis for the design of future experiments to uncover their function. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03979-6.
Collapse
Affiliation(s)
| | | | | | - Carlos Talavera Lopez
- The Francis Crick Institute, London, UK.,Institute of Computational Biology, Helmholtz Zentrum für Gesundheit und Umwelt, Munich, Germany
| | | | | | | | | | | | | | - Adam J Reid
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
26
|
Metabolomic Analysis of Diverse Mice Reveals Hepatic Arginase-1 as Source of Plasma Arginase in Plasmodium chabaudi Infection. mBio 2021; 12:e0242421. [PMID: 34607466 PMCID: PMC8546868 DOI: 10.1128/mbio.02424-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infections disrupt host metabolism, but the factors that dictate the nature and magnitude of metabolic change are incompletely characterized. To determine how host metabolism changes in relation to disease severity in murine malaria, we performed plasma metabolomics on eight Plasmodium chabaudi-infected mouse strains with diverse disease phenotypes. We identified plasma metabolic biomarkers for both the nature and severity of different malarial pathologies. A subset of metabolic changes, including plasma arginine depletion, match the plasma metabolomes of human malaria patients, suggesting new connections between pathology and metabolism in human malaria. In our malarial mice, liver damage, which releases hepatic arginase-1 (Arg1) into circulation, correlated with plasma arginine depletion. We confirmed that hepatic Arg1 was the primary source of increased plasma arginase activity in our model, which motivates further investigation of liver damage in human malaria patients. More broadly, our approach shows how leveraging phenotypic diversity can identify and validate relationships between metabolism and the pathophysiology of infectious disease. IMPORTANCE Malaria is a severe and sometimes fatal infectious disease endemic to tropical and subtropical regions. Effective vaccines against malaria-causing Plasmodium parasites remain elusive, and malaria treatments often fail to prevent severe disease. Small molecules that target host metabolism have recently emerged as candidates for therapeutics in malaria and other diseases. However, our limited understanding of how metabolites affect pathophysiology limits our ability to develop new metabolite therapies. By providing a rich data set of metabolite-pathology correlations and by validating one of those correlations, our work is an important step toward harnessing metabolism to mitigate disease. Specifically, we showed that liver damage in P. chabaudi-infected mice releases hepatic arginase-1 into circulation, where it may deplete plasma arginine, a candidate malaria therapeutic that mitigates vascular stress. Our data suggest that liver damage may confound efforts to increase levels of arginine in human malaria patients.
Collapse
|
27
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Plasmodium falciparum transcription in different clinical presentations of malaria associates with circulation time of infected erythrocytes. Nat Commun 2021; 12:4711. [PMID: 34330920 PMCID: PMC8324851 DOI: 10.1038/s41467-021-25062-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Following Plasmodium falciparum infection, individuals can remain asymptomatic, present with mild fever in uncomplicated malaria cases, or show one or more severe malaria symptoms. Several studies have investigated associations between parasite transcription and clinical severity, but no broad conclusions have yet been drawn. Here, we apply a series of bioinformatic approaches based on P. falciparum's tightly regulated transcriptional pattern during its ~48-hour intraerythrocytic developmental cycle (IDC) to publicly available transcriptomes of parasites obtained from malaria cases of differing clinical severity across multiple studies. Our analysis shows that within each IDC, the circulation time of infected erythrocytes without sequestering to endothelial cells decreases with increasing parasitaemia or disease severity. Accordingly, we find that the size of circulating infected erythrocytes is inversely related to parasite density and disease severity. We propose that enhanced adhesiveness of infected erythrocytes leads to a rapid increase in parasite burden, promoting higher parasitaemia and increased disease severity.
Collapse
|
29
|
Abdrabou W, Dieng MM, Diawara A, Sermé SS, Almojil D, Sombié S, Henry NB, Kargougou D, Manikandan V, Soulama I, Idaghdour Y. Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab 2021; 3:1001-1016. [PMID: 34113019 DOI: 10.1038/s42255-021-00404-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Host responses to infection with the malaria parasite Plasmodium falciparum vary among individuals for reasons that are poorly understood. Here we reveal metabolic perturbations as a consequence of malaria infection in children and identify an immunosuppressive role of endogenous steroid production in the context of P. falciparum infection. We perform metabolomics on matched samples from children from two ethnic groups in West Africa, before and after infection with seasonal malaria. Analysing 306 global metabolomes, we identify 92 parasitaemia-associated metabolites with impact on the host adaptive immune response. Integrative metabolomic and transcriptomic analyses, and causal mediation and moderation analyses, reveal an infection-driven immunosuppressive role of parasitaemia-associated pregnenolone steroids on lymphocyte function and the expression of key immunoregulatory lymphocyte genes in the Gouin ethnic group. In children from the less malaria-susceptible Fulani ethnic group, we observe opposing responses following infection, consistent with the immunosuppressive role of endogenous steroids in malaria. These findings advance our understanding of P. falciparum pathogenesis in humans and identify potential new targets for antimalarial therapeutic interventions.
Collapse
Affiliation(s)
- Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology, New York University, New York, NY, USA
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Dareen Almojil
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Bere Henry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Kumar M, Skillman K, Duraisingh MT. Linking nutrient sensing and gene expression in Plasmodium falciparum blood-stage parasites. Mol Microbiol 2020; 115:891-900. [PMID: 33236377 DOI: 10.1111/mmi.14652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, caused by infection of humans with parasites of the genus Plasmodium. The complex life cycle of Plasmodium parasites is shared between two hosts, with infection of multiple cell types, and the parasite needs to adapt for survival and transmission through significantly different metabolic environments. Within the blood-stage alone, parasites encounter changing levels of key nutrients, including sugars, amino acids, and lipids, due to differences in host dietary nutrition, cellular tropism, and pathogenesis. In this review, we consider the mechanisms that the most lethal of malaria parasites, Plasmodium falciparum, uses to sense nutrient levels and elicit changes in gene expression during blood-stage infections. These changes are brought about by several metabolic intermediates and their corresponding sensor proteins. Sensing of distinct nutritional signals can drive P. falciparum to alter the key blood-stage processes of proliferation, antigenic variation, and transmission.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kristen Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
31
|
Affiliation(s)
- Heather N. Colvin
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
33
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
34
|
Villegas-Mendez A, Khandelwal G, McGowan LM, Dookie RS, Haley MJ, George C, Sims D, Lord GM, Sinclair LV, Jenner RG, Couper KN. Exhausted CD4 + T Cells during Malaria Exhibit Reduced mTORc1 Activity Correlated with Loss of T-bet Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1608-1619. [PMID: 32817333 PMCID: PMC7477746 DOI: 10.4049/jimmunol.2000450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 01/21/2023]
Abstract
CD4+ T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4+ T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (Ag-exp) CD4+ T cell exhaustion during Plasmodium yoelii nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4+ T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted Ag-expCD4+ T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4+ T cells. Consistent with this, Ag-expTh1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) Ag-expT cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4+ T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4+ T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in Ag-expCD4+ T cells but that reduction in mTOR activity may not directly underpin Ag-expTh1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4+ T cells during malaria infection and other chronic conditions.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Garima Khandelwal
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Lucy M McGowan
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Department of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Rebecca S Dookie
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Michael J Haley
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Charlotte George
- Oxford Biomedical Data Science Training Programme, Medical Research Council Wetherall Institute of Molecular Medicine Centre for Computational Biology, Medical Research Council Wetherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; and
| | - David Sims
- Oxford Biomedical Data Science Training Programme, Medical Research Council Wetherall Institute of Molecular Medicine Centre for Computational Biology, Medical Research Council Wetherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; and
| | - Graham M Lord
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Linda V Sinclair
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Richard G Jenner
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Kevin N Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
35
|
Kuhring M, Eisenberger A, Schmidt V, Kränkel N, Leistner DM, Kirwan J, Beule D. Concepts and Software Package for Efficient Quality Control in Targeted Metabolomics Studies: MeTaQuaC. Anal Chem 2020; 92:10241-10245. [PMID: 32603093 DOI: 10.1021/acs.analchem.0c00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted quantitative mass spectrometry metabolite profiling is the workhorse of metabolomics research. Robust and reproducible data are essential for confidence in analytical results and are particularly important with large-scale studies. Commercial kits are now available which use carefully calibrated and validated internal and external standards to provide such reliability. However, they are still subject to processing and technical errors in their use and should be subject to a laboratory's routine quality assurance and quality control measures to maintain confidence in the results. We discuss important systematic and random measurement errors when using these kits and suggest measures to detect and quantify them. We demonstrate how wider analysis of the entire data set alongside standard analyses of quality control samples can be used to identify outliers and quantify systematic trends to improve downstream analysis. Finally, we present the MeTaQuaC software which implements the above concepts and methods for Biocrates kits and other target data sets and creates a comprehensive quality control report containing rich visualization and informative scores and summary statistics. Preliminary unsupervised multivariate analysis methods are also included to provide rapid insight into study variables and groups. MeTaQuaC is provided as an open source R package under a permissive MIT license and includes detailed user documentation.
Collapse
Affiliation(s)
- Mathias Kuhring
- Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Alina Eisenberger
- Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Vanessa Schmidt
- Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Nicolle Kränkel
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Potsdamer Strasse 58, 10785 Berlin, Germany
| | - David M Leistner
- Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Potsdamer Strasse 58, 10785 Berlin, Germany
| | - Jennifer Kirwan
- Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
36
|
Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat Immunol 2020; 21:790-801. [PMID: 32424361 PMCID: PMC7316608 DOI: 10.1038/s41590-020-0678-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
Plasmodium parasite-specific antibodies are critical for
protection against malaria, yet the development of long-lived and effective
humoral immunity against Plasmodium takes many years and
multiple rounds of infection and cure. Here we report that the rapid development
of short-lived plasmablasts during experimental malaria unexpectedly hindered
parasite control by impeding germinal center (GC) responses. Metabolic
hyperactivity of plasmablasts resulted in nutrient deprivation of the GC
reaction limiting the generation of memory B cell and long-lived plasma cell
responses. Therapeutic administration of a single amino acid to experimentally
infected mice was sufficient to overcome the metabolic constraints imposed by
plasmablasts and enhanced parasite clearance and the formation of protective
humoral immune memory responses. Thus, our studies not only challenge the
current paradigm describing the role and function of blood-stage
Plasmodium-induced plasmablasts, but also reveal new
targets and strategies to improve anti-Plasmodium humoral
immunity.
Collapse
|
37
|
Galinski MR. Functional genomics of simian malaria parasites and host-parasite interactions. Brief Funct Genomics 2020; 18:270-280. [PMID: 31241151 PMCID: PMC6859816 DOI: 10.1093/bfgp/elz013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans.
Collapse
Affiliation(s)
- Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
38
|
Dos Santos RO, da Cruz MGS, Lopes SCP, Oliveira LB, Nogueira PA, Lima ES, Soares IS, Kano FS, de Carvalho AT, Costa FTM, Ganoza CA, de Lacerda MVG, Lalwani P. A First Plasmodium vivax Natural Infection Induces Increased Activity of the Interferon Gamma-Driven Tryptophan Catabolism Pathway. Front Microbiol 2020; 11:400. [PMID: 32256470 PMCID: PMC7089964 DOI: 10.3389/fmicb.2020.00400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
The human immune response that controls Plasmodium infection in the liver and blood stages of the parasite life cycle is composed by both pro- and anti-inflammatory programs. Pro-inflammatory responses primarily mediated by IFN-γ controls the infection, but also induce tolerogenic mechanisms to limit host damage, including the tryptophan (TRP) catabolism pathway mediated by the enzyme Indoleamine 2,3-Dioxygenase (IDO1), an enzyme that catalyzes the degradation of TRP to kynurenines (KYN). Here we assessed total serum kynurenines and cytokine dynamics in a cohort of natural Plasmodium vivax human infection and compared them to those of endemic healthy controls and other febrile diseases. In acute malaria, the absolute free kynurenine (KYN) serum levels and the KYN to TRP (KYN/TRP) ratio were significantly elevated in patients compared to healthy controls. Individuals with a diagnosis of a first malaria episode had higher serum KYN levels than individuals with a previous malaria episode. We observed an inverse relationship between the serum levels of IFN-γ and IL-10 in patients with a first malaria episode compared to those of subjects with previous history of malaria. Kynurenine elevation was positively correlated with serum IFN-γ levels in acute infection, whereas, it was negatively correlated with parasite load and P. vivax LDH levels. Overall, the differences observed between infected individuals depended on the number of Plasmodium infections. The decrease in the KYN/TRP ratio in malaria-experienced subjects coincided with the onset of anti-P. vivax IgG. These results suggest that P. vivax infection induces a strong anti-inflammatory program in individuals with first time malaria, which fades with ensuing protective immunity after subsequent episodes. Understanding the tolerance mechanisms involved in the initial exposure would help in defining the balance between protective and pathogenic immune responses necessary to control infection and to improve vaccination strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Emerson Silva Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Irene Silva Soares
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Flora Satiko Kano
- Instituto René Rachou (IRR), Fiocruz Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabio Trindade Maranhão Costa
- Departamento de Genética, Evolução, Imunologia e Microbiologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Christian A Ganoza
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Marcus Vinicius Guimarães de Lacerda
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus, Brazil.,Fundação de Medicina Tropical, Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus, Brazil
| |
Collapse
|
39
|
Joice Cordy R. Mining the Human Host Metabolome Toward an Improved Understanding of Malaria Transmission. Front Microbiol 2020; 11:164. [PMID: 32117175 PMCID: PMC7033509 DOI: 10.3389/fmicb.2020.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
The big data movement has led to major advances in our ability to assess vast and complex datasets related to the host and parasite during malaria infection. While host and parasite genomics and transcriptomics are often the focus of many computational efforts in malaria research, metabolomics represents another big data type that has great promise for aiding our understanding of complex host-parasite interactions that lead to the transmission of malaria. Recent analyses of the complement of metabolites present in human blood, skin and breath suggest that host metabolites play a critical role in the transmission cycle of malaria. Volatile compounds released through breath and skin serve as attractants to mosquitoes, with malaria-infected hosts appearing to have unique profiles that further increase host attractiveness. Inside the host, fluctuations in the levels of certain metabolites in blood may trigger increased production of transmission-competent sexual stages (gametocytes), setting the stage for enhanced transmission of malaria from human to mosquito. Together, these recent discoveries suggest that metabolites of human blood, skin and breath play critical roles in malaria transmission. This review discusses recent advances in this area, with a focus on metabolites that have been identified to play a role in malaria transmission and methods that may lead to an improved understanding of malaria transmission.
Collapse
Affiliation(s)
- Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
40
|
Dos Santos RO, Gonçalves-Lopes RM, Lima NF, Scopel KKG, Ferreira MU, Lalwani P. Kynurenine elevation correlates with T regulatory cells increase in acute Plasmodium vivax infection: A pilot study. Parasite Immunol 2020; 42:e12689. [PMID: 31799743 DOI: 10.1111/pim.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disease-tolerance mechanisms limit infection severity by preventing tissue damage; however, the underlying mechanisms in human malaria are still unclear. Tryptophan (TRP), an essential amino acid, is catabolized into tolerogenic metabolites, kynurenines (KYN), by indoleamine 2,3-dioxygenase 1 (IDO1), which can induce Foxp3+ T regulatory cells (Tregs). In this study, we evaluated the relationship of these metabolites with Treg-mediated tolerance induction in acute malaria infections. METHODS We performed a cross-sectional study that evaluated asymptomatic, symptomatic malaria patients and endemic control patient groups. We assessed plasmatic concentration of cytokines by ELISA. Plasmatic TRP and KYN levels were measured by HPLC. Peripheral T regulatory cells were measured and phenotyped by flow cytometry. RESULTS The KYN/TRP ratio was significantly elevated in asymptomatic and symptomatic Plasmodium infection, compared to healthy controls. Also, Th1 and Th2 cytokines were elevated in the acute phase of malaria disease. IFN-γ increase in acute phase was positively correlated with the KYN/TRP ratio and KYN elevation was positively correlated with the increase of peripheral FoxP3+ T regulatory cells. CONCLUSIONS Additional studies are needed not only to identify innate mechanisms that increase tryptophan catabolism but also the role of Tregs in controlling malaria-induced pathology and malaria tolerance by the host.
Collapse
Affiliation(s)
| | - Raquel M Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Nathália F Lima
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Kézia K G Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus, Brazil, Manaus, Brazil
| |
Collapse
|
41
|
Tran TM, Crompton PD. Decoding the complexities of human malaria through systems immunology. Immunol Rev 2019; 293:144-162. [PMID: 31680289 DOI: 10.1111/imr.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
The complexity of the Plasmodium parasite and its life cycle poses a challenge to our understanding of the host immune response against malaria. Studying human immune responses during natural and experimental Plasmodium infections can enhance our understanding of malaria-protective immunity and inform the design of disease-modifying adjunctive therapies and next-generation malaria vaccines. Systems immunology can complement conventional approaches to facilitate our understanding of the complex immune response to the highly dynamic malaria parasite. In this review, recent studies that used systems-based approaches to evaluate human immune responses during natural and experimental Plasmodium falciparum and Plasmodium vivax infections as well as during immunization with candidate malaria vaccines are summarized and related to each other. The potential for next-generation technologies to address the current limitations of systems-based studies of human malaria are discussed.
Collapse
Affiliation(s)
- Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|